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Prologue

A variety of data can be represented in strings of binary scores. In general, the
binary scores reflect either the presence or absence of certain attributes of a certain
object. For example, in psychology binary data may indicate if people do or do
not posses a certain psychological trait; in ecology, the objects could be regions or
districts in which certain species do or do not occur (or vice versa, the objects are
two species that coexist in a number of locations); in archeology, binary data may
reflect that particular artifact types were or were not found in a specific grave; finally,
in chemical similarity searching, the objects may be target structures or queries and
the attributes certain compounds in a database.

A vast amount of measures has been proposed that indicate how similar binary
sequences are. A so-called similarity coefficient reflects in one way or another the
association or resemblance of two or more binary variables. In various methods of
data analysis, for example, multidimensional scaling or cluster analysis, the full in-
formation in the recorded binary variables is not required to perform the analysis.
Often, the binary data are first summarized by a few coefficients or a coefficient ma-
trix of pairwise resemblance measures. The information in the similarity coefficients
is then used as input for the method of data analysis at hand.

Although the full information in comparing two binary variables is often not
required, there are many different similarity coefficients that may be used to sum-
marize the bivariate information. Preferring one coefficient over another may deter-
mine what information is summarized or what information is discarded. In order
to choose the right coefficient, the different coefficients and their properties need to
be better understood. Some properties of similarity coefficients for binary data are
studied in this thesis. However, no attempt is made to be complete in the sense that
all possible data-analytic applications of coefficients for binary data are covered.
Instead, the thesis is centered around two theoretical issues.

The first issue is captured in the question, can the task of choosing the right
coefficient be simplified? It may turn out that a coefficient may be placed in a
group of coefficients all sharing a certain property. With respect to the property
any coefficient in the group or family of coefficients can be used: one is as good as

xi
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the other. On the other hand, the property may also divide coefficients in different
groups, coefficients that do posses the property and those that do not. For example,
when comparing two binary variables it is not uncommon to be interested in the
similarity between the variables corrected for possible similarity due to chance. It
may turn out that some coefficients become equivalent after correction. The choice of
coefficient can then be limited to coefficients that are not equivalent after correction
for chance. As a second example, in cluster analysis several algorithms only make use
of the ordinal information between the different coefficients, ignoring the numerical
values. Coefficients can be grouped on the basis of what information they preserve
with respect to an ordinal data analysis. The choice of coefficient can then be limited
to coefficients that summarize different ordinal information.

As a second issue, a similarity coefficient must sometimes be considered in the
context of the data-analytic study of which it is a part. Some method of data analysis
may have certain prerequisites. If a coefficient possesses a specific property, it may be
preferred over a coefficient which does not share this characteristic. For example, the
outcome of metric data analysis methods like classical scaling, is better understood if
the coefficient used in the analysis is metric, that is, satisfies the triangle inequality.
As a bonus, the study of various properties of similarity coefficients provides a
better understanding of the coefficients themselves. The insight obtained from how
different coefficients are related, for example, one coefficient is the product of a
transformation applied to a second coefficient, provides new ways of interpreting
both coefficients.

The dissertation contains a mathematical approach to the analysis of resemblance
measures for binary data. A variety of data-analytic properties are considered and
for various coefficients it is established whether they possess the property or not.
Counterexamples are sometimes used to show that a coefficient lacks a property. All
mathematics are on the level of high school algebra and to read the thesis no ‘higher’
mathematical training is required. A statement is referred to as a proposition if it
is believed to be a new result; a statement is called a theorem if the result is already
known.

The first half of the dissertation (Part I and II) is devoted to what is basically
two-way information. In the literature on data-analytic methods like, for example,
cluster analysis, factor analysis, or multidimensional scaling, a distinction is made
between two types of two-way information. Two-way similarity may be the bivariate
information between two binary or dichotomous variables, that is, variables with two
responses. Two-way similarity may also be the dyadic information between cases,
persons, or objects. For the reader who is accustomed to this terminology it is
important to note that in the present dissertation this (historical) distinction is
largely ignored.

Some of the coefficients that are studied in the thesis have been proposed for
comparing variables over cases, whereas others are primarily used to compare objects
or cases over variables or attributes. Perhaps only a few coefficients are actually
used in both the bivariate and dyadic case. Basically, similarity of two sequences of
binary scores is referred to as two-way or bivariate information. The two terms are
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considered interchangeable. To simplify the reading the sequences are referred to as
variables. When considering a case by variable data matrix, the variables correspond
to the columns. The latter notion is important in Part II on similarity matrices.
A similarity matrix is obtained by calculating all two-way or pairwise coefficients
between the columns of the case by variable data table. Finally, when two or more
sequences are compared the words multi-way and multivariate are used.

This thesis consists of nineteen chapters divided into four parts. Part I and II
are devoted to the bivariate case: a coefficient reflects the similarity of two variables
at a time. Properties of individual coefficients are considered in Part I, whereas
Part II focuses on properties that are studied in terms of coefficient matrices. Part
III and IV are concerned with definitions and generalizations of various concepts
from Part I and II to the multi-way case: a coefficient measures the resemblance of
two or more binary variables. Part III is somewhat different from the other parts
because no similarity coefficients are encountered in its chapters. Instead, various
generalizations of the triangle inequality and other multi-way possibilities are studied
in Part III. Some of the properties derived in Part III are used in Chapter 18 on
metric properties of multi-way coefficients.

Part I consists of five chapters. Notation and some basic concepts concerning
similarity coefficients are introduced in Chapter 1. We consider axioms for both
similarity and dissimilarity coefficients. A first distinction is made between coeffi-
cients that do and coefficients that do not include the number of negative matches.
A second distinction is made between coefficients that have zero value if the two
variables are statistically independent and coefficients that have not. Also, some
attention is paid to the problem of indeterminate values for coefficients that are
fractions.

Chapter 2 is used to put the similarity coefficients for binary data into a broader
perspective. The formulas considered in this thesis are often special cases that are
obtained when more general formulas from various domains of data analysis are
applied to dichotomous data. Furthermore, the same formulas may be encountered
when two nominal variables are compared. For example, when comparing partitions
from two cluster analysis algorithms or when measuring response agreement between
two judges, a general approach is to count the four different types of pairs that can
be obtained. The formulas defined on the four types of pairs may be equivalent
to formulas defined on the four quantities obtained when comparing two binary
variables.

In Chapter 3 it is shown that some resemblance measures belong to some sort
of family of coefficients. Various relations between coefficients become apparent
from studying their membership to a family. For most properties studied in Part
I, greater generality is obtained if one works with (various types of) coefficient
families. Linearity, another topic of this chapter, and metric properties (Chapter
10) are studied for families in which each coefficient is linear in both numerator and
denominator.

Correction for chance agreement is the theme of Chapter 4. The chapter focuses
on a coefficient family for which the study of correction for chance is relatively
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simple. Several new properties on equivalences of coefficients after correction for
chance irrespective of the choice of expectation are presented. In addition, a variety
of properties of corrected coefficients are considered. Special interest is taken in a
certain class of coefficients that become equivalent after correction. Also discussed
is the relationship between the actual formula (coefficient) obtained after correction
for chance and the particular choice of expectation.

The maximum value of various similarity coefficients is the topic of Chapter 5.
Maximum values are studied in relationship to coefficient families that are power
means. It is shown that different members of a specific family all have the same
maximum value. New formulas are obtained if a coefficient is divided by its max-
imum value. Several results are presented that show what formulas are obtained
after division by the maximum value. Two classes of coefficients are considered that
become either a coefficient by Simpson (1943) or a coefficient by Loevinger (1947,
1948). Also, it is shown that Loevinger’s coefficient is obtained if a general family
of coefficients is corrected for both similarity due to chance and maximum value.

Part II consists of five chapters. In many applications of data analysis the data
consist of more than two binary variables. In Part II various concepts and properties
are considered that can only be studied when multiple variables (more than two) are
considered. For example, multiple column vectors can be positioned next to each
other to form a so-called data matrix. Given a binary data matrix, one may obtain a
coefficient matrix by calculating all pairwise coefficients for any two columns of the
data matrix. Different coefficient matrices are obtained, depending on the choice of
similarity coefficient.

Chapter 6 focuses on how the 1s and 0s of the various column vectors of the data
matrix may be related. For example, the 1s and 0s may be related in such a way
that the data matrix exhibits certain patterns, possibly after a certain re-ordering
or permutation of the columns, or after permuting both columns and rows of the
data matrix. The 1s and 0s of the various column vectors may also be related in
more complicated ways, not immediately clear from visual inspection. For example,
some sort of probabilistic model can supposedly underlie the patterns of 1s and 0s
of the various variables. Chapter 6 is used to describe some one-dimensional models
and data structures that imply a certain ordering of the column vectors. These data
structures are later on used in the remaining chapters of Part II for the study of
various ordering properties of similarity matrices.

Chapter 7 is devoted to Robinson matrices. A square similarity matrix is called
a Robinson matrix if the highest entries within each row and column are on the
main diagonal and moving away from this diagonal, the entries never increase. A
similarity matrix may or may not exhibit the Robinson property depending on the
choice of resemblance measure. However, it seems to be a common notion in the
classification literature that Robinson matrices arise naturally in problems where
there is essentially a one-dimensional structure in the data. It is shown in Chapter 7
that the occurrence of a Robinson matrix is a combination of the choice of the simi-
larity coefficient, and the specific one-dimensional structure in the data. Important
coefficients in this chapter are the coefficient by Braun-Blanquet (1932) and Russel



xv

and Rao (1940).

Eigendecompositions of several coefficient matrices are studied in Chapter 8. It
is shown what information on the order of the model probabilities can be obtained
from the eigenvector elements corresponding to the largest eigenvalues of various
similarity matrices. It is therefore possible to uncover the correct ordering of several
latent variable models considered in Chapter 6 using eigenvectors. The point to
be made here is that the eigendecomposition of some similarity matrices, especially
matrices corresponding to asymmetric coefficients, are more interesting compared to
the eigendecomposition of other matrices. The important coefficients in this chapter
have corresponding similarity matrices that are non-symmetrical. Also, the diverse
matrix methodology of an eigenvalue method called homogeneity analysis is studied.

In Chapter 9, a systematic comparison of a one-dimensional homogeneity anal-
ysis and the item response theory approach is presented. It is shown how various
item statistics from classical item analysis are related to the parameters of the 2-
parameter logistic model from item response theory. Using these results, and the
assumption that the homogeneity person score is a reasonable approximation of the
latent variable, the functional relationships between the discrimination and loca-
tion parameter of the 2-parameter logistic model and the two category weights of a
homogeneity analysis applied to binary data are derived.

The study of metric properties is begun in Chapter 10, where metric properties
of coefficients that are linear in both numerator and denominator are discussed. The
chapter starts with an introduction of the concept of dissimilarity. Some tools are
introduced here for the two-way case. Metric properties for multi-way coefficients
are studied in Part IV. Because these tools are technically if not conceptually simpler
for the two-way case, they are first presented here and later on generalized to the
multi-way case in Chapters 15 and 18.

Part III consists of five chapters. Measures of resemblance play an important role
in many domains of data analysis. However, similarity coefficients often only allow
pairwise or bivariate comparison of variables or entities. An alternative to two-way
resemblance measures is to formulate multivariate or multi-way coefficients. Before
considering multi-way formulations of coefficients for binary data in Part IV, Part
III is used to explore and extend some concepts from Chapter 10 and the literature
on three-way data analysis to the multi-way case. Part III is devoted to possible
generalizations and other related multi-way extensions of the triangle inequality,
including the perimeter distance function, the maximum distance function, and
multi-way ultrametrics.

Before extending the metric axioms, Chapter 11 is used to formulate more basic
axioms for multi-way dissimilarities. Axiom systems for two-way and three-way dis-
similarities are studied first. The dependencies between various axioms are reviewed
to obtain axiom systems with a minimum number of axioms. The consistency and
independence of several axiom systems is established by means of simple models.
The remainder of Chapter 11 is used to explore how basic axioms for multi-way
dissimilarities, like nonnegativity, minimality and symmetry, may be defined.

Chapter 12 explores how the two-way metric may be generalized to multi-way



xvi Prologue

metrics. A family of k-way metrics is formulated that generalize the two-way metric
and the three-way metrics from the literature. Each inequality that defines a metric
is linear in the sense that we have a single, possibly weighted, dissimilarity, which
is equal to or smaller than an unweighted sum of dissimilarities. The family of
inequalities gives an indication of the many possible extensions for introducing k-
way metricity. It is shown how k-way metrics and k-way dissimilarities are related
to their (k − 1)-way counterparts.

Multi-way ultrametrics are explored in Chapter 13. In the literature two gener-
alizations of the ultrametric inequality have been proposed for the three-way case.
Continuing this line of reasoning three inequalities may be formulated for the four-
way case. For the multi-way case k − 1 inequalities may be defined. Some ideas on
the three-way ultrametrics presented in the literature are explored in this chapter
for multi-way dissimilarities. The multi-way ultrametrics as defined in this chapter
imply a particular class of multi-way metrics.

In Chapter 14 it is explored how two particular three-way distance functions
may be formulated for the multi-way case. The chapter is mostly about extensions
of the three-way perimeter model. One section covers the maximum function, its
multi-way extension, and a metric property of the generalization. The chapter
contains both results on decompositions and on metric properties of two multi-
way perimeter models. Chapter 15 is completely devoted to two generalizations
of a particular theorem from Chapter 10. This result states that if d satisfies the
triangle inequality, then so does the function d/(c + d), where c is a positive real
value. The result is extended to one family of multi-way metrics. An attempt is
made to generalize the result to a class of stronger multi-way metrics.

Part IV consists of four chapters. In this final part, multivariate formulations of
similarity coefficients are considered. Multivariate coefficients may for example be
used if one wants to determine the degree of agreement of three or more raters in
psychological assessment, if one wants to know how similar the partitions obtained
from three different cluster algorithms are, or if one is interested in the degree of
similarity of three or more areas where certain types of animals may or not may be
encountered.

In Chapter 16 and 17 multivariate formulations (for groups of objects of size
k) of various bivariate similarity coefficients (for pairs of objects) for binary data
are presented. The multivariate coefficients in Chapter 16 are not functions of the
bivariate similarity coefficients themselves. Instead, an attempt is made to present
multivariate coefficients that reflect certain basic characteristics of, and have a sim-
ilar interpretation as, their bivariate versions. The multivariate measures presented
in Chapter 17 preserve the relations between various coefficients that were derived
in Chapter 4 on correction for chance agreement. This chapter is also used to show
how the multi-way formulations from the two chapters are related. In Chapter 18
metric properties of various multivariate coefficients with respect to the strong poly-
hedral generalization of the triangle inequality are studied. Finally, the Robinson
matrices studied in Chapter 7 are extended to Robinson cubes in Chapter 19.
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Similarity coefficients
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CHAPTER 1

Coe�cients for binary variables

Sequences of binary data are encountered in many different realms of research. For
example, a rater may check whether or not a person possesses a certain psychological
characteristic; it can be assessed if certain species types are encountered in a region
or not; a person may fill in a test and can either fail or pass various items; it may be
investigated if a certain object does possess or does not possess certain attributes
or characteristics. Moreover, various types of quantitative data may be recoded
and treated as binary. Noisy quantitative data may for instance be dichotomized.
Quantitative data may also be dichotomized when the pertinent information for the
problem at hand depends on a known threshold value.

A so-called similarity coefficient or association index reflects in one way or an-
other the resemblance of two or more binary variables. Most coefficients have been
proposed for the bivariate or two-way case, that is, the similarity of two sequences
or variables of binary scores. In this first chapter a (brief) overview is presented of
several of the bivariate coefficients for binary data that are available. The similar-
ity coefficients may be considered both as population parameters as well as sample
statistics. The formulations here will be the ones, utilized in the latter case. Fol-
lowing Sokal and Sneath (1963, p. 128) or more recently Albatineh, Niewiadomska-
Bugaj and Mihalko (2006), the convention is adopted of calling a coefficient by its
originator or the first we know to propose it. The exception to this rule is the Phi
coefficient.

3



4 Coefficients for binary variables

A major distinction is made between coefficients that do and those that do
not include a certain quantity d. If a binary variable is a coding of the presence
or absence of a list of attributes, then d reflects the number of negative matches,
which is generally felt not to contribute to similarity. A second distinction covers
coefficients that have zero value if the two sequences are (statistically) independent
and coefficients that have not.

Next to introducing various bivariate coefficients, the chapter is used to outline a
common problem for coefficients for binary data. Since many similarity coefficients
are defined as fractions, the denominator may become 0 in some cases. For these
critical cases the value of the coefficient is undefined. This case of indeterminacy for
some values of coefficients for binary data has been given surprisingly little attention.
As it turns out, the number of critical cases differ with the coefficients.

1.1 Four dependent quantities

Suppose the data consist of two sequences of binary (1/0) scores, for example
1
1
0
0
1
1

 and


0
1
1
0
1
0

 .

Various data analysis techniques do not require the full information in the two binary
sequences. A convenient way to summarize the information in the two vectors is by
defining the four dependent quantities

a = proportion of 1s that the variables share in the same positions

b = proportion of 1s in the first variable and 0s in second variable

in the same positions

c = proportion of 0s in the first variable and 1s in second variable

in the same positions

d = proportion of 0s that both variables share in the same positions.

Together, the four quantities a, b, c, and d can be used to construct the 2 × 2
contingency table

Variable two
Variable one Value 1 Value 0 Total

Value 1 a b p1

Value 0 c d q1

Total p2 q2 1
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where the marginal probabilities are given by

p1 = a + b proportion of 1s in the first variable

p2 = a + c proportion of 1s in the second variable

q1 = c + d proportion of 0s in the first variable

q2 = b + d proportion of 0s in the second variable.

The information in the 2×2 contingency table can be summarized by an index, called
here a coefficient of similarity (affinity, resemblance, association, coexistence). As
a general symbol for a similarity coefficient the capital letter S will be used. An
example of a similarity coefficient is the Phi coefficient, which is given by

SPhi =
ad− bc√

(a + b)(a + c)(b + d)(c + d)
.

The measure SPhi is sometimes attributed to Yule (1912), and is equivalent to the
formula that is obtained when the Pearson’s product-moment correlation derived
for continuous data, is applied to binary data. See Zysno (1997) for a review on the
literature on SPhi and some of its modifications. The marginal proportions p1, p2,
q1, and q2 can be used to obtain a shorter or more parsimonious formula for SPhi,
which is given by

SPhi =
ad− bc
√

p1p2q1q2

.

Following Sokal and Sneath (1963) the convention is adopted of calling a coefficient
by its originator or the first we know to propose it. The exception to this rule is
actually coefficient SPhi. Sokal and Sneath (1963) (among others) make a major
distinction between coefficients that do or do not include the quantity d. If a binary
variable is a coding of the presence or absence of a list of attributes or features, then
d reflects the number of negative matches, which is generally felt not to contribute
to similarity. Sokal and Sneath (1963, p. 130) noted the following.

‘Through reduction ad absurdum we can arrive at a universe of negative character
matches purporting to establish the similarity between two entities.’

Sneath (1957) felt it was difficult to decide which negative features to include in
a study and which to exclude.

‘It is not pertinent to count “absence of feathers” when comparing two bacteria, but
that this feature is applicable in comparing bacteria and birds.’

Sokal and Sneath (1963, p. 128, 130) also note that including negative matches
may depend on what attributes or features are actually considered with respect to
the species. They explain the difficulty as follows.
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‘It may be argued that basing similarity between two species on the mutual absence
of a certain character is improper. The absence of wings, when observed among a group
of distantly related organisms (such as a camel, louse and nematode), would surely be
an absurd indication of affinity. Yet a positive character, such as the presence of wings
(or flying organs defined without qualification as to kind of wing) could mislead equally
when considered for a similarly heterogeneous assemblage (for example, bat, heron, and
dragonfly).’

Examples (from the field of biological ecology) that do not include the quantity
d are the coefficients given by

SJac =
a

p1 + p2 − a
(Jaccard, 1912)

SGleas =
2a

p1 + p2

(Gleason, 1920; Dice, 1945; Sørenson, 1948)

SKul =
1

2

(
a

p1

+
a

p2

)
(Kulczyński, 1927)

SDK =
a

√
p1p2

(Driver and Kroeber, 1932; Ochiai, 1957).

Coefficient SJac may be interpreted as the number of 1s shared by the variables in the
same positions, divided by the total number of positions were 1s occur (a + b + c =
p1 + p2 − a). Coefficient SGleas seems to be independently proposed by both Dice
(1945) and Sørenson (1948) but is often contributed to the former. Bray (1956) noted
that coefficient SGleas can already be found in Gleason (1920). The coefficient has
also been proposed by various other authors, for example, Czekanowski (1932) and
Nei and Li (1979). Coefficient SDK by Driver and Kroeber (1932) is often attributed
to Ochiai (1957). Coefficient SDK is also proposed by Fowlkes and Mallows (1983)
for the comparison of two clustering algorithms (see Section 2.2).

With respect to coefficient SJac, coefficient SGleas gives twice as much weight to
a. The latter coefficient is regularly used with presence/absence data in the case
that there are only a few positive matches relatively to the number of mismatches.
In addition to SJac and SGleas, Sokal and Sneath (1963, p. 129) proposed a similarity
measure that gives twice as much weight to the quantity (b + c) compared to a,
which is given by

SSS1 =
a

a + 2(b + c)
.

Coefficients SJac, SGleas, and SSS1 are rational functions which are linear in both
numerator and denominator.

If a binary variable is a coding of a nominal variable, that is, one or the other of
two mutually exclusive attributes (for example, correct and incorrect, or male and
female), then the quantity a reflects the number of matches on the first attribute
and d reflects the number of matches on the second one. In this case, it is often felt
that the quantities a and d should be equally weighted.
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Goodman and Kruskal (1954, p. 758) contend that, in general, the only reason-
able coefficients are those based on (a+ d). Examples of coefficients that do include
the quantity d are the coefficients given by

SSM =
a + d

a + b + c + d
(Sokal and Michener, 1958; Rand, 1971)

SSS2 =
2(a + d)

2a + b + c + 2d
(Sokal and Sneath, 1963)

SRT =
a + d

a + 2(b + c) + d
(Rogers and Tanimoto, 1960)

SSS3 =
1

4

(
a

p1

+
a

p2

+
d

q1

+
d

q2

)
(Sokal and Sneath, 1963)

SSS4 =
ad

√
p1p2q1q2

(Sokal and Sneath, 1963).

Since a, b, c, and d are proportions, the simple matching coefficient SSM = a + d.
Coefficient SSM can be interpreted as the number of 1s and 0s shared by the variables
in the same positions, divided by the total length of the variables. Coefficient SSM is
also proposed by Rand (1971) for the comparison of two clustering algorithms and
Brennan and Light (1974) for measuring agreement of two psychologists that rate
people on categories not defined in advance (see Chapter 2). In addition to SSM and
SRT, Sokal and Sneath (1963, p. 129) proposed coefficient SSS2, which gives twice
as much weight to the quantity (a + d) compared to (b + c). Moreover, Sokal and
Sneath (1963) proposed coefficients SSS3 and SSS4 as alternatives (that include the
quantity d) to coefficients SKul and SDK. The coefficient by Rusel and Rao (1940),
given by SRR = a/(a + b + c + d) = a, is called hybrid by Sokal and Sneath (1963),
since it includes the quantity d in the denominator but not in the numerator.

1.2 Axioms for (dis)similarities

Complementary to similarity or association is the concept of dissimilarity. As an
alternative to a similarity measure, the fourfold table may also be summarized by
some form of dissimilarity measure. A higher value of a similarity coefficient indi-
cates there is more association between two binary variables, whereas a low value
indicates that the two sequences are dissimilar. For a dissimilarity coefficient the
interpretation is the other way around. A high value indicates great dissimilarity,
whereas a low value indicates great resemblance. The capital letter D will be used
as a general symbol for a dissimilarity coefficient in Parts I and IV. In Part III the
symbol d is used.
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Various authors presented more rigorous discussions on the concepts similarity
and dissimilarity. A function can only be considered a similarity or dissimilarity if it
satisfies certain requirements or axioms. Some interesting exposés and discussions
on axioms for (dis)similarities can be found in Baroni-Urbani and Buser (1976),
Baulieu (1989, 1997), Janson and Vegelius (1981) and Batagelj and Bren (1995), in
the case of bivariate or two-way coefficients, and Heiser and Bennani (1997) and Joly
and Le Calvé (1995), in the case of three-way or triadic coefficients. With respect
to the latter, that is, three-way dissimilarities, see Chapter 11. In addition, Zegers
(1986) presented an interesting overview of requirements for similarity coefficients
for more general types of data.

An essential property of a similarity coefficient S(x1, x2) that reflects the simi-
larity between two variables x1 and x2, is the property that S(x1, x1) ≥ S(x1, x2)
and S(x2, x2) ≥ S(x1, x2). Furthermore, it may be required that a coefficient is sym-
metric, that is, S(x1, x2) = S(x2, x1). Examples of coefficients that are symmetric
are

SPhi =
ad− bc
√

p1p2q1q2

and SJac =
a

a + b + c
=

a

p1 + p2 − a
.

Two-way similarity coefficients that do not satisfy the symmetry requirement are
the functions that can be found in, among others, Dice (1945, p. 298), Wallace
(1983), and Post and Snijders (1993), given by

SDice1 =
a

a + b
=

a

p1

and SDice2 =
a

a + c
=

a

p2

.

Coefficient SDice1 is the number of 1s that both sequences share in the same positions,
relative to the total number of 1s in the first sequence. Both SDice1 and SDice2 can
be interpreted as conditional probabilities.

If a variable is compared with itself, it may be required that the similarity equals
the value 1, that is, S(x1, x1) = 1. Coefficients SPhi, SJac, SDice1, and SDice2 all satisfy
this axiom. A coefficient that in general violates this requirement, is an interesting
measure by Russel and Rao (1940), given by

SRR =
a

a + b + c + d
or simply SRR = a.

In addition to the previous two axioms, it is sometimes required that a function has
a certain range before it may be called a similarity. For similarities, it is sometimes
required that the absolute value of a function is restricted from above by the value
1, that is, |S(x1, x2)| ≤ 1. All coefficients that are investigated in this thesis satisfy
this requirement. Coefficients that do not satisfy this axiom have quantities in the
numerator that are not represented in the denominator. A coefficient that can be
found in Kulczyński (1927), given by a/(b + c), is an example of a coefficient that
does not satisfy this requirement. Most similarity coefficients considered in this
thesis satisfy the three above requirements.
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Analogously to the requirements for similarities, there are axioms for the concept
of dissimilarity. It is usual to require that a function D(x1, x2) is referred to as a
dissimilarity if it satisfies

D(x1, x2) ≥ 0 (nonnegativity)

D(x1, x2) = D(x2, x1) (symmetry)

and D(x1, x1) = 0 (minimality).

A straightforward way to transform a similarity coefficient S into a dissimilarity
coefficient D is taking the complement D = 1−S. This transformation requires that
S(x1, x1) = 1 in order to obtain D = 0. Another possible transformation, closely
related to the Euclidean distance, is D =

√
1− S (Gower and Legendre, 1986): D

is the square root of the complement of S. For several coefficients, transformation
D = 1− S gives simple formulas. For example,

DJac = 1− a

a + b + c
=

b + c

a + b + c
.

In order for coefficient DRR to satisfy minimality, SRR must be redefined as

SRR =

{
1 if x1 = x2

a otherwise.

Dissimilarity coefficient DRR is then given by

DRR =

{
0 if x1 = x2

1− a otherwise.

With respect to a dissimilarity D various other requirements can be studied, which
are usually not defined for a similarity coefficient S. For D to be a distance or
metric, it must satisfy the metric axioms of symmetry and

D(x1, x2) = 0 if and only if x1 = x2 (definiteness)

and foremost, the triangle inequality, which is given by

D(x1, x2) ≤ D(x1, x3) + D(x2, x3).

Metric properties of various functions are studied (reviewed) in Chapter 10. In
Chapter 12 various possible multi-way generalizations of the triangle inequality are
studied. Another well-known inequality is the ultrametric inequality given by

D(x1, x2) ≤ max (D(x1, x3), D(x2, x3)) .

If a dissimilarity D(x1, x2) satisfies the ultrametric inequality, then it also satisfies
the triangle inequality. Various multi-way generalizations of the ultrametric inequal-
ity are studied in Chapter 13. Axioms for multi-way or multivariate (dis)similarities
are discussed in Chapter 11.
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1.3 Uncorrelatedness and statistical independence

In probability theory two binary variables are called uncorrelated if they share zero
covariance, that is, ad − bc = 0. The covariance between two binary variables is
defined as the determinant of the 2 × 2 contingency table. In addition to being
uncorrelated, two variables may be statistically independent, which is in general a
stronger requirement compared to uncorrelatedness. The two concepts are equiva-
lent if both variables are normally distributed. Probability theory tells us that two
binary variables satisfy statistical independence if the odds ratio equals unity, that
is

ad

bc
= 1.

The odds ratio is defined as the ratio of the odds of an event occurring in one group
(a/b) to the odds of it occurring in another group (c/d). These groups might be any
other dichotomous classification. An odds ratio of 1 indicates that the condition or
event under study is equally likely in both groups. An odds ratio greater than 1
indicates that the condition or event is more likely in the first group.

The value of the odds ratio lies between zero and infinity. Yule proposed two
measures

SYule1 =
ad
bc
− 1

ad
bc

+ 1
=

ad− bc

ad + bc
(Yule, 1900)

and

SYule2 =

√
ad√
bc
− 1

√
ad√
bc

+ 1
=

√
ad−

√
bc√

ad +
√

bc
(Yule, 1912)

as alternatives to the odds ratio. Both coefficients SYule1 and SYule2 transform the
odds ratio into a correlation-like scale with a range −1 to 1.

The odds ratio equals unity if ad = bc which equals the case that ad − bc = 0.
In this respect uncorrelatedness and independence are equivalent for two binary
variables. For testing statistical independence, one may calculate the χ2-statistic
(Pearson and Heron, 1913; Pearson, 1947) for the 2× 2 contingency table. Different
opinions have been stated on what the appropriate expectations are for the fourfold
table (see Chapter 4). In the majority of applications it is assumed that the data are
a product of chance concerning two different frequency distribution functions under-
lying the two binary variables, each with its own parameter. The case of statistical
independence for this possibility, conditionally on fixed marginal probabilities p1,
p2, q1, and q2, is given by

Variable two
Variable one Value 1 Value 0 Total

Value 1 p1p2 p1q2 p1

Value 0 q1p2 q1q2 q1

Total p2 q2 1

The case of statistical independence visualized in this table is considered in Yule
(1912), Pearson (1947), Goodman and Kruskal (1954) and Cohen (1960).
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Let E(a) denote the expectation of quantity a; the latter is the observed propor-
tion of common 1s, whereas E(a) is the expected proportion of common 1s. Under
the assumption of two different frequency distribution functions, we have

a− E(a) = a− p1p2 = a(1− a− b− c)− bc = ad− bc;

b− E(b) = b− p1q2 = bc− ad;

c− E(c) = c− p2q1 = bc− ad;

d− E(d) = d− q1q2 = ad− bc.

The χ2-statistic for the 2× 2 contingency table is then given by

χ2 =
n(ad− bc)2

p1p2q1q2

where n is the length of, or number of elements in, the binary variables. The
quantity n is used to compensate for the fact that the entries in the fourfold table
are proportions, not counts. The χ2-statistic has one degree of freedom (Pearson,
1947; Fisher, 1922). The χ2-statistic is related to the Phi coefficient by

SPhi =

√
χ2

n
=

ad− bc
√

p1p2q1q2

.

Both χ2 and SPhi equal zero if ad = bc, that is, when the two binary variables have
zero covariance or are statistically independent. Apart from coefficient SPhi various
other similarity coefficients are defined with the covariance ad−bc in the numerator.
An example is Cohen’s kappa (Cohen, 1960), which in the case of two categories is
given by

SCohen =
2(ad− bc)

p1q2 + p2q1

.

Coefficient SCohen is a measure that is corrected for similarity due to chance (see
Section 2.1 and Chapter 4).

Various authors have studied the expected value and possible standard devia-
tion of similarity coefficients (see, for example, Sokal and Sneath, 1963; Janson and
Vegelius, 1981). An interesting overview of possible distributions and some new
derivations for coefficients SSM, SJac, and SGleas, is presented in Snijders, Dormaar,
Van Schuur, Dijkman-Caes and Driessen (1990). Knowing a value of central ten-
dency and a measure of the amount of likely dispersion for a coefficient, may be
used for statistical inference. Next, it is possible to test the hypothesis whether a
similarity coefficient is statistically different from the expected value or not.



12 Coefficients for binary variables

1.4 Indeterminacy

In this section we work with a slightly adjusted definition of a similarity coefficient
for two binary variables. Firstly, instead of proportions or probabilities, let a, b, c,
and d be counts, and let n = a + b + c + d denote the total number of attributes of
the binary variables. Secondly, we define a presence/absence coefficient S(a, b, c, d)
or S to be a map S : (Z+)4 → R from the set, U , of all ordered quadruples of
nonnegative integers into the reals (Baulieu, 1989).

Many similarity coefficients are defined as fractions. The denominator of these
fractions may therefore become 0 for certain values of a, b, c and d. For example, it
is well-known that if d = n, then the value of SJac given by

SJac =
a

a + b + c
=

a

n− d

is not defined or indeterminate. As noted by Batagelj and Bren (1995, Section 4.2)
this case of indeterminacy for some values of coefficients for binary data has been
given surprisingly little attention. The critical case of SJac implies a situation in
which two binary variables consist entirely of 0s. One may argue that it is highly
unlikely that this occurs in practice. For example, in ecology it is unlikely to have
an ordinal data table that has objects without species. Furthermore, the problem
can be resolved by excluding zero vectors from the data. Although these may be
valid arguments for SJac, it turns out that the number of cases in which the value
of a coefficient is indeterminate, differs with the coefficients.

To compare the number of critical cases of two different coefficients, a domain
of possible cases must be defined. Consider the set U of all ordered four-tuples
(a, b, c, d) of nonnegative integers. Since a + b + c + d = n, the number of different
quadruples for given n (n ≥ 1) is given by the binomial coefficient(

n + 3

3

)
=

(n + 3)!

n! 3!
=

(n + 3)(n + 2)(n + 1)

6

which is the number of different four-tuples one may obtain out of n objects. Thus,
for n = 1, 2, 3, 4, 5, ... , the set U consists of 4, 10, 20, 35, 56, ... different four-tuples.
For example, for n = 2 we have the ten unique four-tuples

(2, 0, 0, 0) (1, 1, 0, 0) (0, 1, 1, 0)

(0, 2, 0, 0) (1, 0, 1, 0) (0, 1, 0, 1)

(0, 0, 2, 0) (1, 0, 0, 1) (0, 0, 1, 1)

(0, 0, 0, 2).

For each coefficient we may study for how many four-tuples or quadruples for
fixed n the value of the coefficient is indeterminate. For twenty eight similarity
coefficients for both nominal and ordinal data, the number of different quadruples

0Parts of this section are to appear in Warrens, M.J. (in press), On the indeterminacy of
similarity coefficients for binary (presence/absence) data, Journal of Classification.
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in U for which the denominator of the corresponding coefficient equals zero are
presented in the following table

Ordinal data Nominal data 4-tuples
SRR SSM, SSS3, SMich, SRT, SHam 0
SJac, SGleas, SBUB, SBB, SSS1 1

SGK, SScott, SCohen, SHD 2
SMP 4

SKul, SDK, SSim, SSorg, SMcC 2n + 1
SPhi, SYule1, SYule2, SSS2, 4n
SSS4, SFleiss, SLoe

The formulas of all coefficients can be found in the appendix entitled “List of
similarity coefficients”. The above table may be read as follows. If n = 5, U has
56 elements and for 20 of these quadruples the value of the Phi coefficient SPhi is
indeterminate. Note that the coefficients are placed in groups with the same number
of critical cases. For coefficients with the most critical cases (4n), the number of
quadruples for which the value of the coefficient is indeterminate increases in a
linear fashion as n becomes larger. Increases of the number of quadruples with the
indeterminacy problem are not proportional to increases of n. Hence, the ratio

number of critical cases in U

total number of quadruples in U
decreases as n becomes larger.

Furthermore, for most coefficients indeterminacy only occurs in the case that at
least two elements of four-tuple (a, b, c, d) are zero.

As an alternative to excluding the vectors that result in zero denominators values,
Batagelj and Bren (1995) proposed to eliminate the indeterminacies by appropriately
defining values in critical cases. Some of the definitions presented in this section give
the same results as definitions proposed in Batagelj and Bren (1995). The definitions
presented here simplify the reading.

Let
Ky =

a

a + y
with y = b, c.

Coefficients SGleas, SDK, SKul and

SSorg =
a2

p1p2

, SBB =
a

max(p1, p2)
and SSim =

a

min(p1, p2)

are, respectively, the harmonic mean, geometric mean, arithmetic mean, product,
minimum function, and maximum function of Kb and Kc.
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Consider the arithmetic mean of Kb and Kc

SKul =
Kb + Kc

2
=

1

2

(
a

a + b
+

a

a + c

)
.

Suppose a + c = 0. Note that the value of SKul is indeterminate. If we set Kc = 0,
then SKul becomes

SKul =
1

2

(
a

a + b
+ 0

)
= 0 since a = 0.

Alternatively, we may remove the part from the definition of SKul that causes the
indeterminacy. Coefficient SKul becomes

SKul =
a

a + b
= 0 since a = 0.

Thus, either setting Kc = 0 or removing the indeterminate part from the definition
of the coefficient, leads to the same conclusion: SKul = 0. We therefore define

SKul =

{
0 if a + b = 0 or a + c = 0
1
2

(
a

a+b
+ a

a+c

)
otherwise.

Analogous definitions may be formulated for coefficients SDK, SSim, and SSorg.
Coefficient

SMcC =
a2 − bc

(a + b)(a + c)
= 2SKul − 1.

Suppose a + c = 0. The value of coefficient SMcC is indeterminate. Also the numer-
ator (a2 − bc) = 0. We define

SMcC =

{
0 if a + b = 0 or a + c = 0

a2−bc
(a+b)(a+c)

otherwise.

Consider the harmonic mean of Kb and Kc

SGleas =
2

K−1
b + K−1

c

=
2a

2a + b + c
.

Suppose a + c = 0. The value of Kc and K−1
c is indeterminate. However, 2a/(2a +

b + c) = 0. Similar to SKul we define

SGleas =

{
0 if d = n

2a/(2a + b + c) otherwise.

Analogous definitions may be formulated for coefficients SJac, SSS2, SBB, and SBUB.
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Note that the definitions of SKul and SGleas presented here do not ensure that

SKul = 1 or SGleas = 1 if variable x1 is compared with itself. If x1 = x2 =

n︷ ︸︸ ︷
(0, 0, ..., 0),

that is, the two variables have nothing in common, SKul = SGleas = 0. Furthermore,

if variable x1 =

n︷ ︸︸ ︷
(0, 0, ..., 0) is compared with itself, SKul = SGleas = 0. Since these

coefficients are appropriate for ordinal data, it is a moot point what the value of
the coefficient should be if variables x1 and x2, or just variable x1 if x2 is compared
with itself, are zero vectors. From a philosophical point of view it might be better
to leave the coefficients for ordinal data undefined for the critical case d = n.

Consider coefficient

SHD =
1

2

(
a

a + b + c
+

d

b + c + d

)
(Hawkins and Dotson, 1968).

The value of SHD is indeterminate if either a = n or d = n. If a = n then variables
x1 and x2 are unit vectors; if d = n then variables x1 and x2 are zero vectors. If
both variables are zero vectors or unit vectors, we may speak of perfect agreement
if x1 and x2 are nominal variables. We therefore define

SHD =

{
1 if a = n or d = n
1
2

(
a

a+b+c
+ d

b+c+d

)
otherwise.

Analogous definitions may be formulated for coefficients SCohen, SGK and SScott. We
also define

SMP =


1 if a = n or d = n

0 if b = n or c = n
2(ad−bc)

(a+b)(c+d)+(a+c)(b+d)
otherwise.

Consider the Phi coefficient

SPhi =
ad− bc√

(a + b)(a + c)(b + d)(c + d)
.

The value of SPhi is indeterminate if a + b = 0, a + c = 0, b + d = 0, or c + d = 0.
For these critical cases the covariance (ad− bc) = 0. We define

SPhi =


1 if a = n or d = n

0 if a + b = 0, a + c = 0, b + d = 0 or c + d = 0
ad−bc√

(a+b)(a+c)(b+d)(c+d)
otherwise.

Analogous definitions may be formulated for coefficients SSS4, SYule1, SYule2, SFleiss,
and SLoe.
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Let

Ky =
a

a + y
and K∗

y =
d

y + d
with y = b, c.

Consider the arithmetic mean of Kb, Kc, K∗
b and K∗

c

SSS3 =
1

4

(
a

a + b
+

a

a + c
+

d

b + d
+

d

c + d

)
.

Suppose c + d = 0. Note that the value of K∗
c is indeterminate. To eliminate the

critical case, we may set K∗
c = 0, and SSS3 becomes

SSS3 =
1

4

(
a

a + b
+ 1 + 0 + 0

)
=

2a + b

4(a + b)
. (1.1)

Note that coefficient SSS3 in (1.1) has a range [1
4
, 1

2
]. We may define

SSS3 =



2a+b
4(a+b)

if c + d = 0
2a+c

4(a+c)
if b + d = 0

b+2d
4(b+d)

if a + c = 0
c+2d

4(c+d)
if a + b = 0

1
2

if a = n or d = n

0 if b = n or c = n
1
4

(
a

a+b
+ a

a+c
+ d

b+d
+ d

c+d

)
otherwise.

As an alternative to the above robust definition of SSS3, we propose to eliminate
the critical case by removing the part from the definition of SSS3 that causes the
indeterminacy. Suppose c + d = 0. The arithmetic mean of Kb, Kc and K∗

b is given
by

S∗SS3 =
1

3

(
a

a + b
+ 0 + 1

)
=

2a + b

3(a + b)
. (1.2)

Note that coefficient S∗SS3 in (1.2) has a range [1
3
, 2

3
]. We define

S∗SS3 =



2a+b
3(a+b)

if c + d = 0
2a+c

3(a+c)
if b + d = 0

b+2d
3(b+d)

if a + c = 0
c+2d

3(c+d)
if a + b = 0

1 if a = n or d = n

0 if b = n or c = n
1
4

(
a

a+b
+ a

a+c
+ d

b+d
+ d

c+d

)
otherwise.
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1.5 Epilogue

In this first chapter basic notation and several concepts of similarity coefficients
for binary data were introduced. A coefficient summarizes the two-way informa-
tion in two sequences of binary (0/1) scores. A coefficient may be used to compare
two variables over several cases or persons, two cases over variables, two objects
over attributes, or two attributes over objects. Although the data analysis litera-
ture distinguishes between, for example, bivariate information between variables or
dyadic information between cases, the terms bivariate and two-way are used for any
two sequences of binary scores (the terms are considered interchangeable) in this
dissertation.

