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In this chapter the basic notation that will be used in Part II is introduced. In Part
I the data consisted of two binary sequences or variables. In Part II the data are
collected in a data matrix X of m column vectors. In this chapter we do not consider
individual coefficients but coefficient matrices. Given a n ×m data matrix X, one
may obtain a m × m coefficient matrix S by calculating all pairwise coefficients
Sjk for two columns j and k from X. Different coefficient matrices are obtained,
depending on the choice of similarity coefficient.

Chapter 6 is used to introduce several data structures that are either reflected in
the data matrix or that can be assumed to underlie the data matrix. In the latter
case, matrix X may contain the realizations, 0 or 1, generated by a latent variable
model. The latent variable models presented in this chapter are discussed in terms
of item response theory (De Gruijter and Van der Kamp, 2008; Van der Linden and
Hambleton, 1997; Sijtsma and Molenaar, 2002).

Suppose the data matrix X contains the responses of n persons on m binary
items. Item response theory is a psychometric approach that enables us to study
these data in terms of item characteristics and persons’ propensities to endorse
different items. A subfield of item response theory, so-called nonparametric item re-
sponse theory (Sijtsma and Molenaar, 2002), is concerned with identifying modeling
properties that follow from basic assumptions like a single latent variable or local
independence. Often, if a particular model holds for the data at hand, then the
columns of the data matrix can be ordered such that certain structure properties
become apparent.
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72 Data structures

In addition to several probabilistic models, various possible patterns of 1s and
0s are described in this chapter. These data structures are referred to as Guttman
items and Petrie matrices, and, if the data matrix is not too big, can be confirmed by
visual inspection. The theoretical conditions considered and derived in this chapter
are used in the remaining chapters of Part II as possible sufficient conditions for
coefficient matrices to exhibit or not exhibit certain ordinal properties.

6.1 Latent variable models

Suppose the binary data are in a matrix X of size n × m. For example, the data
may be the responses of n persons on m binary items. Let ω denote a single latent
variable or trait and let pj(ω) denote the response function corresponding to the
response 1 in column vector j, with 0 ≤ pj(ω) ≤ 1. The response 0 on j is modeled
by the function 1 − pj(ω). Moreover, let L(ω) denote the distribution function of
the latent variable ω. The unconditional probability of a score 1 on vector j is given
by

pj =

∫

R

pj(ω)dL(ω)

where R denotes the set of reals. We also define the quantity qj = 1− pj.
At this point assume local independence, that is, conditionally on ω the responses

of a person on the m items are stochastically independent. The joint probability
of items j and k for a value of ω is then given by pj(ω)pk(ω). The corresponding
unconditional probability can be obtained from

ajk =

∫

R

pj(ω)pk(ω)dL(ω).

In item response theory (De Gruijter and Van der Kamp, 2008; Van der Linden
and Hambleton, 1997; Sijtsma and Molenaar, 2002) a distinction is made between
so-called parametric and nonparametric models. In a parametric model a specific
shape of the response function is assumed. An example of a parametric model is
the 2-parameter model. The normal ogive formulation of the 2-parameter model
comes from Lord (1952). Birnbaum (1968) later on proposed the logistic form of
the 2-parameter model. A response function of the latter formulation is given by

pj(ω) =
exp[δj(ω − βj)]

1 + exp[δj(ω − βj)]

where δj controls the slope of the response function and βj controls the location of
the response function.

In nonparametric models no shapes of the response function are assumed, only
a general tenor for a set of functions. For example, all functions may be non-
increasing in the latent variable, or they are unimodal functions. An example of a
nonparametric model is the following model. Suppose that the response functions
of all m items are monotonically increasing on ω, that is

pj(ω1) ≤ pj(ω2) for 1 ≤ j ≤ m and ω1 < ω2. (6.1)
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The case in (6.1) (together with the assumptions of a single latent variable and local
independence) describes the monotone homogeneity model in Sijtsma and Molenaar
(2002, p. 22). A well-known result is that if (6.1) holds, then all binary items are
positively dependent. The result follows from the fact that

ajk − pjpk =
1

2

∫ ∫

R2

[pj(ω2)− pj(ω1)] [pk(ω2)− pk(ω1)] dL(ω2)dL(ω1) > 0.

A stronger nonparametric model is the following model. In addition to (6.1), suppose
that the items can be ordered such that the corresponding response functions are
non-intersecting, that is,

pj(ω) ≥ pk(ω) for 1 ≤ j < k ≤ m. (6.2)

The case that assumes (6.1) and (6.2) (together with the assumptions of local in-
dependence and a single latent variable) is called the double monotonicity model
in Sijtsma and Molenaar (2002, p. 23). A well-known result is that, if the double
monotonicity model holds, then the items can be ordered such that

pj ≥ pj+1 for 1 ≤ j < m (6.3)

and
ajk ≥ aj+1k for fixed k (6= j + 1) and 1 ≤ j < m. (6.4)

Thus, under the double monotonicity model the item ordering can directly be ob-
tained by inspecting the pj. A parametric model that satisfies both requirement
(6.1) and (6.2) is the 1-parameter logistic model or Rasch model (Rasch, 1960). The
response function of the Rasch model is given by

pj(ω) =
exp[ω − βj]

1 + exp[ω − βj]

where βj controls the location of the individual response function. Note that the
Rasch (1960) model is a special case of the 2-parameter logistic model.

Instead of a monotonically increasing function, let pj(ω) be a unimodal function,
that is

pj(ω1) ≤ pj(ω2) for ω1 < ω2 ≤ ω0

and pj(ω1) ≥ pj(ω2) for ω0 ≥ ω1 < ω2

where pj(ω) obtains its maximum at ω0. The class of models with unimodal response
functions includes models with monotone response functions, since the latter can
be interpreted as unimodal functions of which the maximum lies at plus or minus
infinity.

Apart from being monotone or unimodal, response functions may also satisfy
various orders of total positivity (Karlin, 1968; Post and Snijders, 1993). If a set of
response functions is totally positive of order 2, then the items can be ordered such
that

pj(ω1)pk(ω2)− pj(ω2)pk(ω1) ≥ 0 for ω1 < ω2 and 1 ≤ j < k ≤ m. (6.5)

Schriever (1986, p. 125) derived the following result for functions that are both
monotonically increasing and satisfy total positivity of order 2.
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Theorem 6.1 [Schriever, 1986]. If m response functions are ordered such that
(6.1) and (6.5) hold, then the items satisfy

1 ≤ j < m, 1 ≤ k ≤ m ⇒ ajk

pj

≤ aj+1k

pj+1

for fixed k (6= j + 1). (6.6)

Proof: p−1
j pj(ω) can be interpreted as a density with respect to the measure dL(ω),

which by (6.5), is totally positive of order 2 and satisfies

∫

R

p−1
j pj(ω)dL(ω) = 1.

Since by (6.1), pk(ω) is increasing in ω for each k = 1, ...,m, it follows from Propo-
sition 3.1 in Karlin (1968, p. 22) that

p−1
j ajk =

∫

R

p−1
j pj(ω)pk(ω)dL(ω) is increasing in j. �

6.2 Petrie structure

Coombs (1964) describes a model in which the unimodal response functions consists
of two step functions. Characteristic of the Coombs scale is that the columns of
X can be ordered such that all rows of the data matrix X contain consecutive 1s,
that is, all the 1s in a row are bunched together. If the data matrix X is a re-
ordered subject by attribute table with consecutive 1s in each row, all subjects have
single-peaked preference functions, that is, they always check contiguous stimuli. If
all runs of ones have the same length, the table has a parallelogram structure as
defined by Coombs (1964, Chapter 4).

A (0,1)-table with consecutive 1s may also be interpreted as an intuitively mean-
ingful and simple archaeological model. An artifact comes into use at a certain point
in time, it remains in use for a certain period, and after some time it goes out of
use. In an archaeological context, matrices with consecutive 1s were studied by Sir
Flinders Petrie (Kendall, 1971, p. 215; Heiser, 1981, Section 3.2). Matrices with
consecutive 1s in the rows will be called row Petrie. Column Petrie is defined in a
similar way. A matrix is called double Petrie if it is both row Petrie and column
Petrie. Examples of Petrie matrices are

X1 =





















1 1 0 0
0 1 0 0
0 1 1 1
0 0 1 0
0 0 1 0
0 0 1 1
0 0 0 1





















X2 =









1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1









X3 =





















1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1




















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and

X4 =













1 0 0 0
1 1 0 0
1 1 0 0
1 1 1 0
1 1 1 1













.

Matrix X1 is row Petrie, whereas X2, X3 and X4 are double Petrie.

Determinants of any square 2×2 submatrix of a double Petrie matrix are positive.
A double Petrie matrix is therefore totally positive of order 2 (Karlin, 1968). This
property is used in Proposition 6.1, where XT denote the transpose of the matrix
X. Moreover, let SRR denote the m × m similarity matrix containing all pairwise
coefficients SRR = ajk, calculated from the columns of X.

Proposition 6.1. If X is double Petrie, then

SRR = m−1XTX

is totally positive of order 2.
Proof: Because all possible second order-determinants of a double Petrie matrix,
that is

[

1 1
0 1

] [

0 1
0 0

] [

1 1
0 0

] [

0 1
0 1

]

their transposes, and
[

1 1
1 1

]

and

[

0 0
0 0

]

are either 1 or 0, a double Petrie matrix is (at least) totally positive of order 2. Since
the product of two totally positive matrices of order h is again totally positive of
order h (Gantmacher and Krein, 1950, p. 86), it follows that the matrix SRR is (at
least) totally positive of order 2. �

We have a particular reason for studying Petrie matrices. It turns out that the
data table X being row Petrie or double Petrie is manifested in the quantities

ajk = the proportion of 1s shared by columns j and k

in the same positions

pj = the proportion of 1s in column j

and pk = the proportion of 1s in column k.

We present various properties in this section of quantities ajk, pj and pk that hold
if X reflects some sort of Petrie structure. We first consider the case that X is row
Petrie. In Proposition 6.2 it is derived what pattern ajk exhibits when X is row
Petrie.



76 Data structures

Proposition 6.2. If X is row Petrie, then

ajk ≥ aj+1k for 1 ≤ k ≤ j < m (6.7)

and ajk ≤ aj+1k for 1 ≤ j < k ≤ m.

