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Part I

Similarity coefficients
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Sequences of binary data are encountered in many different realms of research. For
example, a rater may check whether or not a person possesses a certain psychological
characteristic; it can be assessed if certain species types are encountered in a region
or not; a person may fill in a test and can either fail or pass various items; it may be
investigated if a certain object does possess or does not possess certain attributes
or characteristics. Moreover, various types of quantitative data may be recoded
and treated as binary. Noisy quantitative data may for instance be dichotomized.
Quantitative data may also be dichotomized when the pertinent information for the
problem at hand depends on a known threshold value.

A so-called similarity coefficient or association index reflects in one way or an-
other the resemblance of two or more binary variables. Most coefficients have been
proposed for the bivariate or two-way case, that is, the similarity of two sequences
or variables of binary scores. In this first chapter a (brief) overview is presented of
several of the bivariate coefficients for binary data that are available. The similar-
ity coefficients may be considered both as population parameters as well as sample
statistics. The formulations here will be the ones, utilized in the latter case. Fol-
lowing Sokal and Sneath (1963, p. 128) or more recently Albatineh, Niewiadomska-
Bugaj and Mihalko (2006), the convention is adopted of calling a coefficient by its
originator or the first we know to propose it. The exception to this rule is the Phi
coefficient.
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4 Coefficients for binary variables

A major distinction is made between coefficients that do and those that do
not include a certain quantity d. If a binary variable is a coding of the presence
or absence of a list of attributes, then d reflects the number of negative matches,
which is generally felt not to contribute to similarity. A second distinction covers
coefficients that have zero value if the two sequences are (statistically) independent
and coefficients that have not.

Next to introducing various bivariate coefficients, the chapter is used to outline a
common problem for coefficients for binary data. Since many similarity coefficients
are defined as fractions, the denominator may become 0 in some cases. For these
critical cases the value of the coefficient is undefined. This case of indeterminacy for
some values of coefficients for binary data has been given surprisingly little attention.
As it turns out, the number of critical cases differ with the coefficients.

1.1 Four dependent quantities

Suppose the data consist of two sequences of binary (1/0) scores, for example
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Various data analysis techniques do not require the full information in the two binary
sequences. A convenient way to summarize the information in the two vectors is by
defining the four dependent quantities

a = proportion of 1s that the variables share in the same positions

b = proportion of 1s in the first variable and 0s in second variable

in the same positions

c = proportion of 0s in the first variable and 1s in second variable

in the same positions

d = proportion of 0s that both variables share in the same positions.

Together, the four quantities a, b, c, and d can be used to construct the 2 × 2
contingency table

Variable two
Variable one Value 1 Value 0 Total

Value 1 a b p1

Value 0 c d q1

Total p2 q2 1
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where the marginal probabilities are given by

p1 = a + b proportion of 1s in the first variable

p2 = a + c proportion of 1s in the second variable

q1 = c + d proportion of 0s in the first variable

q2 = b + d proportion of 0s in the second variable.

The information in the 2×2 contingency table can be summarized by an index, called
here a coefficient of similarity (affinity, resemblance, association, coexistence). As
a general symbol for a similarity coefficient the capital letter S will be used. An
example of a similarity coefficient is the Phi coefficient, which is given by

SPhi =
ad− bc

√

(a + b)(a + c)(b + d)(c + d)
.

The measure SPhi is sometimes attributed to Yule (1912), and is equivalent to the
formula that is obtained when the Pearson’s product-moment correlation derived
for continuous data, is applied to binary data. See Zysno (1997) for a review on the
literature on SPhi and some of its modifications. The marginal proportions p1, p2,
q1, and q2 can be used to obtain a shorter or more parsimonious formula for SPhi,
which is given by

SPhi =
ad− bc√
p1p2q1q2

.

Following Sokal and Sneath (1963) the convention is adopted of calling a coefficient
by its originator or the first we know to propose it. The exception to this rule is
actually coefficient SPhi. Sokal and Sneath (1963) (among others) make a major
distinction between coefficients that do or do not include the quantity d. If a binary
variable is a coding of the presence or absence of a list of attributes or features, then
d reflects the number of negative matches, which is generally felt not to contribute
to similarity. Sokal and Sneath (1963, p. 130) noted the following.

‘Through reduction ad absurdum we can arrive at a universe of negative character
matches purporting to establish the similarity between two entities.’

Sneath (1957) felt it was difficult to decide which negative features to include in
a study and which to exclude.

‘It is not pertinent to count “absence of feathers” when comparing two bacteria, but
that this feature is applicable in comparing bacteria and birds.’

Sokal and Sneath (1963, p. 128, 130) also note that including negative matches
may depend on what attributes or features are actually considered with respect to
the species. They explain the difficulty as follows.
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‘It may be argued that basing similarity between two species on the mutual absence
of a certain character is improper. The absence of wings, when observed among a group
of distantly related organisms (such as a camel, louse and nematode), would surely be
an absurd indication of affinity. Yet a positive character, such as the presence of wings
(or flying organs defined without qualification as to kind of wing) could mislead equally
when considered for a similarly heterogeneous assemblage (for example, bat, heron, and
dragonfly).’

Examples (from the field of biological ecology) that do not include the quantity
d are the coefficients given by

SJac =
a

p1 + p2 − a
(Jaccard, 1912)

SGleas =
2a

p1 + p2

(Gleason, 1920; Dice, 1945; Sørenson, 1948)

SKul =
1

2

(
a

p1

+
a

p2

)

(Kulczyński, 1927)

SDK =
a√
p1p2

(Driver and Kroeber, 1932; Ochiai, 1957).

Coefficient SJac may be interpreted as the number of 1s shared by the variables in the
same positions, divided by the total number of positions were 1s occur (a + b + c =
p1 + p2 − a). Coefficient SGleas seems to be independently proposed by both Dice
(1945) and Sørenson (1948) but is often contributed to the former. Bray (1956) noted
that coefficient SGleas can already be found in Gleason (1920). The coefficient has
also been proposed by various other authors, for example, Czekanowski (1932) and
Nei and Li (1979). Coefficient SDK by Driver and Kroeber (1932) is often attributed
to Ochiai (1957). Coefficient SDK is also proposed by Fowlkes and Mallows (1983)
for the comparison of two clustering algorithms (see Section 2.2).

With respect to coefficient SJac, coefficient SGleas gives twice as much weight to
a. The latter coefficient is regularly used with presence/absence data in the case
that there are only a few positive matches relatively to the number of mismatches.
In addition to SJac and SGleas, Sokal and Sneath (1963, p. 129) proposed a similarity
measure that gives twice as much weight to the quantity (b + c) compared to a,
which is given by

SSS1 =
a

a + 2(b + c)
.

Coefficients SJac, SGleas, and SSS1 are rational functions which are linear in both
numerator and denominator.

If a binary variable is a coding of a nominal variable, that is, one or the other of
two mutually exclusive attributes (for example, correct and incorrect, or male and
female), then the quantity a reflects the number of matches on the first attribute
and d reflects the number of matches on the second one. In this case, it is often felt
that the quantities a and d should be equally weighted.
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Goodman and Kruskal (1954, p. 758) contend that, in general, the only reason-
able coefficients are those based on (a+ d). Examples of coefficients that do include
the quantity d are the coefficients given by

SSM =
a + d

a + b + c + d
(Sokal and Michener, 1958; Rand, 1971)

SSS2 =
2(a + d)

2a + b + c + 2d
(Sokal and Sneath, 1963)

SRT =
a + d

a + 2(b + c) + d
(Rogers and Tanimoto, 1960)

SSS3 =
1

4

(
a

p1

+
a

p2

+
d

q1

+
d

q2

)

(Sokal and Sneath, 1963)

SSS4 =
ad√

p1p2q1q2

(Sokal and Sneath, 1963).

Since a, b, c, and d are proportions, the simple matching coefficient SSM = a + d.
Coefficient SSM can be interpreted as the number of 1s and 0s shared by the variables
in the same positions, divided by the total length of the variables. Coefficient SSM is
also proposed by Rand (1971) for the comparison of two clustering algorithms and
Brennan and Light (1974) for measuring agreement of two psychologists that rate
people on categories not defined in advance (see Chapter 2). In addition to SSM and
SRT, Sokal and Sneath (1963, p. 129) proposed coefficient SSS2, which gives twice
as much weight to the quantity (a + d) compared to (b + c). Moreover, Sokal and
Sneath (1963) proposed coefficients SSS3 and SSS4 as alternatives (that include the
quantity d) to coefficients SKul and SDK. The coefficient by Rusel and Rao (1940),
given by SRR = a/(a + b + c + d) = a, is called hybrid by Sokal and Sneath (1963),
since it includes the quantity d in the denominator but not in the numerator.

1.2 Axioms for (dis)similarities

Complementary to similarity or association is the concept of dissimilarity. As an
alternative to a similarity measure, the fourfold table may also be summarized by
some form of dissimilarity measure. A higher value of a similarity coefficient indi-
cates there is more association between two binary variables, whereas a low value
indicates that the two sequences are dissimilar. For a dissimilarity coefficient the
interpretation is the other way around. A high value indicates great dissimilarity,
whereas a low value indicates great resemblance. The capital letter D will be used
as a general symbol for a dissimilarity coefficient in Parts I and IV. In Part III the
symbol d is used.
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Various authors presented more rigorous discussions on the concepts similarity
and dissimilarity. A function can only be considered a similarity or dissimilarity if it
satisfies certain requirements or axioms. Some interesting exposés and discussions
on axioms for (dis)similarities can be found in Baroni-Urbani and Buser (1976),
Baulieu (1989, 1997), Janson and Vegelius (1981) and Batagelj and Bren (1995), in
the case of bivariate or two-way coefficients, and Heiser and Bennani (1997) and Joly
and Le Calvé (1995), in the case of three-way or triadic coefficients. With respect
to the latter, that is, three-way dissimilarities, see Chapter 11. In addition, Zegers
(1986) presented an interesting overview of requirements for similarity coefficients
for more general types of data.

An essential property of a similarity coefficient S(x1, x2) that reflects the simi-
larity between two variables x1 and x2, is the property that S(x1, x1) ≥ S(x1, x2)
and S(x2, x2) ≥ S(x1, x2). Furthermore, it may be required that a coefficient is sym-
metric, that is, S(x1, x2) = S(x2, x1). Examples of coefficients that are symmetric
are

SPhi =
ad− bc√
p1p2q1q2

and SJac =
a

a + b + c
=

a

p1 + p2 − a
.

Two-way similarity coefficients that do not satisfy the symmetry requirement are
the functions that can be found in, among others, Dice (1945, p. 298), Wallace
(1983), and Post and Snijders (1993), given by

SDice1 =
a

a + b
=

a

p1

and SDice2 =
a

a + c
=

a

p2

.

Coefficient SDice1 is the number of 1s that both sequences share in the same positions,
relative to the total number of 1s in the first sequence. Both SDice1 and SDice2 can
be interpreted as conditional probabilities.

If a variable is compared with itself, it may be required that the similarity equals
the value 1, that is, S(x1, x1) = 1. Coefficients SPhi, SJac, SDice1, and SDice2 all satisfy
this axiom. A coefficient that in general violates this requirement, is an interesting
measure by Russel and Rao (1940), given by

SRR =
a

a + b + c + d
or simply SRR = a.

In addition to the previous two axioms, it is sometimes required that a function has
a certain range before it may be called a similarity. For similarities, it is sometimes
required that the absolute value of a function is restricted from above by the value
1, that is, |S(x1, x2)| ≤ 1. All coefficients that are investigated in this thesis satisfy
this requirement. Coefficients that do not satisfy this axiom have quantities in the
numerator that are not represented in the denominator. A coefficient that can be
found in Kulczyński (1927), given by a/(b + c), is an example of a coefficient that
does not satisfy this requirement. Most similarity coefficients considered in this
thesis satisfy the three above requirements.
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Analogously to the requirements for similarities, there are axioms for the concept
of dissimilarity. It is usual to require that a function D(x1, x2) is referred to as a
dissimilarity if it satisfies

D(x1, x2) ≥ 0 (nonnegativity)

D(x1, x2) = D(x2, x1) (symmetry)

and D(x1, x1) = 0 (minimality).

A straightforward way to transform a similarity coefficient S into a dissimilarity
coefficient D is taking the complement D = 1−S. This transformation requires that
S(x1, x1) = 1 in order to obtain D = 0. Another possible transformation, closely
related to the Euclidean distance, is D =

√
1− S (Gower and Legendre, 1986): D

is the square root of the complement of S. For several coefficients, transformation
D = 1− S gives simple formulas. For example,

DJac = 1− a

a + b + c
=

b + c

a + b + c
.

In order for coefficient DRR to satisfy minimality, SRR must be redefined as

SRR =

{

1 if x1 = x2

a otherwise.

Dissimilarity coefficient DRR is then given by

DRR =

{

0 if x1 = x2

1− a otherwise.

With respect to a dissimilarity D various other requirements can be studied, which
are usually not defined for a similarity coefficient S. For D to be a distance or
metric, it must satisfy the metric axioms of symmetry and

D(x1, x2) = 0 if and only if x1 = x2 (definiteness)

and foremost, the triangle inequality, which is given by

D(x1, x2) ≤ D(x1, x3) + D(x2, x3).

Metric properties of various functions are studied (reviewed) in Chapter 10. In
Chapter 12 various possible multi-way generalizations of the triangle inequality are
studied. Another well-known inequality is the ultrametric inequality given by

D(x1, x2) ≤ max (D(x1, x3), D(x2, x3)) .

If a dissimilarity D(x1, x2) satisfies the ultrametric inequality, then it also satisfies
the triangle inequality. Various multi-way generalizations of the ultrametric inequal-
ity are studied in Chapter 13. Axioms for multi-way or multivariate (dis)similarities
are discussed in Chapter 11.
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1.3 Uncorrelatedness and statistical independence

In probability theory two binary variables are called uncorrelated if they share zero
covariance, that is, ad − bc = 0. The covariance between two binary variables is
defined as the determinant of the 2 × 2 contingency table. In addition to being
uncorrelated, two variables may be statistically independent, which is in general a
stronger requirement compared to uncorrelatedness. The two concepts are equiva-
lent if both variables are normally distributed. Probability theory tells us that two
binary variables satisfy statistical independence if the odds ratio equals unity, that
is

ad

bc
= 1.