Two distinctions between the large number of coefficients were made in this chap-
ter. Coefficients may be divided in groups that do or do not include the quantity d.
If a binary variable is a coding of the presence or absence of a list of attributes, then
d reflects the number of negative matches. A second distinction was made between
coefficients that have zero value if the two sequences are statistically independent
and coefficients that have not. A full account of the possibilities of statistical testing
with respect to the 2× 2 contingency table can be found in Pearson (1947).

No attempt was made to present a complete overview of all proposed or all
possible coefficients for binary data. An overview of bivariate coefficients for binary
data from the literature can be found in the appendix entitled “List of similarity
coefficients”. To obtain some ideas of other possible coefficients, the reader is referred
to other sources: Sokal and Sneath (1963), Cheetham and Hazel (1969), Baroni-
Urbani and Buser (1976), Janson and Vegelius (1982), Hubálek (1982), Gower and
Legendre (1986), Krippendorff (1987), Baulieu (1989) and Albatineh et al. (2006).





CHAPTER 2

Coe�cients for nominal and
quantitative variables

The main title (“Similarity coefficients for binary data”) suggests that the thesis is
about resemblance or association measures between objects characterized by two-
state (binary) attributes. Many of the bivariate or two-way coefficients, however,
were not proposed for use with binary variables only. The formulas considered in
this thesis are often special cases that are obtained when more general formulas
from various domains of data analysis are applied to dichotomous data. The general
resemblance measures may, for example, be used for frequency data or other positive
counts. Some coefficients based on proportions a, b, c, and d are special cases of not
just one, but multiple coefficients. For example, coefficient

SGleas =
2a

2a + b + c
or its complement 1− SGleas =

b + c

2a + b + c

have been proposed for binary variables by Gleason (1920), Dice (1945), Sørenson
(1948), Nei and Li (1979), and seem to have been popularized by Bray (1956) and
Bray and Curtis (1957). Coefficient SGleas is a special case of, for example, a co-
efficient by Czekanowski (1932), a measure by Odum (1950), and a coefficient by
Williams, Lambert and Lance (1966). The simple matching coefficient

SSM =
a + d

a + b + c + d
or its complement 1− SSM =

b + c

a + b + c + d

19
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can be obtained, for example, as a special case of a general coefficient by Gower
(1971) or Cox and Cox (2000), the observed proportion of agreement of a bivariate
table of two nominal variables, the city-block distance, or as a special case of a
measure by Cain and Harrison (1958).

This chapter is used to present various interesting formulas for nominal and
quantitative variables, accompanied by some measures used in set theory, of which
some of the coefficients that will be frequently encountered in this thesis, like SGleas

and SSM, are special cases. This puts the coefficients for binary data in a more
general context. In addition, from this chapter ideas or possibilities may be obtained
for generalizing some of the results presented in this dissertation.

2.1 Nominal variables

When dealing with bivariate or two-way similarity coefficients for nominal variables
two situations can be distinguished. The two nominal variables have either identical
categories or they have different categories (Popping, 1983a; Zegers, 1986). The
latter possibility is discussed in Section 2.3. Suppose that two psychologists each
distribute m people among a set of k mutually exclusive categories. In addition
suppose that the categories are defined in advance. To measure the agreement among
the two psychologists, a first step is to obtain a contingency table or matching table
N with elements nij, where nij indicates the number of persons placed in category
i (i = 1, 2, ..., I) by the first psychologist and in category j (j = 1, 2, ..., J) by the
second psychologist. Furthermore, let

ni+ =
J∑

j=1

nij and n+j =
I∑

i=1

nij

denote the marginal counts (row and column totals) of the contingency table N.
Suppose that the categories of both nominal variables are in the same order, so that
the diagonal elements of the square matrix N (nii) reflect the number of people
put in the same category by both psychologists. If there are just two categories,
then m−1N equals the usual fourfold table. A straightforward measure of bivariate
association is the observed proportion of agreement Po, given by

Po =
1

m

k∑
i=1

nii =
tr(N)

m
.

If there are just two categories, for example, presence or absence of a psychological
characteristic, then

Po =
a + d

a + b + c + d
= SSM.

Both Scott (1955) and Cohen (1960) proposed measures that incorporate correc-
tion for chance agreement. Both measures are corrected versions of Po.
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After correction a similarity coefficient S has a form

CS =
S − E(S)

1− E(S)
(2.1)

where E(S) is conditional on the marginals of the contingency table of which S is
the summary statistic. Furthermore, the constant 1 in the denominator of (2.1) may
be replaced by the maximum value of a coefficient S (all coefficients that are studied
in this thesis have a maximum value of unity). Expectation E(S) depends on the
marginal proportions, but the maximum value does not.

We note two expectations of Po, which will be referred to as the expected pro-
portion of agreement E(Po). Scott (1955) works with the assumption that the data
are a product of chance of a single frequency distribution. To estimate the common
parameters from the marginal counts, Scott (1955) uses

E(Po)Scott =
1

4

k∑
i=1

(ni+

m
+

n+i

m

)2

. (2.2)

Alternatively, Cohen (1960) works with the assumption that the data are a product
of chance of two different frequency distributions, one for each nominal variable.
The expected proportion of agreement under statistical independence is given by

E(Po)Cohen =
1

m2

k∑
i=1

ni+n+i. (2.3)

Expectation (2.3) may be obtained by considering all permutations of the observa-
tions of one of the two variables, while preserving the order of the observations of
the other variable. For each permutation the value of Po can be determined. The
arithmetic mean of these values is (2.3).

Using Po and either (2.2) or (2.3) in (2.1), we obtain Scott’s pi and Cohen’s
kappa, which are given by

SScott =
Po − E(Po)Scott

1− E(Po)Scott

and SCohen =
Po − E(Po)Cohen

1− E(Po)Cohen

and become respectively

SScott =
4(ad− bc)− (b− c)2

(p1 + p2)(q1 + q2)
and SCohen =

2(ad− bc)

p1q2 + p2q1

with binary variables. Other suitable measures for nominal variables with identical
categories are discussed in Janson and Vegelius (1979).
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2.2 Comparing two partitions

In cluster analysis one may be interested in comparing two clustering methods
(Rand, 1971; Fowlkes and Mallows, 1983; Hubert and Arabie, 1985; Lerman, 1988;
Steinley, 2004; Albatineh et al., 2006). Suppose we have two partitions of m data
points. To compare these two clusterings, a first step is to obtain a so-called match-
ing table N with elements nij, where nij indicates the number of data points placed
in cluster i (i = 1, 2, ..., I) according to the first clustering method and in cluster j
(j = 1, 2, ..., J) according to the second method.

The total number of points being clustered is given by m =
∑I

i=1

∑J
j=1 nij. The

cluster sizes in respective clusterings are the row and column totals of the matching
table ni+ and n+j. Furthermore, we define the quantity

T =
I∑

i=1

J∑
j=1

(
nij

2

)
=

1

2

[
I∑

i=1

J∑
j=1

n2
ij −m

]

which equals the number of object pairs that were placed in the same cluster ac-
cording to both clustering methods, and the three quantities

P =
I∑

i=1

(
ni+

2

)
, Q =

J∑
j=1

(
n+j

2

)
and N =

(
m
2

)
.

The quantity N equals the total number of pairs of objects given m points.
As a second step, one may calculate some sort of resemblance measure that

summarizes the information in the matching table. A well-known measure for the
similarity of two partitions is the Rand index (Rand, 1971), given by

SRand =
N + 2T − P −Q

N
.

Another measure of resemblance for comparing two partitions is the coefficient by
Fowlkes and Mallows (1983), given by

SFM =
T√
PQ

.

Similar to the proportion of observed agreement Po from Section 2.1, coefficient SRand

may be adjusted for agreement due to chance (Morey and Agresti, 1984; Hubert and
Arabie, 1985; Albatineh et al., 2006). Fowlkes and Mallows (1983) and Hubert and
Arabie (1985, p. 197) noted that, if the generalized hypergeometric distribution
function is assumed appropriate for the matching table N, then the expectation
E(T ) under statistical independence is given by

E (T ) =
PQ

N
. (2.4)

0Parts of this section are to appear in Warrens, M.J. (in press), On the equivalence of Cohen’s
kappa and the Hubert-Ararbie adjusted Rand index, Journal of Classification.
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Using (2.4), the expectation of SRand can be written as

E(SRand) = 1 +
2PQ

N2
− P + Q

N
(2.5)

(Hubert and Arabie, 1985, p. 198). Using SRand and (2.5) in (2.1), we obtain the
Hubert-Arabie adjusted Rand index, given by

CSRand = SHA =
T − PQ/N

1
2
(P + Q)− PQ/N

=
2(NT − PQ)

N(P + Q)− 2PQ

(Hubert and Arabie, 1985, p. 198).
As noted in, for example, Steinley (2004) or Albatineh et al. (2006), the infor-

mation in a matching table N of two clustering partitions on the same data points,
can be summarized by a fourfold contingency table with quantities a, b, c, and d,
where a is the number of object pairs that were placed in the same cluster according
to both clustering methods, b (c) is the number of pairs that were placed in the same
cluster according to one method but not according to the other, and d is the number
of pairs that were not in the same cluster according to either of the methods. It
then holds that a + b + c + d = N , where a = T , b = P − T , c = Q − T and
d = N + T − P − Q, and p1 = a + b = P and q1 = c + d = N − P . The four
different types of object pairs are also distinguished in Brennan and Light (1974),
Hubert (1977), and Hubert and Arabie (1985, p. 194). However, the latter authors
expressed their formulas in terms of the binomial coefficients in quantities T , P , Q,
and N , instead of the quantities a, b, c, and d.

Expressing SRand in terms of the quantities a, b, c, and d we obtain SSM (see, for
example, Lerman, 1988; Steinley, 2004; Albatineh et al., 2006). Expressing SFM in
terms of the quantities a, b, c, and d we obtain SDK (see, for example, Lerman, 1988;
Albatineh et al., 2006). Expressing SHA in these quantities, we obtain, following
Steinley (2004, p. 388), the formula

SHA =
N(a + d)− [(a + b)(a + c) + (b + d)(c + d)]

N2 − [(a + b)(a + c) + (b + d)(c + d)]
. (2.6)

The numerator of (2.6) can be written as

N(a + d)− [(a + b)(a + c) + (b + d)(c + d)]

= Na− p1p2 + Nd− q1q2

= 2(ad− bc)

whereas the denominator of (2.6) equals

N2 − [(a + b)(a + c) + (b + d)(c + d)]

= N2 − p1p2 − q1q2

= (p1 + q1)(p2 + q2)− p1p2 − q1q2

= p1q2 + p2q1.
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Hence, expressing SHA in terms of the quantities a, b, c, and d, the coefficient is
equivalent to SCohen. Moreover, expectation E(T ) in (2.4) can be written as

E(T ) =
PQ

N
=

(a + b)(a + c)

N
=

p1p2

N
.

Hence, statistical independence under the generalized hypergeometric distribution
function used in Hubert and Arabie (1985) for the matching table of two clusterings,
is equivalent to the case of statistical independence under the binomial distribution
function for the fourfold contingency table.

A practical conclusion is that we can calculate the Hubert-Arabie adjusted Rand
index (SHA) by first forming the fourfold contingency table counting the number of
pairs of objects that were placed in the same cluster in both clusterings, in the
same cluster in one clustering but in different clusters in the other clustering, and
in different clusters in both, and then computing Cohen’s kappa (SCohen) on this
fourfold table.

2.3 Comparing two judges

A problem equivalent to that of comparing two partitions of two cluster algorithms
may be encountered in psychology. In contrast to the case in Section 2.1, the
categories are not defined in advance and the number of categories used by each
psychologist may be different. Measures of agreement among judges in classifying
answers to open-ended questions, or psychologists rating people, have been described
by Brennan and Light (1974), Montgomery and Crittenden (1977), Hubert (1977),
Janson and Vegelius (1982), and Popping (1983a). All these authors consider pairs
of people and established for all N pairs formed from the m answers for both judges
whether or not they were assigned to the same category. A comparison of the various
measures is presented in Popping (1984).

We adopt the notation from Section 2.2, where quantities a, b, c, and d denote
the four different types of pairs. Brennan and Light (1974) proposed the measure

SBL =
a + d

a + b + c + d

which equals the Rand index SRand and the simple matching coefficient SSM. Mont-
gomery and Crittenden (1977) proposed the measure

SMC =
ad− bc

ad + bc

which equals coefficient SYule1 by Yule (1900). Hubert (1977) proposed a measure
referred to as gamma, which is given by

SHub =
a− b− c + d

a + b + c + d
.



2.4. Quantitative variables 25

Coefficient SHub is equal to a coefficient proposed by Hamann (1961) SHam and the
G−index by Holley and Guilford (1964).

A discussion of properties of SHub and some adjustments to coefficient SHub can
be found in Janson and Vegelius (1982). As an alternative to SHub these authors
present a measure called the J−index. Popping (1983a, 1983b) proposed a measure
based on the dot-product referred to as D2.

2.4 Quantitative variables

Let xj and xk be two column vectors of length n with positive entries, for example,
counts or frequencies. In this section some examples of similarity coefficients formu-
lated in terms of the elements of xj and xk are considered. Let xij denote the ith
element of xj, and let xik denote the ith element of xk. In the terminology of Zegers
(1986, p. 58) the measures considered in this section are coefficients for quantitative
variables that consist of raw scores. These measures are either similarity functions
or functions of the dissimilarity/distance type. Alternatively, one may formulate
resemblance measures for normed raw scores, deviation scores, rank order scores,
or combination of the previous scores. The reader is referred to Zegers (1986) and
Gower and Legendre (1986) for more rigorous exposés on association coefficients for
quantitative data.

The complement of the simple matching coefficient 1 − SSM is a special case of
the city-block or Manhattan distance

1

n

n∑
i=1

|xij − xik|.

The Jaccard (1912) coefficient

SJac =
a

a + b + c

is obtained if in functions∑n
i=1 xijxik∑n

i=1 x2
ij +

∑n
i=1 x2

ik −
∑n

i=1 xijxik

or

∑n
i=1 min(xij, xik)∑n
i=1 max(xij, xik)

xij and xik take on values 1 and 0 only. The complement of the Jaccard coefficient
SJac is a special case of∑n

i=1 |xij − xik|∑n
i=1 max(xij, xik)

or

∑n
i=1(xij − xik)

2∑n
i=1 max(xij, xik)

.

A member of a more general family of coefficients considered in Zegers and Ten
Berge (1985) is given by

2xT
j xk

xT
j xj + xT

k xk

=
2
∑n

i=1 xijxik∑n
i=1 x2

ij +
∑n

i=1 x2
ik

.
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The latter coefficient is called the coefficient of identity and becomes SGleas if xij

and xik take on values 1 and 0 only.
The measure∑n

i=1 |xij − xik|∑n
i=1(xij + xik)

becomes 1− SGleas =
b + c

2a + b + c

if xij and xik take on values 1 and 0 only, which is the complement of SGleas (Gower
and Legendre, 1986, p. 27). Coefficient

xT
j xk

(xT
j xj)1/2(xT

k xk)1/2

is referred to as the coefficient of proportionality in Zegers and Ten Berge (1985),
commonly known as Tucker’s congruence coefficient (Tucker, 1951), also proposed
by Burt (1948). The congruence coefficient for binary variables is given by SDK =
a/
√

pjpk. Three similarity coefficients, namely

SKul =
1

2

(
a

a + b
+

a

a + c

)
SGleas =

2a

pj + pk

and SSim =
a

min(pj, pk)

are sometimes attributed to Kulczyński (1927), Czekanowski (1932) and Simpson
(1943). These authors proposed the coefficients for quantitative variables, which are
given respectively by

SKul =
1

2

[∑n
i=1 min(xij, xik)∑n

i=1 xij

+

∑n
i=1 min(xij, xik)∑n

i=1 xik

]
SCze =

2
∑n

i=1 min(xij, xik)∑n
i=1(xij + xik)

and SSim = max

[∑n
i=1 min(xij, xik)∑n

i=1 xij

,

∑n
i=1 min(xij, xik)∑n

i=1 xik

]
.

Sepkoski (1974) argues that, although similarity coefficients have been widely em-
ployed in cluster analysis, their use has been, for the most part, restricted to binary
data. This author proposed quantified coefficients using basic rules like

a =
1

n

n∑
i=1

min(xij, xik)

b + c =
1

n

n∑
i=1

[max(xij, xik)−min(xij, xik)]

pj =
1

n

n∑
i=1

xij and pk =
1

n

n∑
i=1

xik.
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The similarity coefficient used by Robinson (1951) can be written as

SRob = 1− 1

2

n∑
i=1

∣∣∣∣ xij∑n
i=1 xij

− xik∑n
i=1 xik

∣∣∣∣ .
When the data are binary, SRob becomes

SBB =
ajk

max(pj, pk)
(Braun-Blanquet, 1932).

Proposition 2.1. If SRob is applied to binary (1/0) data, then SRob = SBB.
Proof: For pj ≥ pk, SRob can be written as

SRob = 1− 1

2

(
ajk

pk

− ajk

pj

+
pj − ajk

pj

+
pk − ajk

pk

)
=

1

2
− pj − 2ajk

2pj

=
ajk

pj

.

Furthermore, for pj ≤ pk, SRob can be written as

SRob = 1− 1

2

(
ajk

pj

− ajk

pk

+
pj − ajk

pj

+
pk − ajk

pk

)
=

ajk

pk

.

This completes the proof. �

2.5 Measures from set theory

Similarity and distance functions can also be defined on sets of arbitrary elements.
The following notation is used. Let a set be denoted by A and let A denote its
complement. Symbol ∪ denotes union or set sum, and A ∪ B is the set containing
everything in either A or B or both. Also, ∩ denotes intersection or set product,
and A ∩ B is the set containing just those elements common to both A and B.
Furthermore, let |A| denote the cardinality of set A, which is a measure of the
number of elements of the set. Some examples of similarity coefficients for two sets
A and B that are frequently used, are

2|A ∩B|
|A|+ |B|

Dice coefficient

|A ∩B|
|A ∪B|

Jaccard coefficient

|A ∩B|
|A|1/2|B|1/2

Cosine coefficient

and
|A ∩B|

min(|A|, |B|)
Overlap coefficient.

Special cases of these measures are the respective similarity coefficients

SGleas =
2a

p1 + p2

, SJac =
a

a + b + c
, SDK =

a
√

p1p2

and SSim =
a

min(p1, p2)
.
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Restle (1959) studied the symmetric set difference

|(A ∪B) ∩ (A ∩B)|

which is a more general form of the complement of the simple matching coefficient,
1 − SSM. Boorman and Arabie (1972) discuss several set-theoretical measures, in-
cluding the minimum lattice-moves distance

|A|+ |B| − 2|A ∩B|

which is equivalent to the above measure studied by Restle (1959), and the minimum
set-moves distance which may be approximated by

|A ∩B| −min(|A|, |B|).

2.6 Epilogue

In this second chapter, various general formulas from different domains of data anal-
ysis were considered. Some of the similarity coefficients for binary data considered
throughout this thesis are special cases of these formulas. The chapter puts the
coefficients for binary variables in a broader perspective. Furthermore, the more
general formulas provide some ideas for possible generalizations of various results
in this thesis. The thesis by Zegers (1986) is a good source for the vast amount of
different contexts in which similarity coefficients may be considered.

It was shown that several similarity measures used in cluster analysis for the
matching table of two clustering algorithms are in fact equivalent to similarity coef-
ficients defined on the four dependent quantities from the 2 × 2 contingency table,
after a simple recoding. Two well-known measures are the Rand index and the
Hubert-Arabie adjusted Rand index, given respectively by

SRand = 1− P + Q− 2T

N
and SHA =

2(NT − PQ)

N(P + Q)− 2PQ
.

Both measures are calculated using the information in the matching of two cluster-
ings on the same data points. Coefficient SRand was also proposed by Brennan and
Light (1974) for comparing ratings by two psychologists. If the Rand index SRand

is formulated in terms of the quantities a, b, c, and d, it is equivalent to the simple
matching coefficient SSM. Furthermore, if the Hubert-Arabie adjusted Rand index
SHA is formulated in terms of the quantities a, b, c, and d, it is equivalent to Cohen’s
kappa for two categories (SCohen).

Interestingly, both Cohen (1960) and Hubert and Arabie (1985) proposed a sim-
ilarity measure that has been, or still is, the preferred coefficient, or at least the
best-known coefficient, in their particular domain of data analysis (respectively in-
terrater reliability and cluster analysis). Moreover, both measures were proposed
in response to, or as alternative to, earlier coefficients (Scott, 1955, in the case of
Cohen, 1960; Morey and Agresti, 1984, in the case of Hubert and Arabie, 1985).



CHAPTER 3

Coe�cient families

In this chapter it is shown how various similarity coefficients may be related. Simi-
larity measures may be members of some sort of parameter family or can be related
in the sense that several coefficients have a similar form. Various well-known coef-
ficients belong to parameter families of which all members are fractions, linear in
both numerator and denominator. A distinction is made between coefficients that
do include the quantity d (representing negative matches), like

SSM =
a + d

a + b + c + d
and SHam =

a− b− c + d

a + b + c + d
(Hamann, 1961)

and those that do not include the quantity d, like

SJac =
a

p1 + p2 − a
and SGleas =

2a

p1 + p2

.

A variety of similarity coefficients can be defined as some sort of mean value of two
different quantities. For example, resemblance measures SGleas and

SDK =
a

√
p1p2

and SKul =
a(p1 + p2)

2p1p2

are respectively the harmonic, geometric and arithmetic mean of the conditional
probabilities p−1

1 a and p−1
2 a.

Different types of coefficients may be obtained by considering abstractions of
these Pythagorean means. One type of generalized mean that is considered in this
chapter is the so-called power mean.

29
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A very general family of coefficients is the class of all functions of the form λ+µa,
where a is the proportion of 1s that two variables share in the same positions, and
λ and µ are functions of p1 and p2 only. This family includes coefficients SGleas,
SDK, and SKul and various other measures. Properties of this family with respect to
correction for similarity due to chance, are considered in Chapter 4.

There are some advantages to studying families of coefficients instead of individ-
ual coefficients. First of all, from the family formulation it is often apparent how
different members are related. Coefficient properties like bounds are easily investi-
gated using parameter families. Another advantage of studying parameter families
instead of individual coefficients, is that often more general results can be obtained.
As an example, results on linearity given in Hubálek (1982) for individual coefficients
are here studied for families of coefficients.

3.1 Parameter families

Gower and Legendre (1986, p. 13) define two parameter families of which all mem-
bers are linear in both numerator and denominator. They make a distinction be-
tween coefficients that do and do not include the quantity d. The first family for
presence/absence data is given by

SGL1(θ) =
a

a + θ(b + c)
=

a

θ(p1 + p2) + (1− 2θ)a
.

where θ > 0 to avoid negative values. Members of SGL1(θ) are

SGL1(θ = 1) = SJac =
a

p1 + p2 − a

SGL1(θ = 1/2) = SGleas =
2a

p1 + p2

SGL1(θ = 2) = SSS1 =
a

a + 2(b + c)
(Sokal and Sneath, 1963).

Members with 0 < θ < 1 give more weight to a. With presence/absence data this is
regularly done in the case that there are only a few positive matches relatively to the
number of mismatches, that is, a is much smaller than (b + c). Similar arguments
can be used for the opposite case and θ > 1.

All members of SGL1(θ) are bounded by 0 and 1, that is, 0 ≤ SGL1(θ) ≤ 1. In
addition, members are bounds of each other:

0 ≤ SSS1 ≤ SJac ≤ SGleas ≤ 1

or more generally

SGL1(θ1) ≤ SGL1(θ2) for θ1 > θ2 > 0.
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The formulation of SGL1(θ) (and that of SGL2(θ) below) is closely related to the
concept of global order equivalence (Sibson, 1972; Batagelj and Bren, 1995). Let
S(a, b, c, d) denote a function of the quantities a, b, c, and d. Two coefficients S and
S∗ are said to be globally order equivalent if

S(a1, b1, c1, d1) > S(a2, b2, c2, d2)

if and only if S∗(a1, b1, c1, d1) > S∗(a2, b2, c2, d2).

If two coefficients are globally order equivalent, they are interchangeable with re-
spect to an analysis method that is invariant under ordinal transformations (see, for
example, Gower, 1986; Batagelj and Bren, 1995).

Theorem 3.1. Two members of SGL1(θ) are globally order equivalent.
Proof: For an arbitrary ordinal comparison with respect to SGL1(θ), we have

a1

a1 + θ(b1 + c1)
>

a2

a2 + θ(b2 + c2)

a1a2 + a1θ(b2 + c2) > a1a2 + a2θ(b1 + c1)
a1

b1 + c1

>
a2

b2 + c2

.

Since an ordinal comparison with respect to SGL1(θ) does not depend on the value
of θ, any two members of SGL1(θ) are globally order equivalent. �

Janson and Vegelius (1981) pointed out an interesting relationship between various
members of SGL1(θ). With respect to SGleas, SJac, and SSS1, we have

SJac =
SGleas

2− SGleas

and SSS1 =
SJac

2− SJac

.

In general we have the following result.

Proposition 3.1. It holds that

SGL1(2θ) =
SGL1(θ)

2− SGL1(θ)
.

Proof: Define x = a + θ(b + c). Then

SGL1(θ)

2− SGL1(θ)
=

x−1a

x−1(2x− a)
= SGL1(2θ). �
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A parameter family closely related to SGL1(θ) may be obtained using the trans-
formation 2S − 1, that is,

SGL3(θ) =
2a

a + θ(b + c)
− 1 =

a− θ(b + c)

a + θ(b + c)

with θ > 0. A member of SGL3(θ) is

SGL3(θ = 1/2) = SNS1 =
2a− b− c

2a + b + c
(No source).

Members with 0 < θ < 1 give more weight to a. All members of SGL3(θ) are
bounded by −1 and 1, that is, −1 ≤ SGL3(θ) ≤ 1. Parameter family SGL3(θ) is a
transformation that preserves the scale of SGL1(θ) but uses a different range. The
value zero for SGL3(θ) is equal to the value 0.5 for SGL1(θ) for fixed θ. For example,
we have

SGleas =
2a

2a + b + c
= 0.5 if and only if 2a = b + c

and

SNS1 =
2a− b− c

2a + b + c
= 0 if and only if 2a = b + c.

The zero value case of coefficient SNS1 is not the same as the zero value case for
coefficients with the covariance ad − bc in the numerator. Two variables are not
necessarily statistically independent if SNS1 = 0 (Section 1.3). The formulation of
SGL3(θ) is not completely arbitrary, because it is related to SGL1(θ) by the concept
of global order equivalence.

Proposition 3.2. Two members of SGL3(θ) are globally order equivalent.
Proof: For an arbitrary ordinal comparison with respect to SGL3(θ), we have

a1 − θ(b1 + c1)

a1 + θ(b1 + c1)
>

a2 − θ(b2 + c2)

a2 + θ(b2 + c2)
if and only if

a1

b1 + c1

>
a2

b2 + c2

.

Since an ordinal comparison with respect to SGL3(θ) does not depend on the value
of θ, any two members of SGL3(θ) are globally order equivalent. �

Corollary 3.1 Members of SGL1(θ) and SGL3(θ) are globally order equivalent.

The second family in Gower and Legendre (1986, p. 13), the counterpart of
SGL1(θ) for nominal data, is given by

SGL2(θ) =
a + d

a + θ(b + c) + d
=

1 + 2a− p1 − p2

1 + (θ − 1)(p1 + p2) + 2a(1− θ)

where θ > 0 to avoid negative values.
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Members of SGL2(θ) are

SGL2(θ = 1) = SSM =
a + d

a + b + c + d
= a + d

SGL2(θ = 1/2) = SSS2 =
2(a + d)

2a + b + c + 2d
=

2(a + d)

1 + a + d

(Sokal and Sneath, 1963)

SGL2(θ = 2) = SRT =
a + d

a + 2(b + c) + d
=

a + d

1 + b + c

(Rogers and Tanimoto, 1960).

Similar to SGL1(θ), the members of SGL2(θ) are bounded by 0 and 1, that is, 0 ≤
SGL2(θ) ≤ 1. Also, members with 0 < θ < 1 give more weight to (a + d).

Theorem 3.2. Two members of SGL2(θ) are globally order equivalent.
Proof: For an arbitrary ordinal comparison with respect to SGL2(θ), we have

a1 + d1

a1 + θ(b1 + c1) + d1

>
a2 + d2

a2 + θ(b2 + c2) + d2

a1 + d1

b1 + c1

>
a2 + d2

b2 + c2

.

Since an ordinal comparison with respect to SGL2(θ) does not depend on the value
of θ, any two members of SGL2(θ) are globally order equivalent. �

Families SGL1(θ) and SGL2(θ) are related in the following way.

Proposition 3.3. It holds that SGL2(θ) ≥ SGL1(θ).
Proof: SGL2(θ) ≥ SGL1(θ) if and only if θd(b + c) ≥ 0. �

Similar to SGleas, SJac, and SSS1, we have with respect to SSS2, SSM, and SRT

SSM =
SSS2

2− SSS2

and SRT =
SSM

2− SSM

.

In general we have the following result.

Proposition 3.4. It holds that

SGL2(2θ) =
SGL2(θ)

2− SGL2(θ)
.

Proof: Define x = a + θ(b + c) + d. Then

SGL2(θ)

2− SGL2(θ)
=

x−1(a + d)

x−1(2x− a− d)
= SGL1(2θ). �
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A parameter family closely related to SGL2(θ) may be obtained using the trans-
formation 2S − 1,

SGL4(θ) =
2(a + d)

a + θ(b + c) + d
− 1 =

a− θ(b + c) + d

a + θ(b + c) + d

with θ > 0. A member of SGL4(θ) is

SGL4(θ = 1) = SHam =
a− b− c + d

a + b + c + d
= a− b− c + d (Hamann, 1961).

Members with 0 < θ < 1 give more weight to (a + d). We have

SSM = a + d = 0.5 if and only if a + d = b + c

and
SHam = a− b− c + d = 0 if and only if a + d = b + c.

The zero value case of coefficient SHam is not the same as the zero value case for
coefficients with the covariance ad− bc in the numerator (Section 1.3), nor the zero
value case of SNS1. Two variables are not necessarily independent if SHam = 0. The
formulation of SGL4(θ) is not completely arbitrary, since it is related to SGL2(θ) by
the concept of global order equivalence.

Proposition 3.5. Two members of SGL4(θ) are globally order equivalent.
Proof: For an arbitrary ordinal comparison with respect to SGL4(θ), we have

a1 − θ(b1 + c1) + d1

a1 + θ(b1 + c1) + d1

>
a2 − θ(b2 + c2) + d2

a2 + θ(b2 + c2) + d2

a1 + d1

b1 + c1

>
a2 + d2

b2 + c2

.

Since an ordinal comparison with respect to SGL4(θ) does not depend on the value
of θ, any two members of SGL4(θ) are globally order equivalent. �

Corollary 3.2 Members of SGL2(θ) and SGL4(θ) are globally order equivalent.



3.2. Power means 35

3.2 Power means

There are several functions that may reflect the mean value of two real positive
values x and y. The harmonic, geometric and arithmetic means, also known as the
Pythagorean means, are given by respectively

2

x−1 + y−1
,
√

xy and
x + y

2
.

Several coefficients can be expressed in terms of these Pythagorean means. For
example, consider the quantities

SDice1 =
a

p1

and SDice2 =
a

p2

(Dice, 1945; Post and Snijders, 1993). The harmonic, geometric and arithmetic
means of the quantities SDice1 and SDice2 are respectively

SGleas =
2a

p1 + p2

, SDK =
a

√
p1p2

and SKul =
1

2

(
a

p1

+
a

p2

)
.

Different types of coefficients may be obtained by considering abstractions of the
Pythagorean means. One type of so-called generalized means is the power mean,
sometimes referred to as the Hölder mean (see, for example, Bullen, 2003, Chapter
3). Let θ be a real value. The power mean Mθ(x, y) of x and y is then given by

Mθ(x, y) =

(
xθ + yθ

2

)1/θ

.

Special cases of Mθ(x, y) are

lim
θ→−∞

Mθ(x, y) = min(x, y) (minimum)

M−1(x, y) =
2

x−1 + y−1
(harmonic mean)

lim
θ→0

Mθ(x, y) =
√

xy (geometric mean)

M1(x, y) =
x + y

2
(arithmetic mean)

lim
θ→∞

Mθ(x, y) = max(x, y) (maximum).

0Parts of this section are to appear in Warrens, M.J. (in press), Bounds of resemblance measures
for binary (presence/absence) variables, Journal of Classification.
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A variety of coefficients turn out to be special cases of a power mean. In terms of
SDice1 and SDice2 we characterize the following coefficients from the literature.

SBB =
a

max(p1, p2)
(minimum; Braun-Blanquet, 1932)

SGleas =
2a

p1 + p2

(harmonic mean)

SDK =
a

√
p1p2

(geometric mean; Driver and Kroeber, 1932)

SKul =
1

2

(
a

p1

+
a

p2

)
(arithmetic mean; Kulczyński, 1927)

SSim =
a

min(p1, p2)
(maximum; Simpson, 1943).

The product of the two quantities (or the square of the geometric mean SDK) is not
a special case of a power mean. It is given by

SSorg =
a2

p1p2

(Sorgenfrei, 1958; Cheetham and Hazel, p. 1131).

Coefficient SSorg is sometimes referred to as the correlation ratio. The various coeffi-
cients for presence/absence data (without the quantity d) are related in the following
way.

Proposition 3.6. It holds that

0 ≤ SSorg

(i)

≤ SJac

(ii)

≤ SBB ≤ SGleas ≤ SDK ≤ SKul ≤ SSim ≤ 1.

Proof: Inequality (i) holds if and only if p1p2 ≥ a(a + b + c) if and only if bc ≥ 0.
Inequality (ii) holds if and only if b + c ≥ max(b, c). The remaining inequalities
follow from a property of a power mean:

Mθ1

(
a

p1

,
a

p2

)
≤ Mθ2

(
a

p1

,
a

p2

)
for θ1 < θ2. �

As a second example of a power mean, consider the quantities

SCole1 =
ad− bc

p1q2

and SCole2 =
ad− bc

p2q1

(Cole, 1949).

The quantity (ad − bc) is known as the covariance between two binary vectors. If
p1 ≤ p2 then p1q2 is the maximum value of the covariance (ad−bc) given the marginal
proportions. Note that the covariance may become negative and strictly speaking
we have defined the power mean for two real positive values only. However, as it
turns out, the power mean of two real negative values has very similar properties as
the power mean of two positive values. As long as the two values have the same sign,
the distinction between positive and negative values appears not to be important.
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With respect to SCole1 and SCole2 we have the special cases

SCohen =
2(ad− bc)

p1q2 + p2q1

(harmonic mean)

SPhi =
ad− bc
√

p1p2q1q2

(geometric mean)

SLoe =
ad− bc

min(p1q2, p2q1)
(maximum; Loevinger, 1947, 1948).

Coefficient SLoe is attributed to Loevinger (1947, 1948) by Mokken (1971) and Si-
jtsma and Molenaar (2002). However, Krippendorff (1987) reports Benini (1901)
as probably the first to put forward this coefficient. Some new properties of this
coefficient are considered in Chapter 5. Similar to Proposition 3.6, the next result
follows from a property of power means, more specifically the harmonic-geometric
mean inequality.

Proposition 3.7. It holds that

0 ≤ |SCohen| ≤ |SPhi| ≤ |SLoe| ≤ 1.

3.3 A general family

Albatineh et al. (2006) define yet another way on how various coefficients can be
related. These authors study correction for chance with respect to a family L of
the form λ + µx. Coefficients in the L family are linear functions of the quantity
x, and the expectation of S = λ + µx depends on the quantity x only, that is,
E(S) = λ + µE(x). Properties of the L family with respect to correction for chance
are considered in the next chapter. For the moment it will be shown that L defines
a very general family.

For example, coefficients in Section 2.1 belong to L family. Using x = Po we
have

SSM = Po → λ = 0 and µ = 1

SScott → λ =
−E(Po)Scott

1− E(Po)Scott

and µ =
1

1− E(Po)Scott

and SCohen → λ =
−E(Po)Cohen

1−E (Po)Cohen

and µ =
1

1− E(Po)Cohen

.

As a second example, take x = a, the proportion of 1s that two binary variables
share in the same positions, and λ and µ are functions of p1 and p2 only. Then we
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have

SSM = a + d

= 1 + 2a− p1 − p2 → λ = 1− p1 − p2, µ = 2

SHam = a− b− c + d

= 2a + 1− 2p1 − 2p2 → λ = 1− 2p1 − 2p2, µ = 2

and SGleas =
2a

p1 + p2

→ λ = 0, µ =
2

p1 + p2

.

In Proposition 3.8 it is shown that the power mean of the quantities SDice1 and
SDice2, and the power mean of SCole1 and SCole2 are in the L family.

Proposition 3.8. Power means

Mθ

(
a

p1

,
a

p2

)
and Mθ

(
ad− bc

p1q2

,
ad− bc

p2q1

)
are members of the L family.
Proof:

Mθ

(
a

p1

,
a

p2

)
=

[
aθ(pθ

1 + pθ
2)

2pθ
1p

θ
2

]1/θ

=
a

p1p2

[
pθ

1 + pθ
2

2

]1/θ

.

Thus, for

Mθ

(
a

p1

,
a

p2

)
we have µ =

1

p1p2

(
pθ

1 + pθ
2

2

)1/θ

.

Similarly, for

Mθ

(
ad− bc

p1q2

,
ad− bc

p2q1

)
we have

µ =
1

p1p2q1q2

[
(p1q2)

θ + (p2q1)
θ

2

]1/θ

and λ = − 1

q1q2

[
(p1q2)

θ + (p2q1)
θ

2

]1/θ

because ad− bc = a− p1p2. �

Let f(p1, p2) be a function of the marginals p1 and p2. Then, all coefficients of
the form

a

f(p1, p2)
or

ad− bc

f(p1, p2)
=

a− p1p2

f(p1, p2)

belong to the L family. Examples are

SRR =
a

a + b + c + d

SMP =
2(ad− bc)

p1q1 + p2q2

(Maxwell and Pilliner, 1968)

and SFleiss =
(ad− bc)(p1q1 + p2q2)

2p1q2p2q1

(Fleiss, 1975).
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Moreover, if two coefficients S1 = λ1 + µ1a and S2 = λ2 + µ2a are in L, then the
arithmetic mean

S1 + S2

2
=

λ1 + µ1a + λ2 + µ2a

2
=

λ1 + λ2

2
+

a(µ1 + µ2)

2

is also in L. Finally, if S1 = λ + µa is in the L family, then

S2 = 2S1 − 1 = 2λ− 1 + 2µa

also belongs to L.

3.4 Linearity

Instead of proportions, let a, b, c, and d be the number of 1s and 0s that two binary
variables may share or not share in the same positions. Furthermore, let S(a) be
short for S(a, b, c, d) (S is a function of quantities a, b, c and d) and let S(a + 1) be
short for S(a + 1, b − 1, c − 1, d + 1). Hubálek (1982) gives the following definition
of linearity. A function S(a) is called linear if

S(a + 1)− S(a) = S(a + 2)− S(a + 1),

or equivalently, if

2× S(a + 1) = S(a + 2) + S(a).

Using this definition of linearity, non-linearity can be defined in two ways. A function
S(a) is called convex if 2×S(a + 1) < S(a + 2) + S(a); S(a, b, c, d) is called concave
if 2× S(a + 1) > S(a + 2) + S(a).

Using numerical examples, Hubálek (1982) determined for various coefficients
which ones are linear and which are non-linear. In this section the above definition of
linearity is studied for several parameter families, instead of individual coefficients.
The result below concerns coefficients that are rational functions, linear in both
numerator and denominator.

Let x = f(a, d) denote a linear function of a and d, and let y = g(b, c) denote a
linear function of b and c. Furthermore, let

u =

{
1 if x is a function of a or d only

2 if x is a function of both a and d

and let

v =

{
1 if y is a function of b or c only

2 if y is a function of both b and c.
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Proposition 3.9. Parameter families of the form

(i) S(x, y) =
x

x + y

(
with S(x + u, y − v) =

x + u

x + u + y − v

)
and

(ii) S(x, y) =
x− y

x + y

(
with S(x + u, y − v) =

x + u− y + v

x + u + y − v

)
are convex for u < v, linear for u = v, and concave for u > v.
Proof: We consider (i) first. Using (i) in 2× S(a + 1) ≤ S(a + 2) + S(a) we obtain

2(x + u)

x + u + y − v
≤ x + 2u

x + 2u + y − 2v
+

x

x + y
. (3.1)

Bringing all fractions under the same denominator, (3.1) becomes

(x + y)(2x + 2u)(x + 2u + y − 2v) ≤ (x + y)(x + 2u)(x + u + y − v)

+ x(x + u + y − v)(x + 2u + y − 2v)

which, after some algebra, equals

(x + y)(x2 + 3ux + xy − 3vx + 2u2 − 2uv) ≤ x(x + u + y − v)(x + 2u + y − 2v)

which, after some more algebra, can be written as u2y + uvx ≤ uvy + v2x if and
only if u ≤ v.

Next, we consider (ii). Parameter families (i) and (ii) are related by

x− y

x + y
=

2x

x + y
− 1. (3.2)

Using (3.2) in 2× S(a + 1) ≤ S(a + 2) + S(a) we obtain

4(x + u)

x + u + y − v
− 2 ≤ 2(x + 2u)

x + 2u + y − 2v
+

2x

x + y
− 2

which equals (3.1). �

Corollary 3.3. Parameter families

SGL1(θ) =
a

a + θ(b + c)
and SGL3(θ) =

a− θ(b + c)

a + θ(b + c)

are convex for θ > 1
2
, linear for θ = 1

2
, and concave for 0 < θ < 1

2
.

Proof: With respect to these families we have x = a and y = θ(b + c), and hence
u = 1 and v = 2θ. The family is then convex if 1 < 2θ. �

Corollary 3.4. Parameter families

SGL2(θ) =
a + d

a + θ(b + c) + d
and SGL4(θ) =

a− θ(b + c) + d

a + θ(b + c) + d

are convex for θ > 1, linear for θ = 1, and concave for 0 < θ < 1.
Proof: For these families u = 2 and v = 2θ. The families are then convex if 2 < 2θ.
�
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3.5 Epilogue

In this chapter it was shown how various similarity coefficients may be related.
Similarity measures may be members of some sort of parameter family or can be
related in the sense that several coefficients have a similar form. Various well-known
coefficients belong to parameter families of which all members are rational functions,
linear in both numerator and denominator. Some coefficients are members of more
than one family. As an example, consider

SGleas =
2a

p1 + p2

.