Proof: We only consider the proof of (6.7). If X is row Petrie then columns k, j
and j + 1 of X can form the two types of row profiles

k j j + 1 freq.
1 1 0 u1

1 1 1 u2

with frequencies u1 and u2. Thus u1 is the number of row profiles that contain a 1
for columns k and j and a 0 for column j + 1. Equation (6.7) is true if

ajk ≥ aj+1k

u1 + u2 ≥ u2

u1 ≥ 0.

The assertion is true because u1 is a positive number. �

In the remainder of the section we consider the case that X is double Petrie. We
present several properties of quantities ajk, pj and pk for the case that X is double
Petrie.

Proposition 6.3. If X is double Petrie, then

ajk

pj

≥ aj+1k

pj+1

for 1 ≤ k ≤ j < m (6.8)

and
ajk

pj

≤ aj+1k

pj+1

for 1 ≤ j < k ≤ m.

Proof: We only consider the proof of (6.8). If X is double Petrie, we may distinguish
two situations with respect to the types of row profiles of columns j, j + 1, and k.
Firstly, we have

k j j + 1 freq.
1 1 0 u1

0 1 0 u2

0 1 1 u3

0 0 1 u4

with frequencies u1 and u4. In this case there are no row profiles with a 1 in both
column k and j + 1. Equation (6.8) is true if

ajk

pj

≥ aj+1k

pj+1

u1

u1 + u2 + u3

≥ 0

u3 + u4

u1 ≥ 0.
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Since u1 is a positive number, (6.8) holds for the first situation. Secondly, we may
have

k j j + 1 freq.
1 1 0 u1

1 1 1 u2

0 1 1 u3

0 0 1 u4

with frequencies u1 and u4. With respect to the second case, (6.8) is true if

ajk

pj

≥ aj+1k

pj+1

u1 + u2

u1 + u2 + u3

≥ u2

u2 + u3 + u4

u1u2 + u1u3 + u1u4 + u2u2 + u2u3 + u2u4 ≥ u1u2 + u2u2 + u2u3

u1u3 + u1u4 + u2u4 ≥ 0.

This completes the proof of the assertion. �

Proposition 6.4. If X is double Petrie, then

ajk

pj + pk

≥ aj+1k

pj+1 + pk

for 1 ≤ k ≤ j < m (6.9)

and
ajk

pj + pk

≤ aj+1k

pj+1 + pk

for 1 ≤ j < k ≤ m.

Proof: We only consider the proof of (6.9). Since X is double Petrie, we have

pj+1ajk ≥ aj+1kpj for 1 ≤ k ≤ j < m (6.10)

by Proposition 6.3 and

pkajk ≥ pkaj+1k for 1 ≤ k ≤ j < m (6.11)

by Proposition 6.2. Adding (6.10) and (6.11) we obtain (6.9). �

6.3 Guttman items

The simplest data structure considered in this chapter is the Guttman or perfect
scale (Guttman, 1950, 1954), named after the person who popularized the model
with the method of scalogram analysis. A scalogram matrix is a special type of
double Petrie matrix, for which all pairs of columns are Guttman items. Let pj (qj)
denote the proportion of 1s (0s) of variable j, and let ajk denote the proportion of 1s
that vector j and k share in the same positions. Two binary variables are Guttman
items if the number of 1s that variables j and k share in the same positions equals
the total amount of 1s in one of the vectors, that is,

ajk = min(pj, pk) for 1 ≤ j ≤ m and 1 ≤ k ≤ m. (6.12)
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Matrix X4 (Section 6.2) satisfies condition (6.12). Furthermore, the columns of X4

are ordered such that (6.3) holds. If the columns of X satisfy both (6.12) and (6.3),
X is sometimes referred to as a scalogram. Scalogram matrices are totally positive,
that is, the determinant of any square submatrix, including the minors, is positive
(Karlin, 1968).

Various coefficients have specific properties if the data consist of Guttman items.
If (6.12) holds, then the matrices SSim = SLoe have elements SSim = SLoe = 1. For
example, SSim = SLoe corresponding to matrix X4 is given by

SSim = SLoe =









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









.

Furthermore, if (6.12) and (6.3) hold, then the elements of the similarity matrices
SDice1 = {ajk/pj} and SDice2 = {ajk/pk} have the form

SDice1 =

{

p−1
j pk for j < k

1 for j ≥ k

and

SDice2 =

{

1 for j ≤ k

p−1
k pj for j > k.

For example, coefficient matrices SDice1 and SDice2 corresponding to data matrix X4

in Section 6.2, are given by

SDice1 =









1 .8 .4 .2
1 1 .5 .25
1 1 1 .5
1 1 1 1









and SDice2 =









1 1 1 1
.8 1 1 1
.4 .5 1 1
.2 .25 .5 1









.

Similarly, the elements of the similarity matrices SCole1 and SCole2 have the form

SCole1 =

{

(pjqk)
−1pkqj for j < k

1 for j ≥ k

and

SCole2 =

{

1 for j ≤ k

(pkqj)
−1pjqk for j > k.
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A matrix S is said to be a Green’s matrix (Karlin, 1968, p. 110) if its elements
can be expressed in the form

Sjk = umin(j,k)vmax(j,k) =

{

uj vk for j ≤ k

uk vj for j ≥ k

where uj and vk for j, k = 1, 2, ...,m are real constants. Green’s matrices are totally
positive, that is, the determinant of any square submatrix, including the minors, is
positive. These matrices have a variety of interesting properties (cf. Karlin, 1968).
Various similarity matrices corresponding to different coefficients become Green’s
matrices if the data are Guttman items.

Proposition 6.5. If the columns of X are ordered such that (6.12) and (6.3) hold,
then SRR, SDK, SBB = SJac = SSorg and SPhi are Green’s matrices.
Proof: If ajk = min(pj, pk) and pj ≥ pj+1, then

SRR =

{

pk for j ≤ k

pj for j ≥ k

SDK =











p
−1/2
j p

1/2
k for j < k

1 for j = k

p
−1/2
k p

1/2
j for j > k

SBB = SJac = SSorg =











p−1
j pk for j < k

1 for j = k

p−1
k pj for j > k

SPhi =











(pjqk)
−1/2(pkqj)

1/2 for j < k

1 for j = k

(pkqj)
−1/2(pjqk)

1/2 for j > k. �
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6.4 Epilogue

This chapter was used to introduce several data structures that are either reflected
in the data matrix or that can be assumed to underlie the data matrix. In the latter
case, data matrix X may contain the realizations, 0 or 1, generated by a latent
variable model. It was shown that if X exhibits some sort of Petrie structure or if a
certain latent variable model can be assumed to underlie data matrix X, then this
data structure is manifested in the quantities

ajk = the proportion of 1s shared by columns j and k

in the same positions

pj = the proportion of 1s in column j

and pk = the proportion of 1s in column k.

The properties of the manifest probabilities derived in this chapter are used in the
later chapters of the Part II as possible sufficient conditions for coefficient matrices
to exhibit or not certain ordinal properties.



 !"#$%&  

&'()*+'* ,-./)01+

Given a n × m data matrix X one may obtain a m × m coefficient matrix by
calculating all pairwise coefficients for two columns j and k of X. Different similarity
matrices are obtained depending on the choice of similarity coefficient. Various
matrix properties of coefficient matrices may be studied. The topic of this chapter
is Robinson matrices.

A square similarity matrix S is called a Robinson matrix (after Robinson, 1951)
if the highest entries within each row and column of S are on the main diagonal
(elements Sjj) and moving away from this diagonal, the entries never increase. The
Robinson property of a (dis)similarity matrix reflects an ordering of the objects, but
also constitutes a clustering system with overlapping clusters. Such ordered cluster-
ing systems were introduced under the name pyramids by Diday (1984, 1986) and
under the name pseudo-hierarchies by Fichet (1984). The CAP algorithm to find an
ordered clustering structure was described in Diday (1986) and Diday and Bertrand
(1986), and later extended to deal with symbolic data by Brito (1991) and with miss-
ing data by Gaul and Schader (1994). Chepoi and Fichet (1997) describe several
circumstances in which Robinson matrices are encountered. For an in-depth review
of overlapping clustering systems the reader is referred to Barthélemy, Brucker and
Osswald (2004).

81
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A similarity matrix may or may not exhibit the Robinson property depending
on the choice of resemblance measure. It seems to be a common notion in the clas-
sification literature that Robinson matrices arise naturally in problems where there
is essentially a one-dimensional structure in the data (see, for example, Critchley,
1994, p. 174). As will be shown in this chapter, the occurrence of a Robinson
matrix is a combination of the choice of the similarity coefficient, and the specific
one-dimensional structure in the data. Here, the data structures from Chapter 6
come into play. In this chapter it is specified in terms of sufficient conditions what
data structure must be reflected in the data matrix X for a corresponding similarity
matrix to exhibit the Robinson property. The Robinson property is primarily stud-
ied for coefficient matrices that are symmetric. Chapter 19 is devoted to a three-way
generalization of Robinson matrix, called a Robinson cube.

7.1 Auxiliary results

When studying symmetric coefficient matrices, it is convenient to work with the
following definition of a Robinson matrix. A symmetric matrix S = {Sjk} is called
a Robinson matrix if we have

Sjk ≤ Sj+1k for 1 ≤ j < k ≤ m (7.1)

Sjk ≥ Sj+1k for 1 ≤ k ≤ j < m. (7.2)

In this first section we present several auxiliary results without proof. These results
may be used to establish Robinson properties for other coefficients once a property
has been established for some resemblance measures.

Proposition 7.1. Coefficient matrix S with elements Sjk is a Robinson matrix if
and only if the coefficient matrix with elements 2Sjk − 1 is a Robinson matrix.

Coefficients that are related by the formula in Proposition 7.1 are SHam = 2SSM−1
where

SSM =
a + d

a + b + c + d
and SHam =

a− b− c + d

a + b + c + d

(Hamann, 1961) and SMcC = 2SKul − 1 where

SKul =
1

2

(

a

a + b
+

a

a + c

)

and SMcC =
a2 − bc

(a + b)(a + c)

(McConnaughey, 1964).

Proposition 7.2. If Si for i = 1, 2, ..., n are n Robinson matrices of order m×m,
then their sum (or their arithmetic mean) is also a Robinson matrix.