The odds ratio is defined as the ratio of the odds of an event occurring in one group
(a/b) to the odds of it occurring in another group (c/d). These groups might be any
other dichotomous classification. An odds ratio of 1 indicates that the condition or
event under study is equally likely in both groups. An odds ratio greater than 1
indicates that the condition or event is more likely in the first group.

The value of the odds ratio lies between zero and infinity. Yule proposed two
measures

SYule1 =
ad
bc
− 1

ad
bc

+ 1
=

ad− bc

ad + bc
(Yule, 1900)

and

SYule2 =

√
ad√
bc
− 1

√
ad√
bc

+ 1
=

√
ad−

√
bc√

ad +
√

bc
(Yule, 1912)

as alternatives to the odds ratio. Both coefficients SYule1 and SYule2 transform the
odds ratio into a correlation-like scale with a range −1 to 1.

The odds ratio equals unity if ad = bc which equals the case that ad − bc = 0.
In this respect uncorrelatedness and independence are equivalent for two binary
variables. For testing statistical independence, one may calculate the χ2-statistic
(Pearson and Heron, 1913; Pearson, 1947) for the 2× 2 contingency table. Different
opinions have been stated on what the appropriate expectations are for the fourfold
table (see Chapter 4). In the majority of applications it is assumed that the data are
a product of chance concerning two different frequency distribution functions under-
lying the two binary variables, each with its own parameter. The case of statistical
independence for this possibility, conditionally on fixed marginal probabilities p1,
p2, q1, and q2, is given by

Variable two
Variable one Value 1 Value 0 Total

Value 1 p1p2 p1q2 p1

Value 0 q1p2 q1q2 q1

Total p2 q2 1

The case of statistical independence visualized in this table is considered in Yule
(1912), Pearson (1947), Goodman and Kruskal (1954) and Cohen (1960).
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Let E(a) denote the expectation of quantity a; the latter is the observed propor-
tion of common 1s, whereas E(a) is the expected proportion of common 1s. Under
the assumption of two different frequency distribution functions, we have

a− E(a) = a− p1p2 = a(1− a− b− c)− bc = ad− bc;

b− E(b) = b− p1q2 = bc− ad;

c− E(c) = c− p2q1 = bc− ad;

d− E(d) = d− q1q2 = ad− bc.

The χ2-statistic for the 2× 2 contingency table is then given by

χ2 =
n(ad− bc)2

p1p2q1q2

where n is the length of, or number of elements in, the binary variables. The
quantity n is used to compensate for the fact that the entries in the fourfold table
are proportions, not counts. The χ2-statistic has one degree of freedom (Pearson,
1947; Fisher, 1922). The χ2-statistic is related to the Phi coefficient by

SPhi =

√

χ2

n
=

ad− bc√
p1p2q1q2

.

Both χ2 and SPhi equal zero if ad = bc, that is, when the two binary variables have
zero covariance or are statistically independent. Apart from coefficient SPhi various
other similarity coefficients are defined with the covariance ad−bc in the numerator.
An example is Cohen’s kappa (Cohen, 1960), which in the case of two categories is
given by

SCohen =
2(ad− bc)

p1q2 + p2q1

.

Coefficient SCohen is a measure that is corrected for similarity due to chance (see
Section 2.1 and Chapter 4).

Various authors have studied the expected value and possible standard devia-
tion of similarity coefficients (see, for example, Sokal and Sneath, 1963; Janson and
Vegelius, 1981). An interesting overview of possible distributions and some new
derivations for coefficients SSM, SJac, and SGleas, is presented in Snijders, Dormaar,
Van Schuur, Dijkman-Caes and Driessen (1990). Knowing a value of central ten-
dency and a measure of the amount of likely dispersion for a coefficient, may be
used for statistical inference. Next, it is possible to test the hypothesis whether a
similarity coefficient is statistically different from the expected value or not.
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1.4 Indeterminacy

In this section we work with a slightly adjusted definition of a similarity coefficient
for two binary variables. Firstly, instead of proportions or probabilities, let a, b, c,
and d be counts, and let n = a + b + c + d denote the total number of attributes of
the binary variables. Secondly, we define a presence/absence coefficient S(a, b, c, d)
or S to be a map S : (Z+)4 → R from the set, U , of all ordered quadruples of
nonnegative integers into the reals (Baulieu, 1989).

Many similarity coefficients are defined as fractions. The denominator of these
fractions may therefore become 0 for certain values of a, b, c and d. For example, it
is well-known that if d = n, then the value of SJac given by

SJac =
a

a + b + c
=

a

n− d

is not defined or indeterminate. As noted by Batagelj and Bren (1995, Section 4.2)
this case of indeterminacy for some values of coefficients for binary data has been
given surprisingly little attention. The critical case of SJac implies a situation in
which two binary variables consist entirely of 0s. One may argue that it is highly
unlikely that this occurs in practice. For example, in ecology it is unlikely to have
an ordinal data table that has objects without species. Furthermore, the problem
can be resolved by excluding zero vectors from the data. Although these may be
valid arguments for SJac, it turns out that the number of cases in which the value
of a coefficient is indeterminate, differs with the coefficients.

To compare the number of critical cases of two different coefficients, a domain
of possible cases must be defined. Consider the set U of all ordered four-tuples
(a, b, c, d) of nonnegative integers. Since a + b + c + d = n, the number of different
quadruples for given n (n ≥ 1) is given by the binomial coefficient

(
n + 3

3

)

=
(n + 3)!

n! 3!
=

(n + 3)(n + 2)(n + 1)

6

which is the number of different four-tuples one may obtain out of n objects. Thus,
for n = 1, 2, 3, 4, 5, ... , the set U consists of 4, 10, 20, 35, 56, ... different four-tuples.
For example, for n = 2 we have the ten unique four-tuples

(2, 0, 0, 0) (1, 1, 0, 0) (0, 1, 1, 0)

(0, 2, 0, 0) (1, 0, 1, 0) (0, 1, 0, 1)

(0, 0, 2, 0) (1, 0, 0, 1) (0, 0, 1, 1)

(0, 0, 0, 2).

For each coefficient we may study for how many four-tuples or quadruples for
fixed n the value of the coefficient is indeterminate. For twenty eight similarity
coefficients for both nominal and ordinal data, the number of different quadruples

0Parts of this section are to appear in Warrens, M.J. (in press), On the indeterminacy of
similarity coefficients for binary (presence/absence) data, Journal of Classification.
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in U for which the denominator of the corresponding coefficient equals zero are
presented in the following table

Ordinal data Nominal data 4-tuples
SRR SSM, SSS3, SMich, SRT, SHam 0
SJac, SGleas, SBUB, SBB, SSS1 1

SGK, SScott, SCohen, SHD 2
SMP 4

SKul, SDK, SSim, SSorg, SMcC 2n + 1
SPhi, SYule1, SYule2, SSS2, 4n
SSS4, SFleiss, SLoe

The formulas of all coefficients can be found in the appendix entitled “List of
similarity coefficients”. The above table may be read as follows. If n = 5, U has
56 elements and for 20 of these quadruples the value of the Phi coefficient SPhi is
indeterminate. Note that the coefficients are placed in groups with the same number
of critical cases. For coefficients with the most critical cases (4n), the number of
quadruples for which the value of the coefficient is indeterminate increases in a
linear fashion as n becomes larger. Increases of the number of quadruples with the
indeterminacy problem are not proportional to increases of n. Hence, the ratio

number of critical cases in U

total number of quadruples in U
decreases as n becomes larger.

Furthermore, for most coefficients indeterminacy only occurs in the case that at
least two elements of four-tuple (a, b, c, d) are zero.

As an alternative to excluding the vectors that result in zero denominators values,
Batagelj and Bren (1995) proposed to eliminate the indeterminacies by appropriately
defining values in critical cases. Some of the definitions presented in this section give
the same results as definitions proposed in Batagelj and Bren (1995). The definitions
presented here simplify the reading.

Let
Ky =

a

a + y
with y = b, c.

Coefficients SGleas, SDK, SKul and

SSorg =
a2

p1p2

, SBB =
a

max(p1, p2)
and SSim =

a

min(p1, p2)

are, respectively, the harmonic mean, geometric mean, arithmetic mean, product,
minimum function, and maximum function of Kb and Kc.
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Consider the arithmetic mean of Kb and Kc

SKul =
Kb + Kc

2
=

1

2

(
a

a + b
+

a

a + c

)

.

Suppose a + c = 0. Note that the value of SKul is indeterminate. If we set Kc = 0,
then SKul becomes

SKul =
1

2

(
a

a + b
+ 0

)

= 0 since a = 0.

Alternatively, we may remove the part from the definition of SKul that causes the
indeterminacy. Coefficient SKul becomes

SKul =
a

a + b
= 0 since a = 0.

Thus, either setting Kc = 0 or removing the indeterminate part from the definition
of the coefficient, leads to the same conclusion: SKul = 0. We therefore define

SKul =

{

0 if a + b = 0 or a + c = 0
1
2

(
a

a+b
+ a

a+c

)
otherwise.

Analogous definitions may be formulated for coefficients SDK, SSim, and SSorg.
Coefficient

SMcC =
a2 − bc

(a + b)(a + c)
= 2SKul − 1.

Suppose a + c = 0. The value of coefficient SMcC is indeterminate. Also the numer-
ator (a2 − bc) = 0. We define

SMcC =

{

0 if a + b = 0 or a + c = 0
a2−bc

(a+b)(a+c)
otherwise.

Consider the harmonic mean of Kb and Kc

SGleas =
2

K−1
b + K−1

c

=
2a

2a + b + c
.

Suppose a + c = 0. The value of Kc and K−1
c is indeterminate. However, 2a/(2a +

b + c) = 0. Similar to SKul we define

SGleas =

{

0 if d = n

2a/(2a + b + c) otherwise.

Analogous definitions may be formulated for coefficients SJac, SSS2, SBB, and SBUB.
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Note that the definitions of SKul and SGleas presented here do not ensure that

SKul = 1 or SGleas = 1 if variable x1 is compared with itself. If x1 = x2 =

n
︷ ︸︸ ︷

(0, 0, ..., 0),
that is, the two variables have nothing in common, SKul = SGleas = 0. Furthermore,

if variable x1 =

n
︷ ︸︸ ︷

(0, 0, ..., 0) is compared with itself, SKul = SGleas = 0. Since these
coefficients are appropriate for ordinal data, it is a moot point what the value of
the coefficient should be if variables x1 and x2, or just variable x1 if x2 is compared
with itself, are zero vectors. From a philosophical point of view it might be better
to leave the coefficients for ordinal data undefined for the critical case d = n.

Consider coefficient

SHD =
1

2

(
a

a + b + c
+

d

b + c + d

)

(Hawkins and Dotson, 1968).

The value of SHD is indeterminate if either a = n or d = n. If a = n then variables
x1 and x2 are unit vectors; if d = n then variables x1 and x2 are zero vectors. If
both variables are zero vectors or unit vectors, we may speak of perfect agreement
if x1 and x2 are nominal variables. We therefore define

SHD =

{

1 if a = n or d = n
1
2

(
a

a+b+c
+ d

b+c+d

)
otherwise.

Analogous definitions may be formulated for coefficients SCohen, SGK and SScott. We
also define

SMP =







1 if a = n or d = n

0 if b = n or c = n
2(ad−bc)

(a+b)(c+d)+(a+c)(b+d)
otherwise.

Consider the Phi coefficient

SPhi =
ad− bc

√

(a + b)(a + c)(b + d)(c + d)
.

The value of SPhi is indeterminate if a + b = 0, a + c = 0, b + d = 0, or c + d = 0.
For these critical cases the covariance (ad− bc) = 0. We define

SPhi =







1 if a = n or d = n

0 if a + b = 0, a + c = 0, b + d = 0 or c + d = 0
ad−bc√

(a+b)(a+c)(b+d)(c+d)
otherwise.

Analogous definitions may be formulated for coefficients SSS4, SYule1, SYule2, SFleiss,
and SLoe.
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Let

Ky =
a

a + y
and K∗

y =
d

y + d
with y = b, c.

Consider the arithmetic mean of Kb, Kc, K∗
b and K∗

c

SSS3 =
1

4

(
a

a + b
+

a

a + c
+

d

b + d
+

d

c + d

)

.

Suppose c + d = 0. Note that the value of K∗
c is indeterminate. To eliminate the

critical case, we may set K∗
c = 0, and SSS3 becomes

SSS3 =
1

4

(
a

a + b
+ 1 + 0 + 0

)

=
2a + b

4(a + b)
. (1.1)

Note that coefficient SSS3 in (1.1) has a range [1
4
, 1

2
]. We may define

SSS3 =







2a+b
4(a+b)

if c + d = 0
2a+c

4(a+c)
if b + d = 0

b+2d
4(b+d)

if a + c = 0
c+2d

4(c+d)
if a + b = 0

1
2

if a = n or d = n

0 if b = n or c = n
1
4

(
a

a+b
+ a

a+c
+ d

b+d
+ d

c+d

)
otherwise.

As an alternative to the above robust definition of SSS3, we propose to eliminate
the critical case by removing the part from the definition of SSS3 that causes the
indeterminacy. Suppose c + d = 0. The arithmetic mean of Kb, Kc and K∗

b is given
by

S∗SS3 =
1

3

(
a

a + b
+ 0 + 1

)

=
2a + b

3(a + b)
. (1.2)

Note that coefficient S∗SS3 in (1.2) has a range [1
3
, 2

3
]. We define

S∗SS3 =







2a+b
3(a+b)

if c + d = 0
2a+c

3(a+c)
if b + d = 0

b+2d
3(b+d)

if a + c = 0
c+2d

3(c+d)
if a + b = 0

1 if a = n or d = n

0 if b = n or c = n
1
4

(
a

a+b
+ a

a+c
+ d

b+d
+ d

c+d

)
otherwise.
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1.5 Epilogue

In this first chapter basic notation and several concepts of similarity coefficients
for binary data were introduced. A coefficient summarizes the two-way informa-
tion in two sequences of binary (0/1) scores. A coefficient may be used to compare
two variables over several cases or persons, two cases over variables, two objects
over attributes, or two attributes over objects. Although the data analysis litera-
ture distinguishes between, for example, bivariate information between variables or
dyadic information between cases, the terms bivariate and two-way are used for any
two sequences of binary scores (the terms are considered interchangeable) in this
dissertation.