Coefficient SGleas is the harmonic mean of

SDice1 =
a

p1

and SDice2 =
a

p2

and is therefore a special case of a power mean. In addition, SGleas is a member
(θ = 1/2) of the family given by

SGL1(θ) =
a

a + θ(b + c)
.

Due to this double membership, SGleas is a key coefficient in Chapter 16, where
various multivariate formulations of coefficients are presented. In terms of linearity
as defined by Hubálek (1982), SGleas is the linear coefficient in family SGL1(θ). For
other values than θ = 1/2 we obtain either convex or concave coefficients. With
respect to the linearity,

SSM =
a + d

a + b + c + d
= a + d

is the linear coefficient in the second family of rational functions, SGL2(θ). Similar
to SGleas, SSM can be introduced as a special case of a power mean. For example,
SSM is equal to the harmonic mean of the quantities

a + d

p1 + q2

and
a + d

p2 + q1

.

Both SGleas and SSM can be written as linear functions of the quantity a and
are therefore members in the L family. Some of the consequences of this property
are studied in the next chapter: SGleas and SSM become equivalent after correction
for chance. Moreover given a certain expectation of the quantity a, SGleas and SSM

become

SCohen =
2(ad− bc)

p1q2 + p2q1

(Cohen’s kappa)

after correction for similarity due to chance.
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There are some properties in which SGleas and SSM do differ. With respect to
indeterminacy, SGleas has more critical cases compared to SSM. Moreover, in Chapter
10 it is shown that 1−SSM is metric, that is, 1−SSM is a function that satisfies the
triangle inequality, whereas the function 1− SGleas does not.

Instead of using the power mean, new coefficients may be created by considering
other type of means (Bullen, 2003). For example, the Heronian mean of

SDice1 =
a

p1

and SDice2 =
a

p2

is given by
1

3

(
a

p1

+
a

√
p1p2

+
a

p2

)
whereas the Heinz mean is given by(

a

p1

)u(
a

p2

)1−u

+

(
a

p1

)1−u(
a

p2

)u

with 0 ≤ u ≤ 1

2
.

New coefficients can also be created by including the quantities

d

b + d
=

d

q2

and
d

c + d
=

d

q1

.

For example, the function
4ad

4ad + (a + d)(b + c)

is the harmonic mean of conditional probabilities

a

p1

,
a

p2

,
d

q1

and
d

q2

.



CHAPTER 4

Correction for chance agreement

When comparing two variables some degree of similarity or agreement may be ex-
pected due to chance alone, except for the most extreme circumstances (either
p1 = q2 = 0 or p2 = q1 = 0). Different opinions have been stated on the need
to incorporate chance similarity. Goodman and Kruskal (1954, p. 758) contend
that similarity due to chance in the measurement of resemblance need not be of
much concern, since the observed degree of similarity may usually be assumed to
be in excess of chance. In contrast, Zegers (1986) and Popping (1983a) find it quite
natural that in absence of association between two variables, the value of a similarity
coefficient is zero. Whether or not correction for chance is desirable, depends on the
domain or field of data analysis that is considered.

Consider the situation where two variables are the ratings of m people by two
observers on two mutually exclusive categories, for example, the observers rate vari-
ous persons on the presence or absence of a certain trait. In this field, Scott (1955),
Cohen (1960), Fleiss (1975), Krippendorff (1987), and Zegers (1986), among others,
have proposed measures that are corrected for chance. The best-known example
is perhaps the kappa-statistic (Cohen, 1960; SCohen). Alternatively, the quantities
a, b, c, and d can be the result of a comparison between two clustering methods
(Section 2.2). In cluster analysis it is general consensus that the popular coefficient
SSM, called the Rand index, should be corrected for chance agreement (Morey and
Agresti, 1984; Hubert and Arabie, 1985), although there is some debate on what
expectation is appropriate (Steinley, 2004; Albatineh et al., 2006).

43



44 Correction for chance agreement

With respect to correction for chance, various authors have reported results on
equivalence of coefficients after correction for similarity due to chance (Fleiss, 1975;
Zegers, 1986). Albatineh et al. (2006) studied correction for chance for a family L
of coefficients of the form S = λ + µx (Section 3.3). These authors appear to be
the first to study correction for chance irrespective of the used expectation E(S).
The present chapter continues and extends this general approach. Furthermore,
the results in this chapter unify various findings in Fleiss (1975), Zegers (1986) and
Krippendorff (1987).

Clearly, not all coefficients studied in this thesis have been proposed for, or
are used in, data-analytic circumstances where it is desirable to incorporate chance
similarity. This practical limitation is however ignored in this chapter. Correction for
chance is studied for a general family of coefficients, while ignoring the data-analytic
context in which the individual members are usually applied. Using the powerful
result from Albatineh et al. (2006), some additional properties of coefficients of the
form λ+µx with respect to correction for chance are presented. For both uncorrected
and corrected similarity coefficients properties are derived. Some specific results are
obtained by considering different expectations.

4.1 Some equivalences

A corrected similarity coefficient (denoted CS) has, after elimination of the effect
of similarity due to chance, a form (2.1)

CS =
S − E(S)

1− E(S)
(4.1)

where S is the similarity coefficient, E(S) the similarity coefficient under chance,
and 1 embodies the maximum value of S regardless of the marginal proportions.
Most coefficients in this thesis have maximum value unity. Albatineh et al. (2006)
showed that correction (4.1) is relatively simple for members in L family.

Theorem 4.1 [Albatineh et al., 2006, p. 309]. Two members in the L family
become identical after correction (4.1) if they have the same ratio

1− λ

µ
. (4.2)

Proof: E(S) = E(λ + µx) = λ + µE(x) and consequently the CS becomes

CS =
S − E(S)

1− E(S)
=

λ + µx− λ− µE(x)

1− λ− µE(x)
=

x− E(x)

µ−1(1− λ)− E(x)
. (4.3)

�
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Thus, the value of a similarity coefficient after correction for chance depends on
ratio (4.2), where λ and µ characterize the particular measure within the L family.
Two members in L become identical after correction (4.1) if they have the same
ratio (4.2).

The following corollary concerns the coefficients from Section 2.1 that are linear
in the observed proportion of agreement Po.

Corollary 4.1. Coefficients

SSM = Po

SScott =
Po − E(Po)Scott

1− E(Po)Scott

and SCohen =
Po − E(Po)Cohen

1− E(Po)Cohen

become equivalent after correction (4.1).
Proof: By Theorem 4.1 it suffices to look at ratio (4.2). Using the formulas of λ and
µ corresponding to each coefficient (see Section 3.3), ratio (4.2)

1− λ

µ
= 1 (4.4)

for all three coefficients. �

The next corollary extends Corollary 4.2 (i) in Albatineh et al. (2006) from three
measures (SSM, SHam, SGleas) to ten coefficients. All ten coefficients are linear in the
quantity a.
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Corollary 4.2. Coefficients

SSM = 1 + 2a− p1 − p2

SHam = 1 + 2a− 2p1 − 2p2

SGleas =
2a

p1 + p2

SGK =
2 min(a, d)− b− c

2 min(a, d) + b + c
(Goodman and Kruskal, 1954)

SNS1 =
2a− b− c

2a + b + c
=

4a− 2p1 + 2p2

p1 + p2

(no source)

SNS2 =
2d

b + c + 2d
=

2(a + q1 + q2 − 1)

q1 + q2

(no source)

SNS3 =
2d− b− c

b + c + 2d
=

4a + 3q1 + 3q2 − 4

q1 + q2

(no source)

SRG =
a

p1 + p2

+
a + q1 + q2 − 1

q1 + q2

(Rogot and Goldberg, 1966)

SScott =
4a− (p1 + p2)

2

4− (p1 + p2)2

SCohen =
2(a− p1p2)

p1q2 + p2q1

become equivalent after correction (4.1).
Proof: By Theorem 4.1 it suffices to look at ratio (4.2). Using the formulas of λ and
µ corresponding to each coefficient, ratio (4.2)

1− λ

µ
=

p1 + p2

2
(4.5)

for all ten coefficients. �

Note that ratio (4.5) is the arithmetic mean of marginal probabilities p1 and p2.
The interpretation of (4.5) depends on how x was specified in in λ + µx, and ratio
(4.5) is different from (4.4). Alternatively, we may formulate the ten coefficients as
functions that are linear in the quantity x = a+ d instead of x = a. The result with
respect to correction for chance agreement is of course the same, but ratio (4.6) now
equals ratio (4.4).
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Corollary 4.2b. Coefficients

SSM = a + d

SHam = 2(a + d)− 1

SGleas =
(a + d)− 1

p1 + p2

+ 1

SGK =
2(a + d)− 2

min(p1 + p2, q1 + q2)
+ 1

SNS1 =
2(a + d)− 2

p1 + p2

+ 1

SNS2 =
(a + d)− 1

q1 + q2

+ 1

SNS3 =
2(a + d)− 2

q1 + q2

+ 1

SRG =
(a + d)− 1

2(p1 + p2)
+

(a + d)− 1

2(q1 + q2)
+ 1

SScott =
4(a + d)− (p1 + p2)

2 − (q1 + q2)
2

4− (p1 + p2)2 − (q1 + q2)2

SCohen =
(a + d)− p1p2 − q1q2

p1q2 + p2q1

become equivalent after correction (4.1).
Proof: By Theorem 4.1 it suffices to look at ratio (4.2). Using the formulas of λ and
µ corresponding to each coefficient, ratio (4.2)

1− λ

µ
= 1 (4.6)

for all ten coefficients. �

Since a = p2−q1+d, probabilities a and d are also linear in (a+d). Linear in (a+d)
is therefore equivalent to linear in a and linear in d. Furthermore, Albatineh et al.
(2006) studied coefficients that are linear in

∑∑
n2

ij, where nij is the number of
data points placed in cluster i according to the first clustering method and in cluster
j according to the second clustering method. Because ma = (

∑∑
n2

ij−m)/2, linear
in
∑∑

n2
ij is equivalent to linear in a and equivalent to linear in (a + d).

The corrected coefficient corresponding to the nine resemblance measures in
Corollary 4.2 has a form

CS =
(a + d)− E(a + d)

1− E(a + d)
. (4.7)

Coefficient (4.7) may be obtained by using (a+d), E(a+d), and (4.6) in the extreme-
right part of (4.3). Since expectation E(a + d) is unspecified, coefficient (4.7) is a
general corrected coefficient.
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4.2 Expectations

A commonly used expectation was briefly considered in Section 1.3. Different opin-
ions have been stated on what the appropriate expectations are for the 2 × 2 con-
tingency table. Detailed discussions on the various ways of regarding data as the
product of chance can be found in Krippendorff (1987), Mak (1988), Bloch and
Kraemer (1989) and Pearson (1947). In cluster analysis it is general consensus that
the popular coefficient SSM, called the Rand index, should be corrected for agree-
ment due to chance (Morey and Agresti, 1984; Hubert and Arabie, 1985), although
there is some debate on what expectation is appropriate (Hubert and Arabie, 1985;
Steinley, 2004; Albatineh et al., 2006). We consider five examples of E(a + d).

Suppose it is assumed that the frequency distribution underlying the two vari-
ables in the 2 × 2 contingency table is the same for both variables (Scott, 1955;
Krippendorff, 1987, p. 113). Coefficients used in this context are sometimes re-
ferred to as agreement indices. The common parameter p must be either known or
it must be estimated from p1 and p2. Different functions may be used. For example,
Scott (1955) and Krippendorff (1987) use the arithmetic mean

p =
p1 + p2

2
.

Following Scott (1955) and Krippendorff (1987, p. 113) we have

E(a + d)Scott =

(
p1 + p2

2

)2

+

(
q1 + q2

2

)2

.

Let n denote the number of elements of the binary variables. Mak (1988) proposed
the expectation

E(a + d)Mak = 1− n(p1 + p2)(q1 + q2)− (b + c)

2(n− 1)

(see also, Blackman and Koval, 1993).
Instead of a single distribution function, it may be assumed that the data in the

fourfold table are a product of chance concerning two different frequency distribu-
tions, each with its own parameter (Cohen, 1960; Krippendorff, 1987). Coefficients
used in this context are sometimes referred to as association indices. The expec-
tation of an entry in the 2× 2 contingency table under statistical independence, is
defined by the product of the marginal probabilities. We have

E(a + d)Cohen = p1p2 + q1q2.

Expectation E(a + d)Cohen can be obtained by considering all permutations of the
observations of one of the two variables, while preserving the order of the obser-
vations of the other variable. For each permutation the value of (a + d) can be
determined. The arithmetic mean of these values is p1p2 + q1q2.
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A third possibility is that there are no relevant underlying continua. For this
case two forms of E(a + d) may be found in the literature. Goodman and Kruskal
(1954, p. 757) use expectation

E(a + d)GK =
max(p1 + p2, q1 + q2)

2
.

According to Krippendorff (1987, p. 114) an equity coefficient is characterized by
expectation

E(a + d)Kripp =
1

2
.

Let us summarize the three situations. In the case of association the observations are
regarded as ordered pairs. In the case of agreement the observations are considered
as pairs without regard for their order; a mismatch is a mismatch regardless of
the kind. In the case of equity one only distinguishes between matching and non-
matching observations (cf. Krippendorff, 1987).

Proposition 4.1 below unifies and extends findings in Fleiss (1975) and Zegers
(1986) on what coefficients become Cohen’s kappa after correction for chance. De-
pending on what expectation E(a + d) is used, the coefficients in Corollary 4.2
become, after correction for chance, either Scott’s (1955) pi (SScott), Cohen’s (1960)
kappa (SCohen), Goodman and Kruskal’s (1954) lambda (SGK), Hamann’s (1961) eta
(SHam), or Mak’s (1988) rho. The latter coefficient can be written as

SMak =
4nad− n(b + c)2 + (b + c)

n(p1 + p2)(q1 + q2)− (b + c)
(Mak, 1988)

where n is length of the binary variables. With respect to Proposition 4.1, let L
family consists of functions λ + µ(a + d).

Proposition 4.1. Let S be a member in L family for which ratio (4.6) holds. If
the appropriate expectation is

(i) E(a + d)Scott, then S becomes SScott

(ii) E(a + d)Mak, then S becomes SMak

(iii) E(a + d)Cohen, then S becomes SCohen

(iv) E(a + d)GK, then S becomes SGK

(v) E(a + d)Kripp, then S becomes SHam

after correction (4.1).
Proof (i): Using E(a + d)Scott in (4.7) we obtain an index with numerator

a + d−
(

p1 + p2

2

)2

−
(

q1 + q2

2

)2

= 2ad− (b + c)2

2
(4.8)

and denominator

(p1 + p2 + q1 + q2)
2 − (p1 + p2)

2 − (q1 + q2)
2

4
=

(p1 + p2)(q1 + q2)

2
. (4.9)
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Dividing the right-hand part of (4.8) by the right-hand part of (4.9) we obtain

4ad− (b + c)2

(p1 + p2)(q1 + q2)
= SScott.

Proof (ii): Using E(a + d)Mak in (4.7) and multiplying the result by 2(n − 1) we
obtain an index with numerator

2(a + d− 1)(n− 1) + n(p1 + p2)(q1 + q2)− (b + c)

=n(2a + b + c)(b + c + 2d)− 2n(b + c) + (b + c) (4.10)

and denominator
n(p1 + p2)(q1 + q2)− (b + c). (4.11)

We have

(2a + b + c)(b + c + 2d)− 2(b + c)

=4ad + (2a + 2d)(b + c) + (b + c)2 − 2(b + c)

=4ad + (2a + 2d− 2)(b + c) + (b + c)2

=4ad− 2(b + c)2 + (b + c)2

=4ad− (b + c)2. (4.12)

Using (4.12), numerator (4.10) can be written as

n
[
4ad− (b + c)2

]
+ (b + c). (4.13)

Dividing (4.13) by (4.11) we obtain coefficient SMak.
Proof (iii): Using E(a + d)Cohen in (4.7) we obtain

a + d− p1p2 − q1q2

(p1 + q1)(p2 + q2)− p1p2 − q1q2

=
2(ad− bc)

p1q2 + p2q1

= SCohen.

Proof (iv): Using E(a + d)GK in (4.7) we obtain

2[a + d−max(a, d)]− b− c

2− 2 max(a, d)− b− c
=

2 min(a, d)− b− c

2 min(a, d) + b + c
= SGK.

Proof (v): Using E(a + d)Kripp in (4.7) we obtain

2(a + d)− 1 = a− b− c + d = SHam. �
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4.3 Two transformations

In this section we consider the two functions of similarity coefficients

S2 = 2S1 − 1 and S3 =
S1 + S2

2
.

Both transformations may be used to construct new resemblance measures from
existing similarity coefficients. It holds that S2 = 2S1 − 1 is in the L family if and
only if S1 is in L, and if S1 and S2 are in L, then S3 = (S1 + S2)/2 is in L. In
this section it is shown how the new coefficients are related to the old coefficients
in terms of correction for similarity due to chance. With respect to Proposition 4.2,
let L consists of functions of the form λ + µx.

Proposition 4.2. Let S1 be a member of L. S1 and S2 = 2S1−1 become identical
after correction (4.1).
Proof: S2 = 2λ + 2µa − 1 and E(S2) = 2λ − 1 + 2µE(x). Consequently the CS2

becomes

CS2 =
2λ + 2µx− 1− 2λ− 2µE(x) + 1

1− 2λ− 2µE(x) + 1
=

λ + µx− λ− µE(x)

1− λ− µE(x)

=
S1 − E(S1)

1− E(S1)
= CS1. �

Similarity coefficients that are related by transformation S2 = 2S1 − 1 can be
found in Corollary 4.2. Examples are

SHam = 2SSM − 1

SNS1 = 2SGleas − 1

and SNS3 = 2SNS2 − 1.

Another example is SMcC = 2SKul − 1, where

SKul =
1

2

(
a

p1

+
a

p2

)
and SMcC =

a2 − bc

p1p2

(McConnaughey, 1964).

The fact that coefficient SKul and SMcC become equivalent after correction (4.1) irre-
spective of the used expectation was already proved in Corollary 4.2 (ii) in Albatineh
et al. (2006).
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Proposition 4.3. Let Si for i = 1, 2, ...,m be members in L family that become
identical after correction (4.1). Then Si for i = 1, 2, ...,m and the arithmetic mean
S∗ = m−1

∑m
i=1 Si coincide after correction (4.1).

Proof:

E(S∗) = E

(∑m
i=1 λi +

∑m
i=1 µix

m

)
=

∑m
i=1 λi +

∑m
i=1 µiE(x)

m
.

Using arithmetic mean S∗ in (4.1), we obtain

CS∗ =
x− E(x)

y − E(x)
where y =

m−
∑m

i=1 λi∑m
i=1 µi

.

Let

z =
1− λ1

µ1

=
1− λ2

µ2

= ... =
1− λm

µm

.

It must be shown that ratio y equals ratio z. We have

y =

∑m
i=1(1− λi)∑m

i=1 µi

=

∑m
i=1 zµi∑m
i=1 µi

=
z
∑m

i=1 µi∑m
i=1 µi

= z.

This completes the proof. �

Coefficient

SRG =
a

2a + b + c
+

d

b + c + 2d
=

SGleas + SNS2

2
in Corollary 4.2, is the arithmetic mean of SGleas and SNS2.

4.4 Corrected coefficients

The coefficients in Corollary 4.2 and Proposition 4.1 become either SScott, SMak,
SCohen, SGK, or SHam, depending on what expectation E(a + d) is used. Note that
corrected coefficients SScott, SCohen, SGK, and SHam belong to the class of resemblance
measures that is considered in Corollary 4.2 and Proposition 4.1. This suggests
that corrected coefficients may have some interesting properties. The corrected
coefficients and their properties are the topic of this section. If E(S) in (4.1) depends
on the marginal probabilities of the 2×2 contingency table, then CS in (4.1) belongs
to L. With respect to Proposition 4.4, let L consists of functions of the form
λ + µ(a + d).

Proposition 4.4. Let E(S) in (4.1) depend on the marginal probabilities. If S is
in L family, then CS in (4.1) is in L.
Proof: Expectation E(S) = E[λ1 + µ1(a + d)] is a function of the marginal proba-
bilities. Thus E(a + d), λ, and µ in (4.3) are functions of the marginal proportions.
Equation (4.3) can therefore be written in a form λ2 + µ2(a + d) where

λ2 =
−E(a + d)

µ−1
1 (1− λ1)− E(a + d)

and µ2 =
1

µ−1
1 (1− λ1)− E(a + d)

. �
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Examples of corrected coefficients that are in the L family are SScott, SCohen, SGK,
and SHam. These coefficients may be considered as corrected coefficients as well
as ordinary coefficients that may be corrected for agreement due to chance. For
example, SScott, SGK, and SHam (and SCohen) become SCohen after correction (4.1)
if expectation E(a + d)Cohen is used. Coefficient SMak cannot be written in a form
λ + µ(a + d), and does therefore not belong to L.

Next we consider the following problem. Suppose a coefficient S in L is corrected
twice, using two different expectations, E(a + d) and E(a + d)∗. Let the corrected
coefficients be given by

CS =
a + d− E(a + d)

µ−1(1− λ)− E(a + d)
and CS∗ =

a + d− E(a + d)∗

µ−1(1− λ)− E(a + d)∗
.

Note that µ−1(1 − λ) corresponding to coefficient S, is the same in both CS and
CS∗. The problem is then as follows: if E(a+d) ≥ E(a+d)∗, how are CS and CS∗

related? Proposition 4.5 below is limited to coefficients in the L family of which the
maximum value is unity, that is

λ + µ(a + d) ≤ 1 if and only if
1− λ

µ
≥ (a + d).

It can be verified that most (if not all) similarity coefficients in this thesis satisfy
this condition.

Proposition 4.5. CS ≤ CS∗ if and only if E(a + d) ≥ E(a + d)∗.
Proof: CS ≤ CS∗ if and only if

E(a + d)

[
1− λ

µ
− (a + d)

]
≥ E(a + d)∗

[
1− λ

µ
− (a + d)

]
.

The requirement λ + µ(a + d) ≤ 1 completes the proof. �

In the following, let S = λ + µ(a + d) be in L family and let

CSName =
a + d− E(a + d)Name

µ−1(1− λ)− E(a + d)Name

be a corrected coefficient using expectation E(a+d)Name. Using specific expectations
E(a + d) in combination with Proposition 4.5, we obtain the following result.
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Proposition 4.6. It holds that CSGK

(i)

≤ CSScott

(ii)

≤ CSCohen.
Proof (i): Due to Proposition 4.5, it suffices to show that E(a+d)GK ≥ E(a+d)Scott.
Suppose (p1 + p2) ≥ (q1 + q2). We have

E(a + d)GK ≥ E(a + d)Scott

p1 + p2

2
≥

(
p1 + p2

2

)2

+

(
q1 + q2

2

)2

p1 + p2

2

(
1− p1 + p2

2

)
≥

(
q1 + q2

2

)2

p1 + p2

2

(
q1 + q2

2

)
≥

(
q1 + q2

2

)2

(p1 + p2) ≥ (q1 + q2).

Proof (ii): It must be shown that E(a + d)Scott ≥ E(a + d)Cohen. We have(
p1 + p2

2

)2

≥ p1p2 (4.14)

if and only if
p1 + p2

2
≥ √p1p2. (4.15)

Furthermore, we have (
q1 + q2

2

)2

≥ q1q2 (4.16)

if and only if
q1 + q2

2
≥ √q1q2. (4.17)

Because the arithmetic mean of two numbers is equal or greater than the geometric
mean, inequalities (4.15) and (4.17) are true. Adding (4.14) and (4.16) we obtain
the desired inequality. �

Blackman and Koval (1993, p. 216) derived the inequality SScott ≤ SCohen. Note
that this inequality follows from the more general result Proposition 4.6 by using a
coefficient S for which (4.6) is characteristic.
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4.5 Epilogue

Under the assumption that E(a + d) = p1p2 + q1q2 is the appropriate expectation,
Fleiss (1975) showed that

SSM =
a + d

a + b + c + d
= a + d and SGleas =

2a

p1 + p2

and SGK and SRG become SCohen after correction (4.1). Zegers (1986) showed that
SSM, SGleas and SHam become SCohen after correction (4.1). Albatineh et al. (2006)
showed that SSM, SGleas and SHam become equivalent irrespective of the used expec-
tation. These results were extended and unified by Corollary 4.2 and Proposition
4.1. Corollary 4.2 specifies up to ten coefficients that become equivalent after cor-
rection (4.1) irrespective of expectation E(a + d). The coefficients in Corollary 4.2
become either SScott, SMak, SCohen, SGK, or SHam, depending on what expectation
E(a + d) is used. Moreover, two transformations from Section 4.3 may be used to
construct an infinite amount of coefficients that become equivalent after correction
(4.1).

Whether E(a+d)Cohen or another E(a+d) is the appropriate expectation depends
on the context of the data analysis. However, since a large number of coefficients
are defined with the covariance

a + d− E(a + d)Cohen

2
=

(a− p1p2) + (d− q1q2)

2
= ad− bc

in the numerator, it appears that E(a+d)Cohen is the preferred (or most appropriate)
expectation in many cases.

The quantities

SDice1 =
a

p1

and SDice2 =
a

p2

and

SCole1 =
ad− bc

p1q2

and SCole2 =
ad− bc

p2q1

(Cole, 1949)

where used in the previous chapter to construct power means

Mθ

(
a

p1

,
a

p2

)
and Mθ

(
ad− bc

p1q2

,
ad− bc

p2q1

)
.
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As it turns out, if the expectation of a is E(a) = p1p2, several members of the
two power means corresponding to the same θ are related. We have, for example,

SDice1 =
a

p1

becomes SCole1 =
ad− bc

p1q2

SDice2 =
a

p2

becomes SCole2 =
ad− bc

p2q1

SGleas =
2a

p1 + p2

becomes SCohen =
2(ad− bc)

p1q2 + p2q1

and SSim =
a

min(p1, p2)
becomes SLoe =

ad− bc

min(p1q2, p2q1)
.



CHAPTER 5

Correction for maximum value

The proportions a, b, c, and d in the fourfold table

a b p1

c d q1

p2 q2 1

are constrained by the marginal proportions p1, p2, q1, and q2. The coefficients
based on these quantities are therefore also constrained by the marginals, so that
maximum and minimum values are sometimes untenable. Guilford (1965), Cureton
(1959) and Davenport and El-Sanhurry (1991) consider the maximum of SPhi given
marginals p1 and p2, denoted by [SPhi]max. Loevinger (1947, 1948) suggested using
the ratio

SPhi

[SPhi]max

since this procedure allows the corrected value to become unity. As noted by Lo-
evinger (1947, 1948), Sijtsma and Molenaar (2002) and Davenport and El-Sanhurry
(1991), coefficients SPhi, SCohen and SLoe are related by

SLoe =
SPhi

[SPhi]max

=
SCohen

[SCohen]max

.
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The relations between similarity coefficients for two binary variables suggested in
this equality are the topic of this chapter.

The maximum and minimum of various coefficients and several equivalences
are studied first. The maximum of a coefficient is determined by applying the
formula to the case of two Guttman items (Section 6.3; Mokken, 1971; Guilford,
1965). Furthermore, it is shown what families of coefficients become equivalent
after correction

S

[S]max

. (5.1)

5.1 Maximum value

In this section we derive the maximum value for a variety of coefficients. We focus
on coefficients that are special cases of a power mean. Following Guilford (1965) and
Cureton (1959), the maximum value of a coefficient is obtained if either quantity b,
c, or both equal zero. Hence, with unequal marginal proportions p1 6= p2, the 2× 2
contingency table has the form

a 0 p1

c d q1

p2 q2 1
for example


0
0
0
1
1
1

 and


0
1
1
1
1
1


if b = 0, or

a b p1

0 d q1

p2 q2 1
for example


0
1
1
1
1
1

 and


0
0
0
1
1
1


if c = 0. Note that the maximum is obtained if the two binary variables being
compared are so-called Guttman items (Section 6.3; Mokken, 1971). The maximum
value of proportion a given the marginals p1 and p2, denoted by amax, is given by

amax =

{
p1 if b = 0

p2 if c = 0
or amax = min(p1, p2).

Thus, without correction for maximum value, quantity a can only reach its maximum
value if p1 = p2. The maximum value of measures for binary variables that do not
include quantity d, may be obtained by replacing probability a by amax. Assuming
p1 6= p2 we obtain

[SGL1(θ)]max =
min(p1, p2)

θ(p1 + p2) + (1− 2θ) min(p1, p2)
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with

[SGL1(1)]max = [SJac]max =
min(p1, p2)

max(p1, p2)
< 1

[SGL1(1/2)]max = [SGleas]max =
2 min(p1, p2)

p1 + p2

< 1.

With respect to the inequalities

SSorg =
a2

p1p2

≤ SJac =
a

p1 + p2 − a
≤ SBB =

a

max(p1, p2)

we obtain the equality

[SSorg]max = [SJac]max = [SBB]max =
min(p1, p2)

max(p1, p2)
.

With respect to the power mean of the quantities

SDice1 =
a

p1

and SDice2 =
a

p2

the equality amax = min(p1, p2) leads to[
Mθ

(
a

p1

,
a

p2

)]
max

= Mθ

(
1,

min(p1, p2)

max(p1, p2)

)
.

where
min(p1, p2)

max(p1, p2)
= [SBB]max .

Thus, the maximum value of a coefficient that is a special case of the power mean
of SDice1 and SDice2, is equal to the coefficient corresponding to the same θ of
the value 1 and [SBB]max, where the latter is the maximum value of the mini-
mum function of SDice1 and SDice2. Hence, only for the maximum function, that
is, SSim = a/ min(p1, p2), it holds that

[SSim]max = lim
θ→∞

Mθ

(
1,

min(p1, p2)

max(p1, p2)

)
= max

(
1,

min(p1, p2)

max(p1, p2)

)
= 1.

Next, we consider the maximum value of the covariance (ad − bc) of two binary
variables. The maximum covariance given the marginals p1 and p2, denoted (ad −
bc)max, is given by

(ad− bc)max =

{
p1q2 if b = 0

p2q1 if c = 0
or (ad− bc)max = min(p1q2, p2q1).
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We may obtain the maximum value of measures for binary variables that use the
covariance in the numerator by replacing covariance (ad− bc) by (ad− bc)max. With
respect to the power mean of the quantities

SCole1 =
ad− bc

p1q2

and SCole2 =
ad− bc

p2q1

(Cole, 1949)

the equality (ad− bc)max = min(p1q2, p2q1) leads to[
Mθ

(
ad− bc

p1q2

,
ad− bc

p1q2

)]
max

= Mθ

(
1,

min(p1q2, p2q1)

max(p1q2, p2q1)

)
.

Thus, the maximum value of a coefficient that is a special case of the power mean
of SCole1 and SCole2, is equal to the coefficient corresponding to the same θ of the
value 1 and the quantity

min(p1q2, p2q1)

max(p1q2, p2q1)
.

Hence, only for the maximum function, that is, SLoe, it holds that

[SLoe]max = lim
θ→∞

Mθ

(
1,

min(p1q2, p2q1)

max(p1q2, p2q1)

)
= 1.

5.2 Correction for maximum value

Let x/y and x/z be two real positive values, of which the maximum depends on x
only, that is [

x

y

]
max

=
xmax

y
and

[x
z

]
max

=
xmax

z
.

Examples of x/y and x/z are SDice1 and SDice2. For example, x = a or x = ad− bc
and y and z are functions of p1 and p2 only. It turns out that division of the power
mean of x/y and x/z by its maximum value given quantities y and z, does not
depend on the choice of θ. Moreover, the outcome of the division does not depend
on the definitions of y and z.

Proposition 5.1. Let x/y and x/z be two real positive values defined as above.
Then

Mθ

(
x

y
,
x

z

)
/

[
Mθ

(
x

y
,
x

z

)]
max

=
x

xmax

.

Proof:

Mθ

(
x

y
,
x

z

)
=

[
1

2

(
x

y

)θ

+
1

2

(x

z

)θ
]1/θ

=

[
xθ(yθ + zθ)

2yθzθ

]1/θ

=
x

yz

[
yθ + zθ

2

]1/θ

and [
Mθ

(
x

y
,
x

z

)]
max

=
xmax

yz

[
yθ + zθ

2

]1/θ

. �
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An interesting consequence of Proposition 5.1 is the following property. Dividing
the power mean of x/y and x/z by its maximum value gives the maximum function
of x/y and x/z.

Corollary 5.1. Let x/y and x/z be defined as above. If xmax = min(y, z), then

Mθ

(
x

y
,
x

z

)
/

[
Mθ

(
x

y
,
x

z

)]
max

= lim
θ→∞

Mθ

(
x

y
,
x

z

)
.

As a first example, consider the power mean of

x =
a

p1

and y =
a

p2

.

Because amax = min(p1, p2), we have

Mθ (x, y)

[Mθ (x, y)]max

= lim
θ→∞

Mθ

(
a

p1

,
a

p2

)
=

a

min(p1, p2)
= SSim.

As a second example, consider the power mean of

x =
ad− bc

p1q2

and y =
ad− bc

p2q1

.

Since (ad− bc)max = min(p1q2, p2q1), we have

Mθ (x, y)

[Mθ (x, y)]max

= lim
θ→∞

Mθ

(
ad− bc

p1q2

,
ad− bc

p2q1

)
=

ad− bc

min(p1q2, p2q1)
= SLoe.

As a third example, consider the power mean of the quantities

x =
ad− bc

p1q1

and y =
ad− bc

p2q2

(see Peirce, 1884).

Then

M−1(x, y) =
2(ad− bc)

p1q1 + p2q2

= SMP (harmonic mean)

lim
θ→0

Mθ(x, y) =
ad− bc
√

p1p2q1q2

= SPhi (geometric mean)

M1(x, y) =
(ad− bc)(p1q1 + p2q2)

2p1q2p2q1

= SFleiss (arithmetic mean).

In light of Corollary 5.1, because (ad − bc)max = min(p1q2, p2q1), which is different
from min(p1q1, p2q2), we have

Mθ (x, y)

[Mθ (x, y)]max

=
ad− bc

min(p1q2, p2q1)
6= lim

θ→∞
Mh

(
ad− bc

p1q1

,
ad− bc

p2q2

)
=

ad− bc

min(p1q1, p2q2)
.

Thus, the power mean of these x and y becomes SLoe, although the latter coefficient
is not a special case of the power mean.
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Instead of considering power means, correction (5.1) can also be approached from
a different angle. Below, two assertions are presented with respect to coefficients
SSim and SLoe.

Proposition 5.2. Let S = a/x with x a function of p1 and p2. Then

S/ [S]max =
a

min(p1, p2)
= SSim.

Proof:

[S]max =
[a
x

]
max

=
amax

x
=

min(p1, p2)

x
. Hence S/ [S]max = SSim. �

Proposition 5.3. Let S = (ad − bc)/x with x a function of p1 and p2. Then
S/ [S]max = SLoe.
Proof:

[S]max =

[
ad− bc

x

]
max

=
(ad− bc)max

x
=

min(p1q2, p2q1)

x
.

Hence S/ [S]max = SLoe. �

5.3 Correction for minimum value

In addition to the maximum value [S]max of a coefficient S, one may study the
minimum value [S]min. For coefficients that are special cases of the power mean of
the quantities

SDice1 =
a

p1

and SDice2 =
a

p2

the minimum value 0 is obtained if a = 0. Similarly, coefficients of the form a/x
where x is a function of p1 and p2, equal 0 whenever a = 0. Thus, for this type of
coefficients the minimum value is not constrained by the marginals. The section is
therefore restricted to the minimum value of coefficients with the covariance (ad−bc)
in the numerator. For this class of coefficients the minimum value is obtained if either
quantity a, d, or both equal zero. Hence, with unequal marginals p1 6= q1, the 2× 2
contingency table has the form

0 b p1

c d q1

p2 q2 1
for example


1
1
0
0
0
0

 and


0
0
0
1
1
1


if a = 0,
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or

a b p1

c 0 q1

p2 q2 1
for example


1
1
1
1
0
0

 and


0
0
0
1
1
1


if d = 0. The minimum covariance of two binary variables given marginal propor-
tions p1 and p2, denoted (ad− bc)min, is thus given by

(ad− bc)min =

{
−p1p2 if a = 0

−q1q2 if d = 0

which equals

(ad− bc)min = max(−p1p2,−q1q2) = −min(p1p2, q1q2).

Thus, the minimum value of the covariance can only be obtained if p1p2 = q1q2 if
and only if p1 + p2 = 1.

With correction for the minimum value the following issue must be taken into
consideration. Because the quantity (ad− bc)min is negative, division of a coefficient
by (ad − bc)min results in a change of sign. However, the minimum value of -1 can
be obtained if the quantity min(p1p2, q1q2) is used instead of −min(p1p2, q1q2).

Similar as in the previous section, let x/y and x/z be two real positive values,
of which the minimum depends on x only, that is[

x

y

]
min

=
xmin

y
and

[x
z

]
min

=
xmin

z
.

Similar to S/ [S]max, the outcome of S/ [S]min does not depend on the definitions of
y and z with respect to power means. The proof of the next result is similar to the
proof of Proposition 5.1.

Proposition 5.4. Let x/y and x/z be two real positive values defined as above.
Then

Mθ

(
x

y
,
x

z

)
/

[
Mθ

(
x

y
,
x

z

)]
min

=
x

|xmin|
.
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As a first example, consider the power mean of

x =
ad− bc

p1q1

and y =
ad− bc

p2q2

.

We have

Mθ (x, y)

|[Mθ (x, y)]min|
= lim

θ→∞
Mθ

(
ad− bc

p1q1

,
ad− bc

p2q2

)
=

ad− bc

min(p1p2, q1q2)

which is a special case of the power mean. As a second example, consider the power
mean of

x =
ad− bc

p1q2

and y =
ad− bc

p2q1

.

Again, we obtain

Mθ (x, y)

|[Mθ (x, y)]min|
= lim

θ→∞
Mθ

(
ad− bc

p1q2

,
ad− bc

p2q1

)
=

ad− bc

min(p1p2, q1q2)

which is not a special case of this power mean.

We end this chapter with an argument made in Davenport and El-Sanhurry
(1991). These authors argue that studying the minimum of (ad − bc) is some-
what trivial. The minimum problem can be turned into a maximum problem at any
time, simply by recoding the values of one of the binary variables. Maximum and
minimum of (ad− bc) are given by

(ad− bc)max = min(p1q2, p2q1) and (ad− bc)min = −min(p1p2, q1q2).

Suppose that the observations of the second variable are recoded, 1 → 0 and 0 → 1,
for example 

1
1
0
1
0
0

 →


0
0
1
0
1
1

 .

Note that the recoding changes the sign of the covariance (ad − bc) between the
two binary vectors. Furthermore, for the second vector p2 → q2 and q2 → p2.
Multiplying (ad− bc)min by −1 and changing the roles of p2 and q2 in (ad− bc)min,
we obtain (ad− bc)max.



5.4. Epilogue 65

5.4 Epilogue

In this chapter it was shown that various coefficients become equivalent if they are
divided by their maximum value given fixed marginal probabilities p1 and p2. For
example, the power mean of the quantities

SDice1 =
a

p1

and SDice2 =
a

p2

has as special cases

SBB =
a

max(p1, p2)

SGleas =
2a

p1 + p2

SDK =
a

√
p1, p2

and SKul =
1

2

[
a

p1

+
a

p2

]
.

By Proposition 5.1, SBB, SGleas, SDK and SKul coincide after correction for maximum
value. Furthermore, by Corollary 5.1 all special cases of the power mean become
equivalent to the maximum function (also a special case) of the two quantities. For
example, SBB, SGleas, SDK and SKul become

SSim = max

(
a

p1

,
a

p2

)
=

a

min(p1, p2)

after correction (5.1). As a second example, by Proposition 5.1 and Corollary 5.1,

SCohen =
2(ad− bc)

p1q2 + p2q1

and SPhi =
ad− bc
√

p1p2q1q2

are special cases of the power mean of

SCole1 =
ad− bc

p1q2

and SCole2 =
ad− bc

p2q1

.

Coefficient SCohen and SPhi become

SLoe =
ad− bc

min(p1q2, p2q1)

after correction for maximum value. Moreover, by Proposition 5.3, SCole1, SCole2,

SMP =
2(ad− bc)

p1q1 + p2q2

and SFleiss =
(ad− bc)(p1q1 + p2q2)

2p1q2p2q1

also become equivalent to SLoe, after division by their maximum value given fixed
marginals p1 and p2.
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5.5 Loevinger’s coefficient

Correction for chance and correction for maximum value were treated separately in
Chapters 4 and 5. This section is used to show two properties of

SLoe =
ad− bc

min(p1q2, p2q1)

the coefficient by Loevinger (1947, 1948), with respect to correction for chance and
correction for maximum value simultaneously. With respect to both properties it is
assumed that E(a)Cohen = p1p2 is the appropriate expectation.

First of all, if E(a) = p1p2 and amax = min(p1, p2), then coefficient SLoe can be
defined as

SLoe =
a− E(a)

amax − E(a)

or dually

SLoe =
d− E(d)

dmax − E(d)

where E(d) = q1q2 and dmax = min(q1, q2). Furthermore, under the same conditions,
any coefficient in the L family (of the form λ+µa) becomes SLoe after correction for
maximum value and correction for chance. Moreover, the result does not depend on
what correction is considered first.

Proposition 5.5. A coefficient of the form λ + µa becomes SLoe after correction
(4.1) and (5.1).
Proof: Dividing coefficient λ + µa by its maximum value given fixed marginals p1

and p2, we obtain
λ + µa

λ + µ min(p1, p2)
. (5.2)

The expectation of (5.2) is given by

E

[
λ + µa

λ + µ min(p1, p2)

]
=

λ + µE(a)

λ + µ min(p1, p2)
=

λ + µp1p2

λ + µ min(p1, p2)
. (5.3)

Using (5.2) and (5.3) in (4.1), and multiplying by λ + µ min(p1, p2), we obtain

λ + µa− λ− µp1p2

λ + µ min(p1, p2)− λ− µp1p2

=
a− p1p2

min(p1, p2)− p1p2

= SLoe.

Alternatively, Using λ + µa and the corresponding expectation

λ + µp1p2

in (4.1), we obtain

λ + µa− λ− µp1p2

1− λ− µp1p2

=
a− p1p2

(1− λ)/µ− p1p2

. (5.4)
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The maximum value of (5.4) given fixed marginals p1 and p2, is given by

min(p1, p2)− p1p2

(1− λ)/µ− p1p2

. (5.5)

Dividing (5.4) by (5.5), we obtain

a− p1p2

min(p1, p2)− p1p2

= SLoe.