Proposition 7.3. If S = {Sjk} and S∗ =
{

S∗jk
}

are Robinson matrices of order
m×m, then matrix T with elements Tjk = Sjk × S∗jk is a Robinson matrix.
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Proposition 7.4. Let S = {Sjk} be a Robinson matrix, and let f() be a monotonic
function. Then matrix T with elements Tjk = f(Sjk) is a Robinson matrix.

We also consider two propositions that are specific to parameter families SGL1(θ)
and SGL2(θ).

Proposition 7.5. Let S and S∗ be coefficient matrices corresponding to any two
members of SGL1(θ). S is a Robinson matrix if and only if S∗ is a Robinson matrix.
Proof: Due to Theorem 3.1, (7.1) and (7.2) for any member of SGL1(θ) become

ajk

pj + pk

≥ aj+1k

pj+1 + pk

for 1 ≤ k ≤ j < m

and
ajk

pj + pk

≤ aj+1k

pj+1 + pk

for 1 ≤ j < k ≤ m. �

Proposition 7.6. Let S and S∗ be coefficient matrices corresponding to any two
members of SGL2(θ). S is a Robinson matrix if and only if S∗ is a Robinson matrix.
Proof: Due to Theorem 3.2, (7.1) and (7.2) for any member of SGL2(θ) become

2ajk − pj ≥ 2aj+1k − pj+1 for 1 ≤ k ≤ j < m

and 2ajk − pj ≤ 2aj+1k − pj+1 for 1 ≤ j < k ≤ m. �

7.2 Braun-Blanquet + Russel and Rao coefficient

Coefficient
SBB =

ajk

max(pj, pk)
(Braun-Blanquet, 1932)

is one of the few interesting measures with respect to the Robinson property. It was
shown in Chapter 2 that SBB is a special case of a coefficient used by Robinson (1951)
(Proposition 2.1). The Robinson property of coefficient SBB is related to latent
variable models with monotonically increasing response functions. The coefficient
matrix corresponding to SBB is a Robinson matrix if pj ≥ pj+1 (6.3), ajk ≥ aj+1k

(6.4), and p−1
j ajk ≥ p−1

j+1aj+1k (6.6) hold. Condition (6.4) holds under the double
monotonicity model (Sijtsma and Molenaar, 2002). Condition (6.6) was derived by
Schriever (1986) for increasing response function that are totally positive of order 2.

Proposition 7.7. Suppose the m columns of X are ordered such that (6.3), (6.4)
and (6.6) hold. Then SBB with SBB = ajk/max(pj, pk) is a Robinson matrix.
Proof: Suppose (6.3) holds. Using SBB in (7.1) and (7.2) we obtain

ajk

pj

≤ aj+1k

pj+1

for 1 ≤ j < k ≤ m and ajk ≥ aj+1k for 1 ≤ k ≤ j < m.

The conditions are satisfied if (6.6) and (6.4) hold. �



84 Robinson matrices

The coefficient by Russel and Rao (1940) SRR = ajk is by far the simplest coef-
ficient for binary data considered in this thesis. Nevertheless, SRR is an interesting
coefficient which possesses an interesting Robinson property. The result is not new,
but can already be found in Wilkinson (1971). Coefficient matrix SRR is a Robinson
matrix if X is row Petrie.

Theorem 7.1 [Wilkinson, 1971, p. 279]. If X is row Petrie, then SRR with
elements SRR is a Robinson matrix.
Proof 1: The result follows from Proposition 6.2.
Proof 2: Let xi be the ith row of X and let xT

i denotes its transpose. The matrix
SRR equals

SRR =
1

n

n
∑

i=1

xT
i xi.

If X is row Petrie, then each xT
i xi is a Robinson matrix. Due to Proposition 7.2,

the arithmetic mean of Robinson matrices is again a Robinson matrix. �

7.3 Double Petrie

A variety of coefficient matrices are Robinson matrices when X is double Petrie.
Proposition 7.8 covers this Robinson property for parameter family SGL1(θ). Propo-
sition 7.9 concerns asymmetric coefficients SDice1 and SDice2, whereas Proposition
7.10 concerns SKul and SDK.

Proposition 7.8. If X is double Petrie, then the coefficient matrix corresponding
to any member of SGL1(θ) is a Robinson matrix.
Proof: The result follows from Proposition 7.5 and Proposition 6.4. �

Proposition 7.9. If X is double Petrie, then SDice1 and SDice2 with elements SDice1

and SDice2 are Robinson matrices.
Proof: We consider the proof for SDice1 first. Since SDice1 is not symmetric we ignore
equations (7.1) and (7.2). We must verify the four directions one may move away
from the main diagonal of SDice1. We have

ajk

pj

≥ aj+1k

pj+1

for 1 ≤ k ≤ j < m

and
ajk

pj

≤ aj+1k

pj+1

for 1 ≤ j < k ≤ m.

By Proposition 6.3, both conditions are true if X is double Petrie. Furthermore, we
have

ajk

pj

≥ ajk+1

pj

for 1 ≤ k < j ≤ m

and
ajk

pj

≤ ajk+1

pj

for 1 ≤ j ≤ k < m.
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By Proposition 6.2, these conditions are true if X is double Petrie. This completes
the proof for SDice1. Because SDice2 is the transpose of SDice1, SDice2 is a Robinson
matrix if and only if SDice1 has the Robinson property. �

Proposition 7.10. If X is double Petrie, then SKul and SDK with elements

SKul =
1

2

(

a

a + b
+

a

a + c

)

and SDK =
a

√

(a + b)(a + c)

are Robinson matrices.
Proof: The property follows from Proposition 7.9 combined with Proposition 7.2 for
SKul and Propositions 7.3 and 7.4 with respect to coefficient SDK. �

7.4 Restricted double Petrie

The two conditions considered in this section are restricted forms of a double Petrie
structure. In Proposition 7.11 it is assumed that data table X satisfies the Guttman
scale. Matrix X4 (Section 6.2) is an example of a Guttman scale. In Proposition
7.12 it is assumed that X is double Petrie and that pj = pj+1 for 1 ≤ j < m.
Matrix X3 (Section 6.2) is an example of a data table that satisfies the conditions
considered in Proposition 7.12. Because the conditions in Propositions 7.11 and
7.12 are quite restrictive, the results have limited applicability and are perhaps of
theoretical interest only.

Proposition 7.11. If the columns of X are ordered such that (6.12) and (6.3)
hold, then SSM with elements SSM and SPhi with elements SPhi are Robinson matri-
ces.
Proof: Under condition (6.12), the equations of Proposition 7.6 become equivalent
to condition (6.3). This completes the proof for coefficient SSM.

Under condition (6.12), SPhi can be written as

SPhi =







√

pkqj

pjqk
for j < k

√

pjqk

pkqj
for j > k

(7.3)

and SPhi = 1 if j = k.
Using (7.3) in (7.1) and (7.2) we obtain

qj

pj

≤ qj+1

pj+1

for 1 ≤ j < k ≤ m

and
pj

qj

≥ pj+1

qj+1

for 1 ≤ k ≤ j < m.

Both inequalities are true if (6.3) holds. This completes the proof for coefficient
SPhi. �
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Proposition 7.12. Let X be double Petrie and let pj = pj+1 for 1 ≤ j < m. Then
SSM with elements SSM and SPhi with elements SPhi are Robinson matrices.
Proof: If pj = pj+1 for 1 ≤ j < m, the equations of Proposition 7.6 become equiv-
alent to the equations in Proposition 6.2. This completes the proof for coefficient
SSM. The proof for SPhi is similar. �

7.5 Counterexamples

The Robinson property of SRR established in Theorem 7.1 appears to be unique to
SRR. We consider a row Petrie counterexample for the Jaccard coefficient

SJac =
ajk

pj + pk − ajk

which is a member of family SGL1(θ), and the coefficient by Braun-Blanquet (1932)

SBB =
ajk

max(pj, pk)
.

Let the data be in the matrix X1 from Section 6.2. Using X1, we may obtain
coefficient matrices

SJac =









1 .33 0 0
.33 1 .17 .20
0 .17 1 .40
0 .20 .40 1









SBB =









1 .33 0 0
.33 1 .25 .33
0 .25 1 .50
0 .33 .50 1









and

SRR =









.14 .14 0 0

.14 .43 .14 .14
0 .29 .57 .29
0 .14 .29 .43









.

The latter matrix is a Robinson matrix, but SJac and SBB are not Robinson matrices.
Coefficient matrices corresponding to resemblance measures that include the co-

variance (ad − bc) or the quantity d in the numerator do not appear to be Robin-
son matrices if X is double Petrie. For the simple matching coefficient SSM =
(a + d)/(a + b + c + d) and the Phi coefficient

SPhi =
ad− bc
√

pjpkqjqk

we consider a counterexample. Let the data be in the matrix X2 from Section 6.2.
Using X2 we may obtain coefficient matrices

SSM =









1 .5 0 .25
.5 1 .5 .25
0 .5 1 .75

.25 .25 75 1









and SPhi =









1 0 −1 −.58
0 1 0 −.58
−1 0 1 −.58
−.58 −.58 −.58 1









.

Both matrices are not Robinson matrices.
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7.6 Epilogue

A coefficient matrix is referred to as a Robinson matrix if the highest entries within
each row and column are on the main diagonal and moving away from this diago-
nal, the entries never increase. For a selection of resemblance measures for binary
variables we presented sufficient conditions for the corresponding coefficient matrix
to exhibit the Robinson property. As sufficient conditions we considered data tables
that are referred to as Petrie matrices, that is, matrices of which the columns can
be ordered such that the 1s in a row form a consecutive interval.

As it turns out, the sufficient conditions differ with the resemblance measures
for (0,1)-data. The occurrence of a Robinson matrix is the interplay between the
choice of similarity coefficient and the specific structure in the data at hand.

Some of the sufficient conditions can be ordered from restrictive to most general:
Guttman scale ⇒ double Petrie ⇒ row Petrie. The latter condition is sufficient for
the coefficient matrix corresponding to coefficient

SRR =
a

a + b + c + d
(Russel and Rao, 1940)

to be a Robinson matrix. Although this result was already presented in Wilkinson
(1971), the systematic study presented in this chapter reveals that the Robinson
property of SRR is a very general Robinson property compared to the Robinson
properties of other resemblance measures for binary variables. Furthermore, the
general Robinson property appears to be unique to coefficient SRR. Within the
framework of Petrie matrices, we may conclude that the Robinson property is most
likely to occur for the coefficient matrix SRR.