Two distinctions between the large number of coefficients were made in this chap-
ter. Coefficients may be divided in groups that do or do not include the quantity d.
If a binary variable is a coding of the presence or absence of a list of attributes, then
d reflects the number of negative matches. A second distinction was made between
coefficients that have zero value if the two sequences are statistically independent
and coefficients that have not. A full account of the possibilities of statistical testing
with respect to the 2× 2 contingency table can be found in Pearson (1947).

No attempt was made to present a complete overview of all proposed or all
possible coefficients for binary data. An overview of bivariate coefficients for binary
data from the literature can be found in the appendix entitled “List of similarity
coefficients”. To obtain some ideas of other possible coefficients, the reader is referred
to other sources: Sokal and Sneath (1963), Cheetham and Hazel (1969), Baroni-
Urbani and Buser (1976), Janson and Vegelius (1982), Hubálek (1982), Gower and
Legendre (1986), Krippendorff (1987), Baulieu (1989) and Albatineh et al. (2006).
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The main title (“Similarity coefficients for binary data”) suggests that the thesis is
about resemblance or association measures between objects characterized by two-
state (binary) attributes. Many of the bivariate or two-way coefficients, however,
were not proposed for use with binary variables only. The formulas considered in
this thesis are often special cases that are obtained when more general formulas
from various domains of data analysis are applied to dichotomous data. The general
resemblance measures may, for example, be used for frequency data or other positive
counts. Some coefficients based on proportions a, b, c, and d are special cases of not
just one, but multiple coefficients. For example, coefficient

SGleas =
2a

2a + b + c
or its complement 1− SGleas =

b + c

2a + b + c

have been proposed for binary variables by Gleason (1920), Dice (1945), Sørenson
(1948), Nei and Li (1979), and seem to have been popularized by Bray (1956) and
Bray and Curtis (1957). Coefficient SGleas is a special case of, for example, a co-
efficient by Czekanowski (1932), a measure by Odum (1950), and a coefficient by
Williams, Lambert and Lance (1966). The simple matching coefficient

SSM =
a + d

a + b + c + d
or its complement 1− SSM =

b + c

a + b + c + d

19
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can be obtained, for example, as a special case of a general coefficient by Gower
(1971) or Cox and Cox (2000), the observed proportion of agreement of a bivariate
table of two nominal variables, the city-block distance, or as a special case of a
measure by Cain and Harrison (1958).

This chapter is used to present various interesting formulas for nominal and
quantitative variables, accompanied by some measures used in set theory, of which
some of the coefficients that will be frequently encountered in this thesis, like SGleas

and SSM, are special cases. This puts the coefficients for binary data in a more
general context. In addition, from this chapter ideas or possibilities may be obtained
for generalizing some of the results presented in this dissertation.

2.1 Nominal variables

When dealing with bivariate or two-way similarity coefficients for nominal variables
two situations can be distinguished. The two nominal variables have either identical
categories or they have different categories (Popping, 1983a; Zegers, 1986). The
latter possibility is discussed in Section 2.3. Suppose that two psychologists each
distribute m people among a set of k mutually exclusive categories. In addition
suppose that the categories are defined in advance. To measure the agreement among
the two psychologists, a first step is to obtain a contingency table or matching table
N with elements nij, where nij indicates the number of persons placed in category
i (i = 1, 2, ..., I) by the first psychologist and in category j (j = 1, 2, ..., J) by the
second psychologist. Furthermore, let

ni+ =
J∑

j=1

nij and n+j =
I∑

i=1

nij

denote the marginal counts (row and column totals) of the contingency table N.
Suppose that the categories of both nominal variables are in the same order, so that
the diagonal elements of the square matrix N (nii) reflect the number of people
put in the same category by both psychologists. If there are just two categories,
then m−1N equals the usual fourfold table. A straightforward measure of bivariate
association is the observed proportion of agreement Po, given by

Po =
1

m

k∑

i=1

nii =
tr(N)

m
.

If there are just two categories, for example, presence or absence of a psychological
characteristic, then

Po =
a + d

a + b + c + d
= SSM.

Both Scott (1955) and Cohen (1960) proposed measures that incorporate correc-
tion for chance agreement. Both measures are corrected versions of Po.
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After correction a similarity coefficient S has a form

CS =
S − E(S)

1− E(S)
(2.1)

where E(S) is conditional on the marginals of the contingency table of which S is
the summary statistic. Furthermore, the constant 1 in the denominator of (2.1) may
be replaced by the maximum value of a coefficient S (all coefficients that are studied
in this thesis have a maximum value of unity). Expectation E(S) depends on the
marginal proportions, but the maximum value does not.

We note two expectations of Po, which will be referred to as the expected pro-
portion of agreement E(Po). Scott (1955) works with the assumption that the data
are a product of chance of a single frequency distribution. To estimate the common
parameters from the marginal counts, Scott (1955) uses

E(Po)Scott =
1

4

k∑

i=1

(ni+

m
+

n+i

m

)2

. (2.2)

Alternatively, Cohen (1960) works with the assumption that the data are a product
of chance of two different frequency distributions, one for each nominal variable.
The expected proportion of agreement under statistical independence is given by

E(Po)Cohen =
1

m2

k∑

i=1

ni+n+i. (2.3)

Expectation (2.3) may be obtained by considering all permutations of the observa-
tions of one of the two variables, while preserving the order of the observations of
the other variable. For each permutation the value of Po can be determined. The
arithmetic mean of these values is (2.3).

Using Po and either (2.2) or (2.3) in (2.1), we obtain Scott’s pi and Cohen’s
kappa, which are given by

SScott =
Po − E(Po)Scott

1− E(Po)Scott

and SCohen =
Po − E(Po)Cohen

1− E(Po)Cohen

and become respectively

SScott =
4(ad− bc)− (b− c)2

(p1 + p2)(q1 + q2)
and SCohen =

2(ad− bc)

p1q2 + p2q1

with binary variables. Other suitable measures for nominal variables with identical
categories are discussed in Janson and Vegelius (1979).
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2.2 Comparing two partitions

In cluster analysis one may be interested in comparing two clustering methods
(Rand, 1971; Fowlkes and Mallows, 1983; Hubert and Arabie, 1985; Lerman, 1988;
Steinley, 2004; Albatineh et al., 2006). Suppose we have two partitions of m data
points. To compare these two clusterings, a first step is to obtain a so-called match-
ing table N with elements nij, where nij indicates the number of data points placed
in cluster i (i = 1, 2, ..., I) according to the first clustering method and in cluster j
(j = 1, 2, ..., J) according to the second method.

The total number of points being clustered is given by m =
∑I

i=1

∑J
j=1 nij. The

cluster sizes in respective clusterings are the row and column totals of the matching
table ni+ and n+j. Furthermore, we define the quantity

T =
I∑

i=1

J∑

j=1

(
nij

2

)

=
1

2

[
I∑

i=1

J∑

j=1

n2
ij −m

]

which equals the number of object pairs that were placed in the same cluster ac-
cording to both clustering methods, and the three quantities

P =
I∑

i=1

(
ni+

2

)

, Q =
J∑

j=1

(
n+j

2

)

and N =

(
m
2

)

.

The quantity N equals the total number of pairs of objects given m points.
As a second step, one may calculate some sort of resemblance measure that

summarizes the information in the matching table. A well-known measure for the
similarity of two partitions is the Rand index (Rand, 1971), given by

SRand =
N + 2T − P −Q

N
.

Another measure of resemblance for comparing two partitions is the coefficient by
Fowlkes and Mallows (1983), given by

SFM =
T√
PQ

.

Similar to the proportion of observed agreement Po from Section 2.1, coefficient SRand

may be adjusted for agreement due to chance (Morey and Agresti, 1984; Hubert and
Arabie, 1985; Albatineh et al., 2006). Fowlkes and Mallows (1983) and Hubert and
Arabie (1985, p. 197) noted that, if the generalized hypergeometric distribution
function is assumed appropriate for the matching table N, then the expectation
E(T ) under statistical independence is given by

E (T ) =
PQ

N
. (2.4)

0Parts of this section are to appear in Warrens, M.J. (in press), On the equivalence of Cohen’s
kappa and the Hubert-Ararbie adjusted Rand index, Journal of Classification.
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Using (2.4), the expectation of SRand can be written as

E(SRand) = 1 +
2PQ

N2
− P + Q

N
(2.5)

(Hubert and Arabie, 1985, p. 198). Using SRand and (2.5) in (2.1), we obtain the
Hubert-Arabie adjusted Rand index, given by

CSRand = SHA =
T − PQ/N

1
2
(P + Q)− PQ/N

=
2(NT − PQ)

N(P + Q)− 2PQ

(Hubert and Arabie, 1985, p. 198).
As noted in, for example, Steinley (2004) or Albatineh et al. (2006), the infor-

mation in a matching table N of two clustering partitions on the same data points,
can be summarized by a fourfold contingency table with quantities a, b, c, and d,
where a is the number of object pairs that were placed in the same cluster according
to both clustering methods, b (c) is the number of pairs that were placed in the same
cluster according to one method but not according to the other, and d is the number
of pairs that were not in the same cluster according to either of the methods. It
then holds that a + b + c + d = N , where a = T , b = P − T , c = Q − T and
d = N + T − P − Q, and p1 = a + b = P and q1 = c + d = N − P . The four
different types of object pairs are also distinguished in Brennan and Light (1974),
Hubert (1977), and Hubert and Arabie (1985, p. 194). However, the latter authors
expressed their formulas in terms of the binomial coefficients in quantities T , P , Q,
and N , instead of the quantities a, b, c, and d.

Expressing SRand in terms of the quantities a, b, c, and d we obtain SSM (see, for
example, Lerman, 1988; Steinley, 2004; Albatineh et al., 2006). Expressing SFM in
terms of the quantities a, b, c, and d we obtain SDK (see, for example, Lerman, 1988;
Albatineh et al., 2006). Expressing SHA in these quantities, we obtain, following
Steinley (2004, p. 388), the formula

SHA =
N(a + d)− [(a + b)(a + c) + (b + d)(c + d)]

N2 − [(a + b)(a + c) + (b + d)(c + d)]
. (2.6)

The numerator of (2.6) can be written as

N(a + d)− [(a + b)(a + c) + (b + d)(c + d)]

= Na− p1p2 + Nd− q1q2

= 2(ad− bc)

whereas the denominator of (2.6) equals

N2 − [(a + b)(a + c) + (b + d)(c + d)]

= N2 − p1p2 − q1q2

= (p1 + q1)(p2 + q2)− p1p2 − q1q2

= p1q2 + p2q1.
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Hence, expressing SHA in terms of the quantities a, b, c, and d, the coefficient is
equivalent to SCohen. Moreover, expectation E(T ) in (2.4) can be written as

E(T ) =
PQ

N
=

(a + b)(a + c)

N
=

p1p2

N
.

Hence, statistical independence under the generalized hypergeometric distribution
function used in Hubert and Arabie (1985) for the matching table of two clusterings,
is equivalent to the case of statistical independence under the binomial distribution
function for the fourfold contingency table.

A practical conclusion is that we can calculate the Hubert-Arabie adjusted Rand
index (SHA) by first forming the fourfold contingency table counting the number of
pairs of objects that were placed in the same cluster in both clusterings, in the
same cluster in one clustering but in different clusters in the other clustering, and
in different clusters in both, and then computing Cohen’s kappa (SCohen) on this
fourfold table.

2.3 Comparing two judges

A problem equivalent to that of comparing two partitions of two cluster algorithms
may be encountered in psychology. In contrast to the case in Section 2.1, the
categories are not defined in advance and the number of categories used by each
psychologist may be different. Measures of agreement among judges in classifying
answers to open-ended questions, or psychologists rating people, have been described
by Brennan and Light (1974), Montgomery and Crittenden (1977), Hubert (1977),
Janson and Vegelius (1982), and Popping (1983a). All these authors consider pairs
of people and established for all N pairs formed from the m answers for both judges
whether or not they were assigned to the same category. A comparison of the various
measures is presented in Popping (1984).

We adopt the notation from Section 2.2, where quantities a, b, c, and d denote
the four different types of pairs. Brennan and Light (1974) proposed the measure

SBL =
a + d

a + b + c + d

which equals the Rand index SRand and the simple matching coefficient SSM. Mont-
gomery and Crittenden (1977) proposed the measure

SMC =
ad− bc

ad + bc

which equals coefficient SYule1 by Yule (1900). Hubert (1977) proposed a measure
referred to as gamma, which is given by

SHub =
a− b− c + d

a + b + c + d
.
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Coefficient SHub is equal to a coefficient proposed by Hamann (1961) SHam and the
G−index by Holley and Guilford (1964).

A discussion of properties of SHub and some adjustments to coefficient SHub can
be found in Janson and Vegelius (1982). As an alternative to SHub these authors
present a measure called the J−index. Popping (1983a, 1983b) proposed a measure
based on the dot-product referred to as D2.

2.4 Quantitative variables

Let xj and xk be two column vectors of length n with positive entries, for example,
counts or frequencies. In this section some examples of similarity coefficients formu-
lated in terms of the elements of xj and xk are considered. Let xij denote the ith
element of xj, and let xik denote the ith element of xk. In the terminology of Zegers
(1986, p. 58) the measures considered in this section are coefficients for quantitative
variables that consist of raw scores. These measures are either similarity functions
or functions of the dissimilarity/distance type. Alternatively, one may formulate
resemblance measures for normed raw scores, deviation scores, rank order scores,
or combination of the previous scores. The reader is referred to Zegers (1986) and
Gower and Legendre (1986) for more rigorous exposés on association coefficients for
quantitative data.

The complement of the simple matching coefficient 1 − SSM is a special case of
the city-block or Manhattan distance

1

n

n∑

i=1

|xij − xik|.

The Jaccard (1912) coefficient

SJac =
a

a + b + c

is obtained if in functions
∑n

i=1 xijxik
∑n

i=1 x2
ij +

∑n
i=1 x2

ik −
∑n

i=1 xijxik

or

∑n
i=1 min(xij, xik)

∑n
i=1 max(xij, xik)

xij and xik take on values 1 and 0 only. The complement of the Jaccard coefficient
SJac is a special case of

∑n
i=1 |xij − xik|

∑n
i=1 max(xij, xik)

or

∑n
i=1(xij − xik)

2

∑n
i=1 max(xij, xik)

.