This completes the proof. �

Zero value under statistical independence, and maximum value unity indepen-
dent of the marginal distributions, are two properties or desiderata that similarity
coefficients may have in general. Proposition 5.5 shows that the linear transforma-
tions that set the value under independence at zero (4.1) and the maximum value
at unity (5.1), transform all coefficients in L family (of the form λ + µa) into the
same underlying coefficient. This coefficient happens to be SLoe.
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CHAPTER 6

Data structures

In this chapter the basic notation that will be used in Part II is introduced. In Part
I the data consisted of two binary sequences or variables. In Part II the data are
collected in a data matrix X of m column vectors. In this chapter we do not consider
individual coefficients but coefficient matrices. Given a n ×m data matrix X, one
may obtain a m × m coefficient matrix S by calculating all pairwise coefficients
Sjk for two columns j and k from X. Different coefficient matrices are obtained,
depending on the choice of similarity coefficient.

Chapter 6 is used to introduce several data structures that are either reflected in
the data matrix or that can be assumed to underlie the data matrix. In the latter
case, matrix X may contain the realizations, 0 or 1, generated by a latent variable
model. The latent variable models presented in this chapter are discussed in terms
of item response theory (De Gruijter and Van der Kamp, 2008; Van der Linden and
Hambleton, 1997; Sijtsma and Molenaar, 2002).

Suppose the data matrix X contains the responses of n persons on m binary
items. Item response theory is a psychometric approach that enables us to study
these data in terms of item characteristics and persons’ propensities to endorse
different items. A subfield of item response theory, so-called nonparametric item re-
sponse theory (Sijtsma and Molenaar, 2002), is concerned with identifying modeling
properties that follow from basic assumptions like a single latent variable or local
independence. Often, if a particular model holds for the data at hand, then the
columns of the data matrix can be ordered such that certain structure properties
become apparent.
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In addition to several probabilistic models, various possible patterns of 1s and
0s are described in this chapter. These data structures are referred to as Guttman
items and Petrie matrices, and, if the data matrix is not too big, can be confirmed by
visual inspection. The theoretical conditions considered and derived in this chapter
are used in the remaining chapters of Part II as possible sufficient conditions for
coefficient matrices to exhibit or not exhibit certain ordinal properties.

6.1 Latent variable models

Suppose the binary data are in a matrix X of size n × m. For example, the data
may be the responses of n persons on m binary items. Let ω denote a single latent
variable or trait and let pj(ω) denote the response function corresponding to the
response 1 in column vector j, with 0 ≤ pj(ω) ≤ 1. The response 0 on j is modeled
by the function 1 − pj(ω). Moreover, let L(ω) denote the distribution function of
the latent variable ω. The unconditional probability of a score 1 on vector j is given
by

pj =

∫
R

pj(ω)dL(ω)

where R denotes the set of reals. We also define the quantity qj = 1− pj.
At this point assume local independence, that is, conditionally on ω the responses

of a person on the m items are stochastically independent. The joint probability
of items j and k for a value of ω is then given by pj(ω)pk(ω). The corresponding
unconditional probability can be obtained from

ajk =

∫
R

pj(ω)pk(ω)dL(ω).

In item response theory (De Gruijter and Van der Kamp, 2008; Van der Linden
and Hambleton, 1997; Sijtsma and Molenaar, 2002) a distinction is made between
so-called parametric and nonparametric models. In a parametric model a specific
shape of the response function is assumed. An example of a parametric model is
the 2-parameter model. The normal ogive formulation of the 2-parameter model
comes from Lord (1952). Birnbaum (1968) later on proposed the logistic form of
the 2-parameter model. A response function of the latter formulation is given by

pj(ω) =
exp[δj(ω − βj)]

1 + exp[δj(ω − βj)]

where δj controls the slope of the response function and βj controls the location of
the response function.

In nonparametric models no shapes of the response function are assumed, only
a general tenor for a set of functions. For example, all functions may be non-
increasing in the latent variable, or they are unimodal functions. An example of a
nonparametric model is the following model. Suppose that the response functions
of all m items are monotonically increasing on ω, that is

pj(ω1) ≤ pj(ω2) for 1 ≤ j ≤ m and ω1 < ω2. (6.1)
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The case in (6.1) (together with the assumptions of a single latent variable and local
independence) describes the monotone homogeneity model in Sijtsma and Molenaar
(2002, p. 22). A well-known result is that if (6.1) holds, then all binary items are
positively dependent. The result follows from the fact that

ajk − pjpk =
1

2

∫ ∫
R2

[pj(ω2)− pj(ω1)] [pk(ω2)− pk(ω1)] dL(ω2)dL(ω1) > 0.

A stronger nonparametric model is the following model. In addition to (6.1), suppose
that the items can be ordered such that the corresponding response functions are
non-intersecting, that is,

pj(ω) ≥ pk(ω) for 1 ≤ j < k ≤ m. (6.2)

The case that assumes (6.1) and (6.2) (together with the assumptions of local in-
dependence and a single latent variable) is called the double monotonicity model
in Sijtsma and Molenaar (2002, p. 23). A well-known result is that, if the double
monotonicity model holds, then the items can be ordered such that

pj ≥ pj+1 for 1 ≤ j < m (6.3)

and
ajk ≥ aj+1k for fixed k (6= j + 1) and 1 ≤ j < m. (6.4)

Thus, under the double monotonicity model the item ordering can directly be ob-
tained by inspecting the pj. A parametric model that satisfies both requirement
(6.1) and (6.2) is the 1-parameter logistic model or Rasch model (Rasch, 1960). The
response function of the Rasch model is given by

pj(ω) =
exp[ω − βj]

1 + exp[ω − βj]

where βj controls the location of the individual response function. Note that the
Rasch (1960) model is a special case of the 2-parameter logistic model.

Instead of a monotonically increasing function, let pj(ω) be a unimodal function,
that is

pj(ω1) ≤ pj(ω2) for ω1 < ω2 ≤ ω0

and pj(ω1) ≥ pj(ω2) for ω0 ≥ ω1 < ω2

where pj(ω) obtains its maximum at ω0. The class of models with unimodal response
functions includes models with monotone response functions, since the latter can
be interpreted as unimodal functions of which the maximum lies at plus or minus
infinity.

Apart from being monotone or unimodal, response functions may also satisfy
various orders of total positivity (Karlin, 1968; Post and Snijders, 1993). If a set of
response functions is totally positive of order 2, then the items can be ordered such
that

pj(ω1)pk(ω2)− pj(ω2)pk(ω1) ≥ 0 for ω1 < ω2 and 1 ≤ j < k ≤ m. (6.5)

Schriever (1986, p. 125) derived the following result for functions that are both
monotonically increasing and satisfy total positivity of order 2.
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Theorem 6.1 [Schriever, 1986]. If m response functions are ordered such that
(6.1) and (6.5) hold, then the items satisfy

1 ≤ j < m, 1 ≤ k ≤ m ⇒ ajk

pj

≤ aj+1k

pj+1

for fixed k (6= j + 1). (6.6)

Proof: p−1
j pj(ω) can be interpreted as a density with respect to the measure dL(ω),

which by (6.5), is totally positive of order 2 and satisfies∫
R

p−1
j pj(ω)dL(ω) = 1.

Since by (6.1), pk(ω) is increasing in ω for each k = 1, ...,m, it follows from Propo-
sition 3.1 in Karlin (1968, p. 22) that

p−1
j ajk =

∫
R

p−1
j pj(ω)pk(ω)dL(ω) is increasing in j. �

6.2 Petrie structure

Coombs (1964) describes a model in which the unimodal response functions consists
of two step functions. Characteristic of the Coombs scale is that the columns of
X can be ordered such that all rows of the data matrix X contain consecutive 1s,
that is, all the 1s in a row are bunched together. If the data matrix X is a re-
ordered subject by attribute table with consecutive 1s in each row, all subjects have
single-peaked preference functions, that is, they always check contiguous stimuli. If
all runs of ones have the same length, the table has a parallelogram structure as
defined by Coombs (1964, Chapter 4).

A (0,1)-table with consecutive 1s may also be interpreted as an intuitively mean-
ingful and simple archaeological model. An artifact comes into use at a certain point
in time, it remains in use for a certain period, and after some time it goes out of
use. In an archaeological context, matrices with consecutive 1s were studied by Sir
Flinders Petrie (Kendall, 1971, p. 215; Heiser, 1981, Section 3.2). Matrices with
consecutive 1s in the rows will be called row Petrie. Column Petrie is defined in a
similar way. A matrix is called double Petrie if it is both row Petrie and column
Petrie. Examples of Petrie matrices are

X1 =



1 1 0 0
0 1 0 0
0 1 1 1
0 0 1 0
0 0 1 0
0 0 1 1
0 0 0 1


X2 =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

 X3 =



1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


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and

X4 =


1 0 0 0
1 1 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .

Matrix X1 is row Petrie, whereas X2, X3 and X4 are double Petrie.

Determinants of any square 2×2 submatrix of a double Petrie matrix are positive.
A double Petrie matrix is therefore totally positive of order 2 (Karlin, 1968). This
property is used in Proposition 6.1, where XT denote the transpose of the matrix
X. Moreover, let SRR denote the m × m similarity matrix containing all pairwise
coefficients SRR = ajk, calculated from the columns of X.

Proposition 6.1. If X is double Petrie, then

SRR = m−1XTX

is totally positive of order 2.
Proof: Because all possible second order-determinants of a double Petrie matrix,
that is [

1 1
0 1

] [
0 1
0 0

] [
1 1
0 0

] [
0 1
0 1

]
their transposes, and [

1 1
1 1

]
and

[
0 0
0 0

]
are either 1 or 0, a double Petrie matrix is (at least) totally positive of order 2. Since
the product of two totally positive matrices of order h is again totally positive of
order h (Gantmacher and Krein, 1950, p. 86), it follows that the matrix SRR is (at
least) totally positive of order 2. �

We have a particular reason for studying Petrie matrices. It turns out that the
data table X being row Petrie or double Petrie is manifested in the quantities

ajk = the proportion of 1s shared by columns j and k

in the same positions

pj = the proportion of 1s in column j

and pk = the proportion of 1s in column k.

We present various properties in this section of quantities ajk, pj and pk that hold
if X reflects some sort of Petrie structure. We first consider the case that X is row
Petrie. In Proposition 6.2 it is derived what pattern ajk exhibits when X is row
Petrie.
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Proposition 6.2. If X is row Petrie, then

ajk ≥ aj+1k for 1 ≤ k ≤ j < m (6.7)

and ajk ≤ aj+1k for 1 ≤ j < k ≤ m.

Proof: We only consider the proof of (6.7). If X is row Petrie then columns k, j
and j + 1 of X can form the two types of row profiles

k j j + 1 freq.
1 1 0 u1

1 1 1 u2

with frequencies u1 and u2. Thus u1 is the number of row profiles that contain a 1
for columns k and j and a 0 for column j + 1. Equation (6.7) is true if

ajk ≥ aj+1k

u1 + u2 ≥ u2

u1 ≥ 0.

The assertion is true because u1 is a positive number. �

In the remainder of the section we consider the case that X is double Petrie. We
present several properties of quantities ajk, pj and pk for the case that X is double
Petrie.

Proposition 6.3. If X is double Petrie, then

ajk

pj

≥ aj+1k

pj+1

for 1 ≤ k ≤ j < m (6.8)

and
ajk

pj

≤ aj+1k

pj+1

for 1 ≤ j < k ≤ m.

Proof: We only consider the proof of (6.8). If X is double Petrie, we may distinguish
two situations with respect to the types of row profiles of columns j, j + 1, and k.
Firstly, we have

k j j + 1 freq.
1 1 0 u1

0 1 0 u2

0 1 1 u3

0 0 1 u4

with frequencies u1 and u4. In this case there are no row profiles with a 1 in both
column k and j + 1. Equation (6.8) is true if

ajk

pj

≥ aj+1k

pj+1

u1

u1 + u2 + u3

≥ 0

u3 + u4

u1 ≥ 0.
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Since u1 is a positive number, (6.8) holds for the first situation. Secondly, we may
have

k j j + 1 freq.
1 1 0 u1

1 1 1 u2

0 1 1 u3

0 0 1 u4

with frequencies u1 and u4. With respect to the second case, (6.8) is true if

ajk

pj

≥ aj+1k

pj+1

u1 + u2

u1 + u2 + u3

≥ u2

u2 + u3 + u4

u1u2 + u1u3 + u1u4 + u2u2 + u2u3 + u2u4 ≥ u1u2 + u2u2 + u2u3

u1u3 + u1u4 + u2u4 ≥ 0.

This completes the proof of the assertion. �

Proposition 6.4. If X is double Petrie, then

ajk

pj + pk

≥ aj+1k

pj+1 + pk

for 1 ≤ k ≤ j < m (6.9)

and
ajk

pj + pk

≤ aj+1k

pj+1 + pk

for 1 ≤ j < k ≤ m.

Proof: We only consider the proof of (6.9). Since X is double Petrie, we have

pj+1ajk ≥ aj+1kpj for 1 ≤ k ≤ j < m (6.10)

by Proposition 6.3 and

pkajk ≥ pkaj+1k for 1 ≤ k ≤ j < m (6.11)

by Proposition 6.2. Adding (6.10) and (6.11) we obtain (6.9). �

6.3 Guttman items

The simplest data structure considered in this chapter is the Guttman or perfect
scale (Guttman, 1950, 1954), named after the person who popularized the model
with the method of scalogram analysis. A scalogram matrix is a special type of
double Petrie matrix, for which all pairs of columns are Guttman items. Let pj (qj)
denote the proportion of 1s (0s) of variable j, and let ajk denote the proportion of 1s
that vector j and k share in the same positions. Two binary variables are Guttman
items if the number of 1s that variables j and k share in the same positions equals
the total amount of 1s in one of the vectors, that is,

ajk = min(pj, pk) for 1 ≤ j ≤ m and 1 ≤ k ≤ m. (6.12)
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Matrix X4 (Section 6.2) satisfies condition (6.12). Furthermore, the columns of X4

are ordered such that (6.3) holds. If the columns of X satisfy both (6.12) and (6.3),
X is sometimes referred to as a scalogram. Scalogram matrices are totally positive,
that is, the determinant of any square submatrix, including the minors, is positive
(Karlin, 1968).

Various coefficients have specific properties if the data consist of Guttman items.
If (6.12) holds, then the matrices SSim = SLoe have elements SSim = SLoe = 1. For
example, SSim = SLoe corresponding to matrix X4 is given by

SSim = SLoe =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

Furthermore, if (6.12) and (6.3) hold, then the elements of the similarity matrices
SDice1 = {ajk/pj} and SDice2 = {ajk/pk} have the form

SDice1 =

{
p−1

j pk for j < k

1 for j ≥ k

and

SDice2 =

{
1 for j ≤ k

p−1
k pj for j > k.

For example, coefficient matrices SDice1 and SDice2 corresponding to data matrix X4

in Section 6.2, are given by

SDice1 =


1 .8 .4 .2
1 1 .5 .25
1 1 1 .5
1 1 1 1

 and SDice2 =


1 1 1 1
.8 1 1 1
.4 .5 1 1
.2 .25 .5 1

 .

Similarly, the elements of the similarity matrices SCole1 and SCole2 have the form

SCole1 =

{
(pjqk)

−1pkqj for j < k

1 for j ≥ k

and

SCole2 =

{
1 for j ≤ k

(pkqj)
−1pjqk for j > k.
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A matrix S is said to be a Green’s matrix (Karlin, 1968, p. 110) if its elements
can be expressed in the form

Sjk = umin(j,k)vmax(j,k) =

{
uj vk for j ≤ k

uk vj for j ≥ k

where uj and vk for j, k = 1, 2, ...,m are real constants. Green’s matrices are totally
positive, that is, the determinant of any square submatrix, including the minors, is
positive. These matrices have a variety of interesting properties (cf. Karlin, 1968).
Various similarity matrices corresponding to different coefficients become Green’s
matrices if the data are Guttman items.

Proposition 6.5. If the columns of X are ordered such that (6.12) and (6.3) hold,
then SRR, SDK, SBB = SJac = SSorg and SPhi are Green’s matrices.
Proof: If ajk = min(pj, pk) and pj ≥ pj+1, then

SRR =

{
pk for j ≤ k

pj for j ≥ k

SDK =


p
−1/2
j p

1/2
k for j < k

1 for j = k

p
−1/2
k p

1/2
j for j > k

SBB = SJac = SSorg =


p−1

j pk for j < k

1 for j = k

p−1
k pj for j > k

SPhi =


(pjqk)

−1/2(pkqj)
1/2 for j < k

1 for j = k

(pkqj)
−1/2(pjqk)

1/2 for j > k. �
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6.4 Epilogue

This chapter was used to introduce several data structures that are either reflected
in the data matrix or that can be assumed to underlie the data matrix. In the latter
case, data matrix X may contain the realizations, 0 or 1, generated by a latent
variable model. It was shown that if X exhibits some sort of Petrie structure or if a
certain latent variable model can be assumed to underlie data matrix X, then this
data structure is manifested in the quantities

ajk = the proportion of 1s shared by columns j and k

in the same positions

pj = the proportion of 1s in column j

and pk = the proportion of 1s in column k.

The properties of the manifest probabilities derived in this chapter are used in the
later chapters of the Part II as possible sufficient conditions for coefficient matrices
to exhibit or not certain ordinal properties.



CHAPTER 7

Robinson matrices

Given a n × m data matrix X one may obtain a m × m coefficient matrix by
calculating all pairwise coefficients for two columns j and k of X. Different similarity
matrices are obtained depending on the choice of similarity coefficient. Various
matrix properties of coefficient matrices may be studied. The topic of this chapter
is Robinson matrices.

A square similarity matrix S is called a Robinson matrix (after Robinson, 1951)
if the highest entries within each row and column of S are on the main diagonal
(elements Sjj) and moving away from this diagonal, the entries never increase. The
Robinson property of a (dis)similarity matrix reflects an ordering of the objects, but
also constitutes a clustering system with overlapping clusters. Such ordered cluster-
ing systems were introduced under the name pyramids by Diday (1984, 1986) and
under the name pseudo-hierarchies by Fichet (1984). The CAP algorithm to find an
ordered clustering structure was described in Diday (1986) and Diday and Bertrand
(1986), and later extended to deal with symbolic data by Brito (1991) and with miss-
ing data by Gaul and Schader (1994). Chepoi and Fichet (1997) describe several
circumstances in which Robinson matrices are encountered. For an in-depth review
of overlapping clustering systems the reader is referred to Barthélemy, Brucker and
Osswald (2004).

81
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A similarity matrix may or may not exhibit the Robinson property depending
on the choice of resemblance measure. It seems to be a common notion in the clas-
sification literature that Robinson matrices arise naturally in problems where there
is essentially a one-dimensional structure in the data (see, for example, Critchley,
1994, p. 174). As will be shown in this chapter, the occurrence of a Robinson
matrix is a combination of the choice of the similarity coefficient, and the specific
one-dimensional structure in the data. Here, the data structures from Chapter 6
come into play. In this chapter it is specified in terms of sufficient conditions what
data structure must be reflected in the data matrix X for a corresponding similarity
matrix to exhibit the Robinson property. The Robinson property is primarily stud-
ied for coefficient matrices that are symmetric. Chapter 19 is devoted to a three-way
generalization of Robinson matrix, called a Robinson cube.

7.1 Auxiliary results

When studying symmetric coefficient matrices, it is convenient to work with the
following definition of a Robinson matrix. A symmetric matrix S = {Sjk} is called
a Robinson matrix if we have

Sjk ≤ Sj+1k for 1 ≤ j < k ≤ m (7.1)

Sjk ≥ Sj+1k for 1 ≤ k ≤ j < m. (7.2)

In this first section we present several auxiliary results without proof. These results
may be used to establish Robinson properties for other coefficients once a property
has been established for some resemblance measures.

Proposition 7.1. Coefficient matrix S with elements Sjk is a Robinson matrix if
and only if the coefficient matrix with elements 2Sjk − 1 is a Robinson matrix.

Coefficients that are related by the formula in Proposition 7.1 are SHam = 2SSM−1
where

SSM =
a + d

a + b + c + d
and SHam =

a− b− c + d

a + b + c + d

(Hamann, 1961) and SMcC = 2SKul − 1 where

SKul =
1

2

(
a

a + b
+

a

a + c

)
and SMcC =

a2 − bc

(a + b)(a + c)

(McConnaughey, 1964).

Proposition 7.2. If Si for i = 1, 2, ..., n are n Robinson matrices of order m×m,
then their sum (or their arithmetic mean) is also a Robinson matrix.

Proposition 7.3. If S = {Sjk} and S∗ =
{
S∗jk
}

are Robinson matrices of order
m×m, then matrix T with elements Tjk = Sjk × S∗jk is a Robinson matrix.
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Proposition 7.4. Let S = {Sjk} be a Robinson matrix, and let f() be a monotonic
function. Then matrix T with elements Tjk = f(Sjk) is a Robinson matrix.

We also consider two propositions that are specific to parameter families SGL1(θ)
and SGL2(θ).

Proposition 7.5. Let S and S∗ be coefficient matrices corresponding to any two
members of SGL1(θ). S is a Robinson matrix if and only if S∗ is a Robinson matrix.
Proof: Due to Theorem 3.1, (7.1) and (7.2) for any member of SGL1(θ) become

ajk

pj + pk

≥ aj+1k

pj+1 + pk

for 1 ≤ k ≤ j < m

and
ajk

pj + pk

≤ aj+1k

pj+1 + pk

for 1 ≤ j < k ≤ m. �

Proposition 7.6. Let S and S∗ be coefficient matrices corresponding to any two
members of SGL2(θ). S is a Robinson matrix if and only if S∗ is a Robinson matrix.
Proof: Due to Theorem 3.2, (7.1) and (7.2) for any member of SGL2(θ) become

2ajk − pj ≥ 2aj+1k − pj+1 for 1 ≤ k ≤ j < m

and 2ajk − pj ≤ 2aj+1k − pj+1 for 1 ≤ j < k ≤ m. �

7.2 Braun-Blanquet + Russel and Rao coefficient

Coefficient
SBB =

ajk

max(pj, pk)
(Braun-Blanquet, 1932)

is one of the few interesting measures with respect to the Robinson property. It was
shown in Chapter 2 that SBB is a special case of a coefficient used by Robinson (1951)
(Proposition 2.1). The Robinson property of coefficient SBB is related to latent
variable models with monotonically increasing response functions. The coefficient
matrix corresponding to SBB is a Robinson matrix if pj ≥ pj+1 (6.3), ajk ≥ aj+1k

(6.4), and p−1
j ajk ≥ p−1

j+1aj+1k (6.6) hold. Condition (6.4) holds under the double
monotonicity model (Sijtsma and Molenaar, 2002). Condition (6.6) was derived by
Schriever (1986) for increasing response function that are totally positive of order 2.

Proposition 7.7. Suppose the m columns of X are ordered such that (6.3), (6.4)
and (6.6) hold. Then SBB with SBB = ajk/max(pj, pk) is a Robinson matrix.
Proof: Suppose (6.3) holds. Using SBB in (7.1) and (7.2) we obtain

ajk

pj

≤ aj+1k

pj+1

for 1 ≤ j < k ≤ m and ajk ≥ aj+1k for 1 ≤ k ≤ j < m.

The conditions are satisfied if (6.6) and (6.4) hold. �
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The coefficient by Russel and Rao (1940) SRR = ajk is by far the simplest coef-
ficient for binary data considered in this thesis. Nevertheless, SRR is an interesting
coefficient which possesses an interesting Robinson property. The result is not new,
but can already be found in Wilkinson (1971). Coefficient matrix SRR is a Robinson
matrix if X is row Petrie.

Theorem 7.1 [Wilkinson, 1971, p. 279]. If X is row Petrie, then SRR with
elements SRR is a Robinson matrix.
Proof 1: The result follows from Proposition 6.2.
Proof 2: Let xi be the ith row of X and let xT

i denotes its transpose. The matrix
SRR equals

SRR =
1

n

n∑
i=1

xT
i xi.

If X is row Petrie, then each xT
i xi is a Robinson matrix. Due to Proposition 7.2,

the arithmetic mean of Robinson matrices is again a Robinson matrix. �

7.3 Double Petrie

A variety of coefficient matrices are Robinson matrices when X is double Petrie.
Proposition 7.8 covers this Robinson property for parameter family SGL1(θ). Propo-
sition 7.9 concerns asymmetric coefficients SDice1 and SDice2, whereas Proposition
7.10 concerns SKul and SDK.

Proposition 7.8. If X is double Petrie, then the coefficient matrix corresponding
to any member of SGL1(θ) is a Robinson matrix.
Proof: The result follows from Proposition 7.5 and Proposition 6.4. �

Proposition 7.9. If X is double Petrie, then SDice1 and SDice2 with elements SDice1

and SDice2 are Robinson matrices.
Proof: We consider the proof for SDice1 first. Since SDice1 is not symmetric we ignore
equations (7.1) and (7.2). We must verify the four directions one may move away
from the main diagonal of SDice1. We have

ajk

pj

≥ aj+1k

pj+1

for 1 ≤ k ≤ j < m

and
ajk

pj

≤ aj+1k

pj+1

for 1 ≤ j < k ≤ m.

By Proposition 6.3, both conditions are true if X is double Petrie. Furthermore, we
have

ajk

pj

≥ ajk+1

pj

for 1 ≤ k < j ≤ m

and
ajk

pj

≤ ajk+1

pj

for 1 ≤ j ≤ k < m.
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By Proposition 6.2, these conditions are true if X is double Petrie. This completes
the proof for SDice1. Because SDice2 is the transpose of SDice1, SDice2 is a Robinson
matrix if and only if SDice1 has the Robinson property. �

Proposition 7.10. If X is double Petrie, then SKul and SDK with elements

SKul =
1

2

(
a

a + b
+

a

a + c

)
and SDK =

a√
(a + b)(a + c)

are Robinson matrices.
Proof: The property follows from Proposition 7.9 combined with Proposition 7.2 for
SKul and Propositions 7.3 and 7.4 with respect to coefficient SDK. �

7.4 Restricted double Petrie

The two conditions considered in this section are restricted forms of a double Petrie
structure. In Proposition 7.11 it is assumed that data table X satisfies the Guttman
scale. Matrix X4 (Section 6.2) is an example of a Guttman scale. In Proposition
7.12 it is assumed that X is double Petrie and that pj = pj+1 for 1 ≤ j < m.
Matrix X3 (Section 6.2) is an example of a data table that satisfies the conditions
considered in Proposition 7.12. Because the conditions in Propositions 7.11 and
7.12 are quite restrictive, the results have limited applicability and are perhaps of
theoretical interest only.

Proposition 7.11. If the columns of X are ordered such that (6.12) and (6.3)
hold, then SSM with elements SSM and SPhi with elements SPhi are Robinson matri-
ces.
Proof: Under condition (6.12), the equations of Proposition 7.6 become equivalent
to condition (6.3). This completes the proof for coefficient SSM.

Under condition (6.12), SPhi can be written as

SPhi =


√

pkqj

pjqk
for j < k√

pjqk

pkqj
for j > k

(7.3)

and SPhi = 1 if j = k.
Using (7.3) in (7.1) and (7.2) we obtain

qj

pj

≤ qj+1

pj+1

for 1 ≤ j < k ≤ m

and
pj

qj

≥ pj+1

qj+1

for 1 ≤ k ≤ j < m.

Both inequalities are true if (6.3) holds. This completes the proof for coefficient
SPhi. �
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Proposition 7.12. Let X be double Petrie and let pj = pj+1 for 1 ≤ j < m. Then
SSM with elements SSM and SPhi with elements SPhi are Robinson matrices.
Proof: If pj = pj+1 for 1 ≤ j < m, the equations of Proposition 7.6 become equiv-
alent to the equations in Proposition 6.2. This completes the proof for coefficient
SSM. The proof for SPhi is similar. �

7.5 Counterexamples

The Robinson property of SRR established in Theorem 7.1 appears to be unique to
SRR. We consider a row Petrie counterexample for the Jaccard coefficient

SJac =
ajk

pj + pk − ajk

which is a member of family SGL1(θ), and the coefficient by Braun-Blanquet (1932)

SBB =
ajk

max(pj, pk)
.

Let the data be in the matrix X1 from Section 6.2. Using X1, we may obtain
coefficient matrices

SJac =


1 .33 0 0

.33 1 .17 .20
0 .17 1 .40
0 .20 .40 1

 SBB =


1 .33 0 0

.33 1 .25 .33
0 .25 1 .50
0 .33 .50 1


and

SRR =


.14 .14 0 0
.14 .43 .14 .14
0 .29 .57 .29
0 .14 .29 .43

 .

The latter matrix is a Robinson matrix, but SJac and SBB are not Robinson matrices.
Coefficient matrices corresponding to resemblance measures that include the co-

variance (ad − bc) or the quantity d in the numerator do not appear to be Robin-
son matrices if X is double Petrie. For the simple matching coefficient SSM =
(a + d)/(a + b + c + d) and the Phi coefficient

SPhi =
ad− bc
√

pjpkqjqk

we consider a counterexample. Let the data be in the matrix X2 from Section 6.2.
Using X2 we may obtain coefficient matrices

SSM =


1 .5 0 .25
.5 1 .5 .25
0 .5 1 .75

.25 .25 75 1

 and SPhi =


1 0 −1 −.58
0 1 0 −.58
−1 0 1 −.58
−.58 −.58 −.58 1

 .

Both matrices are not Robinson matrices.
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7.6 Epilogue

A coefficient matrix is referred to as a Robinson matrix if the highest entries within
each row and column are on the main diagonal and moving away from this diago-
nal, the entries never increase. For a selection of resemblance measures for binary
variables we presented sufficient conditions for the corresponding coefficient matrix
to exhibit the Robinson property. As sufficient conditions we considered data tables
that are referred to as Petrie matrices, that is, matrices of which the columns can
be ordered such that the 1s in a row form a consecutive interval.

As it turns out, the sufficient conditions differ with the resemblance measures
for (0,1)-data. The occurrence of a Robinson matrix is the interplay between the
choice of similarity coefficient and the specific structure in the data at hand.

Some of the sufficient conditions can be ordered from restrictive to most general:
Guttman scale ⇒ double Petrie ⇒ row Petrie. The latter condition is sufficient for
the coefficient matrix corresponding to coefficient

SRR =
a

a + b + c + d
(Russel and Rao, 1940)

to be a Robinson matrix. Although this result was already presented in Wilkinson
(1971), the systematic study presented in this chapter reveals that the Robinson
property of SRR is a very general Robinson property compared to the Robinson
properties of other resemblance measures for binary variables. Furthermore, the
general Robinson property appears to be unique to coefficient SRR. Within the
framework of Petrie matrices, we may conclude that the Robinson property is most
likely to occur for the coefficient matrix SRR.

The Guttman scale is also a special case of the Rasch model (see Section 6.1),
which in turn is a special case of the model implied by (6.3), (6.4) and (6.6). In
Section 7.2 it was shown that the latter model, that corresponds to a probabilistic
model with monotonically increasing response functions, is sufficient for the coeffi-
cient matrix with elements

SBB =
a

max(p1, p2)
(Braun-Blanquet, 1932)

to be a Robinson matrix.
It should be noted that the results in this chapter are exact. For example, matrix

X1 was used in Section 7.5 to show that the similarity matrix based on SJac is not
a Robinson matrix for all row Petrie data matrices. Nevertheless, it may well as be
that matrix SJac is a Robinson matrix for many row Petrie data matrices, and that
in many practical cases it has approximately the same properties as SRR.





CHAPTER 8

Eigenvector properties

The eigendecomposition of matrices is used in various realms of research. In various
domains of data analysis, calculating eigenvalues and eigenvectors of certain ma-
trices characterizes various methods and techniques for exploratory data analysis.
For example, exploratory methods that are so-called eigenvalue methods, are prin-
cipal component analysis, homogeneity analysis (Gifi, 1990; Heiser, 1981; Meulman,
1982), classical scaling (Gower, 1966; Torgerson, 1958), or correspondence analysis
(Greenacre, 1984; Heiser, 1981).

The topic of study in this chapter are the eigenvectors of similarity matrices
corresponding to coefficients for binary data. Various results on the eigenvector
elements of coefficient matrices are presented. It is shown that ordinal information
can be obtained from eigenvectors corresponding to the largest eigenvalue of various
similarity matrices. Using eigenvectors it is therefore possible to uncover correct
orderings of various latent variable models. The point to be made here is that the
eigendecomposition of some similarity matrices, especially matrices corresponding
to asymmetric coefficients, are more interesting compared to the eigendecomposition
of other matrices. Many of the results are perhaps of theoretical interest only, since
no new insights are developed compared to existing methodology already available
for various nonparametric item response theory models.
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Homogeneity analysis is a generalization of principal component analysis to cate-
gorical data proposed by Guttman (1941). Various authors noted the specific (math-
ematical) properties of homogeneity analysis when it is applied to binary responses
(Guttman, 1950, 1954; Heiser, 1981; Gifi, 1990; Yamada and Nishisato, 1993). If
homogeneity analysis is applied to binary data, the category weights for a score 1
or 0 can be obtained as eigenvector elements of two separate matrices. As it turns
out, the elements of these matrices have simple formulas. In the last section of this
chapter some new insights on the mathematical properties of homogeneity analysis
of binary data are presented.

8.1 Ordered eigenvector elements

In this first section the eigenvector corresponding to the largest eigenvalue of various
coefficient matrices is studied. It is shown what ordinal information can be obtained
from the eigenvector corresponding to the largest eigenvalue of these matrices. The
inspiration for the study comes from a result presented in Schriever (1986) who
considered the eigenvector corresponding to the first eigenvalue of the coefficient
matrices with respective elements

SCole1 =
ajk − pjpk

pjqk

and SCole2 =
ajk − pjpk

pkqj

(Cole, 1949).

Most of the tools used below, come from the proof presented in Schriever (1986). A
specific result that will often be used when studying these properties, is the Perron-
Frobenius theorem (Gantmacher, 1977, p. 53; Rao, 1973, p. 46). More precisely,
only the following weaker version of the Perron-Frobenius theorem will be used.

Theorem 8.1. If a square matrix S has strictly positive elements, then the eigen-
vector y corresponding to the largest eigenvalue λ of S has strictly positive elements.

We will make use of the following matrices. Let V denote the h × h (h ≤ m)
upper triangular matrix with unit elements on and above the diagonal and all other
elements zero. Its inverse V−1 is the matrix with unit elements on the diagonal
and with elements -1 adjacent and above the diagonal. Furthermore, let I be the
identity matrix of size (m− h)× (m− h). Denote by W the diagonal block matrix
of order m with diagonal elements V and I. Examples of V and V−1 of sizes 3× 3
are respectively 1 1 1

0 1 1
0 0 1

 and

1 −1 0
0 1 −1
0 0 1

 .
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Examples of W and W−1 of sizes 5× 5 are
1 1 1 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and


1 −1 0 0 0
0 1 −1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Consider the coefficient matrices SDice2 and SRR with respective elements

SDice2 =
ajk

pk

and SRR = ajk.

Let y be the eigenvector corresponding to the largest eigenvalue λ of either the
matrix SDice2 or SRR. In Proposition 8.1 it is shown that if the columns of the data
matrix (or items in item response theory) can be ordered such that pj ≥ pj+1 (6.3)
and ajk ≥ aj+1k (6.4) hold, then this ordering is reflected in y.

Proposition 8.1. Suppose that h of the m column vectors of the data matrix X,
which without loss of generality can be taken as the first h, can be ordered such
that (6.3) and (6.4) hold. Then the elements of y corresponding to these h items
satisfy y1 > y2 > ... > yh > 0.
Proof: We first consider the proof for SDice2. Since W is non-singular, y is an
eigenvector of SDice2 corresponding to λ if and only if z = W−1y is an eigenvector
of T = W−1SDice2W corresponding to λ. Under the conditions of the theorem, the
elements of T turn out to be positive and the elements of T2 turn out to be strictly
positive. This can be verified as follows.

The matrix W−1SDice2 = U = {ujk} has elements

ujk =
ajk − aj+1k

pk

for 1 ≤ j < h and 1 ≤ k ≤ m

ujk =
ajk

pk

for h ≤ j ≤ m and 1 ≤ k ≤ m.

Because ajk ≥ aj+1k, U has positive elements except for ujj+1, j = 1, ..., h − 1.
However, since pj ≥ pj+1

ujj + ujj+1 =
pj+1ajj − pj+1ajj+1 + pjajj+1 − pjaj+1j+1

pjpj+1

=
ajj+1(pj − pj+1)

pjpj+1

> 0

for j = 1, ..., h − 1. Hence, the matrix T = UW has positive elements. Moreover,
because the elements in the last row and last column of T are strictly positive, it
follows that the elements of T2 are strictly positive. Application of Theorem 8.1
yields that the eigenvector z of T (or T2) has strictly positive elements. The fact
that z = W−1y completes the proof for SDice2.
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Next we consider the proof for SRR, which is similar to the proof SDice2. The
matrix W−1SRR = U = {ujk} has elements

ujk = ajk − aj+1k for 1 ≤ j < h and 1 ≤ k ≤ m

ujk = ajk for h ≤ j ≤ m and 1 ≤ k ≤ m.

Because ajk ≥ aj+1k, U has positive elements except for ujj+1 for 1 ≤ j ≤ h − 1.
Since pj ≥ pj+1

ujj + ujj+1 = ajj − ajj+1 + ajj+1 − aj+1j+1 > 0

for 1 ≤ j ≤ h− 1. This completes the proof for SRR. �

Consider the similarity matrices SDice1, SCole1 and SCole2 with respective elements

SDice1 =
ajk

pj

, SCole1 =
ajk − pjpk

pjqk

and SCole2 =
ajk − pjpk

pkqj

.

Let y be the eigenvector corresponding to the largest eigenvalue λ of one of the
three similarity matrices SDice1, SCole1 or SCole2. Schriever (1986) showed that if the
columns of the data matrix (or items in item response theory) can be ordered such
that (6.3) and (6.6)

ajk

pj

≤ aj+1k

pj+1

for fixed k (6= j)

hold, then this ordering is reflected in y for SCole1 or SCole2. Proposition 8.2 is used
to demonstrate that the same eigenvector property holds for SDice1.

Proposition 8.2. Suppose that h of the m column vectors of X, which without
loss of generality can be taken as the first h, can be ordered such that (6.3) and
(6.6) hold. Then the elements of y corresponding to these h items satisfy y1 > y2 >
... > yh > 0.
Proof: The proof is similar to the proof for SDice2 in Proposition 8.1. The matrix
(W−1)TSDice1 = U = {ujk} has elements

ujk =
pj−1ajk − pjaj−1k

pj−1pj

for 2 ≤ j ≤ h and 1 ≤ k ≤ m

ujk =
ajk

pj

for h < j ≤ m and 1 ≤ k ≤ m.

Because pj−1ajk ≥ pjaj−1k, the matrix U has positive elements except for ujj−1 for
2 ≤ j ≤ h. However, since pj−1 ≥ pj

ujj−1 + ujj =
pj−1ajj−1 − pjaj−1j−1 + pj−1ajj − pjajj−1

pj−1pj

=
ajj−1(pj−1 − pj)

pj−1pj

> 0

for 2 ≤ j ≤ h. This completes the proof. �
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8.2 Related eigenvectors

In the previous section it was shown what ordinal information can be obtained from
the eigenvector corresponding to the largest eigenvalue of coefficient matrices SRR,
SDice1, SDice2, SCole1 and SCole2. In this section it is pointed out what eigendecom-
positions of various similarity matrices are related.

Let y
(t)
1 , y

(t)
0 and z(t) denote the eigenvectors of similarity matrices SCole1, SCole2

and SPhi with respective elements

SCole1 =
ajk − pjpk

pjqk

and SCole2 =
ajk − pjpk

pkqj

and

SPhi =
ajk − pjpk√

pjpkqjqk

.

The eigendecomposition of SPhi defines principal component analysis for binary data,
whereas the decomposition of SCole1 and SCole2 give the category weights from a
homogeneity analysis when applied to binary data (Yamada and Nishisato, 1993;
Schriever, 1986; or see Section 8.3). With ordinary principal component analysis

there is a single weight z
(t)
j for each item j on dimension t. In contrast, in Guttman’s

categorical principal component analysis there are two weights for each item j on
dimension t, one for each response (0 and 1). Let y

(t)
j0 and y

(t)
j1 denotes these weights.

The relationships between the eigenvectors of SCole1, SCole2 and SPhi can already be
found in Yamada and Nishisato (1993).

Theorem 8.2 [Yamada and Nishisato, 1993]. The eigenvectors of similarity
matrices SCole1, SCole2 and SPhi are related by

y
(t)
j1 =

√
qj

pj

z
(t)
j and y

(t)
j0 =

√
pj

qj

z
(t)
j .

Proof: The eigenvectors are related due to the following property. If T is a non-
singular matrix, then y(t) is an eigenvector of S corresponding to the tth eigenvalue
λt if and only if z(t) = T−1y(t) is an eigenvector of T−1ST corresponding to λt. We
have

SCole1 =

√
pk

qk

ajk − pjpk√
pjpkqjqk

√
qj

pj

=
ajk − pjpk

pjqk

. �

Thus, if we would calculate the matrices SCole1, SCole2 and SPhi, these matrices
have the same eigenvalues and the various eigenvectors are related by the relations
in Theorem 8.2. Note that SCole1 and SCole2 possess the interesting eigenvector
property described in Proposition 8.2, whereas SPhi does not.
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A similar relation exists between the eigenvectors of the matrices SDice1, SDice2

and SDK with respective elements

SDice1 =
ajk

pj

, SDice2 =
ajk

pk

and SDK =
ajk√
pjpk

.

Let y
(t)
1 , y

(t)
0 and z(t) denote the eigenvectors of similarity matrices SDice1, SDice2 and

SDK. Proposition 8.3 considers the relationships between the eigenvectors of SDice1,
SDice2 and SDK.

Proposition 8.3. The eigenvectors of similarity matrices SDice1, SDice2 and SDK

are related by

y
(t)
j1 =

1
√

pj

z
(t)
j and y

(t)
j2 =

√
pj

1
z

(t)
j .

Proof: The proof is similar to the proof of Theorem 8.2. We have

SDice1 =

√
pk

1

ajk√
pjpk

1
√

pj

=
ajk

pj

and SDice2 =
1
√

pj

ajk√
pjpk

√
pj

1
=

ajk

pk

.

�

Again, if we would calculate the eigendecompositions of the matrices SDice1, SDice2

and SDK, we would obtain the same eigenvalues for each matrix. The various eigen-
vectors are related by the relations in Proposition 8.3. Note that SDice1 and SDice2

possess the eigenvector properties presented in Propositions 8.1 and 8.2.

8.3 Homogeneity analysis

Homogeneity analysis is the generalization of principal component analysis to cat-
egorical data proposed by Guttman (1941). In the previous section it was noted
that the optimal category weights from a homogeneity analysis are the eigenvectors
of the matrices SCole1 and SCole2 if the data are binary. In this section we consider
several other matrices from the homogeneity analysis methodology and present the
corresponding formulas for the case that homogeneity analysis is applied to binary
data.