The Guttman scale is also a special case of the Rasch model (see Section 6.1),
which in turn is a special case of the model implied by (6.3), (6.4) and (6.6). In
Section 7.2 it was shown that the latter model, that corresponds to a probabilistic
model with monotonically increasing response functions, is sufficient for the coeffi-
cient matrix with elements

SBB =
a

max(p1, p2)
(Braun-Blanquet, 1932)

to be a Robinson matrix.
It should be noted that the results in this chapter are exact. For example, matrix

X1 was used in Section 7.5 to show that the similarity matrix based on SJac is not
a Robinson matrix for all row Petrie data matrices. Nevertheless, it may well as be
that matrix SJac is a Robinson matrix for many row Petrie data matrices, and that
in many practical cases it has approximately the same properties as SRR.
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The eigendecomposition of matrices is used in various realms of research. In various
domains of data analysis, calculating eigenvalues and eigenvectors of certain ma-
trices characterizes various methods and techniques for exploratory data analysis.
For example, exploratory methods that are so-called eigenvalue methods, are prin-
cipal component analysis, homogeneity analysis (Gifi, 1990; Heiser, 1981; Meulman,
1982), classical scaling (Gower, 1966; Torgerson, 1958), or correspondence analysis
(Greenacre, 1984; Heiser, 1981).

The topic of study in this chapter are the eigenvectors of similarity matrices
corresponding to coefficients for binary data. Various results on the eigenvector
elements of coefficient matrices are presented. It is shown that ordinal information
can be obtained from eigenvectors corresponding to the largest eigenvalue of various
similarity matrices. Using eigenvectors it is therefore possible to uncover correct
orderings of various latent variable models. The point to be made here is that the
eigendecomposition of some similarity matrices, especially matrices corresponding
to asymmetric coefficients, are more interesting compared to the eigendecomposition
of other matrices. Many of the results are perhaps of theoretical interest only, since
no new insights are developed compared to existing methodology already available
for various nonparametric item response theory models.

89
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Homogeneity analysis is a generalization of principal component analysis to cate-
gorical data proposed by Guttman (1941). Various authors noted the specific (math-
ematical) properties of homogeneity analysis when it is applied to binary responses
(Guttman, 1950, 1954; Heiser, 1981; Gifi, 1990; Yamada and Nishisato, 1993). If
homogeneity analysis is applied to binary data, the category weights for a score 1
or 0 can be obtained as eigenvector elements of two separate matrices. As it turns
out, the elements of these matrices have simple formulas. In the last section of this
chapter some new insights on the mathematical properties of homogeneity analysis
of binary data are presented.

8.1 Ordered eigenvector elements

In this first section the eigenvector corresponding to the largest eigenvalue of various
coefficient matrices is studied. It is shown what ordinal information can be obtained
from the eigenvector corresponding to the largest eigenvalue of these matrices. The
inspiration for the study comes from a result presented in Schriever (1986) who
considered the eigenvector corresponding to the first eigenvalue of the coefficient
matrices with respective elements

SCole1 =
ajk − pjpk

pjqk

and SCole2 =
ajk − pjpk

pkqj

(Cole, 1949).

Most of the tools used below, come from the proof presented in Schriever (1986). A
specific result that will often be used when studying these properties, is the Perron-
Frobenius theorem (Gantmacher, 1977, p. 53; Rao, 1973, p. 46). More precisely,
only the following weaker version of the Perron-Frobenius theorem will be used.

Theorem 8.1. If a square matrix S has strictly positive elements, then the eigen-
vector y corresponding to the largest eigenvalue λ of S has strictly positive elements.

We will make use of the following matrices. Let V denote the h × h (h ≤ m)
upper triangular matrix with unit elements on and above the diagonal and all other
elements zero. Its inverse V−1 is the matrix with unit elements on the diagonal
and with elements -1 adjacent and above the diagonal. Furthermore, let I be the
identity matrix of size (m− h)× (m− h). Denote by W the diagonal block matrix
of order m with diagonal elements V and I. Examples of V and V−1 of sizes 3× 3
are respectively





1 1 1
0 1 1
0 0 1



 and





1 −1 0
0 1 −1
0 0 1



 .
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Examples of W and W−1 of sizes 5× 5 are













1 1 1 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













and













1 −1 0 0 0
0 1 −1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.

Consider the coefficient matrices SDice2 and SRR with respective elements

SDice2 =
ajk

pk

and SRR = ajk.

Let y be the eigenvector corresponding to the largest eigenvalue λ of either the
matrix SDice2 or SRR. In Proposition 8.1 it is shown that if the columns of the data
matrix (or items in item response theory) can be ordered such that pj ≥ pj+1 (6.3)
and ajk ≥ aj+1k (6.4) hold, then this ordering is reflected in y.

Proposition 8.1. Suppose that h of the m column vectors of the data matrix X,
which without loss of generality can be taken as the first h, can be ordered such
that (6.3) and (6.4) hold. Then the elements of y corresponding to these h items
satisfy y1 > y2 > ... > yh > 0.
Proof: We first consider the proof for SDice2. Since W is non-singular, y is an
eigenvector of SDice2 corresponding to λ if and only if z = W−1y is an eigenvector
of T = W−1SDice2W corresponding to λ. Under the conditions of the theorem, the
elements of T turn out to be positive and the elements of T2 turn out to be strictly
positive. This can be verified as follows.

The matrix W−1SDice2 = U = {ujk} has elements

ujk =
ajk − aj+1k

pk

for 1 ≤ j < h and 1 ≤ k ≤ m

ujk =
ajk

pk

for h ≤ j ≤ m and 1 ≤ k ≤ m.

Because ajk ≥ aj+1k, U has positive elements except for ujj+1, j = 1, ..., h − 1.
However, since pj ≥ pj+1

ujj + ujj+1 =
pj+1ajj − pj+1ajj+1 + pjajj+1 − pjaj+1j+1

pjpj+1

=
ajj+1(pj − pj+1)

pjpj+1

> 0

for j = 1, ..., h − 1. Hence, the matrix T = UW has positive elements. Moreover,
because the elements in the last row and last column of T are strictly positive, it
follows that the elements of T2 are strictly positive. Application of Theorem 8.1
yields that the eigenvector z of T (or T2) has strictly positive elements. The fact
that z = W−1y completes the proof for SDice2.
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Next we consider the proof for SRR, which is similar to the proof SDice2. The
matrix W−1SRR = U = {ujk} has elements

ujk = ajk − aj+1k for 1 ≤ j < h and 1 ≤ k ≤ m

ujk = ajk for h ≤ j ≤ m and 1 ≤ k ≤ m.

Because ajk ≥ aj+1k, U has positive elements except for ujj+1 for 1 ≤ j ≤ h − 1.
Since pj ≥ pj+1

ujj + ujj+1 = ajj − ajj+1 + ajj+1 − aj+1j+1 > 0

for 1 ≤ j ≤ h− 1. This completes the proof for SRR. �

Consider the similarity matrices SDice1, SCole1 and SCole2 with respective elements

SDice1 =
ajk

pj

, SCole1 =
ajk − pjpk

pjqk

and SCole2 =
ajk − pjpk

pkqj

.

Let y be the eigenvector corresponding to the largest eigenvalue λ of one of the
three similarity matrices SDice1, SCole1 or SCole2. Schriever (1986) showed that if the
columns of the data matrix (or items in item response theory) can be ordered such
that (6.3) and (6.6)

ajk

pj

≤ aj+1k

pj+1

for fixed k (6= j)

hold, then this ordering is reflected in y for SCole1 or SCole2. Proposition 8.2 is used
to demonstrate that the same eigenvector property holds for SDice1.

Proposition 8.2. Suppose that h of the m column vectors of X, which without
loss of generality can be taken as the first h, can be ordered such that (6.3) and
(6.6) hold. Then the elements of y corresponding to these h items satisfy y1 > y2 >
... > yh > 0.
Proof: The proof is similar to the proof for SDice2 in Proposition 8.1. The matrix
(W−1)TSDice1 = U = {ujk} has elements

ujk =
pj−1ajk − pjaj−1k

pj−1pj

for 2 ≤ j ≤ h and 1 ≤ k ≤ m

ujk =
ajk

pj

for h < j ≤ m and 1 ≤ k ≤ m.

Because pj−1ajk ≥ pjaj−1k, the matrix U has positive elements except for ujj−1 for
2 ≤ j ≤ h. However, since pj−1 ≥ pj

ujj−1 + ujj =
pj−1ajj−1 − pjaj−1j−1 + pj−1ajj − pjajj−1

pj−1pj

=
ajj−1(pj−1 − pj)

pj−1pj

> 0

for 2 ≤ j ≤ h. This completes the proof. �
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8.2 Related eigenvectors

In the previous section it was shown what ordinal information can be obtained from
the eigenvector corresponding to the largest eigenvalue of coefficient matrices SRR,
SDice1, SDice2, SCole1 and SCole2. In this section it is pointed out what eigendecom-
positions of various similarity matrices are related.

Let y
(t)
1 , y

(t)
0 and z(t) denote the eigenvectors of similarity matrices SCole1, SCole2

and SPhi with respective elements

SCole1 =
ajk − pjpk

pjqk

and SCole2 =
ajk − pjpk

pkqj

and

SPhi =
ajk − pjpk√

pjpkqjqk

.

The eigendecomposition of SPhi defines principal component analysis for binary data,
whereas the decomposition of SCole1 and SCole2 give the category weights from a
homogeneity analysis when applied to binary data (Yamada and Nishisato, 1993;
Schriever, 1986; or see Section 8.3). With ordinary principal component analysis

there is a single weight z
(t)
j for each item j on dimension t. In contrast, in Guttman’s

categorical principal component analysis there are two weights for each item j on
dimension t, one for each response (0 and 1). Let y

(t)
j0 and y

(t)
j1 denotes these weights.

The relationships between the eigenvectors of SCole1, SCole2 and SPhi can already be
found in Yamada and Nishisato (1993).