A member of a more general family of coefficients considered in Zegers and Ten
Berge (1985) is given by

2xT
j xk

xT
j xj + xT

k xk

=
2
∑n

i=1 xijxik
∑n

i=1 x2
ij +

∑n
i=1 x2

ik

.
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The latter coefficient is called the coefficient of identity and becomes SGleas if xij

and xik take on values 1 and 0 only.
The measure

∑n
i=1 |xij − xik|

∑n
i=1(xij + xik)

becomes 1− SGleas =
b + c

2a + b + c

if xij and xik take on values 1 and 0 only, which is the complement of SGleas (Gower
and Legendre, 1986, p. 27). Coefficient

xT
j xk

(xT
j xj)1/2(xT

k xk)1/2

is referred to as the coefficient of proportionality in Zegers and Ten Berge (1985),
commonly known as Tucker’s congruence coefficient (Tucker, 1951), also proposed
by Burt (1948). The congruence coefficient for binary variables is given by SDK =
a/
√

pjpk. Three similarity coefficients, namely

SKul =
1

2

(
a

a + b
+

a

a + c

)

SGleas =
2a

pj + pk

and SSim =
a

min(pj, pk)

are sometimes attributed to Kulczyński (1927), Czekanowski (1932) and Simpson
(1943). These authors proposed the coefficients for quantitative variables, which are
given respectively by

SKul =
1

2

[∑n
i=1 min(xij, xik)

∑n
i=1 xij

+

∑n
i=1 min(xij, xik)

∑n
i=1 xik

]

SCze =
2
∑n

i=1 min(xij, xik)
∑n

i=1(xij + xik)

and SSim = max

[∑n
i=1 min(xij, xik)

∑n
i=1 xij

,

∑n
i=1 min(xij, xik)

∑n
i=1 xik

]

.

Sepkoski (1974) argues that, although similarity coefficients have been widely em-
ployed in cluster analysis, their use has been, for the most part, restricted to binary
data. This author proposed quantified coefficients using basic rules like

a =
1

n

n∑

i=1

min(xij, xik)

b + c =
1

n

n∑

i=1

[max(xij, xik)−min(xij, xik)]

pj =
1

n

n∑

i=1

xij and pk =
1

n

n∑

i=1

xik.
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The similarity coefficient used by Robinson (1951) can be written as

SRob = 1− 1

2

n∑

i=1

∣
∣
∣
∣

xij
∑n

i=1 xij

− xik
∑n

i=1 xik

∣
∣
∣
∣
.

When the data are binary, SRob becomes

SBB =
ajk

max(pj, pk)
(Braun-Blanquet, 1932).

Proposition 2.1. If SRob is applied to binary (1/0) data, then SRob = SBB.
Proof: For pj ≥ pk, SRob can be written as

SRob = 1− 1

2

(
ajk

pk

− ajk

pj

+
pj − ajk

pj

+
pk − ajk

pk

)

=
1

2
− pj − 2ajk

2pj

=
ajk

pj

.

Furthermore, for pj ≤ pk, SRob can be written as

SRob = 1− 1

2

(
ajk

pj

− ajk

pk

+
pj − ajk

pj

+
pk − ajk

pk

)

=
ajk

pk

.

This completes the proof. �

2.5 Measures from set theory

Similarity and distance functions can also be defined on sets of arbitrary elements.
The following notation is used. Let a set be denoted by A and let A denote its
complement. Symbol ∪ denotes union or set sum, and A ∪ B is the set containing
everything in either A or B or both. Also, ∩ denotes intersection or set product,
and A ∩ B is the set containing just those elements common to both A and B.
Furthermore, let |A| denote the cardinality of set A, which is a measure of the
number of elements of the set. Some examples of similarity coefficients for two sets
A and B that are frequently used, are

2|A ∩B|
|A|+ |B| Dice coefficient

|A ∩B|
|A ∪B| Jaccard coefficient

|A ∩B|
|A|1/2|B|1/2

Cosine coefficient

and
|A ∩B|

min(|A|, |B|) Overlap coefficient.

Special cases of these measures are the respective similarity coefficients

SGleas =
2a

p1 + p2

, SJac =
a

a + b + c
, SDK =

a√
p1p2

and SSim =
a

min(p1, p2)
.
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Restle (1959) studied the symmetric set difference

|(A ∪B) ∩ (A ∩B)|

which is a more general form of the complement of the simple matching coefficient,
1 − SSM. Boorman and Arabie (1972) discuss several set-theoretical measures, in-
cluding the minimum lattice-moves distance

|A|+ |B| − 2|A ∩B|

which is equivalent to the above measure studied by Restle (1959), and the minimum
set-moves distance which may be approximated by

|A ∩B| −min(|A|, |B|).

2.6 Epilogue

In this second chapter, various general formulas from different domains of data anal-
ysis were considered. Some of the similarity coefficients for binary data considered
throughout this thesis are special cases of these formulas. The chapter puts the
coefficients for binary variables in a broader perspective. Furthermore, the more
general formulas provide some ideas for possible generalizations of various results
in this thesis. The thesis by Zegers (1986) is a good source for the vast amount of
different contexts in which similarity coefficients may be considered.

It was shown that several similarity measures used in cluster analysis for the
matching table of two clustering algorithms are in fact equivalent to similarity coef-
ficients defined on the four dependent quantities from the 2 × 2 contingency table,
after a simple recoding. Two well-known measures are the Rand index and the
Hubert-Arabie adjusted Rand index, given respectively by

SRand = 1− P + Q− 2T

N
and SHA =

2(NT − PQ)

N(P + Q)− 2PQ
.

Both measures are calculated using the information in the matching of two cluster-
ings on the same data points. Coefficient SRand was also proposed by Brennan and
Light (1974) for comparing ratings by two psychologists. If the Rand index SRand

is formulated in terms of the quantities a, b, c, and d, it is equivalent to the simple
matching coefficient SSM. Furthermore, if the Hubert-Arabie adjusted Rand index
SHA is formulated in terms of the quantities a, b, c, and d, it is equivalent to Cohen’s
kappa for two categories (SCohen).

Interestingly, both Cohen (1960) and Hubert and Arabie (1985) proposed a sim-
ilarity measure that has been, or still is, the preferred coefficient, or at least the
best-known coefficient, in their particular domain of data analysis (respectively in-
terrater reliability and cluster analysis). Moreover, both measures were proposed
in response to, or as alternative to, earlier coefficients (Scott, 1955, in the case of
Cohen, 1960; Morey and Agresti, 1984, in the case of Hubert and Arabie, 1985).
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In this chapter it is shown how various similarity coefficients may be related. Simi-
larity measures may be members of some sort of parameter family or can be related
in the sense that several coefficients have a similar form. Various well-known coef-
ficients belong to parameter families of which all members are fractions, linear in
both numerator and denominator. A distinction is made between coefficients that
do include the quantity d (representing negative matches), like

SSM =
a + d

a + b + c + d
and SHam =

a− b− c + d

a + b + c + d
(Hamann, 1961)

and those that do not include the quantity d, like

SJac =
a

p1 + p2 − a
and SGleas =

2a

p1 + p2

.

A variety of similarity coefficients can be defined as some sort of mean value of two
different quantities. For example, resemblance measures SGleas and

SDK =
a√
p1p2

and SKul =
a(p1 + p2)

2p1p2

are respectively the harmonic, geometric and arithmetic mean of the conditional
probabilities p−1

1 a and p−1
2 a.

Different types of coefficients may be obtained by considering abstractions of
these Pythagorean means. One type of generalized mean that is considered in this
chapter is the so-called power mean.

29
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A very general family of coefficients is the class of all functions of the form λ+µa,
where a is the proportion of 1s that two variables share in the same positions, and
λ and µ are functions of p1 and p2 only. This family includes coefficients SGleas,
SDK, and SKul and various other measures. Properties of this family with respect to
correction for similarity due to chance, are considered in Chapter 4.

There are some advantages to studying families of coefficients instead of individ-
ual coefficients. First of all, from the family formulation it is often apparent how
different members are related. Coefficient properties like bounds are easily investi-
gated using parameter families. Another advantage of studying parameter families
instead of individual coefficients, is that often more general results can be obtained.
As an example, results on linearity given in Hubálek (1982) for individual coefficients
are here studied for families of coefficients.

3.1 Parameter families

Gower and Legendre (1986, p. 13) define two parameter families of which all mem-
bers are linear in both numerator and denominator. They make a distinction be-
tween coefficients that do and do not include the quantity d. The first family for
presence/absence data is given by

SGL1(θ) =
a

a + θ(b + c)
=

a

θ(p1 + p2) + (1− 2θ)a
.

where θ > 0 to avoid negative values. Members of SGL1(θ) are

SGL1(θ = 1) = SJac =
a

p1 + p2 − a

SGL1(θ = 1/2) = SGleas =
2a

p1 + p2

SGL1(θ = 2) = SSS1 =
a

a + 2(b + c)
(Sokal and Sneath, 1963).

Members with 0 < θ < 1 give more weight to a. With presence/absence data this is
regularly done in the case that there are only a few positive matches relatively to the
number of mismatches, that is, a is much smaller than (b + c). Similar arguments
can be used for the opposite case and θ > 1.

All members of SGL1(θ) are bounded by 0 and 1, that is, 0 ≤ SGL1(θ) ≤ 1. In
addition, members are bounds of each other:

0 ≤ SSS1 ≤ SJac ≤ SGleas ≤ 1

or more generally

SGL1(θ1) ≤ SGL1(θ2) for θ1 > θ2 > 0.
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The formulation of SGL1(θ) (and that of SGL2(θ) below) is closely related to the
concept of global order equivalence (Sibson, 1972; Batagelj and Bren, 1995). Let
S(a, b, c, d) denote a function of the quantities a, b, c, and d. Two coefficients S and
S∗ are said to be globally order equivalent if

S(a1, b1, c1, d1) > S(a2, b2, c2, d2)

if and only if S∗(a1, b1, c1, d1) > S∗(a2, b2, c2, d2).

If two coefficients are globally order equivalent, they are interchangeable with re-
spect to an analysis method that is invariant under ordinal transformations (see, for
example, Gower, 1986; Batagelj and Bren, 1995).

Theorem 3.1. Two members of SGL1(θ) are globally order equivalent.
Proof: For an arbitrary ordinal comparison with respect to SGL1(θ), we have

a1

a1 + θ(b1 + c1)
>

a2

a2 + θ(b2 + c2)

a1a2 + a1θ(b2 + c2) > a1a2 + a2θ(b1 + c1)
a1

b1 + c1

>
a2

b2 + c2

.

Since an ordinal comparison with respect to SGL1(θ) does not depend on the value
of θ, any two members of SGL1(θ) are globally order equivalent. �

Janson and Vegelius (1981) pointed out an interesting relationship between various
members of SGL1(θ). With respect to SGleas, SJac, and SSS1, we have

SJac =
SGleas

2− SGleas

and SSS1 =
SJac

2− SJac

.

In general we have the following result.

Proposition 3.1. It holds that

SGL1(2θ) =
SGL1(θ)

2− SGL1(θ)
.

Proof: Define x = a + θ(b + c). Then

SGL1(θ)

2− SGL1(θ)
=

x−1a

x−1(2x− a)
= SGL1(2θ). �
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A parameter family closely related to SGL1(θ) may be obtained using the trans-
formation 2S − 1, that is,

SGL3(θ) =
2a

a + θ(b + c)
− 1 =

a− θ(b + c)

a + θ(b + c)

with θ > 0. A member of SGL3(θ) is

SGL3(θ = 1/2) = SNS1 =
2a− b− c

2a + b + c
(No source).

Members with 0 < θ < 1 give more weight to a. All members of SGL3(θ) are
bounded by −1 and 1, that is, −1 ≤ SGL3(θ) ≤ 1. Parameter family SGL3(θ) is a
transformation that preserves the scale of SGL1(θ) but uses a different range. The
value zero for SGL3(θ) is equal to the value 0.5 for SGL1(θ) for fixed θ. For example,
we have

SGleas =
2a

2a + b + c
= 0.5 if and only if 2a = b + c

and

SNS1 =
2a− b− c

2a + b + c
= 0 if and only if 2a = b + c.

The zero value case of coefficient SNS1 is not the same as the zero value case for
coefficients with the covariance ad − bc in the numerator. Two variables are not
necessarily statistically independent if SNS1 = 0 (Section 1.3). The formulation of
SGL3(θ) is not completely arbitrary, because it is related to SGL1(θ) by the concept
of global order equivalence.

Proposition 3.2. Two members of SGL3(θ) are globally order equivalent.
Proof: For an arbitrary ordinal comparison with respect to SGL3(θ), we have

a1 − θ(b1 + c1)

a1 + θ(b1 + c1)
>

a2 − θ(b2 + c2)

a2 + θ(b2 + c2)
if and only if

a1

b1 + c1

>
a2

b2 + c2

.

Since an ordinal comparison with respect to SGL3(θ) does not depend on the value
of θ, any two members of SGL3(θ) are globally order equivalent. �

Corollary 3.1 Members of SGL1(θ) and SGL3(θ) are globally order equivalent.

The second family in Gower and Legendre (1986, p. 13), the counterpart of
SGL1(θ) for nominal data, is given by

SGL2(θ) =
a + d

a + θ(b + c) + d
=

1 + 2a− p1 − p2

1 + (θ − 1)(p1 + p2) + 2a(1− θ)

where θ > 0 to avoid negative values.
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Members of SGL2(θ) are

SGL2(θ = 1) = SSM =
a + d

a + b + c + d
= a + d

SGL2(θ = 1/2) = SSS2 =
2(a + d)

2a + b + c + 2d
=

2(a + d)

1 + a + d

(Sokal and Sneath, 1963)

SGL2(θ = 2) = SRT =
a + d

a + 2(b + c) + d
=

a + d

1 + b + c

(Rogers and Tanimoto, 1960).

Similar to SGL1(θ), the members of SGL2(θ) are bounded by 0 and 1, that is, 0 ≤
SGL2(θ) ≤ 1. Also, members with 0 < θ < 1 give more weight to (a + d).

Theorem 3.2. Two members of SGL2(θ) are globally order equivalent.
Proof: For an arbitrary ordinal comparison with respect to SGL2(θ), we have

a1 + d1

a1 + θ(b1 + c1) + d1

>
a2 + d2

a2 + θ(b2 + c2) + d2

a1 + d1

b1 + c1

>
a2 + d2

b2 + c2

.

Since an ordinal comparison with respect to SGL2(θ) does not depend on the value
of θ, any two members of SGL2(θ) are globally order equivalent. �

Families SGL1(θ) and SGL2(θ) are related in the following way.