Suppose the multivariate data are in a n×m matrix X containing the responses
of n persons on m categorical items. Let Gj be an indicator matrix of item j, defined
as the order n×Lj matrix Gj =

{
gil(j)

}
, where gil(j) is a (0,1) variable. Each column

of Gj refers to the Lj possible responses of item j. If person i responded category
l on item j, then gil(j) = 1, that is, the cell in the ith row and lth column of Gj

contains a 1, and gil(j) = 0 otherwise. The partitioned indicator matrix G then
consists of all Gj positioned next to each other.
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Let D of size
∑

j Lj×
∑

j Lj be the diagonal matrix with the diagonal elements of

GTG on its main diagonal and 0s elsewhere. The matrix D reflects the total amount
of 1s there are in each column of G. Suppose the category weights of homogeneity
analysis are in the vector y of size

∑
j Lj×1. The category weights can be obtained

from the generalized eigenvalue problem GTGy = mλDy. By itself the general-
ized eigenvalue problem does not tell us which eigenvector to take. The category
weights y are the eigenvectors of the matrix F = m−1D−1GTG. The eigenvector y
corresponding to the largest eigenvalue λ of F is considered trivial because it does
not correspond to a variance ratio. There are various ways to remove the trivial
solution: one way is by setting the matrix G in deviations from its column means
(Gifi, 1990, Section 3.8.2).

It turns out that the matrix F of size
∑

j Lj×
∑

j Lj has explicit elements. Note
that, for ease of notation, the columns of G are indexed by j and k in the following.

Proposition 8.4. The matrix F = m−1D−1GTG with G in deviations from its
column means, has elements

fjk =
ajk − pjpk

pj

for j and k from different columns of X

fjk = −pk for j and k from the same column of X

fjj = 1− pj.

Proof: The matrix GTG with G in deviations from its column means is a covariance
matrix corresponding to the columns of binary matrix G, which has elements ajk −
pjpk. Furthermore, the elements of m−1D equal the pj. �

The elements of the linear operator F have even more explicit elements if the data
matrix consists of binary scores, that is, when each item has two response categories.
The data matrix X has m columns, whereas the corresponding indicator coding G
then has 2m columns. Linear operator F is then a matrix of size 2m× 2m.

Corollary 8.1. Suppose the data matrix consists of binary items. Then F has
elements

fjk =
ajk − pjpk

pj

for j and k from different items

fjk = −pk for j and k from the same item

fjj = qj.
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Proposition 8.5. Suppose the data matrix consists of binary items. The rows
and columns of F can be reordered such that F has block structure

F =

[
F1 −F1

−F2 F2

]
where F1 and F2 are of size m×m.
Proof: Consider Corollary 8.1. If the column of G corresponding to category 1
of item l has positive or negative covariance with the jth column of G, then the
column of G corresponding to category 0 of item l has the same covariance with
the kth column of G but with opposite sign. In the case that two columns have
zero covariance, the sign may arbitrarily be chosen. Providing that all 2m diagonal
elements of D are different, it holds that F1 6= F2. �

From Proposition 8.4 and 8.5 it follows that F has explicit elements and, moreover,
can be reordered to exhibit simple (block) structure. Proposition 8.5 may be used to
derive to the following eigenvector property for the category weights concerning sign.
For the next result, let y be the eigenvector corresponding to the largest eigenvalue
of F of size 2m× 2m.

Proposition 8.6. Suppose the data matrix consists of binary items. The elements
in y corresponding to columns of G that have positive covariance, have similar sign.
Proof: Consider Proposition 8.5. Furthermore, let I be the identity matrix of size
m × m, and let W be the diagonal block matrix of size 2m × 2m with diagonal
elements I and−I. Since W is non-singular, it follows that the matrix U = W−1FW
has positive elements. Application of Theorem 8.1 yields that the eigenvector z
corresponding to the largest eigenvalue U has positive elements. The assertion then
follows from y = W−1z. �

The linear operator F considered in Propositions 8.4 to 8.6 is of the similarity
type. Heiser (1981) and Meulman (1982) consider the multidimensional scaling ap-
proach to homogeneity analysis, which is based on Benzécri or chi-square distances.
Meulman (1982) shows how category and persons weights can be obtained from
distance matrices using classical scaling (Torgerson, 1958; Gower, 1966).
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Let gik denote the response of person i to the kth column of G and let dk denote
the number of 1s in the kth column of G. Meulman (1982, p. 48) defines the squared
Benzécri distance between person i and l as

B2
il =

1

m2

∑
k

(gik − glk)
2

dk

.

If person i and l gave the same response to an item, then this does not contribute to
the distance B2

il. If the n×m data matrix X consist of m binary items (1 ≤ j ≤ m)
then B2

il can be written as

B2
il =

1

m2

2m∑
k=1

(gik − glk)
2

dk

=
1

m2

m∑
j=1

(xij − xlj)
2

dj

+
1

m2

m∑
j=1

(xij − xlj)
2

n− dj

where dj (n− dj) is the number of 1s (0s) in the jth column of X. Suppose that for
h items (1 ≤ h ≤ m) person i and l have different responses. Then m2B2

il can be
written as

m2B2
il =

1

d1

+
1

d2

+ ... +
1

dh

+
1

n− d1

+
1

n− d2

+ ... +
1

n− dh

or B2
il as

B2
il =

n

m2

h∑
j=1

1

dj(n− dj)
.

Squared distance B2
il may be interpreted as a weighted symmetric set difference.

Meulman (1982, p. 37) defines the squared Benzécri distance between category j
and k as

B2
jk =

n∑
i=1

[
gij

dj

− gik

dk

]2

.

In general, not just with binary data, four types of persons can be distinguished.
We define the three quantities

a = number of times gij = 1 and gik = 1;

b = number of times gij = 1 and gik = 0;

c = number of times gij = 0 and gik = 1.

Note that dj = a + b and dk = a + c. The Benzécri distance B2
jk then equals

B2
jk = a

[
1

dj

− 1

dk

]2

+ b

[
1

dj

]2

+ c

[
1

dk

]2

=
1

dj

+
1

dk

− 2a

djdk

=
dj + dk − 2a

djdk

.

When category j and k are two categories of the same item, a = 0 and therefore
B2

jk = d−1
j + d−1

k .
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8.4 Epilogue

For several coefficient matrices we studied in this chapter the eigenvector elements
corresponding to the largest eigenvalue. It was shown that ordinal information on
model probabilities is reflected in the eigenvector elements. It is thus possible to
uncover correct orderings of various latent variable models presented in Chapter 6
using eigenvectors of coefficient matrices. For coefficients

SDice2 =
ajk

pk

and SRR = ajk

it was demonstrated by Proposition 8.1 that if a set of items can be ordered such
that double monotonicity model holds, then this ordering is reflected in the elements
of the eigenvector corresponding to the largest eigenvalue of the similarity matrices.
The conventional method of discovering this order is by inspecting the proportion
item correct (pj). A similar, although less general, eigenvector property holds for
coefficients

SCole1 =
ajk − pjpk

pjpk

, SCole2 =
ajk − pjpk

pkqj

and SDice1 =
ajk

pj

.

In Proposition 8.2 it was shown that if a set of items can be ordered such that the
double monotonicity model holds and, moreover, the response functions satisfy total
positivity of order 2, then this ordering is reflected in the elements of the eigenvector
corresponding to the largest eigenvalue of the coefficient matrices.

In addition to the eigenvector properties of several asymmetric matrices, various
matrix methodology of homogeneity analysis was studied. Homogeneity analysis is
a versatile technique and it can be studied from various points of view. It was shown
that several of the different matrices corresponding to this form of categorical prin-
cipal component analysis have often explicit elements. If the data matrix contains
binary data, then the category weights corresponding to categories with positive
covariance have the same sign.

Heiser (1981) and Meulman (1982) consider the multidimensional scaling ap-
proach to homogeneity analysis, which is based on dissimilarities or distances. The
distances called Benzécri distances in Meulman (1982) are nowadays referred to as
chi-square distances. The chi-square distance between two persons is a form of the
extended matching coefficient weighted inversely by the response frequencies.



CHAPTER 9

Homogeneity analysis and the
2-parameter IRT model

Guttman (1941) presented a method that can be used to obtain a representation of
the structure of multivariate categorical data. The technique was briefly mentioned
in Sections 8.2 and 8.3. The method gives a multidimensional decomposition of the
data with the most informative structural dimension extracted first, then the second
most informative dimension, and so on, until the information in the data is exhaus-
tively extracted. The method is typically used for the construction of geometrical
representations of the dependencies in the data in low-dimensional Euclidean space,
often two-dimensional, from the extracted dimensions. Given that the data are in
a person by item table, each dimension consists of weights for the item categories
(known as optimal weights) and scores for the persons. The discovery or rediscov-
ery of Guttman’s method by many authors has led to the fact that the method is
known under many different names, for example, dual scaling (Nishisato, 1980), mul-
tiple correspondence analysis (Greenacre, 1984), Fisher’s method of optimal scores
(Gower, 1990), or homogeneity analysis (Gifi, 1990).

0Parts of this chapter appeared in Warrens, M.J., De Gruijter, D.N.M. and Heiser, W.J. (2007),
A systematic comparison between classical optimal scaling and the two-parameter IRT model,
Applied Psychological Measurement, 31 (2), 106–120.
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Warrens, Heiser and De Gruijter (2006), Warrens and Heiser (2006) and War-
rens, De Gruijter and Heiser (2007) showed that homogeneity analysis is useful
for analyzing binary data. Gifi (1990, p. 425-440) and Cheung and Mooi (1994)
showed that homogeneity analysis is useful for analyzing Likert data. In addition,
the latter authors compared the homogeneity scaling findings to an item response
theory analysis using the rating scale model (Andrich, 1988). They evaluated both
the similarities and differences and concluded that there is great similarity between
the two contrasting approaches. A systematic comparison of homogeneity analysis
and the item response theory approach is lacking however. The present chapter is
therefore used to systematically explore the relationship between a one-dimensional
homogeneity analysis and the logistic 2-parameter model.

9.1 Classical item analysis

Let ω denote a latent variable and let δj and βj be respectively a discrimination and
location parameter of the logistic 2-parameter model (Section 6.1). The probability
of a response 1 on item j under the logistic 2-parameter model is given by

pj(ω) =
exp[δj(ω − βj)]

1 + exp[δj(ω − βj)]
. (9.1)

On pages 377 and 378 of their by now classic book, Lord and Novick (1968) show
how the item parameters of the normal ogive 2-parameter model are related to the
indices used in classical item analysis. Two conditions are assumed:

1) the latent variable is normally distributed with zero mean

and unit variance;

2) the appropriate model is the 2-parameter normal ogive.

Under these conditions the mean of ω, conditional on a score 1 on item j, equals

µj1 =
φ(γj) ρ′j

pj

where pj = Φ(−γj) is the item proportion correct, where Φ denotes the cumulative
normal distribution function and γj = βj ρ′j. Furthermore, φ(γj) is the ordinate of
the standard normal distribution, and

ρ′j =
δj√

1 + δ2
j

is the biserial correlation between item j and the latent variable.
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Due to the fact that the logistic formulation of the 2-parameter model is more
tractable then the normal ogive, the former is sometimes preferred in item response
theory work. Let us derive how the above relations on the basis of the normal
ogive hold under the logistic approximation. The logistic 2-parameter model and its
approximate relation with the normal ogive 2-parameter model are given by

pj(ω) = Ψ [δj(ω − βj)] ≈ Φ
[
D−1δj(ω − βj)

]
where Ψ denotes the logistic function, and D = 1.7 is a constant. Under the logistic
approximation the mean of ω, conditional on a response 1 on item j, equals

µj1 ≈
φ(γ∗j ) ρ∗j

Ψ(−Dγ∗j )
(9.2)

where
Ψ(−Dγ∗j ) ≈ pj (9.3)

γ∗j = βj ρ∗j , and

ρ∗j =
δj

D
√

1 + D−2δ2
j

.

Furthermore, under the logistic approximation

φ(γ∗j ) ≈ DΨ(Dγ∗j )
[
1−Ψ(Dγ∗j )

]
= DΨ(−Dγ∗j )

[
1−Ψ(−Dγ∗j )

]
and (9.2) can be rewritten as

µj1 ≈ (1− pj)Dρ∗j .

9.2 Person parameter

With binary responses, the 2-parameter item response model uses two item parame-
ters whereas a one-dimensional homogeneity analysis produces two category weights.
Furthermore, both approaches use one parameter for locating persons. Let us show
how the item response theory person parameter estimate, denoted by ωi, and the
optimal person score, denoted by xi, are related. This relationship is used in the
remaining sections of this chapter, where it is assumed that the optimal person score
is a reasonable approximation of the latent variable, that is xi ≈ ωi. In the following
we will show that this approximation is a reasonable one.

Two data sets were generated from both the logistic 2-parameter model and
the Rasch model under the following conditions. The data sets consisted of the
responses of 1000 persons on 50 items; for each data set the location parameters βj’s
were sampled from a standard normal distribution; the discrimination parameters
for the 2-parameter model were sampled from a uniform distribution on the range
[1,2], for the Rasch (1960) model these were set to unity; the latent variable was
sampled from a standard normal distribution.
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Figure 9.1: Plot of maximum a posteriori person estimates (horizontal) versus ho-
mogeneity person scores (vertical) for the Rasch data set.

For both data sets the optimal scaling and item response theory person estimates
were obtained. The item response theory analysis was performed using the Multilog
software program (Thissen, Chen and Bock, 2003) to obtain maximum a posteriori
estimates. The person estimates of both approaches are plotted in Figures 9.1
and 9.2 for respectively the Rasch model and the logistic 2-parameter model. The
correlations between the two sets of estimates are in both figures > .99. The root
mean squared errors are < .2, which concurs with the slight nonlinearity that can
be observed upon close inspection. Apart from the nonlinearity, the optimal person
score seems a reasonable approximation of the latent variable, that is, ωi ≈ xi under
the 2-parameter model.

9.3 Discrimination parameter

Lord (1958) showed that the optimal category weights on the first dimension maxi-
mize coefficient alpha (Cronbach, 1951), an important lower bound to reliability, a
concept used in classical test theory (De Gruijter and Van der Kamp, 2008). An
application of Guttman’s method in which this property is explicitly used, can be
found in Serlin and Kaiser (1978). The second, third and subsequent dimensions of
the technique may be considered sets of weights corresponding to local maximums
of alpha. If the data are binary, there are only two category weights for each item
j. For this special case it is possible to construct a single index for each item that
reflects all information for maximizing coefficient alpha. This can be done by trans-
lating the two optimal homogeneity weights y

(t)
j0 and y

(t)
j1 into new weights v

(t)
j0 and
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Figure 9.2: Plot of maximum a posteriori person estimates (horizontal) versus ho-
mogeneity person scores (vertical) for the logistic 2-parameter model data set.

v
(t)
j1 (where t denotes the dimension). With the translations

v
(t)
j0 = y

(t)
j0 − y

(t)
j0 = 0

and v
(t)
j1 = y

(t)
j1 − y

(t)
j0

the category weight y
(t)
j0 is set to zero and all information of item j on maximiz-

ing coefficient alpha is reflected in v
(t)
j1 . The latter weight is therefore denoted by

max(α)
(t)
j = v

(t)
j1 in the following.

Let z
(t)
j be the eigenvector corresponding to the tth eigenvalue of the matrix SPhi

with elements

SPhi =
ajk − pjpk√

pjpkqjqk

.
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Proposition 9.1. The weight max(α)
(t)
j is related to the principal component

weight z
(t)
j by

max(α)
(t)
j = z

(t)
j

1

[pj(1− pj)]
1/2

.

Proof: The relationship follows from using the equations in Theorem 8.2 in

max(α)
(t)
j = y

(t)
j1 − y

(t)
j0 . �

Proposition 9.2. The weights max(α)
(t)
j are elements of the eigenvector corre-

sponding to the tth eigenvalue of the matrix SMA with elements

SMA =
ajk − pjpk

pj(1− pj)
.

Proof: The proof is similar to the proof of Theorem 8.2 and Proposition 8.3. Using
the formulas in Proposition 8.1, we have

SMA =

[
pk(1− pk)

1

]1/2
ajk − pjpk

[pj(1− pj)pk(1− pk)]1/2

[
1

pj(1− pj)

]1/2

=
ajk − pjpk

pj(1− pj)
. �

From this point on, let max(α)j be short for max(α)
(1)
j = y

(1)
j1 − y

(1)
j0 , and let yj1

and yj0 be short for y
(1)
j1 and y

(1)
j0 . The definition of max(α)j reveals that the item

weight becomes greater as the mean values of all persons who responded 1 to item
j and those who responded 0 become further apart. Hence, max(α)j has a clear
interpretation as an index of discrimination.

An often used normalization in homogeneity analysis when applied to binary
data, is pjyj1 + (1− pj)yj0 = 0, which can be written as

yj0 = − pjyj1

1− pj

. (9.4)

With the help of (9.4), max(α)j can be written as

max(α)j =
yj1

1− pj

. (9.5)
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In the following it is assumed that xi ≈ ωi (Section 9.2). In addition it is assumed
that

1) the latent variable is normally distributed with zero mean

and unit variance;

2) the appropriate model is the 2-parameter model.

Under these assumptions the work of Lord and Novick (1968) on the relationship
between the item response theory item parameters and some indices from classical
item analysis becomes available. Under the above three assumptions it follows from
Section 9.1 that

max(α)j ≈ Dρ∗j =
δj√

1 + D−2δ2
j

. (9.6)

The functional relationship in (9.6) was derived in a different way by De Gruijter
(1984). Since, ρ∗j has a maximum of unity, the quantity in (9.6) has a maximum
value of D = 1.7. Since, the max(α)j weight is a function of δj only, δj can be
expressed as a function of max(α)j. The resulting function gives an estimate of the
discrimination parameter of the logistic 2-parameter model given by

δ̂j =
D max(α)j√

D2 − [max(α)j]2
for |max(α)j| ≤ D (9.7)

which is a function of max(α)j only.

9.4 More discrimination parameters

A third measure of discrimination for item j, next to δj and max(α)
(t)
j , is described

in Gifi (1990, Section 3.8.4). With binary data the measure is given by[
η

(t)
j

]2
= pj

[
y

(t)
j1

]2
+ (1− pj)

[
y

(t)
j0

]2
. (9.8)

Theorem 9.1 [Yamada and Nishisato, 1993, p. 60]. The weight max(α)
(t)
j is

related to
[
η

(t)
j

]2
by

max(α)
(t)
j =

η
(t)
j

[pj(1− pj)]
1/2

.

Proof: Equation (9.8) can be re-expressed in terms of y
(t)
j1 and y

(t)
j0 with the help of

(9.4), which gives

y
(t)
j1 = η

(t)
j

[
1− pj

pj

]1/2

−y
(t)
j0 = η

(t)
j

[
pj

1− pj

]1/2

.
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Hence, we obtain

max(α)
(t)
j = y

(t)
j1 − y

(t)
j0 =

η
(t)
j

[pj(1− pj)]
1/2

or [
η

(t)
j

]2
= pj(1− pj)

[
max(α)

(t)
j

]2
.

In words,
[
η

(t)
j

]2
is the squared max(α)

(t)
j of item j on dimension t, times the variance

of item j. �

A fourth measure of discrimination is described in McDonald (1983). In a more
general context than the one considered in the present chapter, McDonald argued
not to interpret the category weights themselves, but the regression weights of each
category on the person score xi. With McDonald’s formulation there is not one
discrimination measure for each item j on dimension t, but one for each category.
When each item has two categories, the measures are given by reg

(t)
j1 = pjy

(t)
j1 and

reg
(t)
j0 = 1− pjy

(t)
j0 . Equation (9.4) can be written as

pjy
(t)
j1 = (pj − 1)y

(t)
j0 ⇔ reg

(t)
j1 = −reg

(t)
j0 .

Since, with binary data, the two regression weights contain the same information,
it suffices to look at reg

(t)
j1 , assumed to be positive, only.

Proposition 9.3. The weight max(α)
(t)
j is related to reg

(t)
j1 by

reg
(t)
j1 = pj(1− pj)max(α)

(t)
j .

Proof: Equation (9.5) can be written as

y
(t)
j1 = (1− pj)max(α)

(t)
j . (9.9)

Multiplication of both sides of (9.9) by pj gives the desired result. �
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9.5 Location parameter and category weights

Now that the functional relationship between the discrimination indices has been
established we turn our intention to the remaining information in the weights yj1

and yj0 (short for y
(1)
j1 and y

(1)
j0 ). Since max(α)j is given by the difference between

yj1 and yj0, the remaining information in the weights can be summarized in

sumj = yj1 + yj0.

With the help of (9.4), sumj can be written as

sumj =
1− 2pj

1− pj

yj1.

Under the same three assumptions as used in Section 9.3, it follows that

sumj ≈ Dρ∗j
(
1− 2Ψ[−βj Dρ∗j ]

)
. (9.10)

Suppose now that ρ∗j in (9.10) is constant for all j. For this limited case it holds
that if βj increases, then sumj also increases. Since, βj and sumj are monotonically
related under this restriction, sumj can be interpreted as a location parameter for a
model of which the discrimination parameters are equal for all j, that is, the Rasch
(1960) model.

From (9.10) an estimate for the location parameter βj of the logistic 2-PM can
be obtained. This estimate can be simplified. In addition to max(α)j only pj is
needed. Let Ψ denote the logistic function. Then, from (9.3) it follows that

pj ≈ Ψ[−βj max(α)j]. (9.11)

If one takes the inverse of the logistic function on both sides of (9.11) and rewrites
the resulting equation in terms of βj, one obtains an estimate of location for item j
given by

β̂j = −
ln
(

pj

1−pj

)
max(α)j

. (9.12)

The estimate derived in (9.12) is related to the estimate proposed by Cohen (1979)
for the Rasch (1960) model.
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9.6 Epilogue

Homogeneity analysis or multiple correspondence analysis is a method that can be
used to obtain a representation of the structure of multivariate categorical data. If
the data are binary, there are only two category weights for each item j of a homo-
geneity analysis, namely, yj1 and yj0. Category weights yj1 (yj0) are the elements of
the eigenvector corresponding to the largest eigenvalue of the matrix SCole1 (SCole2)
with elements

SCole1 =
ajk − pjpk

pjqk

(
SCole2 =

ajk − pjpk

pkqj

)
.

In this chapter the relationship between a one-dimensional homogeneity analysis
and the logistic 2-parameter model was systematically explored. It was first studied
how the item response theory person parameter estimate and the optimal person
score are related. It was shown that that the optimal person score is a reasonable
approximation of the latent variable. Next, the homogeneity category weights of the
first dimension were related to the parameters of the 2-parameter model, using some
results on the relationship between item response theory and classical item analysis
from Lord and Novick (1968, p. 377-378).

At this point the question arises, what is the point of knowing the functional rela-
tionship between a one-dimensional homogeneity analysis and item response theory?
First of all, it is useful in general to study equivalences or functional relationships
between different methods of data analysis, primarily because this often gives new
insight into the methods themselves. More precisely, approximate estimates for the
item parameters of the logistic 2-parameters were derived which are based on the
conditional means. The estimates were not meant as possible replacement of the
current item response theory estimates. One might be tempted to ask if these es-
timates may be used to obtain perhaps less biased parameter estimates (maximum
likelihood estimation is already most efficient). In non-reported simulation experi-
ments it turns out that the estimates based on homogeneity analysis do not give less
biased estimates nor smaller standard errors. On the other hand, the closeness of
the optimal person score to the latent variable under a variety of item response the-
ory models shows that homogeneity analysis is a useful multi-purpose data analysis
method. Even without specifying a model one cannot be far off.

The findings in this chapter do give several new insights into the application of
homogeneity analysis. A typical use of homogeneity analysis and other optimal scal-
ing methods, is the construction of geometrical representations of the dependencies
in the data in low-dimensional Euclidean space, often two-dimensional, from the
extracted dimensions. The use of two-dimensional (sometimes three-dimensional)
plots is embedded so strongly in the optimal scaling community that it is often
regarded as impossible that all relevant information is in the first dimension only.



CHAPTER 10

Metric properties of two-way
coe�cients

Various methods of data analysis use the facility of fitting distances to a table of
coefficients, where the coefficients are summary measures of the data. An example
is metric multidimensional scaling, and a popular distance measure is the Euclidean
distance. In this chapter a review is presented on metric properties of various co-
efficients for binary data. Metric properties of various similarity coefficients can
be found in Gower (1986), Fichet (1986) and the exposé by Gower and Legendre
(1986). The foremost requirement that must be satisfied by a coefficient, before it
is said to be a metric, is the triangle inequality. The other metric axioms are more
easily verified. The proofs of the metric properties for two-way similarity coefficients
reviewed here, are essential blueprints and tools for the proofs of metric properties
of multi-way coefficients discussed later on in the thesis (Chapter 18).

The present chapter focuses solely on metric properties and not on the closely
related Euclidean property, which is satisfied if the functions can be embedded in
an Euclidean space. Since an Euclidean distance is also a metric, the former is
a stronger requirement. The dissimilarity coefficients corresponding to similarity
coefficients

SJac =
a

a + b + c
and SSM =

a + d

a + b + c + d
are not Euclidean using the transformation D = 1−S, but they are Euclidean after
transformation D =

√
1− S (Gower and Legendre, 1986, p. 23).

109
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The transformation D = 1− S, D is the complement of S, can easily be applied
to the case of multi-way similarities considered in Part IV. It is however unclear
how the transformation D =

√
1− S generalizes to multi-way dissimilarities. The

transformation is therefore not considered in this chapter.
A property that is often studied in close relation to metric and Euclidean prop-

erties, is the concept of positive semidefiniteness. A similarity matrix S is called
positive semidefinite if all eigenvalues are nonnegative, in which case S is sometimes
called a Gramian matrix. This property is not reviewed in this chapter, because
no attempt is made to generalize these properties to the multi-way case. Various
results on positive semidefinite coefficient matrices with respect to resemblance mea-
sures for binary data can be found in Janson and Vegelius (1981), Zegers (1986) and
Gower and Legendre (1986).

10.1 Dissimilarity coefficients

In Section 1.2 requirements or axioms for similarities as well as dissimilarities were
considered. Let x1 and x2 be two variables or objects. A two-way or bivariate
function D(x1, x2) is referred to as a dissimilarity if it satisfies

D(x1, x2) ≥ 0 (nonnegativity)

D(x1, x2) = D(x2, x1) (symmetry)

and D(x1, x1) = 0 (minimality).

A straightforward way to transform a similarity coefficient S into a dissimilarity
coefficient D is by taking the complement D = 1−S. This require that S(x1, x1) = 1,
otherwise D(x1, x1) 6= 0. For several coefficients, the transformation D = 1−S gives
simple formulas. For example,

DJac = 1− SJac =
b + c

a + b + c

DGleas = 1− SGleas =
b + c

2a + b + c
=

b + c

p1 + p2

DSM = 1− SSM =
b + c

a + b + c + d
= b + c

DKul = 1− SKul =
bp2 + cp1

2p1p2

DSim = 1− SSim =
min(b, c)

min(p1, p2)

DBB = 1− SBB =
max(b, c)

max(p1, p2)
.

In order for coefficient DRR = 1 − SRR to satisfy minimality, DRR must be defined
as

DRR =

{
0 if x1 = x2

1− a otherwise.
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For D to be a metric, it must satisfy the metric axioms definiteness, given by

D(x1, x2) = 0 if and only if x1 = x2

and foremost, the triangle inequality, which is given by

D(x1, x2) ≤ D(x1, x3) + D(x2, x3). (10.1)

10.2 Main results

Inequality (10.1) is the main topic of this chapter. The other metric axioms are
less difficult to verify. Since (10.1) describes the relation between three variables or
objects instead of just two, some additional notation is required. Let

p111 = P
(

1
x1,

1
x2,

1
x3

)
denote the proportion of 1s shared by variables x1, x2 and x3 in the same positions,
and let

p110 = P
(

1
x1,

1
x2,

0
x3

)
denote the proportion of 1s shared by variables x1 and x2, and 0s by variable h3

in the same positions. With this notation we have that a = p11
12 = p111 + p110. For

convenience, notation p111 will be used instead of P
(

1
x1,

1
x2,

1
x3

)
. The quantities a,

b, c, and d have subscripts

a12 = a(x1, x2)

b12 = b(x1, x2)

c12 = c(x1, x2)

d12 = d(x1, x2)

when comparing variables or objects x1 and x2. Furthermore, let D12 be short for
D(x1, x2). The subscripts are dropped whenever possible.

Theorem 10.1 covers the metric property for the relatively simple functions given
by

DRR = 1− a and DSM = b + c.

Theorem 10.1. Functions DRR, DSM and D = 1−d satisfy the triangle inequality
(10.1).
Proof: Using DRR in (10.1) we obtain

1− a12 ≤ 1− a13 + 1− a23

2− 2p111 − p101 − p011 ≥ 1− p111 − p110

1 + p110 ≥ p111 + p101 + p011. (10.2)
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Using D = 1− d and DSM in (10.1) we obtain respectively

1 + p001 ≥ p000 + p100 + p010 (10.3)

and
1 + p110 + p001 ≥ p111 + p101 + p011 + p100 + p010 + p000. (10.4)

(Interestingly, it does not suffice that for (10.4) to hold, both (10.2) and (10.3) are
true). Inequalities (10.2), (10.3) and (10.4) are true because

1 = p111 + p110 + p101 + p011 + p100 + p010 + p001 + p000. (10.5)

�

The proof of the metric property of DJac is less straightforward compared the
proof for coefficients considered in Theorem 10.1. The tool used is not adopted
from Gower and Legendre (1986). Instead, the idea comes from Heiser and Bennani
(1997), where it is used for three-way dissimilarities. The application below describes
the tool for the simpler (two-way) case. In Chapter 18 a generalization of the proof
of Theorem 10.2 is used. The next result shows that both

DJac =
b + c

a + b + c
and D =

b + c

1− a
=

b + c

b + c + d

satisfy the triangle inequality.

Theorem 10.2. The functions DJac and

D =
b + c

b + c + d

satisfy (10.1).
Proof: We consider the proof for DJac first. Adding p001 to both sides and p110 to
the left side of (10.5), we obtain

1 + p110 + p001 ≥ p111 + p110 + p101 + p011 + p100 + p010 + 2p001 + p000

which equals
(b13 + c13) + (b23 + c23)− (b12 + c12) ≥ p001. (10.6)

DSM = 1− SSM and DJac are related by

DSM = (1− d12)
b12 + c12

1− d12

= (1− p000 − p001)DJac. (10.7)

Using (10.7) in (10.6) we obtain

(1− p000)

[
b13 + c13

1− d13

+
b23 + c23

1− d23

− b12 + c12

1− d12

]
≥

p010

[
b13 + c13

1− d13

]
+ p100

[
b23 + c23

1− d23

]
+p001

[
1− b12 + c12

1− d12

]
.

Since (1− p000) ≥ 0 and DJac ≤ 1, we conclude that DJac satisfies (10.1).



10.2. Main results 113

Next, we consider the proof for D. Adding p110 to both sides and p001 to the left
side of (10.5), we obtain

(b13 + c13) + (b23 + c23)− (b12 + c12) ≥ p110 (10.8)

instead of (10.6). DSM and D are related by

DSM = (1− a12)
b12 + c12

1− a12

= (1− p110 − p111)D. (10.9)

Using (10.9) in (10.8) we obtain

(1− p111)

[
b13 + c13

1− a13

+
b23 + c23

1− a23

− b12 + c12

1− a12

]
≥

p101

[
b13 + c13

1− a13

]
+ p011

[
b23 + c23

1− a23

]
+p110

[
1− b12 + c12

1− a12

]
.

Since (1− p111) ≥ 0 and D ≤ 1, we conclude that D satisfies (10.1).
This completes the proof. �

Before studying any other coefficient, we note the following well-known result (see,
for example, Gower and Legendre, 1986).

Theorem 10.3. Let e be a positive constant. If D satisfies (10.1), then D/(e+D)
satisfies (10.1).
Proof: We have

D12

e + D12

+
D13

e + D13

≥ D23

e + D23

if and only if

e2(D12 + D13 −D23) + 2eD12D13 + D12D13D23 ≥ 0. �

Combining Theorem 10.3 with Theorem 10.1 or 10.2, various new results can be
obtained. Consider the dissimilarities

DSS1 = 1− SSS1 =
2(b + c)

a + 2(b + c)
=

2DJac

1 + DJac

2(b + c)

2(b + c) + d
=

2D

1 + D
where D =

b + c

b + c + d

DRT = 1− SRT =
2(b + c)

a + 2(b + c) + d
=

2DSM

1 + DSM

.

Since DJac and DSM satisfy (10.1), application of Theorem 10.3 leads to the next
result.
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Proposition 10.1. The functions DSS3, DRT and

D =
2(b + c)

2(b + c) + d
satisfy (10.1).

Next, it is shown what other members of

DGL1(θ) = 1− SGL1(θ) = 1− a

(1− θ)a + θ(1− d)
, (10.10)

apart from DJac and DSS1, satisfy the triangle inequality.

Theorem 10.4. The function DGL1(θ) satisfies (10.1) for 0 < θ ≤ 1.
Proof: By Theorem 10.2 DGL1(θ = 1) = DJac satisfies (10.1). For 0 < θ < 1, let
θ = (e + 1)/e, where e is a positive real number. Then (10.10) can be written as

DGL1(θ) =
θDSM

a + θDSM

=
(e + 1)DSM

ea + (e + 1)DSM

. (10.11)

Dividing both numerator and denominator of (10.11) by 1− d we obtain

DGL1(θ) =
(e + 1)DJac

eSJac + (e + 1)DJac

=
(e + 1)DJac

e + DJac

. (10.12)

The right part of (10.12) satisfies (10.1) if and only if DJac/(e+DJac) satisfies (10.1).
The result then follows from application of the Theorem 10.3. �

10.3 Counterexamples

We finish the chapter with coefficients that do not satisfy the triangle inequality.
For each coefficient, it suffices to present a counterexample (see also Gower and
Legendre, 1986, Appendix II). Consider the three binary vectors[

1
0

] [
0
1

]
and

[
1
1

]
.

We have

DSS2 = 1− 2(a + d)

2a + b + c + 2d
→ D12 = 1 and D13 = D23 =

1

3

DGleas = 1− 2a

p1 + p2

→ D12 = 1 and D13 = D23 =
1

3

DDK = 1− a
√

p1p2

→ D12 = 1 and D13 = D23 = 1− 1√
2

<
1

3

DKul = 1− a(p1 + p2)

2p1p2

→ D12 = 1 and D13 = D23 =
1

4

DSim = 1− a

min(p1, p2)
→ D12 = 1 and D13 = D23 = 0.

The dissimilarities do not satisfy the triangle inequality.
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Consider the three binary vectors
1
0
0
0




0
1
0
0

 and


1
1
0
0

 .

We have

DCohen = 1− 2(ad− bc)

p1q2 + p2q1

→ D12 =
4

3
and D13 = D23 =

1

2

DPhi = 1− ad− bc
√

p1p2q1q2

→ D12 =
4

3
and D13 = D23 = 1− 1√

3
<

1

2

DLoe = 1− ad− bc

min(p1q2, p2q1)
→ D12 =

4

3
and D13 = D23 =

1

3
.

The dissimilarities do not satisfy the triangle inequality.

10.4 Epilogue

Only a few dissimilarities obtained with transformation D = 1 − S turn out to be
metric, that is, satisfy the triangle inequality. The key coefficients here are

DRR = 1− a = b + c + d and DSM = 1− a− d = b + c

and

DJac = 1− a

a + b + c
=

b + c

a + b + c
.

Counterexamples were presented for various other coefficients. Since these two-way
dissimilarities do not satisfy the triangle inequality, their multi-way formulations
presented in Chapters 16 and 17 do not satisfy the generalizations of the triangle
inequality considered in Part III of the thesis. Therefore, no metric properties of
these coefficients are considered in Chapter 18.

Similarly to Chapters 7 and 8, it may be investigated if one of the functions that
do not satisfy the triangle inequality in general, do satisfy the triangle inequality if
the data matrix exhibits certain patterns or contains some form of structure. For
example, if the data are Guttman vectors, the function

DDice = 1− 2a

p1 + p2

(10.13)

does satisfy inequality (10.1).
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Proposition 10.2. Suppose that a12 = min(p1, p2). Then DDice satisfies (10.1).
Proof: First, let p1 ≥ p2 ≥ p3. Using (10.13) in (10.1), we obtain

1 +
2p2

p1 + p2

≥ 2p3

p1 + p3

+
2p3

p2 + p3

. (10.14)

Equation (10.14) is true if

(p1 + p2)(p1 + p3)(p2 + p3)+2p2(p1 + p3)(p2 + p3) ≥
2p3(p1 + p2)(p2 + p3)+2p3(p1 + p2)(p1 + p3)

if and only if
p2

1(p2 − p3) + 3p1(p
2
2 − p2

3) + p2p3(p2 − p3) ≥ 0 (10.15)

holds. Since p2 ≥ p3, (10.15) is true.
Alternatively, let p3 ≥ p2 ≥ p1. Using (10.13) in (10.1), we obtain

1 +
2p1

p1 + p2

≥ 2p1

p1 + p3

+
2p2

p2 + p3

. (10.16)

Equation (10.16) is true if

(p1 + p2)(p1 + p3)(p2 + p2)+2p1(p1 + p3)(p2 + p3) ≥
2p1(p1 + p2)(p2 + p3)+2p2(p1 + p2)(p1 + p3)

if and only if
p2

1(p3 − p2) + 3p1(p
2
3 − p2

2) + p2p3(p3 − p2) ≥ 0 (10.17)

holds. Since p3 ≥ p2, (10.17) is true. This completes the proof. �

Metric properties given a certain data structure may be investigated for other
similarity coefficients as well. The applications of these coefficients would be very
limited with respect to the general results for other coefficients in Section 10.2. Such
results would be of theoretical interest only.
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Multi-way metrics
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CHAPTER 11

Axiom systems for two-way, three-way and
multi-way dissimilarities

Dissimilarities are functions that are used with various multivariate data analysis
techniques. Well-known examples are multidimensional scaling and cluster analy-
sis. A function is called a dissimilarity if it satisfies certain axioms, that is, it is
nonnegative and symmetric, and it satisfies the axiom of minimality. In addition,
a dissimilarity may satisfy axioms like the triangle inequality or the ultrametric in-
equality. Dependencies between certain axioms have been noted by various authors
(see, for example, Gower and Legendre (1986), Van Cutsem (1994) or Batagelj and
Bren (1995) for the two-way case, and Joly and Le Calvé (1995), Bennani-Dosse
(1993) and Heiser and Bennani (1997) for the three-way case).

Although many authors (including the above-mentioned) point out that the used
set of axioms do not form a system with a minimum number of axioms (due to de-
pendencies between axioms), it remains (sometimes) unclear what this minimum
set looks like. An axiom system can be a minimum set of axioms if it forms an
independent system of axioms. Within an axiom system an axiom is called indepen-
dent if it cannot be derived from the other axioms in the system. Another (perhaps
more) important property of an axiom system is consistency. An axiom system is
consistent if it lacks contradiction, that is, the ability to derive both a statement
and its negation from a set of axioms.
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In this chapter the axiom systems for two-way and three-way dissimilarities are
studied. Some axioms for two-way dissimilarities were briefly considered in Section
1.2 and Section 10.1. To obtain axiom systems with a minimum number of axioms,
the (known) dependencies between various axioms are reviewed. Next, consistency
and independence of several axiom systems are established by means of simple mod-
els. The remainder of the chapter is used to explore how basic axioms for multi-way
dissimilarities, like nonnegativity, minimality and symmetry, may be defined. Gen-
eralizations of the two-way metric and the three-way metrics are further studied in
Chapter 12. Multi-way extensions of the three-way ultrametric inequalities are in-
vestigated in Chapter 13. Using the tools for the axioms for three-way dissimilarities,
independence and consistency may be established for the multi-way case.

11.1 Two-way dissimilarities

Let the function d(x1, x2) : E × E → R assign a real number to each pair (x1, x2),
elements of the nonempty set E. The function d(x1, x2) is called a two-way dissim-
ilarity between objects x1 and x2 if it satisfies the axioms

(A1) d(x1, x2) ≥ 0 (nonnegativity)

(A2) d(x1, x1) = 0 (minimality)

(A3) d(x1, x2) = d(x2, x1) (symmetry).

In the French literature, a dissimilarity d(x1, x2) is called respectively semi-proper
and proper if it satisfies

(A4) d(x1, x2) = 0 ⇒ d(x1, x3) = d(x2, x3) (evenness)

(A5) d(x1, x2) = 0 ⇒ x1 = x2 (definiteness).

Let

p111
123 = P

(
1
x1,

1
x2,

1
x3

)
denote the proportion of 1s shared by variables x1, x2 and x3 in the same positions,
let

p110
123 = P

(
1
x1,

1
x2,

0
x3

)
denote the proportion of 1s shared by variables x1 and x2, and 0s by variable x3 in
the same positions, and let

p1
1 = P

(
1
x1

)
denote the proportion of 1s in variable x1. For example, it holds that

p1
1 = p10

12 + p11
12 and p10

12 = p100
123 + p101

123.
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Proposition 11.1. (A1), (A2), (A3) and (A4) form a consistent and independent
system of axioms. (A1), (A2), (A3) and (A5) form a consistent and independent
system of axioms.
Proof: First, note that (A5) ⇒ (A4). Consistency of the two axiom systems is
established by the first example of d(x1, x2) in the table below. The independence
of (A1), (A2) and (A3) with respect to the remaining four axioms is established
with the bottom three examples of d(x1, x2) in the table below.

Is the axiom valid?
d(x1, x2) (A1) (A2) (A3) (A4) (A5)
p1

1 + p1
2 − 2p11

12 Yes Yes Yes Yes Yes
2p11

12 − p1
1 − p1

2 No Yes Yes Yes Yes
p1

1 + p1
2 − p11

12 Yes No Yes Yes Yes
2p1

1 + p1
2 − 3p11

12 Yes Yes No Yes Yes

Next, consider the function d(x1, x2) = min(p1
1, p

1
2) − p11

12. It is readily verified that
d(x1, x2) satisfies (A1), (A2) and (A3). However, (A4) and (A5) are not valid if
there is a pair (x1, x2) for which p11

12 = min(p1
1, p

1
2). �

A two-way dissimilarity d(x1, x2) is called a distance if it satisfies definiteness and

(A6) d(x1, x2) ≤ d(x1, x3) + d(x2, x3) (triangle inequality).

A dissimilarity may also satisfy one of two axioms that define properties of trees,
that is, an inequality by Buneman (1974)

(A7) d(x1, x2) + d(x3, x4) ≤ max[d(x1, x3) + d(x2, x4), d(x1, x4) + d(x2, x3)]

(additive tree) or

(A8) d(x1, x2) ≤ max[d(x1, x3), d(x2, x3)] (ultrametric inequality).