Theorem 8.2 [Yamada and Nishisato, 1993]. The eigenvectors of similarity
matrices SCole1, SCole2 and SPhi are related by

y
(t)
j1 =

√

qj

pj

z
(t)
j and y

(t)
j0 =

√

pj

qj

z
(t)
j .

Proof: The eigenvectors are related due to the following property. If T is a non-
singular matrix, then y(t) is an eigenvector of S corresponding to the tth eigenvalue
λt if and only if z(t) = T−1y(t) is an eigenvector of T−1ST corresponding to λt. We
have

SCole1 =

√

pk

qk

ajk − pjpk√
pjpkqjqk

√

qj

pj

=
ajk − pjpk

pjqk

. �

Thus, if we would calculate the matrices SCole1, SCole2 and SPhi, these matrices
have the same eigenvalues and the various eigenvectors are related by the relations
in Theorem 8.2. Note that SCole1 and SCole2 possess the interesting eigenvector
property described in Proposition 8.2, whereas SPhi does not.
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A similar relation exists between the eigenvectors of the matrices SDice1, SDice2

and SDK with respective elements

SDice1 =
ajk

pj

, SDice2 =
ajk

pk

and SDK =
ajk√
pjpk

.

Let y
(t)
1 , y

(t)
0 and z(t) denote the eigenvectors of similarity matrices SDice1, SDice2 and

SDK. Proposition 8.3 considers the relationships between the eigenvectors of SDice1,
SDice2 and SDK.

Proposition 8.3. The eigenvectors of similarity matrices SDice1, SDice2 and SDK

are related by

y
(t)
j1 =

1
√

pj

z
(t)
j and y

(t)
j2 =

√
pj

1
z

(t)
j .

Proof: The proof is similar to the proof of Theorem 8.2. We have

SDice1 =

√
pk

1

ajk√
pjpk

1
√

pj

=
ajk

pj

and SDice2 =
1
√

pj

ajk√
pjpk

√
pj

1
=

ajk

pk

.

�

Again, if we would calculate the eigendecompositions of the matrices SDice1, SDice2

and SDK, we would obtain the same eigenvalues for each matrix. The various eigen-
vectors are related by the relations in Proposition 8.3. Note that SDice1 and SDice2

possess the eigenvector properties presented in Propositions 8.1 and 8.2.

8.3 Homogeneity analysis

Homogeneity analysis is the generalization of principal component analysis to cat-
egorical data proposed by Guttman (1941). In the previous section it was noted
that the optimal category weights from a homogeneity analysis are the eigenvectors
of the matrices SCole1 and SCole2 if the data are binary. In this section we consider
several other matrices from the homogeneity analysis methodology and present the
corresponding formulas for the case that homogeneity analysis is applied to binary
data.

Suppose the multivariate data are in a n×m matrix X containing the responses
of n persons on m categorical items. Let Gj be an indicator matrix of item j, defined
as the order n×Lj matrix Gj =

{

gil(j)

}

, where gil(j) is a (0,1) variable. Each column
of Gj refers to the Lj possible responses of item j. If person i responded category
l on item j, then gil(j) = 1, that is, the cell in the ith row and lth column of Gj

contains a 1, and gil(j) = 0 otherwise. The partitioned indicator matrix G then
consists of all Gj positioned next to each other.
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Let D of size
∑

j Lj×
∑

j Lj be the diagonal matrix with the diagonal elements of

GTG on its main diagonal and 0s elsewhere. The matrix D reflects the total amount
of 1s there are in each column of G. Suppose the category weights of homogeneity
analysis are in the vector y of size

∑

j Lj×1. The category weights can be obtained

from the generalized eigenvalue problem GTGy = mλDy. By itself the general-
ized eigenvalue problem does not tell us which eigenvector to take. The category
weights y are the eigenvectors of the matrix F = m−1D−1GTG. The eigenvector y
corresponding to the largest eigenvalue λ of F is considered trivial because it does
not correspond to a variance ratio. There are various ways to remove the trivial
solution: one way is by setting the matrix G in deviations from its column means
(Gifi, 1990, Section 3.8.2).

It turns out that the matrix F of size
∑

j Lj×
∑

j Lj has explicit elements. Note
that, for ease of notation, the columns of G are indexed by j and k in the following.

Proposition 8.4. The matrix F = m−1D−1GTG with G in deviations from its
column means, has elements

fjk =
ajk − pjpk

pj

for j and k from different columns of X

fjk = −pk for j and k from the same column of X

fjj = 1− pj.

Proof: The matrix GTG with G in deviations from its column means is a covariance
matrix corresponding to the columns of binary matrix G, which has elements ajk −
pjpk. Furthermore, the elements of m−1D equal the pj. �

The elements of the linear operator F have even more explicit elements if the data
matrix consists of binary scores, that is, when each item has two response categories.
The data matrix X has m columns, whereas the corresponding indicator coding G
then has 2m columns. Linear operator F is then a matrix of size 2m× 2m.

Corollary 8.1. Suppose the data matrix consists of binary items. Then F has
elements

fjk =
ajk − pjpk

pj

for j and k from different items

fjk = −pk for j and k from the same item

fjj = qj.
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Proposition 8.5. Suppose the data matrix consists of binary items. The rows
and columns of F can be reordered such that F has block structure

F =

[

F1 −F1

−F2 F2

]

where F1 and F2 are of size m×m.
Proof: Consider Corollary 8.1. If the column of G corresponding to category 1
of item l has positive or negative covariance with the jth column of G, then the
column of G corresponding to category 0 of item l has the same covariance with
the kth column of G but with opposite sign. In the case that two columns have
zero covariance, the sign may arbitrarily be chosen. Providing that all 2m diagonal
elements of D are different, it holds that F1 6= F2. �

From Proposition 8.4 and 8.5 it follows that F has explicit elements and, moreover,
can be reordered to exhibit simple (block) structure. Proposition 8.5 may be used to
derive to the following eigenvector property for the category weights concerning sign.
For the next result, let y be the eigenvector corresponding to the largest eigenvalue
of F of size 2m× 2m.

Proposition 8.6. Suppose the data matrix consists of binary items. The elements
in y corresponding to columns of G that have positive covariance, have similar sign.
Proof: Consider Proposition 8.5. Furthermore, let I be the identity matrix of size
m × m, and let W be the diagonal block matrix of size 2m × 2m with diagonal
elements I and−I. Since W is non-singular, it follows that the matrix U = W−1FW
has positive elements. Application of Theorem 8.1 yields that the eigenvector z
corresponding to the largest eigenvalue U has positive elements. The assertion then
follows from y = W−1z. �

The linear operator F considered in Propositions 8.4 to 8.6 is of the similarity
type. Heiser (1981) and Meulman (1982) consider the multidimensional scaling ap-
proach to homogeneity analysis, which is based on Benzécri or chi-square distances.
Meulman (1982) shows how category and persons weights can be obtained from
distance matrices using classical scaling (Torgerson, 1958; Gower, 1966).
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Let gik denote the response of person i to the kth column of G and let dk denote
the number of 1s in the kth column of G. Meulman (1982, p. 48) defines the squared
Benzécri distance between person i and l as

B2
il =

1

m2

∑

k

(gik − glk)
2

dk

.

If person i and l gave the same response to an item, then this does not contribute to
the distance B2

il. If the n×m data matrix X consist of m binary items (1 ≤ j ≤ m)
then B2

il can be written as

B2
il =

1

m2

2m
∑

k=1

(gik − glk)
2

dk

=
1

m2

m
∑

j=1

(xij − xlj)
2

dj

+
1

m2

m
∑

j=1

(xij − xlj)
2

n− dj

where dj (n− dj) is the number of 1s (0s) in the jth column of X. Suppose that for
h items (1 ≤ h ≤ m) person i and l have different responses. Then m2B2

il can be
written as

m2B2
il =

1

d1

+
1

d2

+ ... +
1

dh

+
1

n− d1

+
1

n− d2

+ ... +
1

n− dh

or B2
il as

B2
il =

n

m2

h
∑

j=1

1

dj(n− dj)
.

Squared distance B2
il may be interpreted as a weighted symmetric set difference.

Meulman (1982, p. 37) defines the squared Benzécri distance between category j
and k as

B2
jk =

n
∑

i=1

[

gij

dj

− gik

dk

]2

.

In general, not just with binary data, four types of persons can be distinguished.
We define the three quantities

a = number of times gij = 1 and gik = 1;

b = number of times gij = 1 and gik = 0;

c = number of times gij = 0 and gik = 1.

Note that dj = a + b and dk = a + c. The Benzécri distance B2
jk then equals

B2
jk = a

[

1

dj

− 1

dk

]2

+ b

[

1

dj

]2

+ c

[

1

dk

]2

=
1

dj

+
1

dk

− 2a

djdk

=
dj + dk − 2a

djdk

.

When category j and k are two categories of the same item, a = 0 and therefore
B2

jk = d−1
j + d−1

k .
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8.4 Epilogue

For several coefficient matrices we studied in this chapter the eigenvector elements
corresponding to the largest eigenvalue. It was shown that ordinal information on
model probabilities is reflected in the eigenvector elements. It is thus possible to
uncover correct orderings of various latent variable models presented in Chapter 6
using eigenvectors of coefficient matrices. For coefficients

SDice2 =
ajk

pk

and SRR = ajk

it was demonstrated by Proposition 8.1 that if a set of items can be ordered such
that double monotonicity model holds, then this ordering is reflected in the elements
of the eigenvector corresponding to the largest eigenvalue of the similarity matrices.
The conventional method of discovering this order is by inspecting the proportion
item correct (pj). A similar, although less general, eigenvector property holds for
coefficients

SCole1 =
ajk − pjpk

pjpk

, SCole2 =
ajk − pjpk

pkqj

and SDice1 =
ajk

pj

.

In Proposition 8.2 it was shown that if a set of items can be ordered such that the
double monotonicity model holds and, moreover, the response functions satisfy total
positivity of order 2, then this ordering is reflected in the elements of the eigenvector
corresponding to the largest eigenvalue of the coefficient matrices.

In addition to the eigenvector properties of several asymmetric matrices, various
matrix methodology of homogeneity analysis was studied. Homogeneity analysis is
a versatile technique and it can be studied from various points of view. It was shown
that several of the different matrices corresponding to this form of categorical prin-
cipal component analysis have often explicit elements. If the data matrix contains
binary data, then the category weights corresponding to categories with positive
covariance have the same sign.