Proposition 3.3. It holds that SGL2(θ) ≥ SGL1(θ).
Proof: SGL2(θ) ≥ SGL1(θ) if and only if θd(b + c) ≥ 0. �

Similar to SGleas, SJac, and SSS1, we have with respect to SSS2, SSM, and SRT

SSM =
SSS2

2− SSS2

and SRT =
SSM

2− SSM

.

In general we have the following result.

Proposition 3.4. It holds that

SGL2(2θ) =
SGL2(θ)

2− SGL2(θ)
.

Proof: Define x = a + θ(b + c) + d. Then

SGL2(θ)

2− SGL2(θ)
=

x−1(a + d)

x−1(2x− a− d)
= SGL1(2θ). �
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A parameter family closely related to SGL2(θ) may be obtained using the trans-
formation 2S − 1,

SGL4(θ) =
2(a + d)

a + θ(b + c) + d
− 1 =

a− θ(b + c) + d

a + θ(b + c) + d

with θ > 0. A member of SGL4(θ) is

SGL4(θ = 1) = SHam =
a− b− c + d

a + b + c + d
= a− b− c + d (Hamann, 1961).

Members with 0 < θ < 1 give more weight to (a + d). We have

SSM = a + d = 0.5 if and only if a + d = b + c

and
SHam = a− b− c + d = 0 if and only if a + d = b + c.

The zero value case of coefficient SHam is not the same as the zero value case for
coefficients with the covariance ad− bc in the numerator (Section 1.3), nor the zero
value case of SNS1. Two variables are not necessarily independent if SHam = 0. The
formulation of SGL4(θ) is not completely arbitrary, since it is related to SGL2(θ) by
the concept of global order equivalence.

Proposition 3.5. Two members of SGL4(θ) are globally order equivalent.
Proof: For an arbitrary ordinal comparison with respect to SGL4(θ), we have

a1 − θ(b1 + c1) + d1

a1 + θ(b1 + c1) + d1

>
a2 − θ(b2 + c2) + d2

a2 + θ(b2 + c2) + d2

a1 + d1

b1 + c1

>
a2 + d2

b2 + c2

.

Since an ordinal comparison with respect to SGL4(θ) does not depend on the value
of θ, any two members of SGL4(θ) are globally order equivalent. �

Corollary 3.2 Members of SGL2(θ) and SGL4(θ) are globally order equivalent.
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3.2 Power means

There are several functions that may reflect the mean value of two real positive
values x and y. The harmonic, geometric and arithmetic means, also known as the
Pythagorean means, are given by respectively

2

x−1 + y−1
,
√

xy and
x + y

2
.

Several coefficients can be expressed in terms of these Pythagorean means. For
example, consider the quantities

SDice1 =
a

p1

and SDice2 =
a

p2

(Dice, 1945; Post and Snijders, 1993). The harmonic, geometric and arithmetic
means of the quantities SDice1 and SDice2 are respectively

SGleas =
2a

p1 + p2

, SDK =
a√
p1p2

and SKul =
1

2

(
a

p1

+
a

p2

)

.

Different types of coefficients may be obtained by considering abstractions of the
Pythagorean means. One type of so-called generalized means is the power mean,
sometimes referred to as the Hölder mean (see, for example, Bullen, 2003, Chapter
3). Let θ be a real value. The power mean Mθ(x, y) of x and y is then given by

Mθ(x, y) =

(
xθ + yθ

2

)1/θ

.

Special cases of Mθ(x, y) are

lim
θ→−∞

Mθ(x, y) = min(x, y) (minimum)

M−1(x, y) =
2

x−1 + y−1
(harmonic mean)

lim
θ→0

Mθ(x, y) =
√

xy (geometric mean)

M1(x, y) =
x + y

2
(arithmetic mean)

lim
θ→∞

Mθ(x, y) = max(x, y) (maximum).

0Parts of this section are to appear in Warrens, M.J. (in press), Bounds of resemblance measures
for binary (presence/absence) variables, Journal of Classification.
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A variety of coefficients turn out to be special cases of a power mean. In terms of
SDice1 and SDice2 we characterize the following coefficients from the literature.

SBB =
a

max(p1, p2)
(minimum; Braun-Blanquet, 1932)

SGleas =
2a

p1 + p2

(harmonic mean)

SDK =
a√
p1p2

(geometric mean; Driver and Kroeber, 1932)

SKul =
1

2

(
a

p1

+
a

p2

)

(arithmetic mean; Kulczyński, 1927)

SSim =
a

min(p1, p2)
(maximum; Simpson, 1943).

The product of the two quantities (or the square of the geometric mean SDK) is not
a special case of a power mean. It is given by

SSorg =
a2

p1p2

(Sorgenfrei, 1958; Cheetham and Hazel, p. 1131).

Coefficient SSorg is sometimes referred to as the correlation ratio. The various coeffi-
cients for presence/absence data (without the quantity d) are related in the following
way.

Proposition 3.6. It holds that

0 ≤ SSorg

(i)

≤ SJac

(ii)

≤ SBB ≤ SGleas ≤ SDK ≤ SKul ≤ SSim ≤ 1.

Proof: Inequality (i) holds if and only if p1p2 ≥ a(a + b + c) if and only if bc ≥ 0.
Inequality (ii) holds if and only if b + c ≥ max(b, c). The remaining inequalities
follow from a property of a power mean:

Mθ1

(
a

p1

,
a

p2

)

≤ Mθ2

(
a

p1

,
a

p2

)

for θ1 < θ2. �

As a second example of a power mean, consider the quantities

SCole1 =
ad− bc

p1q2

and SCole2 =
ad− bc

p2q1

(Cole, 1949).

The quantity (ad − bc) is known as the covariance between two binary vectors. If
p1 ≤ p2 then p1q2 is the maximum value of the covariance (ad−bc) given the marginal
proportions. Note that the covariance may become negative and strictly speaking
we have defined the power mean for two real positive values only. However, as it
turns out, the power mean of two real negative values has very similar properties as
the power mean of two positive values. As long as the two values have the same sign,
the distinction between positive and negative values appears not to be important.
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With respect to SCole1 and SCole2 we have the special cases

SCohen =
2(ad− bc)

p1q2 + p2q1

(harmonic mean)

SPhi =
ad− bc√
p1p2q1q2

(geometric mean)

SLoe =
ad− bc

min(p1q2, p2q1)
(maximum; Loevinger, 1947, 1948).

Coefficient SLoe is attributed to Loevinger (1947, 1948) by Mokken (1971) and Si-
jtsma and Molenaar (2002). However, Krippendorff (1987) reports Benini (1901)
as probably the first to put forward this coefficient. Some new properties of this
coefficient are considered in Chapter 5. Similar to Proposition 3.6, the next result
follows from a property of power means, more specifically the harmonic-geometric
mean inequality.

Proposition 3.7. It holds that

0 ≤ |SCohen| ≤ |SPhi| ≤ |SLoe| ≤ 1.

3.3 A general family

Albatineh et al. (2006) define yet another way on how various coefficients can be
related. These authors study correction for chance with respect to a family L of
the form λ + µx. Coefficients in the L family are linear functions of the quantity
x, and the expectation of S = λ + µx depends on the quantity x only, that is,
E(S) = λ + µE(x). Properties of the L family with respect to correction for chance
are considered in the next chapter. For the moment it will be shown that L defines
a very general family.

For example, coefficients in Section 2.1 belong to L family. Using x = Po we
have

SSM = Po → λ = 0 and µ = 1

SScott → λ =
−E(Po)Scott

1− E(Po)Scott

and µ =
1

1− E(Po)Scott

and SCohen → λ =
−E(Po)Cohen

1−E (Po)Cohen

and µ =
1

1− E(Po)Cohen

.

As a second example, take x = a, the proportion of 1s that two binary variables
share in the same positions, and λ and µ are functions of p1 and p2 only. Then we
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have

SSM = a + d

= 1 + 2a− p1 − p2 → λ = 1− p1 − p2, µ = 2

SHam = a− b− c + d

= 2a + 1− 2p1 − 2p2 → λ = 1− 2p1 − 2p2, µ = 2

and SGleas =
2a

p1 + p2

→ λ = 0, µ =
2

p1 + p2

.

In Proposition 3.8 it is shown that the power mean of the quantities SDice1 and
SDice2, and the power mean of SCole1 and SCole2 are in the L family.

Proposition 3.8. Power means

Mθ

(
a

p1

,
a

p2

)

and Mθ

(
ad− bc

p1q2

,
ad− bc

p2q1

)

are members of the L family.
Proof:

Mθ

(
a

p1

,
a

p2

)

=

[
aθ(pθ

1 + pθ
2)

2pθ
1p

θ
2

]1/θ

=
a

p1p2

[
pθ

1 + pθ
2

2

]1/θ

.

Thus, for

Mθ

(
a

p1

,
a

p2

)

we have µ =
1

p1p2

(
pθ

1 + pθ
2

2

)1/θ

.

Similarly, for

Mθ

(
ad− bc

p1q2

,
ad− bc

p2q1

)

we have

µ =
1

p1p2q1q2

[
(p1q2)

θ + (p2q1)
θ

2

]1/θ

and λ = − 1

q1q2

[
(p1q2)

θ + (p2q1)
θ

2

]1/θ

because ad− bc = a− p1p2. �

Let f(p1, p2) be a function of the marginals p1 and p2. Then, all coefficients of
the form

a

f(p1, p2)
or

ad− bc

f(p1, p2)
=

a− p1p2

f(p1, p2)

belong to the L family. Examples are

SRR =
a

a + b + c + d

SMP =
2(ad− bc)

p1q1 + p2q2

(Maxwell and Pilliner, 1968)

and SFleiss =
(ad− bc)(p1q1 + p2q2)

2p1q2p2q1

(Fleiss, 1975).
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Moreover, if two coefficients S1 = λ1 + µ1a and S2 = λ2 + µ2a are in L, then the
arithmetic mean

S1 + S2

2
=

λ1 + µ1a + λ2 + µ2a

2
=

λ1 + λ2

2
+

a(µ1 + µ2)

2

is also in L. Finally, if S1 = λ + µa is in the L family, then

S2 = 2S1 − 1 = 2λ− 1 + 2µa

also belongs to L.

3.4 Linearity

Instead of proportions, let a, b, c, and d be the number of 1s and 0s that two binary
variables may share or not share in the same positions. Furthermore, let S(a) be
short for S(a, b, c, d) (S is a function of quantities a, b, c and d) and let S(a + 1) be
short for S(a + 1, b − 1, c − 1, d + 1). Hubálek (1982) gives the following definition
of linearity. A function S(a) is called linear if

S(a + 1)− S(a) = S(a + 2)− S(a + 1),

or equivalently, if

2× S(a + 1) = S(a + 2) + S(a).

Using this definition of linearity, non-linearity can be defined in two ways. A function
S(a) is called convex if 2×S(a + 1) < S(a + 2) + S(a); S(a, b, c, d) is called concave
if 2× S(a + 1) > S(a + 2) + S(a).

Using numerical examples, Hubálek (1982) determined for various coefficients
which ones are linear and which are non-linear. In this section the above definition of
linearity is studied for several parameter families, instead of individual coefficients.
The result below concerns coefficients that are rational functions, linear in both
numerator and denominator.

Let x = f(a, d) denote a linear function of a and d, and let y = g(b, c) denote a
linear function of b and c. Furthermore, let

u =

{

1 if x is a function of a or d only

2 if x is a function of both a and d

and let

v =

{

1 if y is a function of b or c only

2 if y is a function of both b and c.
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Proposition 3.9. Parameter families of the form

(i) S(x, y) =
x

x + y

(

with S(x + u, y − v) =
x + u

x + u + y − v

)

and

(ii) S(x, y) =
x− y

x + y

(

with S(x + u, y − v) =
x + u− y + v

x + u + y − v

)

are convex for u < v, linear for u = v, and concave for u > v.
Proof: We consider (i) first. Using (i) in 2× S(a + 1) ≤ S(a + 2) + S(a) we obtain

2(x + u)

x + u + y − v
≤ x + 2u

x + 2u + y − 2v
+

x

x + y
. (3.1)

Bringing all fractions under the same denominator, (3.1) becomes

(x + y)(2x + 2u)(x + 2u + y − 2v) ≤ (x + y)(x + 2u)(x + u + y − v)

+ x(x + u + y − v)(x + 2u + y − 2v)

which, after some algebra, equals

(x + y)(x2 + 3ux + xy − 3vx + 2u2 − 2uv) ≤ x(x + u + y − v)(x + 2u + y − 2v)

which, after some more algebra, can be written as u2y + uvx ≤ uvy + v2x if and
only if u ≤ v.

Next, we consider (ii). Parameter families (i) and (ii) are related by

x− y

x + y
=

2x

x + y
− 1. (3.2)

Using (3.2) in 2× S(a + 1) ≤ S(a + 2) + S(a) we obtain

4(x + u)

x + u + y − v
− 2 ≤ 2(x + 2u)

x + 2u + y − 2v
+

2x

x + y
− 2

which equals (3.1). �

Corollary 3.3. Parameter families

SGL1(θ) =
a

a + θ(b + c)
and SGL3(θ) =

a− θ(b + c)

a + θ(b + c)

are convex for θ > 1
2
, linear for θ = 1

2
, and concave for 0 < θ < 1

2
.

Proof: With respect to these families we have x = a and y = θ(b + c), and hence
u = 1 and v = 2θ. The family is then convex if 1 < 2θ. �

Corollary 3.4. Parameter families

SGL2(θ) =
a + d

a + θ(b + c) + d
and SGL4(θ) =

a− θ(b + c) + d

a + θ(b + c) + d

are convex for θ > 1, linear for θ = 1, and concave for 0 < θ < 1.
Proof: For these families u = 2 and v = 2θ. The families are then convex if 2 < 2θ.
�
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3.5 Epilogue

In this chapter it was shown how various similarity coefficients may be related.
Similarity measures may be members of some sort of parameter family or can be
related in the sense that several coefficients have a similar form. Various well-known
coefficients belong to parameter families of which all members are rational functions,
linear in both numerator and denominator. Some coefficients are members of more
than one family. As an example, consider

SGleas =
2a

p1 + p2

.

Coefficient SGleas is the harmonic mean of

SDice1 =
a

p1

and SDice2 =
a

p2

and is therefore a special case of a power mean. In addition, SGleas is a member
(θ = 1/2) of the family given by

SGL1(θ) =
a

a + θ(b + c)
.