Proposition 11.2.

(i) (A6) together with (A2) ⇒ (A1), (A3) and (A4)

(ii) (A7) together with (A2) ⇒ (A1), (A3), (A4) and (A6)

(iii) (A8) together with (A2) ⇒ (A1), (A3), (A4) and (A6).

Proof: The proof of (i) can be found in Gower and Legendre (1986, p. 6). For (ii)
setting x3 equal to x4 in (A7) and applying (A2), we obtain (A6). For (iii), for
triplet (x1, x1, x2) we obtain d(x1, x2) ≥ 0, that is (A1). Moreover, (A8) together
with (A1) ⇒ (A6). �
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Proposition 11.3. (A2), (A5) and (A6) (or (A7) or (A8)) form a consistent and
independent system of axioms.
Proof: Consider the assertion with respect to (A6) first. An example for consistency
is the function given by

d(x1, x2) = 1− p11
12 − p00

12.

Validity of (A2) and (A5) is readily verified. Using d(x1, x2) in (A6) we obtain

1 + p11
12 + p00

12 ≥ p11
13 + p00

13 + p11
23 + p00

23 if and only if 2p110
123 + 2p001

123 ≥ 0.

With respect to independence, consider the function d(x1, x2) = 1 − p11
12. Using

d(x1, x2) in (A6) we obtain

1 + p11
12 ≥ p11

13 + p11
23 if and only if p000

123 + p100
123 + p010

123 + p001
123 + 2p110

123 ≥ 0.

Hence, d(x1, x2) satisfies (A6). Moreover, axiom (A5) is not violated. However, as
long as p1

1 6= 1, d(x1, x2) does not satisfy (A2). Hence, (A2) is independent from
(A5) and (A6).

Second, consider the function d(x1, x2) = min(p1
1, p

1
2)− p11

12. Axiom (A2) is valid.
Assuming p1

1 ≥ p1
2 ≥ p1

3 and Using d(x1, x2) in (A6), we obtain

2p1
3 + p11

12 ≥ p1
1 + p11

13 + p11
23 if and only if 2p001

123 + p101
123 ≥ p010

123.

Furthermore, (A5) is not valid if p11
12 = min(p1

1, p
1
2) = p1

2 if and only if p01
12 equals 0.

Thus, (A2) and (A6) may be valid, while (A5) is not.
Third, consider the function d(x1, x2) = 2p11

12− p1
1− p1

2. It is readily verified that
for this function (A2) and (A5) are valid. However, (A6) is only valid if p110

123+p001
123 ≤ 0

if and only if p110
123 = p001

123 = 0, since p110
123 and p001

123 are nonnegative quantities.
The proofs of the assertion with respect to (A7) and (A8) are very similar to that

of (A6). Furthermore, suppose d(x1, x2) satisfies (A8). Then for the three two-way
dissimilarities defined on the same three objects, the largest two are equal. This
property is unrelated to the value of d(x1, x2). �

11.2 Three-way dissimilarities

Axioms for three-way dissimilarities and distances can be found in Bennani-Dosse
(1993), Heiser and Bennani (1997) and Chepoi and Fichet (2007). In addition,
three-way distances are considered in Joly and Le Calvé (1995). Let d3(x1, x2, x3) :
E×E×E → R be a function that assigns a real number to each triplet (x1, x2, x3).
Heiser and Bennani (1997, p. 191) call d3(x1, x2, x3) a three-way dissimilarity if it
satisfies the axioms

(B1a) d3(x1, x2, x3) ≥ 0 (nonnegativity)

(B2a) d3(x1, x1, x1) = 0 (minimality)

(B3) d3(x1, x2, x3) = d3(x1, x3, x2) = d3(x2, x1, x3) =

d3(x2, x3, x1) = d3(x3, x1, x2) = d3(x3, x2, x1) (symmetry),
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the three-way generalizations of (A1), (A2) and (A3), and in addition

d3(x1, x1, x2) = d3(x1, x2, x2). (11.1)

Equality (11.1) is referred to as the diagonal-plane equality by Heiser and Bennani
(1997), and is also proposed in Joly and Le Calvé (1995).

Equality (11.1) is an answer to a complication that arises with three-way dissim-
ilarities, not encountered with two-way dissimilarities, when one of three variables
or entities is identical to one of the others. For this reason, Chepoi and Fichet
(2007) studied explicitly the case of three-way dissimilarities for which all entities
are different. The lack of resemblance between the two nonidentical entities should,
according to Heiser and Bennani (1997), remain invariant regardless of which two
entities are the same:

d3(x1, x1, x2) = d3(x1, x2, x2) = d3(x1, x2, x1) =

d3(x2, x1, x1) = d3(x2, x1, x2) = d3(x2, x2, x1).

Equality (11.1) is referred to as the diagonal-plane equality in Heiser and Bennani
(1997), because it requires equality of the three matrices

{d3(x1, x1, x2)} , {d3(x1, x2, x2)} and {d3(x1, x2, x1)}

which are formed by cutting the three-way cube or block diagonally, starting at
one of the three edges joining at the node or corner d(1, 1, 1). This seems to be
a misnomer, since equality (11.1) only requires equality of the first two matrices.
Equality (11.1) together with three-way symmetry (B3) implies the stronger equality

(B4) d3(x1, x1, x2) = d3(x1, x2, x2) = d3(x1, x2, x1).

Proposition 11.4. (B1a), (B2a), (B3) and (B4) form a consistent and indepen-
dent system of axioms.
Proof: Consistency of the axiom system is shown with the first example of
d3(x1, x2, x3) in the table below.

Is the axiom valid?
d3(x1, x2, x3) (B1a) (B2a) (B3) (B4)
1− p111

123 − p000
123 Yes Yes Yes Yes

p111
123 + p000

123 − 1 No Yes Yes Yes
1− p111

123 Yes No Yes Yes
p1

1 − p111
123 Yes Yes No Yes

p1
1 + p1

2 + p1
3 − 3p111

123 Yes Yes Yes No

Independence is established with the bottom four examples of d3(x1, x2, x3) in the
table. Each function satisfies three out of four axioms. �
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At this point it should be noted that there exists mathematical literature on
multi-way concepts, including distances and metrics, that is older that the above
mentioned literature. Some of the references from this literature may be found in
Deza and Rosenberg (2000, 2005). Characteristic of this literature are the extensions
of axioms (A1) and (A2) given by

(B1b) x1 6= x2 ⇒ d3(x1, x2, x3) > 0 for some x3 ∈ E

(B2b) d3(x1, x1, x2) = 0

and axiom (B6c) presented below. Axiom (B2b) makes perfect sense in geometry
where d3(x1, x1, x2) is, for example, the area of the triangle with vertices x1, x2, and
x3. Deza and Rosenberg (2000, 2005) find axioms (B1b) and (B2b) too restrictive
and drop them. The two axioms are also ignored in this chapter.

A three-way dissimilarity d3(x1, x2, x3) is called a three-way distance in Heiser
and Bennani (1997, p. 191) if it satisfies

(B5) d3(x1, x2, x3) = 0 ⇒ x1 = x2 = x3 (definiteness)

and the so-called tetrahedral inequality

(B6a) 2d3(x1, x2, x3) ≤ d3(x2, x3, x4) + d3(x1, x3, x4) + d3(x1, x2, x4).

Alternatively, Joly and Le Calvé (1995) call d(x1, x2, x3) a three-way distance if it
satisfies

(B6b) d3(x1, x2, x3) ≤ d3(x2, x3, x4) + d3(x1, x3, x4)

(B7) d3(x1, x2, x3) ≥ d3(x1, x1, x3)

and a proper three-way distance if it, in addition, satisfies (B5). Axioms (B6a)
and (B6b) are called respectively strong and weak metrics in Chepoi and Fichet
(2007). Deza and Rosenberg (2000, 2005) present yet another extension of the
triangle inequality. The so-called tetrahedron inequality is given by

(B6c) d3(x1, x2, x3) ≤ d3(x2, x3, x4) + d3(x1, x3, x4) + d3(x1, x2, x4).

Axiom (B6c) is not studied further in this chapter (but see Chapter 12).

Three-way generalizations of two-way ultrametric inequality (A8) are considered
in Joly and Le Calvé (1995, p. 195) and Bennani-Dosse (1993, p. 99-110):

(B8a) d3(x1, x2, x3) ≤ max [d3(x2, x3, x4), d3(x1, x3, x4)]

(B8b) d3(x1, x2, x3) ≤ max [d3(x2, x3, x4), d3(x1, x3, x4), d3(x1, x2, x4)] .

Axioms (B8a) and (B8a) are called respectively strong and weak ultrametrics in
Chepoi and Fichet (2007).
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As noted in Bennani-Dosse (1993, p. 20), the dependencies between (B1) to
(B8) are not as straightforward as the dependencies between (A1) to (A8) given in
Proposition 11.2.

Proposition 11.5.

(B6b) together with (B7) and (B2a) ⇒ (B1a)

(i) (B6b) together with (B3) ⇒ (B1a)

(B6a) together with (B3) ⇒ (B1a) and (B6b)

(B7) together with (B3) ⇒ (B4)

(ii) (B8a) ⇒ (B6a), (B7) and (B8b).

The proofs for (i) and (ii) are presented below. The proofs of the other assertions
can be found in Joly and Le Calvé (1995, p. 193) and Heiser and Bennani (1997, p.
192).
Proof: For (i), adding the two variants of (B6b)

d3(x1, x2, x3) ≤ d3(x2, x3, x4) + d3(x1, x3, x4)

and d3(x2, x3, x4) ≤ d3(x1, x2, x3) + d3(x1, x3, x4)

we obtain 2d3(x1, x3, x4) ≥ 0. With respect to (ii), note that, if d(x1, x2, x3) satisfies
(B8a), then for any four three-way dissimilarities the largest three are equal. �

The dependencies in Proposition 11.5 suggest the independence of various axiom
systems. First, we consider a system of structural, that is, non-metric axioms.

Proposition 11.6. (B1a), (B2a), (B3), (B5) and (B7) form a consistent and
independent system of axioms.
Proof: An example of consistency of the axiom system is the function
d3(x1, x2, x3) = 1 − p111

123 − p000
123. It is readily verified that (B1a), (B2a), (B3) and

(B5) are valid. Using d3(x1, x2, x3) in (B7) we obtain

p11
13 + p00

13 ≥ p111
123 + p000

123 if and only if p101
123 + p010

123 ≥ 0.

With respect to independence, consider the function d3(x1, x2, x3) = 3p111
123−p1

1−p1
2−

p1
3. Axioms (B2a), (B3) and (B5) are valid, but (B1a) is not. Using the function

in (B7) we obtain

3p111
123 + p1

1 ≥ 3p11
13 + p1

3

p100
123 + p110

123 ≥ 3p101
123 + p001

123 + p011
123

p10
13 ≥ 3p101

123 + p01
13.

Thus, (B1a) is independent from (B2a), (B3), (B5) and (B7).
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Second, consider the function d3(x1, x2, x3) = p1
1 +p1

2 +p1
3−2p111

123. Axioms (B1a),
(B3) and (B5) are valid, but (B2a) is not. The function satisfies (B7) if and only
if p01

12 + 2p101
123 ≥ p10

12. Thus, axiom (B2a) is independent from (B1a), (B3), (B5) and
(B7).

Third, consider the function d3(x1, x2, x3) = 2p1
1 +p1

2 +p1
3−4p111

123. Axioms (B1a),
(B2a) and (B5) are valid, but (B3) is not. The function satisfies (B7) if and only
if p01

12 + 4p101
123 ≥ p10

12, which shows that (B3) is independent from the remaining four
axioms.

Next, consider the function

d3(x1, x2, x3) = min(p11
12, p

11
13, p

11
23)− p111

123.

It is readily verified that (B1a), (B2a), (B3) and (B7) are valid. However, if there
is a triple (x1, x2, x3) for which p111

123 = min(p11
12, p

11
13, p

11
23), then (B5) does not hold.

Finally, consider the function d3(x1, x2, x3) = p1
1 + p1

2 + p1
3 − 3p111

123. It is read-
ily verified that (B1a), (B2a), (B3) and (B5) are valid. Furthermore, we have
d3(x1, x2, x3) ≤ d3(x1, x1, x2) if and only if p01

12 + 3p101
123 ≤ p10

12, which show the inde-
pendence of (B7) with respect to the remaining four axioms. �

Finally, we consider an axiom system with a minimum number of axioms.

Proposition 11.7. (B2a), (B3), (B5), (B6a) and (B7) form a consistent and
independent system of axioms.
Proof: An example for the consistency of the axiom system is the function
d3(x1, x2, x3) = 1 − p111

123 − p000
123. It is readily verified that (B2a), (B3), (B5) and

(B7) are valid. Using d3(x1, x2, x3) in (B6a) we obtain

1− (p111
234 + p111

134 + p111
124 + p000

234 + p000
134 + p000

124) + 2p111
123 + 2p000

123 ≥ 0. (11.2)

Since the quantity in between brackets in (11.2) is smaller than unity, (B6a) is valid.
With respect to independence, consider the function d3(x1, x2, x3) = p1

1 + p1
2 +

p1
3 − 2p111

123. Axioms (B3) and (B5) are valid, and (B2a) is not. Using the function
in (B6a) we obtain

3p1
4 + 4p111

123 ≥ p111
234 + p111

134 + p111
124

which holds if and only if

3p0001
1234 + 3p1001

1234 + 3p0101
1234 + 3p0011

1234 + p1101
1234 + p1011

1234 + p0111
1234 + p1111

1234 + 4p1110
1234 ≥ 0.

Furthermore, axiom (B7) is valid if and only if

p1
2 + 2p11

12 ≥ p1
1 + 2p111

123 if and only if p01
12 + 2p110

123 ≥ p10
12.

Thus, (B2a) is independent from the remaining four axioms.
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Second, consider the function d3(x1, x2, x3) = 2p1
1 + p1

2 + p1
3 − 4p111

123. Axioms
(B2a), (B5) and (B7) are valid, but (B3) is not. Using the function in (B6a), we
obtain the inequality

p1
2 + 3p1

4 + 8p111
123 ≥ 4p111

234 + 4p111
134 + 4p111

124

which holds if and only

p0100
1234 + p1100

1234 + p0110
1234 + 4p0101

1234 + 8p1110
1234 + 3p0001

1234 + 3p1001
1234 + 3p0011

1234 ≥ p1011
1234

which shows that (B3) is independent from the remaining four axioms.
Third, consider the function

d(x1, x2, x3) = min(p11
12, p

11
13, p

11
23)− p111

123

Axioms (B2a), (B3) and (B7) are valid. Assuming p11
12 ≥ p11

13 ≥ p11
14 ≥ p11

23 ≥ p11
24 ≥ p11

34

and Using d(x1, x2, x3) in (B6a), we obtain

2p11
34 + p11

24 + 2p111
123 ≥ 2p11

23 + p111
234 + p111

134 + p111
124

if and only if
2p0011

1234 + p1011
1234 + p0101

1234 ≥ 2p0110
1234.

Note that axiom (B5) is not valid if p111
123 = min(p11

12, p
11
13, p

11
23) = p11

23 if and only if
p011

123 = 0. The latter implies that p0110
1234 = 0, from which it follows that (B6a) holds.

Thus, (B5) is independent from the remaining four axioms.
Next, consider the function d3(x1, x2, x3) = 3p111

123 − p1
1 − p1

2 − p1
3. Axioms (B2a),

(B3) and (B5) are valid for both d3(x1, x2, x3) and −d3(x1, x2, x3). Axiom (B6a) is
valid for −d3(x1, x2, x3), since filling in −d3(x1, x2, x3) in (B6a) gives

p1
4 + 2p111

123 ≥ p111
234 + p111

134 + p111
124

if and only if
2p1110

1234 + p0001
1234 + p1001

1234 + p0101
1234 + p0011

1234 ≥ 0.

Using similar arguments it is clear that (B6a) is not valid for d3(x1, x2, x3). Finally,
(A7) is valid for d3(x1, x2, x3) not valid for −d3(x1, x2, x3) if and only if p01

12 +2p101
123 ≤

p100
123. Hence, (B6a) and (B7) are independent from the remaining four axioms. �

11.3 Multi-way dissimilarities

In this final section it is explored how basic axioms for multi-way dissimilarities,
like nonnegativity, minimality and symmetry, may be defined. However, axioms
for the four-way and five-way case are considered first. Generalizations of the two-
way metric and the three-way metrics to k-way metrics are further studied in the
next chapter (Chapter 12). Multi-way formulations of the three-way ultrametrics
are explored in Chapter 13. Independence and consistency of axioms for multi-way
dissimilarities may be established using the tools from the previous section.
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As it turns out, definitions of some axioms are considerably more complicated in
the four-way case compared to the three-way case. Let

d4(x1, x2, x3, x4) : E4 → R or d1234 : E4 → R

be a function that assigns a real number to each quadruplet (x1, x2, x3, x4). Formu-
lations of nonnegativity and minimality are straightforward:

(C1) d4(x1, x2, x3, x4) ≥ 0 (nonnegativity)

(C2) d4(x1, x1, x1, x1) = 0 (minimality).

The definition of four-way symmetry is somewhat more involved. Four-way symme-
try is given by

d1234 = d1243 = d1324 = d1342 = d1423 = d1432 =

d2134 = d2143 = d2314 = d2341 = d2413 = d2431 =

d3124 = d3142 = d3214 = d3241 = d3412 = d3421 =

d4123 = d4132 = d4213 = d4231 = d4312 = d4321.

If d4(x1, x2, x3, x4) is four-way symmetric, then for all x1, x2, x3, x4 ∈ E and every
permutation π of {1, 2, 3, 4}

(C3) d4(xπ(1), xπ(2), xπ(3), xπ(4)) = d4(x1, x2, x3, x4).

Similar to the three-way case, the four-way function can be defined on a quadruplet
or four-tuple of which some entities are identical. Following the reasoning in Heiser
and Bennani (1997), it seems reasonable to require that when one of four variables
or entities is identical to one of the others, then the lack of resemblance between the
three nonidentical entities should remain invariant regardless of which two entities
are the same. A generalization of equality (11.1) is given by

d4(x1, x1, x2, x3) = d4(x1, x2, x2, x3) = d4(x1, x2, x3, x3) (11.3)

or d1123 = d1223 = d1233. Equality (11.3) together with four-way symmetry, implies

d1123 = d1132 = d1213 = d1312 = d1231 = d1321 =

d2113 = d3112 = d2131 = d3121 = d2311 = d3211 =

d2213 = d2231 = d2123 = d2321 = d2132 = d2312 =

d1223 = d3221 = d1232 = d3212 = d1322 = d3122 =

d3312 = d3321 = d3132 = d3231 = d3123 = d3213 =

d1332 = d2331 = d1323 = d2313 = d1233 = d2133.

The latter equality is the mathematical formulation of the requirement that, when
one of four vectors or entities is identical to one of the others, then the lack of
similarity between the three nonidentical entities should remain invariant regardless
of which two entities are the same.
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Apart from the possibility that two entities are identical, up to two additional
possibilities may be encountered in the four-way case. First of all, the four-way func-
tion may be defined on a quadruplet of which three entities are identical. Secondly,
the four-way function may be defined on two pairs of identical entities. Following
the above reasoning, we require that if the resemblance between two groups of iden-
tical entities is measured, then the lack of resemblance between the two nonidentical
groups should remain invariant regardless of the group sizes. The requirement may
be formalized with the definition of equality

d4(x1, x1, x1, x2) = d4(x1, x1, x2, x2) = d4(x1, x2, x2, x2) (11.4)

or d1112 = d1122 = d1222. Equality (11.4), together with four-way symmetry, implies

d1112 = d1121 = d1211 = d2111

=d1122 = d1212 = d1221 = d2112 = d2121 = d2211

=d1222 = d2122 = d2212 = d2221.

The definitions of axioms for five-way dissimilarities are now straightforward. Let

d5(x1, x2, x3, x4, x5) : E5 → R or d12345 : E5 → R

be a function that assigns a real number to each tuple (x1, x2, x3, x4, x5). The basic
axioms for the five-way case are

(D1) d5(x1, x2, x3, x4, x5) ≥ 0 (nonnegativity)

(D2) d5(x1, x1, x1, x1, x1) = 0 (minimality)

(D3) d5(xπ(1), xπ(2), ..., xπ(5)) = d5(x1, x2, ..., x5) (symmetry).

In the case that two out of five entities are identical, the first additional requirement
is given by

d11234 = d12234 = d12334 = d12344.

If there are three sets of identical entities (size of the set unspecified), the second
additional requirement is given by

d11123 = d12223 = d12333 = d11223 = d11233 = d11233.

When there are two sets of identical entities (size of the set unspecified), the third
additional requirement is given by

d11112 = d11122 = d11222 = d12222.

Thus, for the k-way case up to (k− 2) additional requirements must be specified to
cover all the cases of identical entities or objects.
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For the definition of the axioms for general multi-way dissimilarities the following
notation is used. Let x1,k = {x1, x2, ..., xk} be a k-tuple and let

dk(x1,k) : Ek → R

denote the multi-way dissimilarity for k objects or variables. The basic axioms for
the measure dk(x1,k) are given by

(K1) dk(x1,k) ≥ 0 (nonnegativity)

(K2) dk(x1) = 0 (minimality)

(K3) dk(x1,k) = dk(xπ(1), xπ(2), ..., xπ(k)) (symmetry)

where x1 is a k-tuple with elements x1.

11.4 Epilogue

The topic of this chapter was axioms, like nonnegativity, minimality and symmetry,
for two-way, three-way and general multi-way dissimilarities. Generalizations of the
triangle inequality are studied in the next chapter, Chapter 12. For the axioms
of two-way and three-way dissimilarities several axiom systems were studied. Us-
ing simple models, the consistency and independence of these axiom systems were
established.

In the final section of the chapter axioms of multi-way dissimilarities were consid-
ered. Multi-way axioms are already quite complicated for the four-way and five-way
case. Multi-way definitions of nonnegativity, minimality and symmetry are straight-
forward. If x1,k is a k-tuple, then d(x1,k) = 0 if all elements in x1,k are identical.
However, for k ≥ 3 it may occur that not all but some elements in x1,k are iden-
tical. Additional axioms are required to deal with these new possibilities. For the
three-way case Heiser and Bennani (1997) required that when one of three variables
is identical to one of the others, then the lack of resemblance between the two non-
identical entities should remain invariant regardless of which two entities are the
same. Following this line of reasoning, additional axioms may be formulated for the
four-way case, the five-way case, and the general multi-way case.



CHAPTER 12

Multi-way metrics

Measures of resemblance play an important role in many domains of data analysis.
However, similarity coefficients often only allow pairwise or two-way comparison of
objects or entities. An alternative to two-way resemblance measures is to formulate
multi-way coefficients (see, for example, Diatta, 2006, 2007). Several authors have
studied three-way dissimilarities and generalized various concepts defined for the
two-way case to the three-way case (see, for example, Bennani-Dosse, 1993; Joly
and Le Calvé, 1995; Heiser and Bennani, 1997). Axioms for two-way and three-
way dissimilarities were reviewed in the previous chapter. Chapter 11 was also
used to investigate and formulate basic axioms, like nonnegativity, minimality and
symmetry for multi-way dissimilarities. In the present chapter extensions of the two-
way metric and the three-way metric axioms are explored. Chapter 13 is concerned
with extensions of the two three-way ultrametric axioms.

In mathematics, a metric space is a set where a notion of distance between
elements of the set is defined. A two-way dissimilarity is called a metric if it is
nonnegative, symmetric, satisfies minimality, and (most importantly) if it satisfies
the triangle inequality. Both Joly and Le Calvé (1995) and Heiser and Bennani
(1997) have considered three-way generalizations of the triangle inequality, defined
for the two-way case. The two different metrics are called weak and strong in Chepoi
and Fichet (2007). In this chapter the ideas on three-way metrics presented in Joly
and Le Calvé (1995) and Heiser and Bennani (1997) are adopted and extended to
multi-way metrics.

131
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The inspiration for this chapter on multi-way metricity comes from the paper
by Heiser and Bennani (1997). Various ideas on, and properties of, the three-way
tetrahedral inequality presented in their paper, are extended in this chapter for a
broad class of inequalities that generalize the triangle inequality. An important topic
is how the k-way inequalities are related to the (k − 1)-way inequalities.

12.1 Definitions

In this chapter we study a family of k-way metrics that generalize the two-way
metric. Let x1,k denote the k-tuple (x1, x2, ..., xk) and let x−i

1,k denote the (k − 1)-

tuple (x1, ..., xi−1, xi+1, ..., xk) where the minus in the superscript of x−i
1,k is used to

indicate that element xi drops out. In the following the elements of tuple x1,k will
be referred to as objects.

A dissimilarity dk : Ek → R+ is totally symmetric if for all x1, x2, ..., xk ∈ E and
every permutation π of {1, 2, ..., k}

dk(xπ(1), ..., xπ(k)) = dk(x1, ..., xk).

As a generalization of minimality we define dk(x1, ..., x1) = 0. It is assumed through-
out the chapter that the equations hold for all objects in E that are involved in a
definition.

Both Joly and Le Calvé (1995) and Heiser and Bennani (1997) introduced three-
way generalizations of the triangle inequality. The two inequalities are given by
respectively

d3(x1,3) ≤ d3(x2,4) + d3(x
−2
1,4) (12.1)

2d3(x1,3) ≤ d3(x2,4) + d3(x
−2
1,4) + d3(x

−3
1,4). (12.2)

Inequalities (12.1) and (12.2) are called respectively weak and strong metrics in
Chepoi and Fichet (2007). Deza and Rosenberg (2000, 2005) generalize (12.1) to

dk(x1,k) ≤
k∑

i=1

dk(x
−i
1,k+1). (12.3)

De Rooij (2001, p. 128) noted that inequality (12.2) can be generalized to

(k − 1)× dk(x1,k) ≤
k∑

i=1

dk(x
−i
1,k+1) (the polyhedral inequality). (12.4)
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We may generalize (12.3) and (12.4) to

u× dk(x1,k) ≤
k∑

i=1

dk(x
−i
1,k+1) (12.5)

where u is a positive real number. We can further generalize (12.5) to

u× dk(x1,k) ≤
v∑

i=1

dk(x
−i
1,n+1) (12.6)

where v is a positive integer bounded by 2 ≤ v ≤ k. Note that the number of linear
terms on the right-hand side of (12.5) is determined by k, whereas the number of
linear terms on the right-hand side of (12.6) is determined by v.

If u∗ is a positive integer and u ≥ u∗, then (12.6) implies

u∗ × dk(x1,k) ≤
v∑

i=1

dk(x
−i
1,k+1).

Furthermore, if v ≤ v∗, then (12.6) implies

u× dk(x1,k) ≤
v∗∑
i=1

dk(x
−i
1,k+1).

Moreover, for u = 1 and k = 1, adding the two inequalities

dk(x1,k) ≤ dk(x2,k+1) + dk(x
−2
1,k+1)

and dk(x2,k+1) ≤ dk(x1,k) + dk(x
−2
1,k+1)

shows that dissimilarity dk(x1,k) ≥ 0. In addition, we have the following property.

Proposition 12.1. For u > 1, (12.6) implies

(u− 1)× dk(x1,k) ≤
v∑

i=2

dk(x
−i
1,k+1). (12.7)

Proof: Interchanging the roles of x1 and xk+1 in (12.6) and dividing the result by u,
we obtain

dk(x2,k+1) ≤
1

u
dk(x1,k) +

1

u

v∑
i=2

dk(x
−i
1,k+1). (12.8)

Adding (12.8) to (12.6) we obtain

u2 − 1

u
× dk(x1,k) ≤

u + 1

u

v∑
i=2

dk(x
−i
1,k+1). (12.9)

Using u2− 1 = (u + 1)(u− 1), multiplication of (12.9) by u/(u + 1) yields (12.7). �
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12.2 Two identical objects

In the remainder of the chapter we are interested in how dissimilarity dk is related
to dk−1. In Section 12.3 we consider lower and upper bounds of dk in terms of
dk−1. Furthermore, in Section 12.4 we study what (k − 1)-way metrics are implied
by (12.6). Apart from minimality, symmetry and (12.6), we discuss below several
additional requirements that specify how dk and dk−1 are related when two objects
of dk are identical.

A first requirement is the following condition. Following Heiser and Bennani
(1997) for the three-way case and Deza and Rosenberg (2000, 2005) for the k-way
case, we require that, if two objects are identical then dk should remain invariant
regardless which two objects are the same, that is,

dk(x1, x1,k−1) = dk(x1,2, x2,k−1) = ... = dk(x1,k−1, xk−1). (12.10)

In view of the total symmetry, (12.10) implies that dk(x1, ..., xk) only depends on
the h-element set {xi1 , ..., xih} such that {x1, ..., xk} = {xi1 , ..., xih} where 1 ≤ i1 ≤
ih ≤ k. We consider the following example that satisfies (12.10).

Deza and Rosenberg (2000, p. 803) introduced the k-way extension of the three-
way star distance discussed in Joly and Le Calvé (1995). Let | {x1, ..., xn} | denote
the cardinality of set {x1, ..., xk}. Let α : E → R+ and k ≥ 3. The star k-distance
dα

k : Ek → R+ is defined as follows. Let x1, ..., xk ∈ E and let 0 ≤ i1 ≤ ... ≤ ih ≤ k
be such that | {x1, ..., xk} | = | {xi1 , ..., xih} | = h. Set

dα
k (x1,k) =

{∑h
j=1 α(xij) if h > 1,

0 if h = 1.

Deza and Rosenberg (2000, p. 803) showed that the star k-distance dα
k satisfies

(12.10).
Condition (12.10) is perhaps not an intuitive requirement, since it may not hold

for certain functions. For example, the perimeter distance gives a geometrical inter-
pretation of the concept “average distance” between objects. Heiser and Bennani
(1997) and De Rooij and Gower (2003) study the three-way perimeter distance
function

dp
3(x1,3) = d(x1, x2) + d(x1, x3) + d(x2, x3). (12.11)

A possible k-way extension of (12.11) is

dp
k(x1,k) =

k−1∑
i=1

k∑
j=i+1

d(xi, xj).

Perimeter distance dp
k is the sum of all pairwise distances between the objects in-

volved. It may be verified that dp
k does not satisfy (12.10) for k ≥ 4.
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In the remainder of this chapter it is assumed that dk(x1,k) satisfies (12.10). To
relate a k-way dissimilarity dk to a (k − 1)-way dissimilarity dk−1, we study two
additional restrictions. Let p be a real positive value. Suppose that, if two objects
of the k-way dissimilarity are identical, dk and dk−1 are equal up to multiplication
by a factor p, that is,

dk−1(x1,k−1) =
1

p
dk(x1, x1,k−1). (12.12)

The value of p in (12.12) may depend on the particular distance model or function
that is used. For example, Joly and Le Calvé (1995) introduce the three-way semi-
perimeter distance

dsp
3 (x1,3) =

d(x1, x2) + d(x1, x3) + d(x2, x3)

2
. (12.13)

Applying (12.11) with tuple (x1, x1, x2) we obtain dp
3(x1, x1, x2) = 2d(x1, x2). How-

ever, applying (12.13) with tuple (x1, x1, x2) we obtain dsp
3 (x1, x1, x2) = d(x1, x2).

For generality we let p in (12.12) be a positive real number. Of course, it may be
argued that p ≥ 1. The bounds studied in the Section 12.3 depend on the value of
p. The bounds of dk in terms of the dk−1 therefore depend on the distance function
that is used to relate the k-way dissimilarity and (k − 1)-way dissimilarity. The
results in Section 12.4 however, do not depend on the value of p.

The final requirement we discuss in this section is given by

dk(x1, x1,k−1) ≤ dk(x1,k). (12.14)

In (12.14), the k-way dissimilarity without identical objects is equal to or greater
than the k-way dissimilarity with two identical objects. Condition (12.14) seems
to be a natural requirement for a multi-way dissimilarity. Combining (12.12) and
(12.14) we obtain

p dk−1(x1,k−1) ≤ dk(x1,k). (12.15)
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12.3 Bounds

In this section we study the lower and upper bounds of dissimilarity dk in terms
of the dk−1. We first turn our attention to the lower bound of k-way dissimilarity
dk(x1,k) that satisfies minimality, total symmetry, and (12.10).

Proposition 12.2. If (12.12) and (12.14) hold, then for k-way dissimilarity
dk(x1,k) we have

p

k

k∑
i=1

dk−1(x
−i
1,k) ≤ dk(x1,k). (12.16)

Proof: For given k, there are k variants of dk−1(x1,k−1), which are given by dk−1(x
−i
1,k)

for i = 1, 2, ..., k. We obtain k variants of (12.15) by substituting dk−1(x1,k−1) on the
left-hand side of (12.15) by one of its variants. Adding up all k variants of (12.15),
that is, adding inequalities

p dk−1(x
−k
1,k) ≤ dk(x1,k)

p dk−1(x
−(k−1)
1,k ) ≤ dk(x1,k)

...

p dk−1(x
−3
1,k) ≤ dk(x1,k)

p dk−1(x
−2
1,k) ≤ dk(x1,k)

p dk−1(x2,k) ≤ dk(x1,k)

followed by division by k, we obtain (12.16). �

For p = 1, lower bound (12.16) is equivalent to the arithmetic mean of the (k−1)-
way dissimilarities dk−1(x

−i
1,k).

For the case (u − v + 2) > 0, we have the following lower bound for a k-way
distance (that is, dk(x1,n) satisfies minimality, total symmetry, (12.6) and (12.10)).
In contrast to Proposition 12.2, we only require validity of (12.12), not (12.14), for
this lower bound.
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Proposition 12.3. Suppose (12.12) holds and (u − v + 2) > 0. Then for k-way
distance dk(x1,k) we have

p(u− v + 2)

2k

k∑
i=1

dk−1(x
−i
1,k) ≤ dk(x1,k). (12.17)

Proof: Applying (12.6) with (k + 1)-tuple (x1, x1, x3, ..., xk+1), and replacing xk+1

by x2 in the result, we obtain

p u× dk−1(x
−2
1,k) ≤ 2dk(x1,k) + p

v∑
i=3

dk−1(x1, x2, x
−i
3,k) for v ≥ 3 (12.18)

p u× dk−1(x
−2
1,k) ≤ 2dk(x1,k) for v = 2. (12.19)

We have k variants of dk−1 for given k, for example dk−1(x
−2
1,k) in left-hand side of

(12.19). We may obtain k variants of (12.19) by replacing dk−1(x
−2
1,k) by one of the

other (k − 1) variants. Adding up all k variants of (12.19), followed by division by
2k, we obtain

p u

2k

k∑
i=1

dk−1(x
−i
1,k) ≤ dk(x1,k)

which is the inequality that is obtained by using v = 2 in (12.17).
We may obtain k variants of (12.18) by replacing dk−1(x

−2
1,k) in the left-hand side

of (12.18) by one of the other (k− 1) variants. Considering all k variants of (12.18),
the k variants of dk−1 on the right-hand side each occur a total of (v − 2) times.
Adding up all k variants of (12.18), followed by division by 2k, we obtain (12.17).
�

If (12.12) and (12.4) hold, then dk(x1,k) has a lower bound

p

2k

k∑
i=1

dk−1(x
−i
1,k) ≤ dk(x1,k). (12.20)

We obtain (12.20) by using u = k − 1 and v = k in (12.17). For p = 2 the
lower bound of dk(x1,k) is equivalent to the arithmetic mean of the (k − 1)-way
dissimilarities dk−1(x

−i
1,k). If not only (12.12) but also (12.14) is valid, then (12.16)

is the lower bound of dk(x1,k). Note that (12.16) is sharper than (12.20).

Next, we focus on the upper bound of k-way distance dk(x1,k).
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Proposition 12.4. If (12.12) holds, then for k-way distance dk(x1,k) we have

dk(x1,k) ≤
vp

ku

k∑
i=1

dk−1(x
−i
1,k) for 2 ≤ v ≤ k − 1 (12.21)

dk(x1,k) ≤
(k − 1)p

k(u− 1)

k∑
i=1

dk−1(x
−i
1,k) for v = k. (12.22)

Proof: Applying (12.6) with (k + 1)-tuple (x1, ..., xk, xk) we obtain

u× dk(x1,k) ≤ p
v∑

i=1

dk−1(x
−i
1,k) for 2 ≤ v ≤ k − 1 (12.23)

(u− 1)× dk(x1,k) ≤ p

k−1∑
i=1

dk−1(x
−i
1,k) for v = k. (12.24)

We have k variants of dk−1(x
−i
1,k) in (12.23) and (12.24). Considering all k variants

of (12.23) and (12.24), each dk−1(x
−i
1,k) occurs a total of v times. Adding up all k

variants of (12.23) and (12.24), followed by division by ku, respectively k(u− 1), we
obtain (12.21) and (12.22). �

Using u = k and v = k in (12.6) yields

k × dk(x1,k) ≤
k∑

i=1

dk(x
−i
1,k+1). (12.25)

If (12.12) and (12.25) hold, then the k-way distance dk(x1,k) is bounded from above
by

dk(x1,k) ≤
p

k

k∑
i=1

dk(x
−i
1,k). (12.26)

We obtain (12.26) by using u = k in (12.22). For p = 1 the upper bound of dk(x1,k)
is equivalent to the arithmetic mean of the (k − 1)-way distances dk−1(x

−i
1,k).
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12.4 (k−1)-Way metrics implied by k-way metrics

In this section we study what (k − 1)-way metrics are implied by the family of k-
way metrics defined in (12.6). Again k-way dissimilarity dk(x1,k) satisfies minimality,
total symmetry, and (12.10). It is interesting to note that, although we use condition
(12.12) throughout this section, the results do not depend on the value of p in (12.12).
Unless stated otherwise we assume k ≥ 3 throughout this section.

Proposition 12.5. If (12.12) and (12.14) hold, then (12.6) implies

u× dk−1(x1,k−1) ≤
v∑

i=1

dk−1(x
−i
1,k) for 2 ≤ v ≤ k − 1 (12.27)

(u− 1)× dk−1(x1,k−1) ≤
k−1∑
i=1

dk−1(x
−i
1,k) for v = k, k > 1. (12.28)

Proof: Inequalities (12.27) and (12.28) are obtained from combining (12.15) with
(12.23), respectively (12.24). �

As it turns out, condition (12.14) is not required to obtain (12.27). We first show
that if (12.12) holds, then (12.6) implies (12.27) for k ≥ 4 and 2 ≤ v ≤ k − 2.

Proposition 12.6. If (12.12) holds, then (12.6) implies (12.27) for k ≥ 4 and
2 ≤ v ≤ k − 2.
Proof: Applying (12.6) with (k+1)-tuple (x1, ..., xk−1, xk−1, xk+1) and replacing xk+1

by xk in the result, we obtain (12.27). �

Using v = k − 1 in (12.6) we obtain

u× dk(x1,k) ≤
k−1∑
i=1

dk(x
−i
1,k+1). (12.29)

Using v = k − 1 in (12.27) we obtain

u× dk−1(x1,k−1) ≤
k−1∑
i=1

dk−1(x
−i
1,k). (12.30)

Next, we show that if (12.12) holds, then (12.29) implies (12.30) for u ≥ 1.

Proposition 12.7. If (12.12) holds, then for u ≥ 1, (12.29) implies (12.30).
Proof: Applying (12.29) with (k + 1)-tuple (x1, ..., xk−1, xk−1, xk+1) and replacing
xk+1 by xk in the result, we obtain

p u× dk−1(x1,k−1) ≤ p

k−2∑
i=1

dk−1(x
−i
1,k) + dk(x1,k). (12.31)
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Using v = k − 1 in (12.23) we obtain

u× dk(x1,k) ≤ p
k−1∑
i=1

dk−1(x
−i
1,k). (12.32)

Adding (12.33) to u× (12.31) yields

u2 × dk−1(x1,k−1) ≤ u
k−2∑
i=1

dk−1(x
−i
1,k) + dk−1(x

−(k−1)
1,k ). (12.33)

Apart from variant dk−1(x1,k−1) on the left-hand side of (12.33), there are (k − 1)

variants of dk−1, for example, variant dk−1(x
−(k−1)
1,k ), on the right-hand side of (12.33).

We have (k − 1) variants of (12.33) by varying all (k − 1) variants of dk−1 on the
right-hand side of (12.33). Adding up all (k − 1) variants of (12.33), followed by
division by (k − 1)u, yields

u× dk−1(x1,k−1) ≤
[
(k − 2)u + 1

(k − 1)u

] k−1∑
i=1

dk−1(x
−i
1,k). (12.34)

To complete the proof, it must be shown that parametrized inequality (12.34) is
stronger than (12.30). We have

(k − 2)u + 1

(k − 1)u
≤ 1

if and only if u ≥ 1. The latter requirement is true under the conditions of the
theorem. This completes the proof. �

Using v = k in (12.6) we obtain (12.5). From Proposition 12.5 we know that if
both (12.12) and (12.14) hold, then (12.5) implies (12.28). If only (12.12) is valid,
(12.5) implies the parametrized inequality

(u− 1)× dk−1(x1,k−1) ≤
[
1 +

k − u

(k − 1)u

] k−1∑
i=1

dk−1(x
−i
1,k). (12.35)

Proposition 12.8. If (12.12) holds, then for u > 1, (12.5) implies (12.35).
Proof: Applying (12.5) with (k+1)-tuple (x1, ..., xk−1, xk−1, xk+1) and replacing xk+1

by xk in the result, we obtain

p u× dk−1(x1,k−1) ≤ p
k−2∑
i=1

dk−1(x
−i
1,k) + 2dk(x1,k). (12.36)

Adding 2× (12.24) to (u− 1)× (12.36) we obtain

u(u− 1)× dk−1(x1,k−1) ≤ (u + 1)
k−2∑
i=1

dk−1(x
−i
1,k) + 2dk−1(x

−(k−1)
1,k ). (12.37)
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Apart from variant dk−1(x1,k−1) on the left-hand side of (12.37), there are (k − 1)
variants of dk−1 on the right-hand side of (12.37). We have (k−1) variants of (12.37)
by varying all (k − 1) variants of dk−1 on the right-hand side of (12.37). Adding up
these (k− 1) variants of (12.37), followed by division by (k− 1)u, yields (12.35). �

The parametrized inequality (12.35) is weaker than (12.28) for k > u, and stronger
than (12.28) for 3 ≤ k < u. With respect to quantity

1 +
k − u

(k − 1)u
(12.38)

in (12.35) we have limits

lim
k→∞

[
1 +

k − u

(k − 1)u

]
= 1 +

1

u
, lim

u→∞

[
1 +

k − u

(k − 1)u

]
= 1− 1

k

and

lim
k,u→∞

[
1 +

k − u

(k − 1)u

]
= 1.

Because of these limits it may be argued that (12.38) and (12.35) are only interesting
for small k and u. Furthermore, if k = u, then (12.39) = 1, and (12.35) is equivalent
to (12.28).