Heiser (1981) and Meulman (1982) consider the multidimensional scaling ap-
proach to homogeneity analysis, which is based on dissimilarities or distances. The
distances called Benzécri distances in Meulman (1982) are nowadays referred to as
chi-square distances. The chi-square distance between two persons is a form of the
extended matching coefficient weighted inversely by the response frequencies.
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Guttman (1941) presented a method that can be used to obtain a representation of
the structure of multivariate categorical data. The technique was briefly mentioned
in Sections 8.2 and 8.3. The method gives a multidimensional decomposition of the
data with the most informative structural dimension extracted first, then the second
most informative dimension, and so on, until the information in the data is exhaus-
tively extracted. The method is typically used for the construction of geometrical
representations of the dependencies in the data in low-dimensional Euclidean space,
often two-dimensional, from the extracted dimensions. Given that the data are in
a person by item table, each dimension consists of weights for the item categories
(known as optimal weights) and scores for the persons. The discovery or rediscov-
ery of Guttman’s method by many authors has led to the fact that the method is
known under many different names, for example, dual scaling (Nishisato, 1980), mul-
tiple correspondence analysis (Greenacre, 1984), Fisher’s method of optimal scores
(Gower, 1990), or homogeneity analysis (Gifi, 1990).

0Parts of this chapter appeared in Warrens, M.J., De Gruijter, D.N.M. and Heiser, W.J. (2007),
A systematic comparison between classical optimal scaling and the two-parameter IRT model,
Applied Psychological Measurement, 31 (2), 106–120.
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Warrens, Heiser and De Gruijter (2006), Warrens and Heiser (2006) and War-
rens, De Gruijter and Heiser (2007) showed that homogeneity analysis is useful
for analyzing binary data. Gifi (1990, p. 425-440) and Cheung and Mooi (1994)
showed that homogeneity analysis is useful for analyzing Likert data. In addition,
the latter authors compared the homogeneity scaling findings to an item response
theory analysis using the rating scale model (Andrich, 1988). They evaluated both
the similarities and differences and concluded that there is great similarity between
the two contrasting approaches. A systematic comparison of homogeneity analysis
and the item response theory approach is lacking however. The present chapter is
therefore used to systematically explore the relationship between a one-dimensional
homogeneity analysis and the logistic 2-parameter model.

9.1 Classical item analysis

Let ω denote a latent variable and let δj and βj be respectively a discrimination and
location parameter of the logistic 2-parameter model (Section 6.1). The probability
of a response 1 on item j under the logistic 2-parameter model is given by

pj(ω) =
exp[δj(ω − βj)]

1 + exp[δj(ω − βj)]
. (9.1)

On pages 377 and 378 of their by now classic book, Lord and Novick (1968) show
how the item parameters of the normal ogive 2-parameter model are related to the
indices used in classical item analysis. Two conditions are assumed:

1) the latent variable is normally distributed with zero mean

and unit variance;

2) the appropriate model is the 2-parameter normal ogive.

Under these conditions the mean of ω, conditional on a score 1 on item j, equals

µj1 =
φ(γj) ρ′j

pj

where pj = Φ(−γj) is the item proportion correct, where Φ denotes the cumulative
normal distribution function and γj = βj ρ′j. Furthermore, φ(γj) is the ordinate of
the standard normal distribution, and

ρ′j =
δj

√

1 + δ2
j

is the biserial correlation between item j and the latent variable.
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Due to the fact that the logistic formulation of the 2-parameter model is more
tractable then the normal ogive, the former is sometimes preferred in item response
theory work. Let us derive how the above relations on the basis of the normal
ogive hold under the logistic approximation. The logistic 2-parameter model and its
approximate relation with the normal ogive 2-parameter model are given by

pj(ω) = Ψ [δj(ω − βj)] ≈ Φ
[

D−1δj(ω − βj)
]

where Ψ denotes the logistic function, and D = 1.7 is a constant. Under the logistic
approximation the mean of ω, conditional on a response 1 on item j, equals

µj1 ≈
φ(γ∗j ) ρ∗j

Ψ(−Dγ∗j )
(9.2)

where
Ψ(−Dγ∗j ) ≈ pj (9.3)

γ∗j = βj ρ∗j , and

ρ∗j =
δj

D
√

1 + D−2δ2
j

.

Furthermore, under the logistic approximation

φ(γ∗j ) ≈ DΨ(Dγ∗j )
[

1−Ψ(Dγ∗j )
]

= DΨ(−Dγ∗j )
[

1−Ψ(−Dγ∗j )
]

and (9.2) can be rewritten as

µj1 ≈ (1− pj)Dρ∗j .

9.2 Person parameter

With binary responses, the 2-parameter item response model uses two item parame-
ters whereas a one-dimensional homogeneity analysis produces two category weights.
Furthermore, both approaches use one parameter for locating persons. Let us show
how the item response theory person parameter estimate, denoted by ωi, and the
optimal person score, denoted by xi, are related. This relationship is used in the
remaining sections of this chapter, where it is assumed that the optimal person score
is a reasonable approximation of the latent variable, that is xi ≈ ωi. In the following
we will show that this approximation is a reasonable one.

Two data sets were generated from both the logistic 2-parameter model and
the Rasch model under the following conditions. The data sets consisted of the
responses of 1000 persons on 50 items; for each data set the location parameters βj’s
were sampled from a standard normal distribution; the discrimination parameters
for the 2-parameter model were sampled from a uniform distribution on the range
[1,2], for the Rasch (1960) model these were set to unity; the latent variable was
sampled from a standard normal distribution.
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Figure 9.1: Plot of maximum a posteriori person estimates (horizontal) versus ho-
mogeneity person scores (vertical) for the Rasch data set.

For both data sets the optimal scaling and item response theory person estimates
were obtained. The item response theory analysis was performed using the Multilog
software program (Thissen, Chen and Bock, 2003) to obtain maximum a posteriori
estimates. The person estimates of both approaches are plotted in Figures 9.1
and 9.2 for respectively the Rasch model and the logistic 2-parameter model. The
correlations between the two sets of estimates are in both figures > .99. The root
mean squared errors are < .2, which concurs with the slight nonlinearity that can
be observed upon close inspection. Apart from the nonlinearity, the optimal person
score seems a reasonable approximation of the latent variable, that is, ωi ≈ xi under
the 2-parameter model.

9.3 Discrimination parameter

Lord (1958) showed that the optimal category weights on the first dimension maxi-
mize coefficient alpha (Cronbach, 1951), an important lower bound to reliability, a
concept used in classical test theory (De Gruijter and Van der Kamp, 2008). An
application of Guttman’s method in which this property is explicitly used, can be
found in Serlin and Kaiser (1978). The second, third and subsequent dimensions of
the technique may be considered sets of weights corresponding to local maximums
of alpha. If the data are binary, there are only two category weights for each item
j. For this special case it is possible to construct a single index for each item that
reflects all information for maximizing coefficient alpha. This can be done by trans-
lating the two optimal homogeneity weights y

(t)
j0 and y

(t)
j1 into new weights v

(t)
j0 and
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Figure 9.2: Plot of maximum a posteriori person estimates (horizontal) versus ho-
mogeneity person scores (vertical) for the logistic 2-parameter model data set.

v
(t)
j1 (where t denotes the dimension). With the translations

v
(t)
j0 = y

(t)
j0 − y

(t)
j0 = 0

and v
(t)
j1 = y

(t)
j1 − y

(t)
j0

the category weight y
(t)
j0 is set to zero and all information of item j on maximiz-

ing coefficient alpha is reflected in v
(t)
j1 . The latter weight is therefore denoted by

max(α)
(t)
j = v

(t)
j1 in the following.

Let z
(t)
j be the eigenvector corresponding to the tth eigenvalue of the matrix SPhi

with elements

SPhi =
ajk − pjpk√

pjpkqjqk

.
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Proposition 9.1. The weight max(α)
(t)
j is related to the principal component

weight z
(t)
j by

max(α)
(t)
j = z

(t)
j

1

[pj(1− pj)]
1/2

.

Proof: The relationship follows from using the equations in Theorem 8.2 in

max(α)
(t)
j = y

(t)
j1 − y

(t)
j0 . �

Proposition 9.2. The weights max(α)
(t)
j are elements of the eigenvector corre-

sponding to the tth eigenvalue of the matrix SMA with elements

SMA =
ajk − pjpk

pj(1− pj)
.

Proof: The proof is similar to the proof of Theorem 8.2 and Proposition 8.3. Using
the formulas in Proposition 8.1, we have

SMA =

[

pk(1− pk)

1

]1/2
ajk − pjpk

[pj(1− pj)pk(1− pk)]1/2

[

1

pj(1− pj)

]1/2

=
ajk − pjpk

pj(1− pj)
. �

From this point on, let max(α)j be short for max(α)
(1)
j = y

(1)
j1 − y

(1)
j0 , and let yj1

and yj0 be short for y
(1)
j1 and y

(1)
j0 . The definition of max(α)j reveals that the item

weight becomes greater as the mean values of all persons who responded 1 to item
j and those who responded 0 become further apart. Hence, max(α)j has a clear
interpretation as an index of discrimination.

An often used normalization in homogeneity analysis when applied to binary
data, is pjyj1 + (1− pj)yj0 = 0, which can be written as

yj0 = − pjyj1

1− pj

. (9.4)

With the help of (9.4), max(α)j can be written as

max(α)j =
yj1

1− pj

. (9.5)
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In the following it is assumed that xi ≈ ωi (Section 9.2). In addition it is assumed
that

1) the latent variable is normally distributed with zero mean

and unit variance;

2) the appropriate model is the 2-parameter model.

Under these assumptions the work of Lord and Novick (1968) on the relationship
between the item response theory item parameters and some indices from classical
item analysis becomes available. Under the above three assumptions it follows from
Section 9.1 that

max(α)j ≈ Dρ∗j =
δj

√

1 + D−2δ2
j

. (9.6)

The functional relationship in (9.6) was derived in a different way by De Gruijter
(1984). Since, ρ∗j has a maximum of unity, the quantity in (9.6) has a maximum
value of D = 1.7. Since, the max(α)j weight is a function of δj only, δj can be
expressed as a function of max(α)j. The resulting function gives an estimate of the
discrimination parameter of the logistic 2-parameter model given by

δ̂j =
D max(α)j

√

D2 − [max(α)j]2
for |max(α)j| ≤ D (9.7)

which is a function of max(α)j only.