Due to this double membership, SGleas is a key coefficient in Chapter 16, where
various multivariate formulations of coefficients are presented. In terms of linearity
as defined by Hubálek (1982), SGleas is the linear coefficient in family SGL1(θ). For
other values than θ = 1/2 we obtain either convex or concave coefficients. With
respect to the linearity,

SSM =
a + d

a + b + c + d
= a + d

is the linear coefficient in the second family of rational functions, SGL2(θ). Similar
to SGleas, SSM can be introduced as a special case of a power mean. For example,
SSM is equal to the harmonic mean of the quantities

a + d

p1 + q2

and
a + d

p2 + q1

.

Both SGleas and SSM can be written as linear functions of the quantity a and
are therefore members in the L family. Some of the consequences of this property
are studied in the next chapter: SGleas and SSM become equivalent after correction
for chance. Moreover given a certain expectation of the quantity a, SGleas and SSM

become

SCohen =
2(ad− bc)

p1q2 + p2q1

(Cohen’s kappa)

after correction for similarity due to chance.



42 Coefficient families

There are some properties in which SGleas and SSM do differ. With respect to
indeterminacy, SGleas has more critical cases compared to SSM. Moreover, in Chapter
10 it is shown that 1−SSM is metric, that is, 1−SSM is a function that satisfies the
triangle inequality, whereas the function 1− SGleas does not.

Instead of using the power mean, new coefficients may be created by considering
other type of means (Bullen, 2003). For example, the Heronian mean of

SDice1 =
a

p1

and SDice2 =
a

p2

is given by
1

3

(
a

p1

+
a√
p1p2

+
a

p2

)

whereas the Heinz mean is given by

(
a

p1

)u (
a

p2

)1−u

+

(
a

p1

)1−u (
a

p2

)u

with 0 ≤ u ≤ 1

2
.

New coefficients can also be created by including the quantities

d

b + d
=

d

q2

and
d

c + d
=

d

q1

.

For example, the function
4ad

4ad + (a + d)(b + c)

is the harmonic mean of conditional probabilities

a

p1

,
a

p2

,
d

q1

and
d

q2

.
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When comparing two variables some degree of similarity or agreement may be ex-
pected due to chance alone, except for the most extreme circumstances (either
p1 = q2 = 0 or p2 = q1 = 0). Different opinions have been stated on the need
to incorporate chance similarity. Goodman and Kruskal (1954, p. 758) contend
that similarity due to chance in the measurement of resemblance need not be of
much concern, since the observed degree of similarity may usually be assumed to
be in excess of chance. In contrast, Zegers (1986) and Popping (1983a) find it quite
natural that in absence of association between two variables, the value of a similarity
coefficient is zero. Whether or not correction for chance is desirable, depends on the
domain or field of data analysis that is considered.

Consider the situation where two variables are the ratings of m people by two
observers on two mutually exclusive categories, for example, the observers rate vari-
ous persons on the presence or absence of a certain trait. In this field, Scott (1955),
Cohen (1960), Fleiss (1975), Krippendorff (1987), and Zegers (1986), among others,
have proposed measures that are corrected for chance. The best-known example
is perhaps the kappa-statistic (Cohen, 1960; SCohen). Alternatively, the quantities
a, b, c, and d can be the result of a comparison between two clustering methods
(Section 2.2). In cluster analysis it is general consensus that the popular coefficient
SSM, called the Rand index, should be corrected for chance agreement (Morey and
Agresti, 1984; Hubert and Arabie, 1985), although there is some debate on what
expectation is appropriate (Steinley, 2004; Albatineh et al., 2006).
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With respect to correction for chance, various authors have reported results on
equivalence of coefficients after correction for similarity due to chance (Fleiss, 1975;
Zegers, 1986). Albatineh et al. (2006) studied correction for chance for a family L
of coefficients of the form S = λ + µx (Section 3.3). These authors appear to be
the first to study correction for chance irrespective of the used expectation E(S).
The present chapter continues and extends this general approach. Furthermore,
the results in this chapter unify various findings in Fleiss (1975), Zegers (1986) and
Krippendorff (1987).

Clearly, not all coefficients studied in this thesis have been proposed for, or
are used in, data-analytic circumstances where it is desirable to incorporate chance
similarity. This practical limitation is however ignored in this chapter. Correction for
chance is studied for a general family of coefficients, while ignoring the data-analytic
context in which the individual members are usually applied. Using the powerful
result from Albatineh et al. (2006), some additional properties of coefficients of the
form λ+µx with respect to correction for chance are presented. For both uncorrected
and corrected similarity coefficients properties are derived. Some specific results are
obtained by considering different expectations.

4.1 Some equivalences

A corrected similarity coefficient (denoted CS) has, after elimination of the effect
of similarity due to chance, a form (2.1)

CS =
S − E(S)

1− E(S)
(4.1)

where S is the similarity coefficient, E(S) the similarity coefficient under chance,
and 1 embodies the maximum value of S regardless of the marginal proportions.
Most coefficients in this thesis have maximum value unity. Albatineh et al. (2006)
showed that correction (4.1) is relatively simple for members in L family.

Theorem 4.1 [Albatineh et al., 2006, p. 309]. Two members in the L family
become identical after correction (4.1) if they have the same ratio

1− λ

µ
. (4.2)

Proof: E(S) = E(λ + µx) = λ + µE(x) and consequently the CS becomes

CS =
S − E(S)

1− E(S)
=

λ + µx− λ− µE(x)

1− λ− µE(x)
=

x− E(x)

µ−1(1− λ)− E(x)
. (4.3)

�
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Thus, the value of a similarity coefficient after correction for chance depends on
ratio (4.2), where λ and µ characterize the particular measure within the L family.
Two members in L become identical after correction (4.1) if they have the same
ratio (4.2).

The following corollary concerns the coefficients from Section 2.1 that are linear
in the observed proportion of agreement Po.

Corollary 4.1. Coefficients

SSM = Po

SScott =
Po − E(Po)Scott

1− E(Po)Scott

and SCohen =
Po − E(Po)Cohen

1− E(Po)Cohen

become equivalent after correction (4.1).
Proof: By Theorem 4.1 it suffices to look at ratio (4.2). Using the formulas of λ and
µ corresponding to each coefficient (see Section 3.3), ratio (4.2)

1− λ

µ
= 1 (4.4)

for all three coefficients. �

The next corollary extends Corollary 4.2 (i) in Albatineh et al. (2006) from three
measures (SSM, SHam, SGleas) to ten coefficients. All ten coefficients are linear in the
quantity a.
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Corollary 4.2. Coefficients

SSM = 1 + 2a− p1 − p2

SHam = 1 + 2a− 2p1 − 2p2

SGleas =
2a

p1 + p2

SGK =
2 min(a, d)− b− c

2 min(a, d) + b + c
(Goodman and Kruskal, 1954)

SNS1 =
2a− b− c

2a + b + c
=

4a− 2p1 + 2p2

p1 + p2

(no source)

SNS2 =
2d

b + c + 2d
=

2(a + q1 + q2 − 1)

q1 + q2

(no source)

SNS3 =
2d− b− c

b + c + 2d
=

4a + 3q1 + 3q2 − 4

q1 + q2

(no source)

SRG =
a

p1 + p2

+
a + q1 + q2 − 1

q1 + q2

(Rogot and Goldberg, 1966)

SScott =
4a− (p1 + p2)

2

4− (p1 + p2)2

SCohen =
2(a− p1p2)

p1q2 + p2q1

become equivalent after correction (4.1).
Proof: By Theorem 4.1 it suffices to look at ratio (4.2). Using the formulas of λ and
µ corresponding to each coefficient, ratio (4.2)

1− λ

µ
=

p1 + p2

2
(4.5)

for all ten coefficients. �

Note that ratio (4.5) is the arithmetic mean of marginal probabilities p1 and p2.
The interpretation of (4.5) depends on how x was specified in in λ + µx, and ratio
(4.5) is different from (4.4). Alternatively, we may formulate the ten coefficients as
functions that are linear in the quantity x = a+ d instead of x = a. The result with
respect to correction for chance agreement is of course the same, but ratio (4.6) now
equals ratio (4.4).
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Corollary 4.2b. Coefficients

SSM = a + d

SHam = 2(a + d)− 1

SGleas =
(a + d)− 1

p1 + p2

+ 1

SGK =
2(a + d)− 2

min(p1 + p2, q1 + q2)
+ 1

SNS1 =
2(a + d)− 2

p1 + p2

+ 1

SNS2 =
(a + d)− 1

q1 + q2

+ 1

SNS3 =
2(a + d)− 2

q1 + q2

+ 1

SRG =
(a + d)− 1

2(p1 + p2)
+

(a + d)− 1

2(q1 + q2)
+ 1

SScott =
4(a + d)− (p1 + p2)

2 − (q1 + q2)
2

4− (p1 + p2)2 − (q1 + q2)2

SCohen =
(a + d)− p1p2 − q1q2

p1q2 + p2q1

become equivalent after correction (4.1).
Proof: By Theorem 4.1 it suffices to look at ratio (4.2). Using the formulas of λ and
µ corresponding to each coefficient, ratio (4.2)

1− λ

µ
= 1 (4.6)

for all ten coefficients. �

Since a = p2−q1+d, probabilities a and d are also linear in (a+d). Linear in (a+d)
is therefore equivalent to linear in a and linear in d. Furthermore, Albatineh et al.
(2006) studied coefficients that are linear in

∑∑
n2

ij, where nij is the number of
data points placed in cluster i according to the first clustering method and in cluster
j according to the second clustering method. Because ma = (

∑∑
n2

ij−m)/2, linear
in

∑∑
n2

ij is equivalent to linear in a and equivalent to linear in (a + d).
The corrected coefficient corresponding to the nine resemblance measures in

Corollary 4.2 has a form

CS =
(a + d)− E(a + d)

1− E(a + d)
. (4.7)

Coefficient (4.7) may be obtained by using (a+d), E(a+d), and (4.6) in the extreme-
right part of (4.3). Since expectation E(a + d) is unspecified, coefficient (4.7) is a
general corrected coefficient.
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4.2 Expectations

A commonly used expectation was briefly considered in Section 1.3. Different opin-
ions have been stated on what the appropriate expectations are for the 2 × 2 con-
tingency table. Detailed discussions on the various ways of regarding data as the
product of chance can be found in Krippendorff (1987), Mak (1988), Bloch and
Kraemer (1989) and Pearson (1947). In cluster analysis it is general consensus that
the popular coefficient SSM, called the Rand index, should be corrected for agree-
ment due to chance (Morey and Agresti, 1984; Hubert and Arabie, 1985), although
there is some debate on what expectation is appropriate (Hubert and Arabie, 1985;
Steinley, 2004; Albatineh et al., 2006). We consider five examples of E(a + d).

Suppose it is assumed that the frequency distribution underlying the two vari-
ables in the 2 × 2 contingency table is the same for both variables (Scott, 1955;
Krippendorff, 1987, p. 113). Coefficients used in this context are sometimes re-
ferred to as agreement indices. The common parameter p must be either known or
it must be estimated from p1 and p2. Different functions may be used. For example,
Scott (1955) and Krippendorff (1987) use the arithmetic mean

p =
p1 + p2

2
.

Following Scott (1955) and Krippendorff (1987, p. 113) we have

E(a + d)Scott =

(
p1 + p2

2

)2

+

(
q1 + q2

2

)2

.

Let n denote the number of elements of the binary variables. Mak (1988) proposed
the expectation

E(a + d)Mak = 1− n(p1 + p2)(q1 + q2)− (b + c)

2(n− 1)

(see also, Blackman and Koval, 1993).
Instead of a single distribution function, it may be assumed that the data in the

fourfold table are a product of chance concerning two different frequency distribu-
tions, each with its own parameter (Cohen, 1960; Krippendorff, 1987). Coefficients
used in this context are sometimes referred to as association indices. The expec-
tation of an entry in the 2× 2 contingency table under statistical independence, is
defined by the product of the marginal probabilities. We have

E(a + d)Cohen = p1p2 + q1q2.

Expectation E(a + d)Cohen can be obtained by considering all permutations of the
observations of one of the two variables, while preserving the order of the obser-
vations of the other variable. For each permutation the value of (a + d) can be
determined. The arithmetic mean of these values is p1p2 + q1q2.
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A third possibility is that there are no relevant underlying continua. For this
case two forms of E(a + d) may be found in the literature. Goodman and Kruskal
(1954, p. 757) use expectation

E(a + d)GK =
max(p1 + p2, q1 + q2)

2
.

According to Krippendorff (1987, p. 114) an equity coefficient is characterized by
expectation

E(a + d)Kripp =
1

2
.

Let us summarize the three situations. In the case of association the observations are
regarded as ordered pairs. In the case of agreement the observations are considered
as pairs without regard for their order; a mismatch is a mismatch regardless of
the kind. In the case of equity one only distinguishes between matching and non-
matching observations (cf. Krippendorff, 1987).

Proposition 4.1 below unifies and extends findings in Fleiss (1975) and Zegers
(1986) on what coefficients become Cohen’s kappa after correction for chance. De-
pending on what expectation E(a + d) is used, the coefficients in Corollary 4.2
become, after correction for chance, either Scott’s (1955) pi (SScott), Cohen’s (1960)
kappa (SCohen), Goodman and Kruskal’s (1954) lambda (SGK), Hamann’s (1961) eta
(SHam), or Mak’s (1988) rho. The latter coefficient can be written as

SMak =
4nad− n(b + c)2 + (b + c)

n(p1 + p2)(q1 + q2)− (b + c)
(Mak, 1988)

where n is length of the binary variables. With respect to Proposition 4.1, let L
family consists of functions λ + µ(a + d).

Proposition 4.1. Let S be a member in L family for which ratio (4.6) holds. If
the appropriate expectation is

(i) E(a + d)Scott, then S becomes SScott

(ii) E(a + d)Mak, then S becomes SMak

(iii) E(a + d)Cohen, then S becomes SCohen

(iv) E(a + d)GK, then S becomes SGK

(v) E(a + d)Kripp, then S becomes SHam

after correction (4.1).
Proof (i): Using E(a + d)Scott in (4.7) we obtain an index with numerator

a + d−
(

p1 + p2

2

)2

−
(

q1 + q2

2

)2

= 2ad− (b + c)2

2
(4.8)

and denominator

(p1 + p2 + q1 + q2)
2 − (p1 + p2)

2 − (q1 + q2)
2

4
=

(p1 + p2)(q1 + q2)

2
. (4.9)



50 Correction for chance agreement

Dividing the right-hand part of (4.8) by the right-hand part of (4.9) we obtain

4ad− (b + c)2

(p1 + p2)(q1 + q2)
= SScott.