Using u = k − 1 in (12.5) we obtain the polyhedral inequality (12.4). If (12.12)
holds, then for k ≥ 3 the polyhedral inequality (12.4) implies

(u− 2)× dk−1(x1,k−1) ≤
[
1 +

1

(k − 1)2

] k−1∑
i=1

dk−1(x
−i
1,k). (12.39)

We obtain (12.39) by using u = k − 1 in (12.35) and noting that k2 − 2k + 2 =
(k − 1)2 + 1. The quantity

1 +
1

(k − 1)2
in (12.39) with limit lim

k→∞

[
1 +

1

(k − 1)2

]
= 1

approximates 1 rapidly as k increases. As shown in Heiser and Bennani (1997,
p. 192), if (12.12) holds then the tetrahedral inequality (12.2) does not imply the
triangle inequality, but the weaker parametrized triangle inequality

d(x1, x2) ≤
5

4
[d(x2, x3) + d(x1, x3)] .

Furthermore, if (12.12) holds, then

3d4(x1,4) ≤ d4(x2,5) + d4(x
−2
1,5) + d4(x

−3
1,5) + d4(x

−4
1,5)

does not imply the tetrahedral inequality (12.2), but the weaker parametrized in-
equality

2d3(x1,3) ≤
10

9

[
d3(x2,4) + d3(x

−2
1,4) + d3(x

−3
1,4)
]
.
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12.5 Epilogue

In this chapter a family of k-way metrics that extend the usual two-way metric
was studied. The three-way metrics introduced by Joly and Le Calvé (1995) and
Heiser and Bennani (1997) and the k-way metrics studied in Deza and Rosenberg
(2000) are in the family. The family gives an indication of the many possible exten-
sions for introducing k-way metricity. It was shown how k-way metrics and k-way
dissimilarities are related to their (k − 1)-way counterparts under different set of
axioms.

Validity of a metric axiom for k ≥ 3 appears not to be important for methods
used in applied multi-way data analysis, such as multi-way principal component
and factor analysis (Kroonenberg, 2008), or multi-way dimensional scaling (Gower
and De Rooij, 2003; Heiser and Bennani, 1997). For example, the three-way mul-
tidimensional scaling done in Gower and De Rooij (2003) merely required that the
underlying two-way coefficients satisfied the triangle inequality, since the three-way
dissimilarities are linear transformations of the two-way information. The multi-way
procedure based on the gradient method used in Cox, Cox and Branco (1991) and
the three-way least squares procedure used in Heiser and Bennani (1997) do not
require that the dissimilarities satisfy stronger conditions. At this point the formu-
lations and properties presented in this chapter appear to be of theoretical interest
only. From a theoretical point of view it is unfortunate that no well-established
basic multi-way metric structure emerged from the study.



CHAPTER 13

Multi-way ultrametrics

Multi-way dissimilarities are natural generalizations of pairwise dissimilarities, that
allow global comparison of more than two objects or variables. Various authors
have studied three-way dissimilarities and generalized various concepts defined for
the two-way case to the three-way case (see, for example, Bennani-Dosse, 1993; Joly
and Le Calvé, 1995; Heiser and Bennani, 1997). One of these topics is ultrametric
dissimilarities (Diatta and Fichet, 1998; Murtagh, 2004; Diatta, 2007). A two-way
dissimilarity d(x1, x2) is called a two-way ultrametric if it satisfies the ultrametric
inequality, which is given by

d(x1, x2) ≤ max[d(x1, x3), d(x2, x3)].

The two-way ultrametric inequality implies that the triangle formed by the three
points x1, x2 and x3 is isosceles, that is, at least the largest two sides are of equal
length. A recent review on where ultrametricity may be encountered is given by
Murtagh (2004). Diatta and Fichet (1998) and Diatta (2006, 2007) consider a class of
multi-way quasi-ultrametrics that extend the fundamental bijection in classification
between ultrametric dissimilarities and indexed hierarchies.

143
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Joly and Le Calvé (1995) and Bennani-Dosse (1993) describe three-way general-
izations of the ultrametric inequality, defined for the two-way case. The two different
ultrametrics are called weak and strong in Chepoi and Fichet (2007). In this chap-
ter the ideas on three-way ultrametrics presented in Joly and Le Calvé (1995) and
Bennani-Dosse (1993) are adopted and extended to multi-way ultrametrics. For the
two-way case we have the ultrametric inequality; for the three-way case two equali-
ties have been proposed; for the four-way case three inequalities are presented; and
for the multi-way case (k − 1) inequalities may be defined. The inspiration for this
chapter comes from the thesis by Bennani-Dosse (1993). Some ideas on the three-
way ultrametrics presented in that thesis, are explored in this chapter for multi-way
dissimilarities.

13.1 Definitions

Let x1,k = {x1, x2, ..., xk} be a k-tuple and let x−i
1,k be a (k − 1)-tuple with elements

x1 to xk where the minus in x−i
1,k is used to indicate that element xi drops out. Both

Bennani-Dosse (1993) and Chepoi and Fichet (2007, p. 5) consider two three-way
generalizations of the ultrametric inequality, namely

d(x1,3) ≤ max
[
d(x2,4), d(x−2

1,4), d(x−3
1,4)
]

d(x1,3) ≤ max
[
d(x2,4), d(x−2

1,4)
]
.

These inequalities are called respectively weak and strong ultrametrics in Chepoi and
Fichet (2007). For groups of size k = 4 it is possible to formulate three ultrametric
inequalities. From weak to strong, the three ultrametrics are given by

d(x1,4) ≤ max
[
d(x2,5), d(x−2

1,5), d(x−3
1,5), d(x−4

1,5)
]

d(x1,4) ≤ max
[
d(x2,5), d(x−2

1,5), d(x−3
1,5)
]

d(x1,4) ≤ max
[
d(x2,5), d(x−2

1,5)
]
.

We may thus formulate (k − 1) ultrametrics for a group of k objects.
For the properties in this chapter it is more convenient to define an ultrametric on

the number of dissimilarities involved. For example, the inequality d3 ≤ max(d1, d2)
represents all metrics of which the definition involves three multi-way dissimilarities,
that is,

d(x1,2) ≤ max
[
d(x2,3), d(x−2

1,3)
]

d(x1,3) ≤ max
[
d(x2,4), d(x−2

1,4)
]

d(x1,4) ≤ max
[
d(x2,5), d(x−2

1,5)
]

d(x1,5) ≤ max
[
d(x2,6), d(x−2

1,6)
]

d(x1,6) ≤ max
[
d(x2,7), d(x−2

1,7)
]

etc. ...
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The inequality

d3 ≤ max(d1, d2) (13.1)

defines the strongest class of ultrametrics, whereas

d4 ≤ max(d1, d2, d3) (13.2)

defines the second strongest class. To see that inequality (13.1) defines a stronger
ultrametric compared to inequality (13.2), suppose the multi-way dissimilarities are
given by

d1 = d2 = 5 d3 = 3 and d4 = 2.

These multi-way dissimilarities satisfy (13.2), since 5 ≤ max(2, 3, 5), but not (13.1),
because 5 6= max(2, 3). As a second example, the multi-way dissimilarities given by

d1 = d2 = 5 d3 = 3 d4 = 4 and d5 = 2

do not satisfy either (13.1) or (13.2). However, these multi-way dissimilarities do
satisfy the weaker ultrametric inequality

d5 ≤ max(d1, d2, d3, d4) (for example, 5 ≤ max(2, 3, 4, 5)).

Following this line of reasoning we may conclude that a multi-way ultrametric implies
all (possible) weaker ultrametrics.

Proposition 13.1. Let d1, d2, ..., dn be n multi-way dissimilarities. Then

dn−1 ≤ max(d1, d2, ..., dn−2) ⇒ dn ≤ max(d1, d2, ..., dn−1).

Let d1,k = {d1, d2, ..., dk} be a k-tuple. Then

dk+1 ≤ max(d1,k)

defines the weakest class of ultrametrics.

13.2 Strong ultrametrics

The strongest class of ultrametrics is characterized by inequality (13.1). It turns
out that, if n multi-way dissimilarities satisfy inequality (13.1), then the (n − 1)
largest dissimilarities are equal. The sufficiency of this statement is clear from the
definition of the class of ultrametrics in inequality (13.1). The proof of necessity
goes as follows. We first consider the proof for n = 3, 4, 5. The proof for n = 4 was
already presented in Bennani-Dosse (1993). Furthermore, for n = 4, 5 alternative
proofs are presented, where the fact is used that the assertion is true for n − 1.
Finally, the proof is completed by means of induction.
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Proposition 13.2. Let d1, d2, ..., dn be n multi-way dissimilarities. If the n dis-
similarities satisfy inequality (13.1), then the largest n− 1 dissimilarities are equal.
Proof for n = 3: Assume d2 ≤ d1. From d3 ≤ max(d1, d2) we obtain d3 ≤ d1. Then

d3 ≤ d2 and d1 ≤ max(d2, d3) ⇒ d1 ≤ d2 ⇒ d3 ≤ d1 = d2

d2 ≤ d3 and d1 ≤ max(d2, d3) ⇒ d1 ≤ d3 ⇒ d2 ≤ d1 = d3.

Proof for n = 4: Assume d2 ≤ d1. From d3 ≤ max(d1, d2) we obtain d3 ≤ d1.
First, if d3 ≤ d2

then d1 ≤ max(d2, d3) ⇒ d1 ≤ d2 ⇒ d3 ≤ d1 = d2

and d4 ≤ max(d2, d3) ⇒ d4 ≤ d2.

Then

d4 ≤ d3 and d2 ≤ max(d3, d4) ⇒ d2 ≤ d3 ⇒ d4 ≤ d1 = d2 = d3

d3 ≤ d4 and d2 ≤ max(d3, d4) ⇒ d2 ≤ d4 ⇒ d3 ≤ d1 = d2 = d4.

Alternatively, if d2 ≤ d3

then d1 ≤ max(d2, d3) ⇒ d1 ≤ d3 ⇒ d2 ≤ d1 = d3

and d4 ≤ max(d2, d3) ⇒ d4 ≤ d3.

Then

d4 ≤ d2 and d3 ≤ max(d2, d4) ⇒ d3 ≤ d2 ⇒ d4 ≤ d1 = d2 = d3

d2 ≤ d4 and d3 ≤ max(d2, d4) ⇒ d3 ≤ d4 ⇒ d2 ≤ d1 = d3 = d4.

This completes the proof for n = 4.
Alternative proof for n = 4: Assume that the assertion is true for n = 3. If
d3 ≤ d2 ≤ d1, then d3 ≤ d1 = d2 and d4 ≤ d2. Then

d4 ≤ d3 and d2 ≤ max(d3, d4) ⇒ d2 ≤ d3 ⇒ d4 ≤ d1 = d2 = d3

d3 ≤ d4 and d2 ≤ max(d3, d4) ⇒ d2 ≤ d4 ⇒ d3 ≤ d1 = d3 = d4.

This completes the alternative proof for n = 4.
Proof for n = 5: Assume d2 ≤ d1. From d3 ≤ max(d1, d2) we obtain d3 ≤ d1.

First, if d3 ≤ d2

then d1 ≤ max(d2, d3) ⇒ d1 ≤ d2 ⇒ d3 ≤ d1 = d2

and d4 ≤ max(d2, d3) ⇒ d4 ≤ d2.

Furthermore, if d4 ≤ d3

then d2 ≤ max(d3, d4) ⇒ d2 ≤ d3 ⇒ d4 ≤ d1 = d2 = d3

and d5 ≤ max(d3, d4) ⇒ d5 ≤ d3.
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Then

d5 ≤ d4 and d3 ≤ max(d4, d5) ⇒ d3 ≤ d4 ⇒ d5 ≤ d1 = d2 = d3 = d4

d4 ≤ d5 and d3 ≤ max(d4, d5) ⇒ d3 ≤ d5 ⇒ d4 ≤ d1 = d2 = d3 = d5.

Alternatively, if d3 ≤ d4

then d2 ≤ max(d3, d4) ⇒ d2 ≤ d4 ⇒ d3 ≤ d1 = d2 = d4

and d5 ≤ max(d3, d4) ⇒ d5 ≤ d4.

Then

d5 ≤ d3 and d4 ≤ max(d3, d5) ⇒ d4 ≤ d3 ⇒ d5 ≤ d1 = d2 = d3 = d4

d3 ≤ d5 and d4 ≤ max(d3, d5) ⇒ d4 ≤ d5 ⇒ d3 ≤ d1 = d2 = d4 = d5.

Second, if d2 ≤ d3

then d1 ≤ max(d2, d3) ⇒ d1 ≤ d3 ⇒ d2 ≤ d1 = d3

and d4 ≤ max(d2, d3) ⇒ d4 ≤ d3.

Furthermore, if d4 ≤ d2

then d3 ≤ max(d2, d4) ⇒ d3 ≤ d2 ⇒ d4 ≤ d1 = d2 = d3

and d5 ≤ max(d2, d4) ⇒ d5 ≤ d2.

Then

d5 ≤ d4 and d2 ≤ max(d4, d5) ⇒ d2 ≤ d4 ⇒ d5 ≤ d1 = d2 = d3 = d4

d4 ≤ d5 and d2 ≤ max(d4, d5) ⇒ d2 ≤ d5 ⇒ d4 ≤ d1 = d2 = d3 = d5.

Alternatively, if d2 ≤ d4

then d3 ≤ max(d2, d4) ⇒ d3 ≤ d4 ⇒ d2 ≤ d1 = d3 = d4

and d5 ≤ max(d2, d4) ⇒ d5 ≤ d4.

Then

d5 ≤ d2 and d4 ≤ max(d2, d5) ⇒ d4 ≤ d2 ⇒ d5 ≤ d1 = d2 = d3 = d4

d2 ≤ d5 and d4 ≤ max(d2, d5) ⇒ d4 ≤ d5 ⇒ d2 ≤ d1 = d3 = d4 = d5.

This completes the proof for n = 5.
Alternative proof for n = 5: Assume that the assertion is true for n = 4. If
d4 ≤ d3 ≤ d2 ≤ d1, then d4 ≤ d1 = d2 = d3 and d5 ≤ d3. Then

d5 ≤ d4 and d3 ≤ max(d4, d5) ⇒ d3 ≤ d4 ⇒ d5 ≤ d1 = d2 = d3 = d4

d4 ≤ d5 and d3 ≤ max(d4, d5) ⇒ d3 ≤ d5 ⇒ d4 ≤ d1 = d2 = d3 = d5.
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This completes the alternative proof for n = 5.
General proof: Assume that the assertion is true for n = m. If dm ≤ dm−1 ≤
... ≤ d2 ≤ d1, then dm ≤ d1 = d2 = ... = dm−2 = dm−1 and dm+1 ≤ dm−1. Then
dm+1 ≤ dm and dm−1 ≤ max(dm, dm+1) lead to

dm−1 ≤ dm ⇒ dm+1 ≤ d1 = d2 = ... = dm−1 = dm

and dm ≤ dm+1 and dm−1 ≤ max(dm, dm+1) lead to

dm−1 ≤ dm+1 ⇒ dm ≤ d1 = d2 = ... = dm−1 = dm+1.

Hence, the assertion is true for n = m + 1. �

13.3 More strong ultrametrics

The second strongest class of ultrametrics is characterized by inequality (13.2). As
it turns out, if n multi-way dissimilarities satisfy inequality (13.2), then the (n− 2)
largest dissimilarities are equal. Similar to Proposition 13.2, sufficiency follows from
the definition of ultrametric inequality (13.2). The proof of necessity is slightly more
involved compared to the proof of Proposition 13.2. We only consider the proof for
n = 4 of the assertion, and therefore refer to it as a conjecture.

Conjecture 13.1. Let d1, d2, ..., dn be n multi-way dissimilarities. If (13.2) holds,
then the largest n− 2 dissimilarities are equal.
Proof for n = 4: Assume d3 ≤ d4.
First, if d2 ≤ d3, then from d1 ≤ max(d2, d3, d4) we obtain d1 ≤ d4. Then

d1 ≤ d3 and d4 ≤ max(d1, d2, d3) ⇒ d4 ≤ d3 ⇒

{
d1 ≤ d3 = d4

d2 ≤ d3 = d4

d3 ≤ d1 and d4 ≤ max(d1, d2, d3) ⇒ d4 ≤ d1 ⇒ d2 ≤ d3 ≤ d1 = d4.

Second, assume d3 ≤ d2. If d2 ≤ d4, then from d1 ≤ max(d2, d3, d4) we obtain
d1 ≤ d4. Then

d1 ≤ d3 and d4 ≤ max(d1, d2, d3) ⇒ d4 ≤ d2 ⇒ d1 ≤ d3 ≤ d2 = d4.

Alternatively, if d3 ≤ d1, then

d1 ≤ d2 and d4 ≤ max(d1, d2, d3) ⇒ d4 ≤ d2 ⇒ d3 ≤ d1 ≤ d2 = d4

d2 ≤ d1 and d4 ≤ max(d1, d2, d3) ⇒ d4 ≤ d1 ⇒ d3 ≤ d2 ≤ d1 = d4.

Next, if d4 ≤ d2, then

d1 ≤ d3 and d2 ≤ max(d1, d3, d4) ⇒ d2 ≤ d4 ⇒ d1 ≤ d3 ≤ d2 = d4.

Alternatively, if d3 ≤ d1, then from d1 ≤ max(d2, d3, d4) we obtain d1 ≤ d2. Then

d1 ≤ d4 and d2 ≤ max(d1, d3, d4) ⇒ d2 ≤ d4 ⇒ d3 ≤ d1 ≤ d2 = d4

d4 ≤ d1 and d2 ≤ max(d1, d3, d4) ⇒ d2 ≤ d1 ⇒ d3 ≤ d4 ≤ d1 = d2.

This completes the proof for n = 4.
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13.4 Metrics implied by ultrametrics

In this section we apply the notation used in the first sections of this chapter to
multi-way metrics, which were studied in Chapter 12. We are only concerned with
the number of dissimilarities involved. For example, the inequality d3 ≤ d1 + d2

represents all metrics of which the definition involves three multi-way dissimilarities,
that is,

d(x1,2) ≤ d(x2,3) + d(x−2
1,3)

d(x1,3) ≤ d(x2,4) + d(x−2
1,4)

d(x1,4) ≤ d(x2,5) + d(x−2
1,5)

etc. ...

Three metric inequalities and two ultrametric inequalities for three-way dissimilar-
ities were considered in Chapter 11. The strong metric 2d1 ≤ d2 + d3 + d4 intro-
duced by Heiser and Bennani (1997) implies the metric d1 ≤ d2 + d3, introduced
in Joly and Le Calvé (1995). The latter inequality in turn implies the weak metric
d1 ≤ d2 + d3 + d4. This metric is not considered by the above authors, nor is it
considered a metric in Chepoi and Fichet (2007). Furthermore, the strong ultra-
metric d1 ≤ max(d2, d3) implies the weak ultrametric d1 ≤ max(d2, d3, d4). The five
inequalities are related as follows.

d1 ≤ max(d2, d3) ⇒ 2d1 ≤ d2 + d3 + d4

⇓
⇓ d1 ≤ d2 + d3

⇓
d1 ≤ max(d2, d3, d4) ⇒ d1 ≤ d2 + d3 + d4

For the four-way case we may formulate eight inequalities. The inequalities are
related as follows.

d1 ≤ max(d2, d3) ⇒ 3d1 ≤ d2 + d3 + d4 + d5

⇓
2d1 ≤ d2 + d3 + d4

⇓ ⇓
d1 ≤ d2 + d3

⇓
d1 ≤ max(d2, d3, d4) ⇒ d1 ≤ d2 + d3 + d4

⇓ ⇓
d1 ≤ max(d2, d3, d4, d5) ⇒ d1 ≤ d2 + d3 + d4 + d5
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A variety of properties can immediately be deduced from the above definitions of
multi-way ultrametrics and metrics. First of all, the strongest ultrametric inequality
for k-way dissimilarities implies the strongest metric inequality for k-way dissimilar-
ities. Remember that, if the strongest k-way ultrametric inequality holds, then the
k largest of the (k + 1) dissimilarities are equal. With respect to Proposition 13.3
and 13.4, let d1,k = {d1, d2, ..., dk} be a k-tuple.

Proposition 13.3. Let d1, d2, ..., dk, dk+1 be (k + 1) k-way dissimilarities. Then

d1 ≤ max(d2,k+1) ⇒ (k − 1)d1 ≤
k+1∑
i=2

di.

Let d1, d2, ..., dn be n k-way dissimilarities (n ≤ k). All other multi-way ultramet-
ric inequalities, other than the strongest, imply a metric inequality of the form

d1 ≤
n∑

i=2

di.

Proposition 13.4. Let d1, d2, ..., dn be n k-way dissimilarities (n ≤ k). Then

d1 ≤ max(d2,n) ⇒ d1 ≤
n∑

i=2

di.

13.5 Epilogue

Multi-way ultrametrics and some of their properties were the topic of investigation
of this chapter. The tetrahedral inequality introduced in Heiser and Bennani (1997)
is implied by the strong ultrametric inequality. Suppose we define “interesting” in
the sense that a metric inequality is interesting if it is the strongest metric implied
by an ultrametric inequality. Then we may say that the tetrahedral inequality (and
its multi-way generalization) is more interesting compared to the three-way metric
inequality introduced in Joly and Le Calvé (1995).

Some of the ultrametrics and corresponding properties discussed here may find
their way into a procedure or algorithm. It is well known that a distance is an
ultrametric if and only if it can be represented by a hierarchical tree. Joly and Le
Calvé (1995) line out how a hierarchical algorithm may be adopted to the three-way
case. First the triple corresponding to the smallest distance is aggregated and the
new distances are computed involving this triple as defined in the specific algorithm.
The resulting dendrogram has approximately the same properties as in the ordinary
two-way case. The only difference is that there will be many levels with three
clusters instead of two in the hierarchical tree representation. Applications of three-
way ultrametrics and hierarchical trees can be found in Joly and Le Calvé (1995)
and Bennani-Dosse (1993).



CHAPTER 14

Perimeter models

Dissimilarities are important tools in many domains of data analysis. Most dissimi-
larity analysis has however been limited to the two-way case. Multi-way dissimilar-
ities may be used to evaluate complex relationships between three or more objects
(see, for example, Diatta, 2006, 2007).

Perimeter models are linear functions that can be used to relate k-way dissim-
ilarities of different degrees k. Their linear form makes perimeter functions simple
models with a straightforward interpretation. For example, the three-way perimeter
distance is equivalent to the sum of the three two-way distances formed between
the three objects. This distance is equivalent to the sum of the three sides of the
triangle formed by the three objects. The perimeter distance gives a geometrical
interpretation of the concept “average distance” between objects.

The present chapter explores two extensions of the three-way perimeter model.
Decompositions and metric properties of both generalizations are investigated. As
an extra, the three-way maximum function, together with its multi-way extension
and a metric property of the generalization, is studied in the last section.
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14.1 Definitions

Let x1,k denote the k-tuple (x1, x2, ..., xk) and let x−i
1,k denote the (k − 1)-tuple

(x1, ..., xi−1, xi+1, ..., xk) where the minus in the superscript of x−i
1,k is used to indicate

that element xi drops out. Let E be a nonempty set of n objects. A dissimilarity
dk : Ek → R+ is totally symmetric if for all x1, x2, ..., xk ∈ E and every permutation
π of {1, 2, ..., k}

dk(xπ(1), ..., xπ(k)) = dk(x1, ..., xk).

Furthermore, as a generalization of minimality we define dk(x1, ..., x1) = 0.
We define two types of k-way perimeter models. For k ≥ 3 we define

dk(x1,k) =
1

p

k∑
i=1

dk−1(x
−i
1,k) (14.1)

and

dk(x1,k) =
1

p

k−1∑
i=1

k∑
j=i+1

d(xi, xj) (14.2)

where p is a positive real number. Dissimilarity dk(x1,k) in (14.1) is equivalent to
the sum of the k dissimilarities dk−1(x

−i
1,k) divided by a factor p. Distance measure

dn(x1,n) in (14.2) may be interpreted as the sum of the sides of the polyhedron
formed by the k objects in {x1, x2, ..., xk}, rescaled by a factor p.

Using k = 3 in either (14.1) or (14.2) we obtain

d3(x1,3) =
d(x1, x2) + d(x1, x3) + d(x2, x3)

p
. (14.3)

Using p = 1 in (14.3) we obtain the three-way perimeter model considered in Heiser
and Bennani (1997), De Rooij and Gower (2003), and Chepoi and Fichet (2007).
Using p = 2 in (14.3) we obtain the three-way semi-perimeter model which is studied
in Bennani-Dosse (1993) and Joly and Le Calvé (1995).

Instead of the notation used in (14.3) we will use a shorter, more convenient
notation in the next section on decompositions of perimeter models. We write
(14.3) as

d
(3)
ijl =

dij + dil + djl

p
. (14.4)

Using k = 4 in (14.1) and (14.2) we obtain respectively

d
(4)
ijlh =

d
(3)
ijl + d

(3)
ijh + d

(3)
ilh + d

(3)
jlh

p
(14.5)

and

d
(4)
ijlh =

dij + dil + dih + djl + djh + dlh

p
. (14.6)

Note that we have expressed (14.4) and (14.5) in the same notation as (14.3).
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14.2 Decompositions

The following theorem generalizes a result in Joly and Le Calvé (1995, p. 196),
derived for the semi-perimeter model. As it turns out, their result holds for (14.4)
and does not depend on the value of p.

Proposition 14.1. Function d
(3)
ijl satisfies (14.4) if and only if

d
(3)
ijl =

[
d

(3)
ij. + d

(3)
i.l + d

(3)
.jl

]
−
[
d

(3)
i.. + d

(3)
.j. + d

(3)
..l

]
+ d(3)

... (14.7)

where

d
(3)
ij. = n−1

∑
l

d
(3)
ijl

d
(3)
i.. = n−1

∑
j

d
(3)
ij.

and d(3)
... = n−1

∑
i

d
(3)
i.. .

Proof: Averaging over l, j, and i in (14.4) we obtain

pd
(3)
ij. = dij + di. + dj.

pd
(3)
i.. = 2di. + d..

pd(3)
... = 3d...

Expressing dij in terms of d
(3)
ij. , d

(3)
i.. , and d(3)

... , we obtain

dij = pd
(3)
ij. −

p
[
d

(3)
i.. + d

(3)
.j.

]
2

− pd(3)
...

3
. (14.8)

Using (14.8) in (14.4) we obtain (14.7), which does not depend on p. �

Condition (14.7) for d
(3)
ijl in (14.4) generalizes naturally to condition (14.9) for d

(4)
ijlh

in (14.5).

Proposition 14.2. Function d
(4)
ijlh satisfies (14.5) if and only if

d
(4)
ijlh =

[
d

(4)
ijl. + d

(4)
ij.h + d

(4)
i.lh + d

(4)
.jlh

]
−
[
d

(4)
ij.. + d

(4)
i.l. + d

(4)
i..h + d

(4)
.jl. + d

(4)
.j.h + d

(4)
..lh

]
+
[
d

(4)
i... + d

(4)
.j.. + d

(4)
..l. + d

(4)
...h

]
− d(4)

.... (14.9)
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where

d
(4)
ijl. = n−1

∑
l

d
(4)
ijlh

d
(4)
ij.. = n−1

∑
k

d
(4)
ijl.

d
(4)
i... = n−1

∑
j

d
(4)
ij..

and d(4)
.... = n−1

∑
i

d
(4)
i... .

Proof: Averaging over h, l, j, and i in (14.5) we obtain

pd
(4)
ijl. = d

(3)
ijl + d

(3)
ij. + d

(3)
il. + d

(3)
jl.

pd
(4)
ij.. = 2d

(3)
ij. + d

(3)
i.. + d

(3)
j..

pd
(4)
i... = 3d

(3)
i.. + d(3)

...

pd(4)
.... = 4d(3)

... .

Expressing d
(3)
ijl in terms of d

(4)
ijl., d

(4)
ij.., d

(4)
i... , and d(4)

.... , we obtain

d
(3)
ijl = pd

(4)
ijl. −

p
[
d

(4)
ij.. + d

(4)
i.l. + d

(4)
.jl.

]
2

+
p
[
d

(4)
i... + d

(4)
.j.. + d

(4)
..l.

]
3

− pd(4)
....

4
. (14.10)

Using (14.10) in (14.5) we obtain (14.9). �

We obtain a different generalization of (14.7) if d
(4)
ijlh satisfies (14.6).

Proposition 14.3. Function d
(4)
ijlh satisfies (14.6) if and only if

d
(4)
ijlh =

[
d

(4)
ij.. + d

(4)
i.l. + d

(4)
i..h + d

(4)
.jl. + d

(4)
.j.h + d

(4)
..lh

]
− 2

[
d

(4)
i... + d

(4)
.j.. + d

(4)
..l. + d

(4)
...h

]
+ 3d(4)

.... .

(14.11)
Proof: Averaging over h, l, j, and i in (14.6) we obtain

pd
(4)
ijl. = dij + dil + djl + di. + dj. + dl.

pd
(4)
ij.. = dij + 2di. + 2dj. + d..

pd
(4)
i... = 3di. + 3d..

pd(4)
.... = 6d...

Expressing dij in terms of d
(4)
ij.., d

(4)
i... , and d(4)

.... , we obtain

dij = pd
(4)
ij.. −

2p
[
d

(4)
i... + d

(4)
.j..

]
3

+
pd(4)

....

2
. (14.12)

Using (14.12) in (14.6) yields (14.11). �
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14.3 Metric properties

In this section we study metric properties of perimeter models (14.1) and (14.2).
Consider metric inequalities

(k − 1)× dk(x1,k) ≤
k∑

i=1

dk(x
−i
1,k+1). (14.13)

and

(k − 2)× dk(x1,k) ≤
k∑

i=1

dk(x
−i
1,k+1). (14.14)

Inequality (14.13) implies inequality (14.14).

Proposition 14.4. (i) Dissimilarity dn(x1,n) in (14.2) satisfies (14.14). (ii) Dissim-
ilarity dn(x1,n) in (14.2) satisfies (14.13) if and only if d(xi, xj) satisfies the triangle
inequality.
Proof (i): Using (14.2) in (14.14) we obtain

0 ≤ (k − 1)
k∑

i=1

d(xi, xk+1)

which is true.
Proof (ii): Using (14.2) in (14.13) we obtain

k−1∑
i=1

k∑
j=i+1

d(xi, xj) ≤ (k − 1)
k∑

i=1

d(xi, xk+1). (14.15)

Applying (14.15) with the (k + 1)-tuple (x1, x2, x3, ..., x3) we obtain d(x1, x2) ≤
d(x2, x3) + d(x1, x3).

Conversely, inequality (14.15) follows from adding the k triangle inequalities
formed by all pairs in the set {x1, x2, ..., xk} and xk+1, for example, d(x1, x2) ≤
d(x2, xk+1) + d(x1, xk+1). �

Consider metric inequalities

dk(x1,k) ≤
k∑

i=1

dk(x
−i
1,k+1) (14.16)

and

u× dk(x1,k) ≤
k∑

i=1

dk(x
−i
1,k+1) (14.17)

where u is a positive real number. Note that inequality (14.16) is implied by (14.13),
(14.14) and (14.17).
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Proposition 14.5. (i) Dissimilarity dk(x1,k) in (14.1) satisfies (14.16). (ii) Dis-
similarity dk(x1,k) in (14.1) satisfies (14.17) for u > 1 if dk−1(x1,k−1) satisfies

(u− 1)× dk−1(x1,k−1) ≤
k−1∑
i=1

dk−1(x
−i
1,k). (14.18)

Proof (i): Using (14.1) in (14.16) we obtain

0 ≤ (k − 1)
k∑

i=1

d(xi, xk+1)

which is true.
Proof (ii): Using (14.1) in (14.17) we obtain

(u− 1)
k∑

i=1

dk−1(x
−i
1,k) ≤ 2S (14.19)

where S is the sum of the dk−1 dissimilarities that can be formed by all (k − 2)-
tuples in the set {x1, x2, ..., xk} and xk+1. Inequality (14.19) follows from adding the
k variants of (14.18) that can be formed by using each (u − 1) × dk−1(x

−i
1,k) on the

left-hand side of (14.19), on the left-hand side of each polyhedral inequality, and by
summing the corresponding k dissimilarities from S on the right-hand side of the
polyhedral inequality. �

14.4 Maximum distance

In the final section of this chapter on perimeter models we explore the multi-way
extensions and properties of a somewhat different three-way function. For the three-
way case, the maximum distance function is defined as

d3(x1,3) = max [d(x1, x2), d(x1, x3), d(x2, x3)] (14.20)

by both Heiser and Bennani (1997) and De Rooij and Gower (2003). Function
(14.20) has two straightforward four-way generalizations, which are given by

d4(x1,4) = max [d(x1, x2), d(x1, x3), d(x1, x4), d(x2, x3), d(x2, x4), d(x3, x4)] (14.21)

and
d4(x1,4) = max

[
d3(x2,4), d3(x

−2
1,4), d3(x

−3
1,4), d3(x1,3)

]
where d3(x1,3) is defined as in (14.20). Fortunately, the two formulations are equiv-
alent.

The k-way formulation of (14.21) is given by

dk(x1,k) = max [d(x1, x2), d(x1, x3), ..., d(xk−2, xk), d(xk−1, xk)] . (14.22)

On the right-hand side of (14.22) we have the maximum dissimilarity that can be
constructed from all pairs in the set {x1, x2, ..., xk}. The multi-way function in
(14.22) satisfies inequality (14.13) due to the following result.
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Proposition 14.6. Let d(xi, xj) = 0 if and only if xi = xj. Then dk(x1,k) in
(14.22) satisfies (14.13) if d(xi, xj) satisfies the triangle inequality.
Proof for k = 3: It must be shown that

2 max [d(x1, x2), d(x1, x3), d(x2, x3)] ≤
max [d(x2, x3), d(x2, x4), d(x3, x4)] + max [d(x1, x3), d(x1, x4), d(x3, x4)] +

max [d(x1, x2), d(x1, x4), d(x2, x4)] (14.23)

holds. The proof is immediate if the maximum of the six dissimilarities is d(xi, x4)
for i = 1, 2, 3. For instance, if d(x1, x4) is the largest, then (14.23) becomes

2max [d(x1, x2), d(x1, x3), d(x2, x3)] ≤2d(x1, x4)+

max [d(x2, x3), d(x2, x4), d(x3, x4)]

which is true, since d(x1, x4) ≥ max [d(x1, x2), d(x1, x3), d(x2, x3)]. Furthermore,
suppose d(x1, x2) is the maximum of the six values. Then (14.23) can be written as

d(x1, x2) ≤max [d(x1, x3), d(x1, x4), d(x3, x4)] +

max [d(x2, x3), d(x2, x4), d(x3, x4)] . (14.24)

Inequality (14.24) is true if the triangle inequality holds, which completes the proof
for k = 3.
Proof for k = 4: It must be verified that

3 max [d(x1, x2), d(x1, x3), d(x1, x4), d(x2, x3), d(x2, x4), d(x3, x4)] ≤
max [d(x1, x2), d(x1, x3), d(x1, x5), d(x2, x3), d(x2, x5), d(x3, x5)] +

max [d(x1, x2), d(x1, x4), d(x1, x5), d(x2, x4), d(x2, x5), d(x4, x5)] +

max [d(x1, x3), d(x1, x4), d(x1, x5), d(x3, x4), d(x3, x5), d(x4, x5)] +

max [d(x2, x3), d(x2, x4), d(x2, x5), d(x3, x4), d(x3, x5), d(x4, x5)] . (14.25)

Again, the proof is immediate if the largest of the ten dissimilarities is d(xi, x5) for
i = 1, ..., 4. Suppose d(x1, x2) is the maximum of the ten values. Then (14.25) can
be written as

d(x1, x2) ≤
max [d(x1, x3), d(x1, x4), d(x1, x5), d(x3, x4), d(x3, x5), d(x4, x5)] +

max [d(x2, x3), d(x2, x4), d(x2, x5), d(x3, x4), d(x3, x5), d(x4, x5)] . (14.26)

Inequality (14.26) is true if the triangle inequality holds, which completes the proof
for k = 4.
General proof: From the proof for k = 3 and k = 4, the following pattern becomes
apparent. After filling in (14.22) in (14.13), there are k(k + 1)/2 different two-way
dissimilarities to consider. The proof is immediate if d(xi, xk+1) for i = 1, 2, ..., k
is the largest dissimilarity. This part of the proof does not require the triangle
inequality. If any of the other dissimilarities is the largest, then (14.22) satisfies
(14.13) if the triangle inequality holds. �
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14.5 Epilogue

In this chapter multi-way generalizations of two three-way functions, the perime-
ter distance and the maximum distance, were presented. The extended perimeter
distance is based on two-way dissimilarities or on (k−1)-way dissimilarities. The re-
sulting multi-way perimeter models are different and posses different properties. We
studied decompositions of the perimeter models for ordered tuples, not for tuples
with distinct elements. The decomposition of the three-way perimeter model for
triples with distinct elements can be found in Chepoi and Fichet (2007), Bennani-
Dosse (1993) and Gower and De Rooij (2003). The case has not been studied here,
but it may be noted that the decompositions of the two four-way perimeter models
defined on tuples with distinct elements, provide similar and interesting formulas.

The maximum function may also be defined on two-way dissimilarities or on (k−
1)-way dissimilarities; the different definitions are equivalent. Both the generalized
perimeter distance and the maximum distance satisfy polyhedral inequality (12.4).

Validity of a multi-way metric inequality for k ≥ 3 appears not to be important
for methods used for multi-way dimensional scaling (Cox, Cox and Branco, 1991;
Heiser and Bennani, 1997; Gower and De Rooij, 2003). The results in Section 14.3
therefore appear to be of theoretical interest only. From a theoretical point of view
it is unfortunate that no well-established basic multi-way metric structure emerged
from the study.

Perimeter models are simple functions with a straightforward interpretation.
However, some empirical evidence suggests that using perimeter models is not the
best approach to evaluating complex relationships between three or more objects
at a time. Gower and De Rooij (2003) used the three-way perimeter model and
compared multidimensional scaling of three-way distances to the scaling of two-way
distances. These authors concluded that, when the three-way distances were linear
transformations of the two-way information, the three-way analysis gained little or
nothing over the conventional multidimensional scaling. De Rooij (2001, Chapter 5;
2002) noted that the problem seems to be that definitions of three-way distances in
terms of two-way distances do not model true three-way interactions.



CHAPTER 15

Generalizations of Theorem 10.3

For the properties in this section we have a new use of the symbols a, b, c, and d
already used for the 2× 2 contingency table in Part I. With two-way dissimilarities,
a function is called metric if it satisfies, among other things, the triangle inequality.
Theorem 10.3 states that which states that if c is a positive constant and the two-way
dissimilarity d satisfies the triangle inequality, then the function d/(c+d) satisfies the
triangle inequality. In this chapter generalizations of Theorem 10.3 for the triangle
inequality are considered.

For the use in this chapter it suffices to define a multi-way metric on the number
of dissimilarities involved. Multi-way dissimilarities can be used to measure the
resemblance between two or more, say k, objects. Let di, i = 1, 2, ..., n, n + 1 denote
n + 1 multi-way dissimilarities. A generalization of Theorem 10.3 is presented for
the inequality

dn+1 ≤
n∑

i=1

di. (15.1)

Furthermore, Conjecture 15.1 below is an attempt to generalize Theorem 10.3 to
polyhedral inequality

(n− 1)× dn+1 ≤
n∑

i=1

di. (15.2)

Inequality (15.2) portraits inequality (12.4) and (14.13) in the present simpler no-
tation.
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15.1 A generalization of Theorem 10.3.

Proposition 15.1 below is a first attempt to generalize Theorem 10.3, which states
that if c is a positive constant and the two-way dissimilarity d satisfies the triangle
inequality, then the function d/(c + d) satisfies the triangle inequality. In Proposi-
tion 15.1 we consider the multi-way metrics that are characterized by (15.1). We
first consider the proofs for n = 2, 3, 4. A general proof for Proposition 15.1 is
straightforward after considering these proofs.

Proposition 15.1 If the dissimilarities di for i = 1, 2, ..., n, n + 1 satisfy n-way
symmetry, then

dn+1

c + dn+1

≤
n∑

i=1

di

c + di

if dn+1 ≤
n∑

i=1

di holds.

Proof for n = 2: It must be shown that the quantity a given by

a = (c + d1)(c + d2)(c + d3)

[
d1

c + d1

+
d2

c + d2

− d3

c + d3

]
= d1(c + d2)(c + d3) + d2(c + d1)(c + d3)− d3(c + d1)(c + d2)

= c2(d1 + d2 − d3) + 2cd1d2 + d1d2d3.

is positive. Since d3 ≤ d1 + d2 under the conditions of the assertion, the quantity a
is positive, which completes the proof for n = 2.
Proof for n = 3: It must be shown that the quantity a given by

a =(c + d1)(c + d2)(c + d3)(c + d4)

[
d1

c + d1

+
d2

c + d2

+
d3

c + d3

− d4

c + d4

]
=d1(c + d2)(c + d3)(c + d4)+

d2(c + d1)(c + d3)(c + d4)+

d3(c + d1)(c + d2)(c + d4)− d4(c + d1)(c + d2)(c + d3)

is positive. Expanding the equation in polynomial form we obtain

a =c3(d1 + d2 + d3 − d4) + 2c2(d1d2 + 2d1d3 + 2d2d3)+

c(3d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4) + 2d1d2d3d4.

Only the coefficient of c3 needs to be checked since all other coefficients are positive.
The coefficient of c3 is positive if d4 ≤ d1 + d2 + d3 (the condition of the assertion).
This completes the proof for n = 3.
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Proof for n = 4: It must be shown that the quantity a given by

a =
5∏

i=1

(c + di)

[
4∑

i=1

di

c + di

− d5

c + d5

]
=d1(c + d2)(c + d3)(c + d4)(c + d5)+

d2(c + d1)(c + d3)(c + d4)(c + d5)+

d3(c + d1)(c + d2)(c + d4)(c + d5)+

d4(c + d1)(c + d2)(c + d3)(c + d5)− d5(c + d1)(c + d2)(c + d3)(c + d4)

is positive. Expanding the equation in polynomial form we obtain

a = c4(d1 + d2 + d3 + d4 − d4)

+ 2c3(d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4)

+ 3c2(d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4)

+ 2c2d5(d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4)

+ 4cd1d2d3d4 + 2d5(d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4)

+ 3d1d2d3d4d5.