9.4 More discrimination parameters

A third measure of discrimination for item j, next to δj and max(α)
(t)
j , is described

in Gifi (1990, Section 3.8.4). With binary data the measure is given by
[

η
(t)
j

]2

= pj

[

y
(t)
j1

]2

+ (1− pj)
[

y
(t)
j0

]2

. (9.8)

Theorem 9.1 [Yamada and Nishisato, 1993, p. 60]. The weight max(α)
(t)
j is

related to
[

η
(t)
j

]2

by

max(α)
(t)
j =

η
(t)
j

[pj(1− pj)]
1/2

.

Proof: Equation (9.8) can be re-expressed in terms of y
(t)
j1 and y

(t)
j0 with the help of

(9.4), which gives

y
(t)
j1 = η

(t)
j

[

1− pj

pj

]1/2

−y
(t)
j0 = η

(t)
j

[

pj

1− pj

]1/2

.
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Hence, we obtain

max(α)
(t)
j = y

(t)
j1 − y

(t)
j0 =

η
(t)
j

[pj(1− pj)]
1/2

or
[

η
(t)
j

]2

= pj(1− pj)
[

max(α)
(t)
j

]2

.

In words,
[

η
(t)
j

]2

is the squared max(α)
(t)
j of item j on dimension t, times the variance

of item j. �

A fourth measure of discrimination is described in McDonald (1983). In a more
general context than the one considered in the present chapter, McDonald argued
not to interpret the category weights themselves, but the regression weights of each
category on the person score xi. With McDonald’s formulation there is not one
discrimination measure for each item j on dimension t, but one for each category.
When each item has two categories, the measures are given by reg

(t)
j1 = pjy

(t)
j1 and

reg
(t)
j0 = 1− pjy

(t)
j0 . Equation (9.4) can be written as

pjy
(t)
j1 = (pj − 1)y

(t)
j0 ⇔ reg

(t)
j1 = −reg

(t)
j0 .

Since, with binary data, the two regression weights contain the same information,
it suffices to look at reg

(t)
j1 , assumed to be positive, only.

Proposition 9.3. The weight max(α)
(t)
j is related to reg

(t)
j1 by

reg
(t)
j1 = pj(1− pj)max(α)

(t)
j .

Proof: Equation (9.5) can be written as

y
(t)
j1 = (1− pj)max(α)

(t)
j . (9.9)

Multiplication of both sides of (9.9) by pj gives the desired result. �
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9.5 Location parameter and category weights

Now that the functional relationship between the discrimination indices has been
established we turn our intention to the remaining information in the weights yj1

and yj0 (short for y
(1)
j1 and y

(1)
j0 ). Since max(α)j is given by the difference between

yj1 and yj0, the remaining information in the weights can be summarized in

sumj = yj1 + yj0.

With the help of (9.4), sumj can be written as

sumj =
1− 2pj

1− pj

yj1.

Under the same three assumptions as used in Section 9.3, it follows that

sumj ≈ Dρ∗j
(

1− 2Ψ[−βj Dρ∗j ]
)

. (9.10)

Suppose now that ρ∗j in (9.10) is constant for all j. For this limited case it holds
that if βj increases, then sumj also increases. Since, βj and sumj are monotonically
related under this restriction, sumj can be interpreted as a location parameter for a
model of which the discrimination parameters are equal for all j, that is, the Rasch
(1960) model.

From (9.10) an estimate for the location parameter βj of the logistic 2-PM can
be obtained. This estimate can be simplified. In addition to max(α)j only pj is
needed. Let Ψ denote the logistic function. Then, from (9.3) it follows that

pj ≈ Ψ[−βj max(α)j]. (9.11)

If one takes the inverse of the logistic function on both sides of (9.11) and rewrites
the resulting equation in terms of βj, one obtains an estimate of location for item j
given by

β̂j = −
ln

(

pj

1−pj

)

max(α)j

. (9.12)

The estimate derived in (9.12) is related to the estimate proposed by Cohen (1979)
for the Rasch (1960) model.
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9.6 Epilogue

Homogeneity analysis or multiple correspondence analysis is a method that can be
used to obtain a representation of the structure of multivariate categorical data. If
the data are binary, there are only two category weights for each item j of a homo-
geneity analysis, namely, yj1 and yj0. Category weights yj1 (yj0) are the elements of
the eigenvector corresponding to the largest eigenvalue of the matrix SCole1 (SCole2)
with elements

SCole1 =
ajk − pjpk

pjqk

(

SCole2 =
ajk − pjpk

pkqj

)

.

In this chapter the relationship between a one-dimensional homogeneity analysis
and the logistic 2-parameter model was systematically explored. It was first studied
how the item response theory person parameter estimate and the optimal person
score are related. It was shown that that the optimal person score is a reasonable
approximation of the latent variable. Next, the homogeneity category weights of the
first dimension were related to the parameters of the 2-parameter model, using some
results on the relationship between item response theory and classical item analysis
from Lord and Novick (1968, p. 377-378).

At this point the question arises, what is the point of knowing the functional rela-
tionship between a one-dimensional homogeneity analysis and item response theory?
First of all, it is useful in general to study equivalences or functional relationships
between different methods of data analysis, primarily because this often gives new
insight into the methods themselves. More precisely, approximate estimates for the
item parameters of the logistic 2-parameters were derived which are based on the
conditional means. The estimates were not meant as possible replacement of the
current item response theory estimates. One might be tempted to ask if these es-
timates may be used to obtain perhaps less biased parameter estimates (maximum
likelihood estimation is already most efficient). In non-reported simulation experi-
ments it turns out that the estimates based on homogeneity analysis do not give less
biased estimates nor smaller standard errors. On the other hand, the closeness of
the optimal person score to the latent variable under a variety of item response the-
ory models shows that homogeneity analysis is a useful multi-purpose data analysis
method. Even without specifying a model one cannot be far off.

The findings in this chapter do give several new insights into the application of
homogeneity analysis. A typical use of homogeneity analysis and other optimal scal-
ing methods, is the construction of geometrical representations of the dependencies
in the data in low-dimensional Euclidean space, often two-dimensional, from the
extracted dimensions. The use of two-dimensional (sometimes three-dimensional)
plots is embedded so strongly in the optimal scaling community that it is often
regarded as impossible that all relevant information is in the first dimension only.
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Various methods of data analysis use the facility of fitting distances to a table of
coefficients, where the coefficients are summary measures of the data. An example
is metric multidimensional scaling, and a popular distance measure is the Euclidean
distance. In this chapter a review is presented on metric properties of various co-
efficients for binary data. Metric properties of various similarity coefficients can
be found in Gower (1986), Fichet (1986) and the exposé by Gower and Legendre
(1986). The foremost requirement that must be satisfied by a coefficient, before it
is said to be a metric, is the triangle inequality. The other metric axioms are more
easily verified. The proofs of the metric properties for two-way similarity coefficients
reviewed here, are essential blueprints and tools for the proofs of metric properties
of multi-way coefficients discussed later on in the thesis (Chapter 18).

The present chapter focuses solely on metric properties and not on the closely
related Euclidean property, which is satisfied if the functions can be embedded in
an Euclidean space. Since an Euclidean distance is also a metric, the former is
a stronger requirement. The dissimilarity coefficients corresponding to similarity
coefficients

SJac =
a

a + b + c
and SSM =

a + d

a + b + c + d
are not Euclidean using the transformation D = 1−S, but they are Euclidean after
transformation D =

√
1− S (Gower and Legendre, 1986, p. 23).
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The transformation D = 1− S, D is the complement of S, can easily be applied
to the case of multi-way similarities considered in Part IV. It is however unclear
how the transformation D =

√
1− S generalizes to multi-way dissimilarities. The

transformation is therefore not considered in this chapter.
A property that is often studied in close relation to metric and Euclidean prop-

erties, is the concept of positive semidefiniteness. A similarity matrix S is called
positive semidefinite if all eigenvalues are nonnegative, in which case S is sometimes
called a Gramian matrix. This property is not reviewed in this chapter, because
no attempt is made to generalize these properties to the multi-way case. Various
results on positive semidefinite coefficient matrices with respect to resemblance mea-
sures for binary data can be found in Janson and Vegelius (1981), Zegers (1986) and
Gower and Legendre (1986).

10.1 Dissimilarity coefficients

In Section 1.2 requirements or axioms for similarities as well as dissimilarities were
considered. Let x1 and x2 be two variables or objects. A two-way or bivariate
function D(x1, x2) is referred to as a dissimilarity if it satisfies

D(x1, x2) ≥ 0 (nonnegativity)

D(x1, x2) = D(x2, x1) (symmetry)

and D(x1, x1) = 0 (minimality).

A straightforward way to transform a similarity coefficient S into a dissimilarity
coefficient D is by taking the complement D = 1−S. This require that S(x1, x1) = 1,
otherwise D(x1, x1) 6= 0. For several coefficients, the transformation D = 1−S gives
simple formulas. For example,

DJac = 1− SJac =
b + c

a + b + c

DGleas = 1− SGleas =
b + c

2a + b + c
=

b + c

p1 + p2

DSM = 1− SSM =
b + c

a + b + c + d
= b + c

DKul = 1− SKul =
bp2 + cp1

2p1p2

DSim = 1− SSim =
min(b, c)

min(p1, p2)

DBB = 1− SBB =
max(b, c)

max(p1, p2)
.

In order for coefficient DRR = 1 − SRR to satisfy minimality, DRR must be defined
as

DRR =

{

0 if x1 = x2

1− a otherwise.
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For D to be a metric, it must satisfy the metric axioms definiteness, given by

D(x1, x2) = 0 if and only if x1 = x2

and foremost, the triangle inequality, which is given by

D(x1, x2) ≤ D(x1, x3) + D(x2, x3). (10.1)

10.2 Main results

Inequality (10.1) is the main topic of this chapter. The other metric axioms are
less difficult to verify. Since (10.1) describes the relation between three variables or
objects instead of just two, some additional notation is required. Let

p111 = P
(

1
x1,

1
x2,

1
x3

)

denote the proportion of 1s shared by variables x1, x2 and x3 in the same positions,
and let

p110 = P
(

1
x1,

1
x2,

0
x3

)

denote the proportion of 1s shared by variables x1 and x2, and 0s by variable h3

in the same positions. With this notation we have that a = p11
12 = p111 + p110. For

convenience, notation p111 will be used instead of P
(

1
x1,

1
x2,

1
x3

)

. The quantities a,

b, c, and d have subscripts

a12 = a(x1, x2)

b12 = b(x1, x2)

c12 = c(x1, x2)

d12 = d(x1, x2)

when comparing variables or objects x1 and x2. Furthermore, let D12 be short for
D(x1, x2). The subscripts are dropped whenever possible.