Proof (ii): Using E(a + d)Mak in (4.7) and multiplying the result by 2(n − 1) we
obtain an index with numerator

2(a + d− 1)(n− 1) + n(p1 + p2)(q1 + q2)− (b + c)

=n(2a + b + c)(b + c + 2d)− 2n(b + c) + (b + c) (4.10)

and denominator
n(p1 + p2)(q1 + q2)− (b + c). (4.11)

We have

(2a + b + c)(b + c + 2d)− 2(b + c)

=4ad + (2a + 2d)(b + c) + (b + c)2 − 2(b + c)

=4ad + (2a + 2d− 2)(b + c) + (b + c)2

=4ad− 2(b + c)2 + (b + c)2

=4ad− (b + c)2. (4.12)

Using (4.12), numerator (4.10) can be written as

n
[
4ad− (b + c)2

]
+ (b + c). (4.13)

Dividing (4.13) by (4.11) we obtain coefficient SMak.
Proof (iii): Using E(a + d)Cohen in (4.7) we obtain

a + d− p1p2 − q1q2

(p1 + q1)(p2 + q2)− p1p2 − q1q2

=
2(ad− bc)

p1q2 + p2q1

= SCohen.

Proof (iv): Using E(a + d)GK in (4.7) we obtain

2[a + d−max(a, d)]− b− c

2− 2 max(a, d)− b− c
=

2 min(a, d)− b− c

2 min(a, d) + b + c
= SGK.

Proof (v): Using E(a + d)Kripp in (4.7) we obtain

2(a + d)− 1 = a− b− c + d = SHam. �
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4.3 Two transformations

In this section we consider the two functions of similarity coefficients

S2 = 2S1 − 1 and S3 =
S1 + S2

2
.

Both transformations may be used to construct new resemblance measures from
existing similarity coefficients. It holds that S2 = 2S1 − 1 is in the L family if and
only if S1 is in L, and if S1 and S2 are in L, then S3 = (S1 + S2)/2 is in L. In
this section it is shown how the new coefficients are related to the old coefficients
in terms of correction for similarity due to chance. With respect to Proposition 4.2,
let L consists of functions of the form λ + µx.

Proposition 4.2. Let S1 be a member of L. S1 and S2 = 2S1−1 become identical
after correction (4.1).
Proof: S2 = 2λ + 2µa − 1 and E(S2) = 2λ − 1 + 2µE(x). Consequently the CS2

becomes

CS2 =
2λ + 2µx− 1− 2λ− 2µE(x) + 1

1− 2λ− 2µE(x) + 1
=

λ + µx− λ− µE(x)

1− λ− µE(x)

=
S1 − E(S1)

1− E(S1)
= CS1. �

Similarity coefficients that are related by transformation S2 = 2S1 − 1 can be
found in Corollary 4.2. Examples are

SHam = 2SSM − 1

SNS1 = 2SGleas − 1

and SNS3 = 2SNS2 − 1.

Another example is SMcC = 2SKul − 1, where

SKul =
1

2

(
a

p1

+
a

p2

)

and SMcC =
a2 − bc

p1p2

(McConnaughey, 1964).

The fact that coefficient SKul and SMcC become equivalent after correction (4.1) irre-
spective of the used expectation was already proved in Corollary 4.2 (ii) in Albatineh
et al. (2006).
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Proposition 4.3. Let Si for i = 1, 2, ...,m be members in L family that become
identical after correction (4.1). Then Si for i = 1, 2, ...,m and the arithmetic mean
S∗ = m−1

∑m
i=1 Si coincide after correction (4.1).

Proof:

E(S∗) = E

(∑m
i=1 λi +

∑m
i=1 µix

m

)

=

∑m
i=1 λi +

∑m
i=1 µiE(x)

m
.

Using arithmetic mean S∗ in (4.1), we obtain

CS∗ =
x− E(x)

y − E(x)
where y =

m−
∑m

i=1 λi
∑m

i=1 µi

.

Let

z =
1− λ1

µ1

=
1− λ2

µ2

= ... =
1− λm

µm

.

It must be shown that ratio y equals ratio z. We have

y =

∑m
i=1(1− λi)
∑m

i=1 µi

=

∑m
i=1 zµi

∑m
i=1 µi

=
z
∑m

i=1 µi
∑m

i=1 µi

= z.

This completes the proof. �

Coefficient

SRG =
a

2a + b + c
+

d

b + c + 2d
=

SGleas + SNS2

2
in Corollary 4.2, is the arithmetic mean of SGleas and SNS2.

4.4 Corrected coefficients

The coefficients in Corollary 4.2 and Proposition 4.1 become either SScott, SMak,
SCohen, SGK, or SHam, depending on what expectation E(a + d) is used. Note that
corrected coefficients SScott, SCohen, SGK, and SHam belong to the class of resemblance
measures that is considered in Corollary 4.2 and Proposition 4.1. This suggests
that corrected coefficients may have some interesting properties. The corrected
coefficients and their properties are the topic of this section. If E(S) in (4.1) depends
on the marginal probabilities of the 2×2 contingency table, then CS in (4.1) belongs
to L. With respect to Proposition 4.4, let L consists of functions of the form
λ + µ(a + d).

Proposition 4.4. Let E(S) in (4.1) depend on the marginal probabilities. If S is
in L family, then CS in (4.1) is in L.
Proof: Expectation E(S) = E[λ1 + µ1(a + d)] is a function of the marginal proba-
bilities. Thus E(a + d), λ, and µ in (4.3) are functions of the marginal proportions.
Equation (4.3) can therefore be written in a form λ2 + µ2(a + d) where

λ2 =
−E(a + d)

µ−1
1 (1− λ1)− E(a + d)

and µ2 =
1

µ−1
1 (1− λ1)− E(a + d)

. �
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Examples of corrected coefficients that are in the L family are SScott, SCohen, SGK,
and SHam. These coefficients may be considered as corrected coefficients as well
as ordinary coefficients that may be corrected for agreement due to chance. For
example, SScott, SGK, and SHam (and SCohen) become SCohen after correction (4.1)
if expectation E(a + d)Cohen is used. Coefficient SMak cannot be written in a form
λ + µ(a + d), and does therefore not belong to L.

Next we consider the following problem. Suppose a coefficient S in L is corrected
twice, using two different expectations, E(a + d) and E(a + d)∗. Let the corrected
coefficients be given by

CS =
a + d− E(a + d)

µ−1(1− λ)− E(a + d)
and CS∗ =

a + d− E(a + d)∗

µ−1(1− λ)− E(a + d)∗
.

Note that µ−1(1 − λ) corresponding to coefficient S, is the same in both CS and
CS∗. The problem is then as follows: if E(a+d) ≥ E(a+d)∗, how are CS and CS∗

related? Proposition 4.5 below is limited to coefficients in the L family of which the
maximum value is unity, that is

λ + µ(a + d) ≤ 1 if and only if
1− λ

µ
≥ (a + d).

It can be verified that most (if not all) similarity coefficients in this thesis satisfy
this condition.

Proposition 4.5. CS ≤ CS∗ if and only if E(a + d) ≥ E(a + d)∗.
Proof: CS ≤ CS∗ if and only if

E(a + d)

[
1− λ

µ
− (a + d)

]

≥ E(a + d)∗
[
1− λ

µ
− (a + d)

]

.

The requirement λ + µ(a + d) ≤ 1 completes the proof. �

In the following, let S = λ + µ(a + d) be in L family and let

CSName =
a + d− E(a + d)Name

µ−1(1− λ)− E(a + d)Name

be a corrected coefficient using expectation E(a+d)Name. Using specific expectations
E(a + d) in combination with Proposition 4.5, we obtain the following result.
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Proposition 4.6. It holds that CSGK

(i)

≤ CSScott

(ii)

≤ CSCohen.
Proof (i): Due to Proposition 4.5, it suffices to show that E(a+d)GK ≥ E(a+d)Scott.
Suppose (p1 + p2) ≥ (q1 + q2). We have

E(a + d)GK ≥ E(a + d)Scott

p1 + p2

2
≥

(
p1 + p2

2

)2

+

(
q1 + q2

2

)2

p1 + p2

2

(

1− p1 + p2

2

)

≥
(

q1 + q2

2

)2

p1 + p2

2

(
q1 + q2

2

)

≥
(

q1 + q2

2

)2

(p1 + p2) ≥ (q1 + q2).

Proof (ii): It must be shown that E(a + d)Scott ≥ E(a + d)Cohen. We have

(
p1 + p2

2

)2

≥ p1p2 (4.14)

if and only if
p1 + p2

2
≥ √p1p2. (4.15)

Furthermore, we have
(

q1 + q2

2

)2

≥ q1q2 (4.16)

if and only if
q1 + q2

2
≥ √q1q2. (4.17)

Because the arithmetic mean of two numbers is equal or greater than the geometric
mean, inequalities (4.15) and (4.17) are true. Adding (4.14) and (4.16) we obtain
the desired inequality. �

Blackman and Koval (1993, p. 216) derived the inequality SScott ≤ SCohen. Note
that this inequality follows from the more general result Proposition 4.6 by using a
coefficient S for which (4.6) is characteristic.
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4.5 Epilogue

Under the assumption that E(a + d) = p1p2 + q1q2 is the appropriate expectation,
Fleiss (1975) showed that

SSM =
a + d

a + b + c + d
= a + d and SGleas =

2a

p1 + p2

and SGK and SRG become SCohen after correction (4.1). Zegers (1986) showed that
SSM, SGleas and SHam become SCohen after correction (4.1). Albatineh et al. (2006)
showed that SSM, SGleas and SHam become equivalent irrespective of the used expec-
tation. These results were extended and unified by Corollary 4.2 and Proposition
4.1. Corollary 4.2 specifies up to ten coefficients that become equivalent after cor-
rection (4.1) irrespective of expectation E(a + d). The coefficients in Corollary 4.2
become either SScott, SMak, SCohen, SGK, or SHam, depending on what expectation
E(a + d) is used. Moreover, two transformations from Section 4.3 may be used to
construct an infinite amount of coefficients that become equivalent after correction
(4.1).

Whether E(a+d)Cohen or another E(a+d) is the appropriate expectation depends
on the context of the data analysis. However, since a large number of coefficients
are defined with the covariance

a + d− E(a + d)Cohen

2
=

(a− p1p2) + (d− q1q2)

2
= ad− bc

in the numerator, it appears that E(a+d)Cohen is the preferred (or most appropriate)
expectation in many cases.

The quantities

SDice1 =
a

p1

and SDice2 =
a

p2

and

SCole1 =
ad− bc

p1q2

and SCole2 =
ad− bc

p2q1

(Cole, 1949)

where used in the previous chapter to construct power means

Mθ

(
a

p1

,
a

p2

)

and Mθ

(
ad− bc

p1q2

,
ad− bc

p2q1

)

.
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As it turns out, if the expectation of a is E(a) = p1p2, several members of the
two power means corresponding to the same θ are related. We have, for example,

SDice1 =
a

p1

becomes SCole1 =
ad− bc

p1q2

SDice2 =
a

p2

becomes SCole2 =
ad− bc

p2q1

SGleas =
2a

p1 + p2

becomes SCohen =
2(ad− bc)

p1q2 + p2q1

and SSim =
a

min(p1, p2)
becomes SLoe =

ad− bc

min(p1q2, p2q1)
.
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The proportions a, b, c, and d in the fourfold table

a b p1

c d q1

p2 q2 1

are constrained by the marginal proportions p1, p2, q1, and q2. The coefficients
based on these quantities are therefore also constrained by the marginals, so that
maximum and minimum values are sometimes untenable. Guilford (1965), Cureton
(1959) and Davenport and El-Sanhurry (1991) consider the maximum of SPhi given
marginals p1 and p2, denoted by [SPhi]max. Loevinger (1947, 1948) suggested using
the ratio

SPhi

[SPhi]max

since this procedure allows the corrected value to become unity. As noted by Lo-
evinger (1947, 1948), Sijtsma and Molenaar (2002) and Davenport and El-Sanhurry
(1991), coefficients SPhi, SCohen and SLoe are related by

SLoe =
SPhi

[SPhi]max

=
SCohen

[SCohen]max

.
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The relations between similarity coefficients for two binary variables suggested in
this equality are the topic of this chapter.

The maximum and minimum of various coefficients and several equivalences
are studied first. The maximum of a coefficient is determined by applying the
formula to the case of two Guttman items (Section 6.3; Mokken, 1971; Guilford,
1965). Furthermore, it is shown what families of coefficients become equivalent
after correction

S

[S]max

. (5.1)

5.1 Maximum value

In this section we derive the maximum value for a variety of coefficients. We focus
on coefficients that are special cases of a power mean. Following Guilford (1965) and
Cureton (1959), the maximum value of a coefficient is obtained if either quantity b,
c, or both equal zero. Hence, with unequal marginal proportions p1 6= p2, the 2× 2
contingency table has the form

a 0 p1

c d q1

p2 q2 1
for example











0
0
0
1
1
1











and











0
1
1
1
1
1











if b = 0, or

a b p1

0 d q1

p2 q2 1
for example











0
1
1
1
1
1











and











0
0
0
1
1
1











if c = 0. Note that the maximum is obtained if the two binary variables being
compared are so-called Guttman items (Section 6.3; Mokken, 1971). The maximum
value of proportion a given the marginals p1 and p2, denoted by amax, is given by

amax =

{

p1 if b = 0

p2 if c = 0
or amax = min(p1, p2).

Thus, without correction for maximum value, quantity a can only reach its maximum
value if p1 = p2. The maximum value of measures for binary variables that do not
include quantity d, may be obtained by replacing probability a by amax. Assuming
p1 6= p2 we obtain

[SGL1(θ)]max =
min(p1, p2)

θ(p1 + p2) + (1− 2θ) min(p1, p2)
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with

[SGL1(1)]max = [SJac]max =
min(p1, p2)

max(p1, p2)
< 1

[SGL1(1/2)]max = [SGleas]max =
2 min(p1, p2)

p1 + p2

< 1.

With respect to the inequalities

SSorg =
a2

p1p2

≤ SJac =
a

p1 + p2 − a
≤ SBB =

a

max(p1, p2)

we obtain the equality

[SSorg]max = [SJac]max = [SBB]max =
min(p1, p2)

max(p1, p2)
.