Theorem 10.1 covers the metric property for the relatively simple functions given
by

DRR = 1− a and DSM = b + c.

Theorem 10.1. Functions DRR, DSM and D = 1−d satisfy the triangle inequality
(10.1).
Proof: Using DRR in (10.1) we obtain

1− a12 ≤ 1− a13 + 1− a23

2− 2p111 − p101 − p011 ≥ 1− p111 − p110

1 + p110 ≥ p111 + p101 + p011. (10.2)
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Using D = 1− d and DSM in (10.1) we obtain respectively

1 + p001 ≥ p000 + p100 + p010 (10.3)

and
1 + p110 + p001 ≥ p111 + p101 + p011 + p100 + p010 + p000. (10.4)

(Interestingly, it does not suffice that for (10.4) to hold, both (10.2) and (10.3) are
true). Inequalities (10.2), (10.3) and (10.4) are true because

1 = p111 + p110 + p101 + p011 + p100 + p010 + p001 + p000. (10.5)

�

The proof of the metric property of DJac is less straightforward compared the
proof for coefficients considered in Theorem 10.1. The tool used is not adopted
from Gower and Legendre (1986). Instead, the idea comes from Heiser and Bennani
(1997), where it is used for three-way dissimilarities. The application below describes
the tool for the simpler (two-way) case. In Chapter 18 a generalization of the proof
of Theorem 10.2 is used. The next result shows that both

DJac =
b + c

a + b + c
and D =

b + c

1− a
=

b + c

b + c + d

satisfy the triangle inequality.

Theorem 10.2. The functions DJac and

D =
b + c

b + c + d

satisfy (10.1).
Proof: We consider the proof for DJac first. Adding p001 to both sides and p110 to
the left side of (10.5), we obtain

1 + p110 + p001 ≥ p111 + p110 + p101 + p011 + p100 + p010 + 2p001 + p000

which equals
(b13 + c13) + (b23 + c23)− (b12 + c12) ≥ p001. (10.6)

DSM = 1− SSM and DJac are related by

DSM = (1− d12)
b12 + c12

1− d12

= (1− p000 − p001)DJac. (10.7)

Using (10.7) in (10.6) we obtain

(1− p000)

[

b13 + c13

1− d13

+
b23 + c23

1− d23

− b12 + c12

1− d12

]

≥

p010

[

b13 + c13

1− d13

]

+ p100

[

b23 + c23

1− d23

]

+p001

[

1− b12 + c12

1− d12

]

.

Since (1− p000) ≥ 0 and DJac ≤ 1, we conclude that DJac satisfies (10.1).
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Next, we consider the proof for D. Adding p110 to both sides and p001 to the left
side of (10.5), we obtain

(b13 + c13) + (b23 + c23)− (b12 + c12) ≥ p110 (10.8)

instead of (10.6). DSM and D are related by

DSM = (1− a12)
b12 + c12

1− a12

= (1− p110 − p111)D. (10.9)

Using (10.9) in (10.8) we obtain

(1− p111)

[

b13 + c13

1− a13

+
b23 + c23

1− a23

− b12 + c12

1− a12

]

≥

p101

[

b13 + c13

1− a13

]

+ p011

[

b23 + c23

1− a23

]

+p110

[

1− b12 + c12

1− a12

]

.

Since (1− p111) ≥ 0 and D ≤ 1, we conclude that D satisfies (10.1).
This completes the proof. �

Before studying any other coefficient, we note the following well-known result (see,
for example, Gower and Legendre, 1986).

Theorem 10.3. Let e be a positive constant. If D satisfies (10.1), then D/(e+D)
satisfies (10.1).
Proof: We have

D12

e + D12

+
D13

e + D13

≥ D23

e + D23

if and only if

e2(D12 + D13 −D23) + 2eD12D13 + D12D13D23 ≥ 0. �

Combining Theorem 10.3 with Theorem 10.1 or 10.2, various new results can be
obtained. Consider the dissimilarities

DSS1 = 1− SSS1 =
2(b + c)

a + 2(b + c)
=

2DJac

1 + DJac

2(b + c)

2(b + c) + d
=

2D

1 + D
where D =

b + c

b + c + d

DRT = 1− SRT =
2(b + c)

a + 2(b + c) + d
=

2DSM

1 + DSM

.

Since DJac and DSM satisfy (10.1), application of Theorem 10.3 leads to the next
result.
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Proposition 10.1. The functions DSS3, DRT and

D =
2(b + c)

2(b + c) + d
satisfy (10.1).

Next, it is shown what other members of

DGL1(θ) = 1− SGL1(θ) = 1− a

(1− θ)a + θ(1− d)
, (10.10)

apart from DJac and DSS1, satisfy the triangle inequality.

Theorem 10.4. The function DGL1(θ) satisfies (10.1) for 0 < θ ≤ 1.
Proof: By Theorem 10.2 DGL1(θ = 1) = DJac satisfies (10.1). For 0 < θ < 1, let
θ = (e + 1)/e, where e is a positive real number. Then (10.10) can be written as

DGL1(θ) =
θDSM

a + θDSM

=
(e + 1)DSM

ea + (e + 1)DSM

. (10.11)

Dividing both numerator and denominator of (10.11) by 1− d we obtain

DGL1(θ) =
(e + 1)DJac

eSJac + (e + 1)DJac

=
(e + 1)DJac

e + DJac

. (10.12)

The right part of (10.12) satisfies (10.1) if and only if DJac/(e+DJac) satisfies (10.1).
The result then follows from application of the Theorem 10.3. �

10.3 Counterexamples

We finish the chapter with coefficients that do not satisfy the triangle inequality.
For each coefficient, it suffices to present a counterexample (see also Gower and
Legendre, 1986, Appendix II). Consider the three binary vectors

[

1
0

] [

0
1

]

and

[

1
1

]

.

We have

DSS2 = 1− 2(a + d)

2a + b + c + 2d
→ D12 = 1 and D13 = D23 =

1

3

DGleas = 1− 2a

p1 + p2

→ D12 = 1 and D13 = D23 =
1

3

DDK = 1− a√
p1p2

→ D12 = 1 and D13 = D23 = 1− 1√
2

<
1

3

DKul = 1− a(p1 + p2)

2p1p2

→ D12 = 1 and D13 = D23 =
1

4

DSim = 1− a

min(p1, p2)
→ D12 = 1 and D13 = D23 = 0.

The dissimilarities do not satisfy the triangle inequality.
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Consider the three binary vectors









1
0
0
0

















0
1
0
0









and









1
1
0
0









.

We have

DCohen = 1− 2(ad− bc)

p1q2 + p2q1

→ D12 =
4

3
and D13 = D23 =

1

2

DPhi = 1− ad− bc√
p1p2q1q2

→ D12 =
4

3
and D13 = D23 = 1− 1√

3
<

1

2

DLoe = 1− ad− bc

min(p1q2, p2q1)
→ D12 =

4

3
and D13 = D23 =

1

3
.

The dissimilarities do not satisfy the triangle inequality.

10.4 Epilogue

Only a few dissimilarities obtained with transformation D = 1 − S turn out to be
metric, that is, satisfy the triangle inequality. The key coefficients here are

DRR = 1− a = b + c + d and DSM = 1− a− d = b + c

and

DJac = 1− a

a + b + c
=

b + c

a + b + c
.

Counterexamples were presented for various other coefficients. Since these two-way
dissimilarities do not satisfy the triangle inequality, their multi-way formulations
presented in Chapters 16 and 17 do not satisfy the generalizations of the triangle
inequality considered in Part III of the thesis. Therefore, no metric properties of
these coefficients are considered in Chapter 18.

Similarly to Chapters 7 and 8, it may be investigated if one of the functions that
do not satisfy the triangle inequality in general, do satisfy the triangle inequality if
the data matrix exhibits certain patterns or contains some form of structure. For
example, if the data are Guttman vectors, the function

DDice = 1− 2a

p1 + p2

(10.13)

does satisfy inequality (10.1).
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Proposition 10.2. Suppose that a12 = min(p1, p2). Then DDice satisfies (10.1).
Proof: First, let p1 ≥ p2 ≥ p3. Using (10.13) in (10.1), we obtain

1 +
2p2

p1 + p2

≥ 2p3

p1 + p3

+
2p3

p2 + p3

. (10.14)

Equation (10.14) is true if

(p1 + p2)(p1 + p3)(p2 + p3)+2p2(p1 + p3)(p2 + p3) ≥
2p3(p1 + p2)(p2 + p3)+2p3(p1 + p2)(p1 + p3)

if and only if
p2

1(p2 − p3) + 3p1(p
2
2 − p2

3) + p2p3(p2 − p3) ≥ 0 (10.15)

holds. Since p2 ≥ p3, (10.15) is true.
Alternatively, let p3 ≥ p2 ≥ p1. Using (10.13) in (10.1), we obtain

1 +
2p1

p1 + p2

≥ 2p1

p1 + p3

+
2p2

p2 + p3

. (10.16)

Equation (10.16) is true if

(p1 + p2)(p1 + p3)(p2 + p2)+2p1(p1 + p3)(p2 + p3) ≥
2p1(p1 + p2)(p2 + p3)+2p2(p1 + p2)(p1 + p3)

if and only if
p2

1(p3 − p2) + 3p1(p
2
3 − p2

2) + p2p3(p3 − p2) ≥ 0 (10.17)

holds. Since p3 ≥ p2, (10.17) is true. This completes the proof. �

Metric properties given a certain data structure may be investigated for other
similarity coefficients as well. The applications of these coefficients would be very
limited with respect to the general results for other coefficients in Section 10.2. Such
results would be of theoretical interest only.