With respect to the power mean of the quantities

SDice1 =
a

p1

and SDice2 =
a

p2

the equality amax = min(p1, p2) leads to

[

Mθ

(
a

p1

,
a

p2

)]

max

= Mθ

(

1,
min(p1, p2)

max(p1, p2)

)

.

where
min(p1, p2)

max(p1, p2)
= [SBB]max .

Thus, the maximum value of a coefficient that is a special case of the power mean
of SDice1 and SDice2, is equal to the coefficient corresponding to the same θ of
the value 1 and [SBB]max, where the latter is the maximum value of the mini-
mum function of SDice1 and SDice2. Hence, only for the maximum function, that
is, SSim = a/ min(p1, p2), it holds that

[SSim]max = lim
θ→∞

Mθ

(

1,
min(p1, p2)

max(p1, p2)

)

= max

(

1,
min(p1, p2)

max(p1, p2)

)

= 1.

Next, we consider the maximum value of the covariance (ad − bc) of two binary
variables. The maximum covariance given the marginals p1 and p2, denoted (ad −
bc)max, is given by

(ad− bc)max =

{

p1q2 if b = 0

p2q1 if c = 0
or (ad− bc)max = min(p1q2, p2q1).
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We may obtain the maximum value of measures for binary variables that use the
covariance in the numerator by replacing covariance (ad− bc) by (ad− bc)max. With
respect to the power mean of the quantities

SCole1 =
ad− bc

p1q2

and SCole2 =
ad− bc

p2q1

(Cole, 1949)

the equality (ad− bc)max = min(p1q2, p2q1) leads to
[

Mθ

(
ad− bc

p1q2

,
ad− bc

p1q2

)]

max

= Mθ

(

1,
min(p1q2, p2q1)

max(p1q2, p2q1)

)

.

Thus, the maximum value of a coefficient that is a special case of the power mean
of SCole1 and SCole2, is equal to the coefficient corresponding to the same θ of the
value 1 and the quantity

min(p1q2, p2q1)

max(p1q2, p2q1)
.

Hence, only for the maximum function, that is, SLoe, it holds that

[SLoe]max = lim
θ→∞

Mθ

(

1,
min(p1q2, p2q1)

max(p1q2, p2q1)

)

= 1.

5.2 Correction for maximum value

Let x/y and x/z be two real positive values, of which the maximum depends on x
only, that is [

x

y

]

max

=
xmax

y
and

[x

z

]

max
=

xmax

z
.

Examples of x/y and x/z are SDice1 and SDice2. For example, x = a or x = ad− bc
and y and z are functions of p1 and p2 only. It turns out that division of the power
mean of x/y and x/z by its maximum value given quantities y and z, does not
depend on the choice of θ. Moreover, the outcome of the division does not depend
on the definitions of y and z.

Proposition 5.1. Let x/y and x/z be two real positive values defined as above.
Then

Mθ

(
x

y
,
x

z

)

/

[

Mθ

(
x

y
,
x

z

)]

max

=
x

xmax

.

Proof:

Mθ

(
x

y
,
x

z

)

=

[

1

2

(
x

y

)θ

+
1

2

(x

z

)θ
]1/θ

=

[
xθ(yθ + zθ)

2yθzθ

]1/θ

=
x

yz

[
yθ + zθ

2

]1/θ

and
[

Mθ

(
x

y
,
x

z

)]

max

=
xmax

yz

[
yθ + zθ

2

]1/θ

. �
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An interesting consequence of Proposition 5.1 is the following property. Dividing
the power mean of x/y and x/z by its maximum value gives the maximum function
of x/y and x/z.

Corollary 5.1. Let x/y and x/z be defined as above. If xmax = min(y, z), then

Mθ

(
x

y
,
x

z

)

/

[

Mθ

(
x

y
,
x

z

)]

max

= lim
θ→∞

Mθ

(
x

y
,
x

z

)

.

As a first example, consider the power mean of

x =
a

p1

and y =
a

p2

.

Because amax = min(p1, p2), we have

Mθ (x, y)

[Mθ (x, y)]max

= lim
θ→∞

Mθ

(
a

p1

,
a

p2

)

=
a

min(p1, p2)
= SSim.

As a second example, consider the power mean of

x =
ad− bc

p1q2

and y =
ad− bc

p2q1

.

Since (ad− bc)max = min(p1q2, p2q1), we have

Mθ (x, y)

[Mθ (x, y)]max

= lim
θ→∞

Mθ

(
ad− bc

p1q2

,
ad− bc

p2q1

)

=
ad− bc

min(p1q2, p2q1)
= SLoe.

As a third example, consider the power mean of the quantities

x =
ad− bc

p1q1

and y =
ad− bc

p2q2

(see Peirce, 1884).

Then

M−1(x, y) =
2(ad− bc)

p1q1 + p2q2

= SMP (harmonic mean)

lim
θ→0

Mθ(x, y) =
ad− bc√
p1p2q1q2

= SPhi (geometric mean)

M1(x, y) =
(ad− bc)(p1q1 + p2q2)

2p1q2p2q1

= SFleiss (arithmetic mean).

In light of Corollary 5.1, because (ad − bc)max = min(p1q2, p2q1), which is different
from min(p1q1, p2q2), we have

Mθ (x, y)

[Mθ (x, y)]max

=
ad− bc

min(p1q2, p2q1)
6= lim

θ→∞
Mh

(
ad− bc

p1q1

,
ad− bc

p2q2

)

=
ad− bc

min(p1q1, p2q2)
.

Thus, the power mean of these x and y becomes SLoe, although the latter coefficient
is not a special case of the power mean.
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Instead of considering power means, correction (5.1) can also be approached from
a different angle. Below, two assertions are presented with respect to coefficients
SSim and SLoe.

Proposition 5.2. Let S = a/x with x a function of p1 and p2. Then

S/ [S]max =
a

min(p1, p2)
= SSim.

Proof:

[S]max =
[a

x

]

max
=

amax

x
=

min(p1, p2)

x
. Hence S/ [S]max = SSim. �

Proposition 5.3. Let S = (ad − bc)/x with x a function of p1 and p2. Then
S/ [S]max = SLoe.
Proof:

[S]max =

[
ad− bc

x

]

max

=
(ad− bc)max

x
=

min(p1q2, p2q1)

x
.

Hence S/ [S]max = SLoe. �

5.3 Correction for minimum value

In addition to the maximum value [S]max of a coefficient S, one may study the
minimum value [S]min. For coefficients that are special cases of the power mean of
the quantities

SDice1 =
a

p1

and SDice2 =
a

p2

the minimum value 0 is obtained if a = 0. Similarly, coefficients of the form a/x
where x is a function of p1 and p2, equal 0 whenever a = 0. Thus, for this type of
coefficients the minimum value is not constrained by the marginals. The section is
therefore restricted to the minimum value of coefficients with the covariance (ad−bc)
in the numerator. For this class of coefficients the minimum value is obtained if either
quantity a, d, or both equal zero. Hence, with unequal marginals p1 6= q1, the 2× 2
contingency table has the form

0 b p1

c d q1

p2 q2 1
for example











1
1
0
0
0
0











and











0
0
0
1
1
1











if a = 0,



5.3. Correction for minimum value 63

or

a b p1

c 0 q1

p2 q2 1
for example











1
1
1
1
0
0











and











0
0
0
1
1
1











if d = 0. The minimum covariance of two binary variables given marginal propor-
tions p1 and p2, denoted (ad− bc)min, is thus given by

(ad− bc)min =

{

−p1p2 if a = 0

−q1q2 if d = 0

which equals

(ad− bc)min = max(−p1p2,−q1q2) = −min(p1p2, q1q2).

Thus, the minimum value of the covariance can only be obtained if p1p2 = q1q2 if
and only if p1 + p2 = 1.

With correction for the minimum value the following issue must be taken into
consideration. Because the quantity (ad− bc)min is negative, division of a coefficient
by (ad − bc)min results in a change of sign. However, the minimum value of -1 can
be obtained if the quantity min(p1p2, q1q2) is used instead of −min(p1p2, q1q2).

Similar as in the previous section, let x/y and x/z be two real positive values,
of which the minimum depends on x only, that is

[
x

y

]

min

=
xmin

y
and

[x

z

]

min
=

xmin

z
.

Similar to S/ [S]max, the outcome of S/ [S]min does not depend on the definitions of
y and z with respect to power means. The proof of the next result is similar to the
proof of Proposition 5.1.

Proposition 5.4. Let x/y and x/z be two real positive values defined as above.
Then

Mθ

(
x

y
,
x

z

)

/

[

Mθ

(
x

y
,
x

z

)]

min

=
x

|xmin|
.
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As a first example, consider the power mean of

x =
ad− bc

p1q1

and y =
ad− bc

p2q2

.

We have

Mθ (x, y)

|[Mθ (x, y)]min|
= lim

θ→∞
Mθ

(
ad− bc

p1q1

,
ad− bc

p2q2

)

=
ad− bc

min(p1p2, q1q2)

which is a special case of the power mean. As a second example, consider the power
mean of

x =
ad− bc

p1q2

and y =
ad− bc

p2q1

.

Again, we obtain

Mθ (x, y)

|[Mθ (x, y)]min|
= lim

θ→∞
Mθ

(
ad− bc

p1q2

,
ad− bc

p2q1

)

=
ad− bc

min(p1p2, q1q2)

which is not a special case of this power mean.

We end this chapter with an argument made in Davenport and El-Sanhurry
(1991). These authors argue that studying the minimum of (ad − bc) is some-
what trivial. The minimum problem can be turned into a maximum problem at any
time, simply by recoding the values of one of the binary variables. Maximum and
minimum of (ad− bc) are given by

(ad− bc)max = min(p1q2, p2q1) and (ad− bc)min = −min(p1p2, q1q2).

Suppose that the observations of the second variable are recoded, 1→ 0 and 0 → 1,
for example











1
1
0
1
0
0











→











0
0
1
0
1
1











.

Note that the recoding changes the sign of the covariance (ad − bc) between the
two binary vectors. Furthermore, for the second vector p2 → q2 and q2 → p2.
Multiplying (ad− bc)min by −1 and changing the roles of p2 and q2 in (ad− bc)min,
we obtain (ad− bc)max.
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5.4 Epilogue

In this chapter it was shown that various coefficients become equivalent if they are
divided by their maximum value given fixed marginal probabilities p1 and p2. For
example, the power mean of the quantities

SDice1 =
a

p1

and SDice2 =
a

p2

has as special cases

SBB =
a

max(p1, p2)

SGleas =
2a

p1 + p2

SDK =
a√

p1, p2

and SKul =
1

2

[
a

p1

+
a

p2

]

.

By Proposition 5.1, SBB, SGleas, SDK and SKul coincide after correction for maximum
value. Furthermore, by Corollary 5.1 all special cases of the power mean become
equivalent to the maximum function (also a special case) of the two quantities. For
example, SBB, SGleas, SDK and SKul become

SSim = max

(
a

p1

,
a

p2

)

=
a

min(p1, p2)

after correction (5.1). As a second example, by Proposition 5.1 and Corollary 5.1,

SCohen =
2(ad− bc)

p1q2 + p2q1

and SPhi =
ad− bc√
p1p2q1q2

are special cases of the power mean of

SCole1 =
ad− bc

p1q2

and SCole2 =
ad− bc

p2q1

.

Coefficient SCohen and SPhi become

SLoe =
ad− bc

min(p1q2, p2q1)

after correction for maximum value. Moreover, by Proposition 5.3, SCole1, SCole2,

SMP =
2(ad− bc)

p1q1 + p2q2

and SFleiss =
(ad− bc)(p1q1 + p2q2)

2p1q2p2q1

also become equivalent to SLoe, after division by their maximum value given fixed
marginals p1 and p2.
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5.5 Loevinger’s coefficient

Correction for chance and correction for maximum value were treated separately in
Chapters 4 and 5. This section is used to show two properties of

SLoe =
ad− bc

min(p1q2, p2q1)

the coefficient by Loevinger (1947, 1948), with respect to correction for chance and
correction for maximum value simultaneously. With respect to both properties it is
assumed that E(a)Cohen = p1p2 is the appropriate expectation.

First of all, if E(a) = p1p2 and amax = min(p1, p2), then coefficient SLoe can be
defined as

SLoe =
a− E(a)

amax − E(a)

or dually

SLoe =
d− E(d)

dmax − E(d)

where E(d) = q1q2 and dmax = min(q1, q2). Furthermore, under the same conditions,
any coefficient in the L family (of the form λ+µa) becomes SLoe after correction for
maximum value and correction for chance. Moreover, the result does not depend on
what correction is considered first.

Proposition 5.5. A coefficient of the form λ + µa becomes SLoe after correction
(4.1) and (5.1).
Proof: Dividing coefficient λ + µa by its maximum value given fixed marginals p1

and p2, we obtain
λ + µa

λ + µ min(p1, p2)
. (5.2)

The expectation of (5.2) is given by

E

[
λ + µa

λ + µ min(p1, p2)

]

=
λ + µE(a)

λ + µ min(p1, p2)
=

λ + µp1p2

λ + µ min(p1, p2)
. (5.3)

Using (5.2) and (5.3) in (4.1), and multiplying by λ + µ min(p1, p2), we obtain

λ + µa− λ− µp1p2

λ + µ min(p1, p2)− λ− µp1p2

=
a− p1p2

min(p1, p2)− p1p2

= SLoe.

Alternatively, Using λ + µa and the corresponding expectation

λ + µp1p2

in (4.1), we obtain

λ + µa− λ− µp1p2

1− λ− µp1p2

=
a− p1p2

(1− λ)/µ− p1p2

. (5.4)
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The maximum value of (5.4) given fixed marginals p1 and p2, is given by

min(p1, p2)− p1p2

(1− λ)/µ− p1p2

. (5.5)

Dividing (5.4) by (5.5), we obtain

a− p1p2

min(p1, p2)− p1p2

= SLoe.

This completes the proof. �

Zero value under statistical independence, and maximum value unity indepen-
dent of the marginal distributions, are two properties or desiderata that similarity
coefficients may have in general. Proposition 5.5 shows that the linear transforma-
tions that set the value under independence at zero (4.1) and the maximum value
at unity (5.1), transform all coefficients in L family (of the form λ + µa) into the
same underlying coefficient. This coefficient happens to be SLoe.