Only the coefficient of c4 needs to be checked since all other coefficients are positive.
The coefficient of c4 is positive under the conditions of the assertion. This completes
the proof for n = 4.
Outline general proof: It must be shown that the quantity

a =
n+1∏
i=1

(c + di)×

[
n∑

i=1

di

c + di

− dn+1

c + dn+1

]

is positive. After expanding the equation in polynomial form only the coefficient
of cn needs to be checked. This coefficient is positive under the conditions of the
assertion. �

Conjecture 15.1 in Section 15.3 is a (potentially) stronger result compared to
Proposition 15.1. With Conjecture 15.1 we attempt to prove Proposition 15.1 not
for inequality (15.1), but for inequality (15.2). Before presenting this attempt, the
next section is first used to present some auxiliary results.
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15.2 Auxiliary results

We first repeat Proposition 12.1 in Proposition 15.2, using the more convenient
notation.

Proposition 15.2. If the dissimilarities di for i = 1, 2, ..., n, n + 1 satisfy n-way
symmetry, then (for n ≥ 3) (15.2) implies

(n− 2)dn ≤
n−1∑
i=1

di.

Proof: Interchanging the roles of dn and dn+1 and dividing by n − 1 in (15.2), we
may obtain the inequalities

(n− 1)dn ≤ dn+1 +
n−1∑
i=1

di

and

dn+1 ≤
[

1

n− 1

] n∑
i=1

di.

Adding the two inequalities and multiplying by (n−1)/n gives the required inequal-
ity. �

The inequality in Proposition 15.4 below concerns one of the inequalities required
in Conjecture 15.1 below. First, we present a stronger result, which is then used in
the proof of Proposition 15.4.

Proposition 15.3. Dissimilarities di for i = 1, 2, ..., n, n + 1 satisfy

n∑
i=1

n+1∑
j=i+1

didj ≥
[
n2 − n− 1

2(n− 1)

] n+1∑
i=1

d2
i

if (15.2) holds.
Proof: Inequality (15.2) can be written as

d1 ≥ (n− 1)dn+1 −
n∑

i=2

di. (15.3)

Squaring both sides of (15.3) we obtain

d2
1 ≥ (n− 1)2d2

n+1 +
n∑

i=2

d2
i − 2(n− 1)dn+1

n∑
i=2

di + 2
n∑

i=2

n+1∑
j=i+1

didj (15.4)

(for n = 2 the last term of the inequality equals zero).
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There are (n + 1) variants of d2
i in (15.4) and n(n + 1)/2 variants of didj. The

number of variants of the inequality is given by the smallest common multiple of
(n + 1) and n(n + 1)/2. Instead, consider the multiple n(n + 1)2/2. Adding up all
n(n + 1)2/2 variants of (15.4) we obtain

n(n + 1)

2

n+1∑
i=1

d2
i ≥

(n− 1)2n(n + 1)

2

n+1∑
i=1

d2
i

+
(n− 1)n(n + 1)

2

n+1∑
i=1

d2
i

− 2(n− 1)2(n + 1)
n∑

i=1

n+1∑
j=i+1

didj

+ (n− 1)(n− 2)(n + 1)
n∑

i=1

n+1∑
j=i+1

didj

which equals the required inequality. This completes the proof. �

The inequality in Proposition 15.4 is one of the inequalities required in Conjecture
15.1 in Section 15.3. The proof of this inequality makes use of the stronger result in
Proposition 15.3.

Proposition 15.4. Dissimilarities di for i = 1, 2, ..., n, n + 1 satisfy

n−1∑
i=1

n∑
j=i+1

didj ≥
[
n− 2

2

]
dn+1

n∑
i=1

di

if (15.2) holds.
Proof: Using the equality[

n∑
i=1

di

]2

−
n∑

i=1

d2
i = 2

n−1∑
i=1

n∑
j=i+1

didj

the quantity a given by

a = 2(n− 1)
n−1∑
i=1

n∑
j=i+1

didj − (n− 1)(n− 2)dn+1

n∑
i=1

di

can be written as a = b1 + b2, where

b1 = (n− 2)

[
n∑

i=1

di

][
n∑

i=1

di − (n− 1)dn+1

]
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and

b2 = 2
n−1∑
i=1

n∑
j=i+1

didj − (n− 2)
n∑

i=1

d2
i .

The assertion follows if it can be shown that the quantity a is positive. Under the
condition of the proposition (the last term of) quantity b1 is positive. Furthermore,
in the light of Proposition 15.3, quantity b2 is positive since

n2 − n− 1

2(n− 1)
≥ n− 2

2
.

Hence quantity a is positive, which completes the proof. �

15.3 A stronger generalization of Theorem 10.3

Conjecture 15.1 below is an attempt to generalize Theorem 10.3, which states that if
c is a positive constant and the two-way dissimilarity d satisfies the triangle inequal-
ity, then the function d/(c + d) satisfies the triangle inequality. Below, proofs for
small n are presented, but no proof is offered for any n. With respect to Conjecture
15.1, it is assumed that the multi-way dissimilarities satisfy n-way symmetry, which
makes the use of Proposition 15.2 possible. Note that also for n = 2, Theorem 10.3
is a special case of Conjecture 15.1.

Conjecture 15.1 If the dissimilarities di for i = 1, 2, ..., n, n + 1 satisfy n-way
symmetry, then

(n− 1)dn+1

c + dn+1

≤
n∑

i=1

di

c + di

if (15.2) holds.
Proof for n = 2: It must be shown that the quantity a given by

a = (c + d1)(c + d2)(c + d3)

[
d1

c + d1

+
d2

c + d2

− d3

c + d3

]
= d1(c + d2)(c + d3) + d2(c + d1)(c + d3)− d3(c + d1)(c + d2)

= c2(d1 + d2 − d3) + 2cd1d2 + d1d2d3

is positive. Since d3 ≤ d1 + d2 by Proposition 15.2, the quantity a is positive, which
completes the proof for n = 2.
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Proof for n = 3: It must be shown that the quantity a given by

a =(c + d1)(c + d2)(c + d3)(c + d4)

[
d1

c + d1

+
d2

c + d2

+
d3

c + d3

− 2d4

c + d4

]
=d1(c + d2)(c + d3)(c + d4)+

d2(c + d1)(c + d3)(c + d4)+

d3(c + d1)(c + d2)(c + d4)− 2d4(c + d1)(c + d2)(c + d3)

is positive. Expanding the equation in polynomial form we obtain

a =c3(d1 + d2 + d3 − 2d4)+

c2(2d1d2 + 2d1d3 + 2d2d3 − d1d4 − d2d4 − d3d4)+

3cd1d2d3 + d1d2d3d4.

The coefficient of c3 is positive if 2d4 ≤ d1 + d2 + d3. The coefficient of c2 is positive
if d3 ≤ d1 + d2, since it can be written as

d1(d2 + d3 − d4) + d2(d1 + d3 − d4) + d3(d1 + d2 − d4).

Thus, the quantity a is positive by Proposition 15.2, which completes the proof for
n = 3.
Proof for n = 4: It must be shown that the quantity a given by

a =
5∏

i=1

(c + di)

[
4∑

i=1

di

c + di

− 3d5

c + d5

]
=d1(c + d2)(c + d3)(c + d4)(c + d5)+

d2(c + d1)(c + d3)(c + d4)(c + d5)+

d3(c + d1)(c + d2)(c + d4)(c + d5)+

d4(c + d1)(c + d2)(c + d3)(c + d5)− 3d5(c + d1)(c + d2)(c + d3)(c + d4)

is positive. Expanding the equation in polynomial form we obtain

a = c4(d1 + d2 + d3 + d4 − 3d4)

+ 2c3(d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4 − d1d5 − d2d5 − d3d4 − d4d5)

+ 3c2(d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4)

− c2d5(d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4)

+ 4cd1d2d3d4 + d1d2d3d4d5.

The coefficient of c4 is positive if 3d5 ≤ d1 + d2 + d3 + d4. The coefficient of c3 is
positive if 2d4 ≤ d1 + d2 + d3, since it can be written as

d1(d2 + d3 + d4 − 2d5) + d2(d1 + d3 + d4 − 2d5)+

d3(d1 + d2 + d4 − 2d5) + d4(d1 + d2 + d3 − 3d5).

Alternatively, the coefficient of c3 is positive by Proposition 15.4.
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The coefficient of c2 is positive if d3 ≤ d1 + d2, since it can be written as

d1d2(d3 + d4 − d5) + d1d3(d2 + d4 − d5) + d1d4(d2 + d3 − d5)+

d2d3(d1 + d4 − d5) + d2d4(d1 + d3 − d5) + d3d4(d1 + d2 − d5).

Thus, the quantity a is positive by Proposition 15.2, which completes the proof for
n = 4.
Proof for n = 5: It must be shown that the quantity a given by

a =
6∏

i=1

(c + di)

[
5∑

i=1

di

c + di

− 4d6

c + d6

]
is positive. Quantity a can be written as

a = d1(c + d2)(c + d3)(c + d4)(c + d5)(c + d6)

+ d2(c + d1)(c + d3)(c + d4)(c + d5)(c + d6)

+ d3(c + d1)(c + d2)(c + d4)(c + d5)(c + d6)

+ d4(c + d1)(c + d2)(c + d3)(c + d5)(c + d5)

+ d5(c + d1)(c + d2)(c + d3)(c + d4)(c + d5)

− 4d6(c + d1)(c + d2)(c + d3)(c + d4)(c + d5).

Expanding the equation in polynomial form we obtain

a = c5

[
5∑

i=1

di − 4d6

]

+ c4

[
2

4∑
i=1

5∑
j=i+1

didj − 3d6

5∑
i=1

di

]

+ c3

[
3

3∑
i=1

4∑
j=i+1

5∑
r=j+1

didjdr − 2d6

4∑
i=1

5∑
j=i+1

didj

]

+ c2

[
4

2∑
i=1

3∑
j=i+1

4∑
r=j+1

5∑
s=r+1

didjdrds − d6

3∑
i=1

4∑
j=i+1

5∑
l=j+1

didjdl

]

+ 5c
5∏

i=1

di +
6∏

i=1

di.

The coefficient of c5 is positive if 4d6 ≤
∑5

i=1 di. The coefficient of c4 is positive if
3d5 ≤

∑4
i=1 di, since it can be written as

d1(d2 + d3 + d4 + d5 − 3d6) + d2(d1 + d3 + d4 + d5 − 3d6)+

d3(d1 + d2 + d4 + d5 − 3d6) + d4(d1 + d2 + d3 + d5 − 3d6)+

d5(d1 + d2 + d3 + d4 − 3d6).

Alternatively, the coefficient of c4 is positive by Proposition 15.4.
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The coefficient of c3 is positive if 2d4 ≤
∑3

i=1 di, since it can be written as

d1d2(d3 + d4 + d5 − 2d6) + d1d3(d2 + d4 + d5 − 2d6)+

d1d4(d2 + d3 + d5 − 2d6) + d1d5(d2 + d3 + d4 − 2d6)+

d2d3(d1 + d4 + d5 − 2d6) + d2d4(d1 + d3 + d5 − 2d6)+

d2d5(d1 + d3 + d4 − 2d6) + d3d4(d1 + d2 + d5 − 2d6)+

d3d5(d1 + d2 + d4 − 2d6) + d4d5(d1 + d2 + d3 − 2d6).

The coefficient of c2 is positive if d3 ≤ d1 + d2, since it can be written as

d1d2d3(d4 + d5 − d6) + d1d2d4(d3 + d5 − d6)+

d1d2d5(d3 + d4 − d6) + d1d3d4(d2 + d5 − d6)+

d1d3d5(d2 + d4 − d6) + d1d4d5(d2 + d3 − d6)+

d2d3d4(d1 + d5 − d6) + d2d3d5(d1 + d4 − d6)+

d2d4d5(d1 + d3 − d6) + d3d4d5(d1 + d2 − d6).

Hence, a is positive, which completes the proof n = 5.
Outline general proof: It must be shown that the quantity

a =
n+1∏
i=1

(c + di)×

[
n∑

i=1

di

c + di

− (n− 1)dn+1

c + dn+1

]

is positive. Due to Proposition 15.2 each metric inequality also implies all weaker
metric inequalities. The quantity a can be written as a polynomial function of
cn, cn−1, ..., c2, c and a constant

∏n+1
i=1 di. The coefficient belonging to the linear part

c and the constant
∏n+1

i=1 di are always positive. It must be shown that the remaining
(n− 1) coefficients are also positive. The coefficient corresponding to cn appears to
be positive if the metric inequality (n− 1)dn+1 ≤

∑n
i=1 di holds.

15.4 Epilogue

Theorem 10.3, which states that if two-way dissimilarity d satisfies the triangle in-
equality, then so does the function d/(c + d), was generalized to the multi-way case
in this chapter. In the first generalization, Proposition 15.1, multi-way metrics were
considered that are characterized by inequality dn+1 ≤

∑n
i=1 di. In the second at-

tempt, Conjecture 15.1, we tried to proof the generalization for the stronger class
of multi-way metrics characterized by (n − 1)dn+1 ≤

∑n
i=1 di. The proof of Propo-

sition 15.1 turned out to be straightforward, especially in contrast to the proof of
Conjecture 15.1.
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CHAPTER 16

Coe�cients that generalize basic
characteristics

Fundamental entities in several domains of data analysis are resemblance measures
or similarity coefficients. In most domains similarity measures are defined or studied
for pairwise or bivariate (two-way) comparison. As an alternative to bivariate re-
semblance measures multivariate or multi-way coefficients may be considered. Mul-
tivariate coefficients can for example be used if one wants to determine the degree of
agreement of three or more raters in psychological assessment, if one wants to know
how similar the partitions obtained from three different cluster algorithms are, or
if one is interested in the degree of similarity of three or more areas where certain
types of species may or not may be encountered.

In this chapter multivariate formulations (for groups of objects of size k) of
various of bivariate similarity coefficients (for pairs of objects) for binary data are
presented. In this chapter the multivariate formulations are not functions of bivariate
similarity coefficients, for example

S12 + S13 + S23

3
(arithmetic mean).

Instead, an attempt is made in this chapter to present multi-way formulations that
reflect certain basic characteristics of, and have a similar interpretation as, their
two-way versions.
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Chapter 16 is organized as follows. First, a class of two-way similarity coefficients
for binary data is considered, that can be written as functions of two variables a
and d, for example

SJac =
a

a + b + c
=

a

1− d
.

This class of coefficients is generalized by reformulating the two-way quantities a and
d into multivariate variables a(k) and d(k). Similarity coefficients that can be defined
using only the variables a(k) and d(k) are named after Bennani-Dosse (1993) and
Heiser and Bennani (1997), who first presented these coefficients for the similarity
of three variables.

For the second class of coefficients the quantity pi (qi), that is, the proportion
of 1s (0s) in variable xi, is involved in the definition. Throughout the chapter it is
shown what properties from the two-way case are preserved with the multivariate
formulations of various similarity coefficients presented here.

16.1 Bennani-Heiser coefficients

Many bivariate coefficients are written as functions of four dependent variables a, b,
c and d. Although b and c are two separate variables, most coefficients are defined
to be symmetric in b and c. As noted by Heiser and Bennani (1997, p. 195),
a large number of two-way measures are characterized by the number of positive
matches (a), negative matches (d), and mismatches (b, c). This is especially the
case for similarity coefficients that are rational functions, linear in both numerator
and denominator, for example

SSM =
a + d

a + b + c + d
or SJac =

a

a + b + c
.

Suppose x1, x2, ..., xk are k binary variables. Instead of variables a, b, c and d (as used
and defined in Part I), we define for k binary variables and multivariate coefficients,
the two variables

a(k) = the proportions of 1s that x1, x2, ..., xk share in the same positions

d(k) = the proportions of 0s that x1, x2, ..., xk share in the same positions.

Similarity coefficients that can be defined using the variables a(k) and d(k) are named
after Bennani-Dosse (1993) and Heiser and Bennani (1997), who first presented these
coefficients for three variables. Although many Bennani-Heiser coefficients are linear
in both numerator and denominator, it is not a necessary property. In the following,
let S(k) denote a multivariate similarity coefficient for groups of size k.

Jaccard (1912) studied flora in several districts of the Alpine mountains. To
measure the degree of similarity of two districts, Jaccard used the ratio

S
(2)
Jac =

Number of species common to the two districts

Total number of species in the two districts
=

a(2)

1− d(2)
.
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A seemingly proper and straightforward 3-way formulation of Jaccard coefficient
would be

S
(3)
Jac =

Number of species common to the three districts

Total number of species in the three districts
=

a(3)

1− d(3)
.

The complement 1 − S
(3)
Jac was presented in Cox, Cox and Branco (1991, p. 200).

The multivariate formulation of SJac is then given by

S
(k)
Jac =

a(k)

1− d(k)
.

The two-way Jaccard coefficient SJac is a member of SGL1(θ), given by

SGL1(θ) =
a

a + θ(b + c)
=

a

(1− θ)a + θ(1− d)

which is one of the parameter families studied for metric properties in Gower and
Legendre (1986). A possible multivariate formulation of SGL1(θ) is given by

S
(k)
GL1(θ) =

a(k)

(1− θ)a(k) + θ(1− d(k))
.

Members of S
(k)
GL1(θ) are (see Section 3.1)

S
(k)
GL1(θ = 1) = S

(k)
Jac =

a(k)

1− d(k)

S
(k)
GL1(θ = 1/2) = S

(k)
Gleas =

2a(k)

1 + a(k) − d(k)

S
(k)
GL1(θ = 2) = S

(k)
SS1 =

a(k)

2− a(k) − 2d(k)
.

The formulations of SGL1(θ) and SGL2(θ) (and their multivariate formulations pre-
sented in this chapter) are related to the concept of global order equivalence (Sibson,
1972; Batagelj and Bren, 1995). We first present a generalization of global order
equivalence for multivariate coefficients that are Bennani-Heiser coefficients. Two
Bennani-Heiser coefficients, S(k) and S(k)∗, are said to be globally order equivalent
if

S(a
(k)
1 , d

(k)
1 ) > S(a

(k)
2 , d

(k)
2 )

if and only if S∗(a
(k)
1 , d

(k)
1 ) > S∗(a

(k)
2 , d

(k)
2 ).

If two coefficients are globally order equivalent, they are interchangeable with respect
to an analysis method that is invariant under ordinal transformations. Proposition
16.1 is a straightforward generalization of Theorem 3.1.
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Proposition 16.1. Two members of S
(k)
GL1(θ) are globally order equivalent.

Proof: For an arbitrary ordinal comparison with respect to S
(k)
GL1(θ), we have

a
(k)
1

(1− θ)a
(k)
1 + θ(1− d

(k)
1 )

>
a

(k)
2

(1− θ)a
(k)
2 + θ(1− d

(k)
2 )

a
(k)
1

1− d
(k)
1

>
a

(k)
2

1− d
(k)
2

.

Since an arbitrary ordinal comparison with respect to S
(k)
GL1(θ) does not depend on

the value of θ, any two members of S
(k)
GL1(θ) are globally order equivalent. �

Instead of positive matches only, one may also be interested in a similarity co-
efficient or resemblance measure that involves the negative matches. The simple
matching coefficient is given by

S
(2)
SM =

Number of attributes present and absent in two objects

Total number of attributes
=a(2) + d(2).

The multivariate formulation of SSM is then given by

S
(k)
SM = a(k) + d(k).

The simple matching coefficient (SSM) belongs to another parameter family studied
in Gower and Legendre (1986), which is given by

SGL2(θ) =
a + d

θ + (1− θ)(a + d)
.

The multivariate extension of family SGL2(θ) is given by

S
(k)
GL2(θ) =

a(k) + d(k)

θ + (1− θ)(a(k) + d(k))
.

Members of S
(k)
GL2(θ) are (see Section 3.1)

S
(k)
GL2(θ = 1) = S

(k)
SM = a(k) + d(k)

S
(k)
GL2(θ = 1/2) = S

(k)
SS2 =

2(a(k) + d(k)

1 + a(k) + d(k)

S
(k)
GL2(θ = 2) = S

(k)
RT =

a(k) + d(k)

2− a(k) − d(k)
.

Proposition 16.2 demonstrates the global order equivalence property for
S

(k)
GL2(θ). The assertion is a straightforward generalization of Theorem 3.2.
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Proposition 16.2. Two members of S
(k)
GL2(θ) are globally order equivalent.

Proof: For an arbitrary ordinal comparison with respect to S
(k)
GL2(θ), we have

a
(k)
1 + d

(k)
1

θ + (1− θ)(a
(k)
1 + d

(k)
1 )

>
a

(k)
2 + d

(k)
2

θ + (1− θ)(a
(k)
2 + d

(k)
2 )

a
(k)
1 + d

(k)
1 > a

(k)
2 + d

(k)
2

which does not depend on the value of θ. �

Other Bennani-Heiser coefficients are generalizations of bivariate coefficients by
Russel and Rao (1940) (SRR) and Baroni-Urabani and Buser (1976, p. 258). Possible
multivariate formulations of these coefficients are given by

S
(k)
RR = a(k)

S
(k)
BUB =

a(k) +
√

a(k)d(k)

1− d(k) +
√

a(k)d(k)

and S
(k)
BUB2 =

2a(k) + d(k) − 1 +
√

a(k)d(k)

1− d(k) +
√

a(k)d(k)
.

16.2 Dice’s association indices

Let pi and qi denote the proportion of 1s, respectively 0s, in variable xi. For the
multivariate formulations presented in this section it is useful to work with a different
generalization of the concept of globally order equivalent (Sibson, 1972). Let x1,k =
{x1, x2, ..., xk} and y1,k = {y1, y2, ..., yk} denote two k-tuples. Two multivariate
coefficients, S and S∗, are said to be globally order equivalent if

S(x1,k) > S(y1,k) if and only if S∗(x1,k) > S∗(y1,k).

Dice (1945, p. 298) proposed two-way association indices that consist of the amount
of similarity between any two species x1 and x2, relative to the occurrence of either
x1 or x2. Hence, for every pair of variables there are two measures, namely

SDice1 =
a(2)

p1

and SDice2 =
a(2)

p2

.

What became know as the Dice coefficient is Dice’s coincidence index, which is the
harmonic mean of the two association measures, given by

S
(2)
Gleas =

2a(2)

p1 + p2

.

Dice (1945, p. 300) already noted that the coefficients he proposed could be easily
expanded to measure the amount of association between three or more species. Thus,
for every triple of variables there are three coefficients, namely
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a(3)

p1

,
a(3)

p2

and
a(3)

p3

.

The three-way extension of SGleas is then the harmonic mean of the three association
indices, which is given by

S
(3)∗
Gleas =

3a(3)

p1 + p2 + p3

where the asterisk (∗) is used to denote that this formulation is different from the
Bennani-Heiser multivariate generalization presented in the previous section. The
corresponding multivariate formulation of SGleas is given by

S
(k)∗
Gleas =

k a(k)∑k
i=1 pi

.

Instead of the harmonic mean, we may apply other special cases of the power mean
(Section 3.2) to Dice’s association indices, to obtain multivariate generalizations of
various other two-way similarity coefficients. Hence, we obtain

S
(k)
BB =

a(k)

max(p1, p2, ..., pk)
(minimum)

S
(k)
Kul =

1

k

k∑
i=1

a(k)

pi

(arithmetic mean)

S
(k)
DK =

a(k)∏k
i=1 p

1/k
i

(geometric mean)

S
(k)
Sim =

a(k)

min(p1, p2, ..., pk)
(maximum).

In addition, the product of the two association indices defines a coefficient by Sor-
genfrei (1958). Its multivariate extension is given by

S
(k)
Sorg =

[
a(k)
]k∏k

i=1 pi

.

An alternative two-way formulation of SKul is given by

S
(2)
Kul =

1

2

[
a(2)

p1

+
a(2)

p2

]
=

a(2)(p1 + p2)

2p1p2

.

From this formulation we may present the alternative multivariate extension of S
(2)
Kul

given by

S
(k)∗
Kul =

[
a(k)
]k−1∑k

i=1 pi

k
∏k

i=1 pi

where the asterisk (∗) is used to denote that this formulation is different from S
(k)
Kul.
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A two-way coefficient by McConnaughey (1964) is given by

S
(2)
McC =

a(2)(p1 + p2)− p1p2

p1p2

.

A possible multivariate generalization of S
(2)
McC is given by

S
(k)
McC =

2
k

[
a(k)
]k−1∑k

i=1 pi −
∏k

i=1 pi∏k
i=1 pi

.

As it turns out, multivariate formulation S
(k)∗
Kul preserves an order equivalence prop-

erty with respect to S
(k)
McC, which is not preserved by power mean multivariate for-

mulation S
(k)
Kul. Some additional notation is required: let p(xi) denote the proportion

of 1s in variable xi.

Proposition 16.3. Coefficients S
(k)
McC and S

(k)∗
Kul are globally order equivalent.

Proof: For an arbitrary ordinal comparison with respect to S
(k)
McC, we have

2
k

[
a

(k)
1

]k−1∑k
i=1 p(xi)−

∏k
i=1 p(xi)∏k

i=1 p(xi)
>

2
k

[
a

(k)
2

]k−1∑k
i=1 p(yi)−

∏k
i=1 p(yi)∏k

i=1 p(yi)

if and only if [
a

(k)
1

]k−1∑k
i=1 p(xi)∏k

i=1 p(xi)
>

[
a

(k)
2

]k−1∑k
i=1 p(yi)∏k

i=1 p(yi)
.

The same inequality is obtained for an arbitrary ordinal comparison with respect to
S

(k)∗
Kul . �

We end this section with two multivariate formulations of two measures presented
in Sokal and Sneath (1963). These authors considered two coefficients (SSS3 and
SSS4) that can be defined as the arithmetic mean, respectively the square root of
the geometric mean, of the quantities

a(2)

p1

,
a(2)

p2

,
d(2)

q1

and
d(2)

q2

.

The arithmetic mean is given by

S
(2)
SS3 =

1

4

[
a(2)

p1

+
a(2)

p2

+
d(2)

q1

+
d(2)

q2

]
.

A straightforward generalization of SSS3 is

S
(k)
SS3 =

1

2k

k∑
i=1

a(k)

pi

+
1

2k

k∑
i=1

d(k)

qi

.
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The square root of the geometric mean and a possible multivariate generalization
are given by

S
(2)
SS4 =

a(2)d(2)

[p1p2q1q2]
1/2

and

S
(k)
SS4 =

a(k)d(k)∏k
i=1[piqi]1/k

.

16.3 Bounds

In this section it is shown that some multivariate coefficients are bounds with respect
to each other. Proposition 16.4 is a straightforward generalization of Proposition
3.3.

Proposition 16.4. It holds that S
(k)
GL2(θ) ≥ S

(k)
GL1(θ).

Proof: S
(k)
GL2(θ) ≥ S

(k)
GL1(θ) if and only if 1 ≥ a(k) + d(k).

Proposition 16.5 is a straightforward generalization of Proposition 3.6. Only the
proof of inequality (i) is slightly more involved.

Proposition 16.5. It holds that

0 ≤ S
(k)
Sorg

(i)

≤ S
(k)
Jac

(ii)

≤ S
(k)
BB

(iii)

≤ S
(k)∗
Gleas

(iv)

≤ S
(k)
DK

(v)

≤ S
(k)
Kul

(vi)

≤ S
(k)
Sim ≤ 1.

Proof: Inequality (i) holds if and only if

k∏
i=1

pi ≥
[
a(k)
]k−1 [

1− d(k)
]
.

First, it holds that

k∏
i=1

pi ≥
k∑

i=1

[
a(k)
]k−1 [

pi − a(k)
]
+
[
a(k)
]k

=
[
a(k)
]k−1

[
k∑

i=1

pi − (k − 1)a(k)

]
.

Because
∑k

i=1 pi − (k− 1)a(k) ≥ 1− d(k), inequality (i) is true. Inequality (ii) holds
if and only if d(k) + max(p1, p2, ..., pk) ≤ 1. Inequality (iii) holds if and only if

max(p1, p2, ..., pk) ≥
1

k

k∑
i=1

pi.

Inequalities (iv) and (v) are true because the harmonic mean of k numbers is equal
or smaller than the geometric mean of the k numbers, which in turn is equal or
smaller to the arithmetic mean of the numbers. Inequality (vi) holds if and only if

1

k

k∑
i=1

pi ≥ min(p1, p2, ..., pk). �
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16.4 Epilogue

In this chapter multivariate formulations of various two-way similarity coefficients
for binary data were presented. Cox, Cox and Branco (1991) pointed out that
multivariate resemblance measures, for example, three-way or four-way similarity
coefficients instead of two-way similarity coefficients, may be used to detect possible
higher-order relations between the objects. Consider the following data matrix for
five binary strings on fourteen attributes.

objects attributes
1 1 1 1 1 1 1 0 0 0 0 0 0 0 1
2 1 1 1 0 0 0 1 1 1 1 0 0 0 0
3 1 0 0 1 1 0 1 1 0 0 1 1 0 0
4 0 1 0 0 1 1 1 0 1 0 1 0 1 0
5 0 0 1 1 0 1 1 0 0 1 0 1 1 0

The multivariate Jaccard (1912) coefficient was defined as

S
(k)
Jac =

a(k)

1− d(k)
.

It can be verified for these data, that the ten two-way Jaccard coefficients between
the five objects are all equal (SJac = 3

11
). In addition the ten three-way Jaccard

coefficients are also all equal (S
(3)
Jac = 1

13
). Thus, no discriminative information about

the five objects is obtained from either two-way or three-way Jaccard coefficient.
However, the four-way Jaccard similarity coefficient between objects two, three, four
and five (S

(4)
Jac = 1

13
) differs from the other four four-way Jaccard similarity coefficient

(S
(4)
Jac = 0). The artificial example shows that higher-order information can put

objects two, three, four and five in a group separated from object 1. Of course,
one may also argue that the wrong two-way and three-way similarity coefficient has
been specified.

Two major classes of multivariate formulations were distinguished. The first class
is referred to as Bennani-Heiser similarity coefficients, which contains all measures
that can be defined using only two dependent variables. Many of these Bennani-
Heiser similarity coefficients are fractions, linear in both numerator and denomina-
tor. As it turned out, a second class was formed by coefficients that could be formu-
lated as functions of association indices first presented in Dice (1945). These func-
tions include the Pythagorean means (harmonic, arithmetic and geometric means).

Two multivariate formulations of SGleas were presented. The two multivariate
formulations are given by

S
(k)
Gleas =

2a(k)

1 + a(k) − d(k)
and S

(k)∗
Gleas =

k a(k)∑k
i=1 pi

where S
(k)
Gleas is the Bennani-Heiser similarity coefficient.
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The reader may have noted that we have failed to present multivariate versions
of similarity coefficients that involve the covariance (ad− bc) between two variables,
for example

SPhi =
ad− bc√

(a + b)(a + c)(b + d)(c + d)

SCohen =
2(ad− bc)

p1q2 + p2q1

SLoe =
ad− bc

min(p1q2, p2q1)

SYule1 =
ad− bc

ad + bc
.

The definition of covariance between triples of objects is already quite complex and
the topic is outside the scope of the present study. However, in the next chapter
an alternative way of formulating k-way generalizations of bivariate coefficients is
discussed. The approach in Chapter 17 may be used to generalize coefficients that
involve the covariance.



CHAPTER 17

Multi-way coe�cients based on
two-way quantities

Similar to the Chapter 16, Chapter 17 is devoted to multivariate formulations of
various similarity coefficients. In Chapter 16 an attempt was made to present mul-
tivariate formulations that reflect certain basic characteristics of, and have a similar
interpretation as, their two-way versions. In this chapter multivariate formulations
of resemblance measures are presented that preserve the properties presented in
Chapter 4 on correction for similarity due to chance.

Suppose the two binary variables are the ratings of two judges, rating various
people on the presence or absence of a certain trait. In this field, Scott (1955),
Cohen (1960), Fleiss (1975), Krippendorff (1987), among others, have proposed
measures that are corrected for chance. The best-known example is perhaps the
kappa-statistic (Cohen, 1960; SCohen). A vast amount of literature exists on exten-
sions of SCohen, including multivariate versions of the kappa-statistic (Fleiss, 1971;
Light, 1971; Schouten, 1980; Popping, 1983a; Heuvelmans and Sanders, 1993). In
a different domain of data analysis, a multivariate or multi-way coefficient was pro-
posed by Mokken (1971). Mokken’s multivariate index, referred to as coefficient
H, is a measure of the degree of homogeneity among k test items (Sijtsma and
Molenaar, 2002). Coefficient H can be used is the same context as coefficient alpha
popularized by Cronbach (1951), which is the best-known measure from classical
test theory (De Gruijter and Van der Kamp, 2008).

181
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In this chapter the L family of bivariate coefficients of the form λ+µx is extended
to a family of multivariate coefficients. For reasons of notational convenience, only
coefficients of the form λ+µa (coefficients for binary data) are considered, although
the extensions do apply to all coefficients in the L family. The new family of multi-
variate coefficients preserve various properties derived for the L family in Chapter
4. For various members the complete multivariate formulations are presented. In
addition, it is shown how the multivariate coefficients presented in this chapter are
related to the multivariate coefficients discussed in Chapter 16.

17.1 Multivariate formulations

In Section 3.3 a family L was introduced that consists of coefficients of the form
λ + µa. Let aij denote the proportion of 1s that variables xi and xj share in the
same positions. Furthermore, let pi denote the proportion of 1s in variable xi.
Coefficients of the form λ + µa can be extended to a k-way family of coefficients
that are linear in the quantity

k−1∑
i=1

k∑
j=i+1

aij. (17.1)

Quantity (17.1) is equal to the sum of all aij, the proportion of 1s that variables xi

and xj share in the same positions, obtained from all k(k − 1)/2 pairwise fourfold
tables. Coefficients in family L(k) have a form

λ(k) + µ(k)

k−1∑
i=1

k∑
j=i+1

aij

where λ(k) and µ(k) are functions of the pi only. For k = 2, we have λ(2) = λ,
µ(2) = µ and L(2) = L. Before considering any properties of L(k) family, we discuss
some members of the family.

Coefficient SSM can be written as

SSM = a12 + d12.

The three-way formulation of SSM, such that the coefficient is linear in (a12 + a13 +
a23), is given by

S
(3)∗
SM =

a12 + d12

3
+

a13 + d13

3
+

a23 + d23

3
where the asterisks (∗) is used to denote that this generalization of SSM is different
from the multivariate formulation presented in Chapter 16. The general multivariate
formulation of SSM is given by

S
(k)∗
SM =

2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

(aij + dij) (17.2)

= 1 +
4

k(k − 1)

k−1∑
i=1

k∑
j=i+1

aij −
2

k

k∑
i=1

pi.
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The quantity 2/[k(k − 1)] in (17.2) is used to ensure 0 ≤ S
(k)∗
SM ≤ 1.

Coefficient SGleas can be written as

SGleas =
2a12

p1 + p2

.

The three-way formulation of SGleas, such that the coefficient is linear in (a12 +a13 +
a23), is given by

S
(3)∗∗
Gleas =

a12 + a13 + a23

p1 + p2 + p3

where the double asterisks (∗∗) are used to denote that this generalization of SGleas

is different from the two multivariate formulations of SGleas presented in Chapter 16.
The general multivariate formulation of SGleas is given by

S
(k)∗∗
Gleas =

2
∑k−1

i=1

∑k
j=i+1 aij

(k − 1)
∑k

i=1 pi

.

The quantity 2/(k − 1) ensures that the value S
(k)∗∗
Gleas is between 0 and 1.

Coefficient SCohen for two binary variables is given by

SCohen =
2(ad− bc)

p1q2 + p2q1

=
2(a12 − p1p2)

p1 + p2 − 2p1p2

.

The three-way formulation of SCohen such that S
(3)
Cohen is linear in (a12 + a13 + a23),

is given by
(a12 + a13 + a23)− (p1p2 + p1p3 + p2p3)

(p1 + p2 + p3)− (p1p2 + p1p3 + p2p3)
.

The general multivariate generalization of SCohen is given by∑k−1
i=1

∑k
j=i+1(aij − pipj)

2−1(k − 1)
∑k

i=1 pi −
∑k−1

i=1

∑k
j=i+1 pipj

.

This multivariate formulation of Cohen’s kappa can be found in Popping (1983a)
and Heuvelmans and Sanders (1993).
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17.2 Main results

In this section it is shown that L(k) family is a natural generalization of L family with
respect to correction for similarity due to chance. The main results from Chapter
4 are here generalized and formulated for multivariate coefficients. Proposition 17.1
is a generalization of Theorem 4.1, the powerful result by Albatineh et al. (2006).

Proposition 17.1. Two members in L(k) family become identical after correction
(4.1) if they have the same ratio

1− λ(k)

µ(k)
. (17.3)

Proof:

E
[
S(k)

]
= λ(k) + µ(k)E

(
k−1∑
i=1

k∑
j=i+1

aij

)

and consequently the corrected coefficient CS(k) becomes

CS(k) =
S(k) − E(S(k))

1− E(S(k))

=

[
1− λ(k)

µ(k)
− E

(
k−1∑
i=1

k∑
j=i+1

aij

)]−1 [k−1∑
i=1

k∑
j=i+1

aij − E

(
k−1∑
i=1

k∑
j=i+1

aij

)]
.

�

Corollary 17.1. Coefficients S
(k)∗
SM , S

(k)∗∗
Gleas, and S

(k)
Cohen become equivalent after cor-

rection (4.1).
Proof: Using the formulas of λ(k) and µ(k) corresponding to each coefficient, ratio
(17.3)

1− λ(k)

µ(k)
=

k − 1

2

k∑
i=1

pi (17.4)

for all three coefficients. �

Note that ratio (17.4) is a natural generalization of ratio (4.5). If it is assumed
that expectation E(a) = p1p2 is appropriate for all [k(k − 1)]/2 bivariate fourfold
tables, we obtain the multivariate formulation

E

(
k−1∑
i=1

k∑
j=i+1

aij

)
Cohen

=
k−1∑
i=1

k∑
j=i+1

pipj. (17.5)

The basic building block in (17.5) is the two-way expectation E(a) = p1p2.
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Proposition 17.2. Let S(k) be a member in L(k) family for which ratio (17.4)
is characteristic. If E(a) = p1p2 is the appropriate expectation for all bivariate

fourfold tables, then S(k) becomes S
(k)
Cohen after correction (4.1).

17.3 Gower-Legendre families

The heuristics used for multivariate coefficients S
(k)∗
SM , S

(k)∗∗
Gleas and S

(k)
Cohen, can also be

applied to other coefficients. For this form of multivariate formulation to work, a
multivariate coefficient need not necessarily belong to the L(k) family, that is, be
linear in (17.1). For instance, the corresponding multivariate formulation of SGL1(θ)
is given by

S
(k)∗
GL1(θ) =

[
(1− 2θ)

k−1∑
i=1

k∑
j=i+1

aij + θ(k − 1)
k∑

i=1

pi

]−1 k−1∑
i=1

k∑
j=i+1

aij.

Members of family S
(k)∗
GL1(θ) are

S
(k)∗
GL1

(
θ =

1

2

)
= S

(k)∗∗
Gleas =

2
∑k−1

i=1

∑k
j=i+1 aij

(k − 1)
∑k

i=1 pi

and S
(k)∗
GL1(θ = 1) = S

(k)∗
Jac =

∑k−1
i=1

∑k
j=i+1 aij

(k − 1)
∑k

i=1 pi −
∑k−1

i=1

∑k
j=i+1 aij

.

Multivariate generalizations of other similarity coefficients may be formulated ac-
cordingly. Coefficient S

(k)∗∗
Gleas is in the L(k) family, whereas S

(k)∗
Jac is not.

If two coefficients are globally order equivalent, they are interchangeable with re-
spect to an analysis method that is invariant under ordinal transformations. Proposi-
tion 17.3 is, similar as Proposition 16.1, a straightforward generalization of Theorem
3.1.

Proposition 17.3. Two members of S
(k)∗
GL1(θ) are globally order equivalent.

Proof: Let x1 and x2 denote two different versions of (17.1), and let y1 and y2

denote two different versions of the quantity (k−1)
∑k

i=1 pi. For an arbitrary ordinal

comparison with respect to S
(k)∗
GL1(θ), we have

x1

(1− 2θ)x1 + θy1

>
x2

(1− 2θ)x2 + θy2

if and only if
x1

y1

>
x2

y2

.

Since an arbitrary ordinal comparison with respect to S
(k)∗
GL1(θ) does not depend on

the value of θ, any two members of S
(k)∗
GL1(θ) are globally order equivalent. �

A multivariate generalization of parameter family SGL2(θ) is given by

S
(k)∗
GL2(θ) =

2−1k(k − 1) + 2
∑k−1

i=1

∑k
j=i+1 aij − (k − 1)

∑k
i=1 pi

2−1k(k − 1) + 2(1− θ)
∑k−1

i=1

∑k
j=i+1 aij + (θ − 1)(k − 1)

∑k
i=1 pi

.
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Note that S
(k)∗
GL2(θ = 1) = S

(k)∗
SM . Proposition 17.4 demonstrates the global order

equivalence property for S
(k)∗
GL2(θ). The assertion is, similar as Proposition 16.2, a

straightforward generalization of Theorem 3.2.

Proposition 17.4. Two members of S
(k)∗
GL2(θ) are globally order equivalent.

Proof: The proof is similar to the proof of Proposition 17.3. In addition to the quan-
tities used in that proof, let z = 2−1k(k − 1). For an arbitrary ordinal comparison

with respect to S
(k)∗
GL2(θ), we have

z + 2x1 − y1

z + 2(1− θ)x1 + (θ − 1)y1

>
z + 2x2 − y2

z + 2(1− θ)x2 + (θ − 1)y2

2x1 − y1 > 2x2 − y2.

Since an arbitrary ordinal comparison with respect to S
(k)∗
GL2(θ) does not depend on

the value of θ, any two members of S
(k)∗
GL2(θ) are globally order equivalent. �

Some multivariate coefficients are bounds with respect to each other. Proposition
17.5 is, similar to Proposition 16.4, a generalization of Proposition 3.3.

Proposition 17.5. It holds that S
(k)∗
GL2(θ) ≥ S

(k)∗
GL1(θ).

Proof: S
(k)∗
GL2(θ) ≥ S

(k)∗
GL1(θ) if and only if[

k(k − 1)

2
+ 2

k−1∑
i=1

k∑
j=i+1

aij − (k − 1)
k∑

i=1

pi

][
(k − 1)

k∑
i=1

pi −
k−1∑
i=1

k∑
j=i+1

aij

]
≥ 0.

The left part between brackets of the above inequality equals

k−1∑
i=1

k∑
j=i+1

aij +
k−1∑
i=1

k∑
j=i+1

dij

whereas the right part between brackets is always positive. This completes the proof.
�
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17.4 Bounds

At this point it seems appropriate to compare some of the multivariate formulations
presented in this chapter with the corresponding multivariate generalizations from
the previous chapter. As it turns out, the different formulations are bounds of each
other. In Proposition 17.6 the multivariate formulation S

(k)
GL2(θ) of parameter family

SGL2(θ) from Chapter 16, is compared to multivariate extension S
(k)∗
GL2(θ) presented

in this chapter.

Proposition 17.6. It holds that S
(k)
GL2(θ) ≤ S

(k)∗
GL2(θ).

Proof: S
(k)
GL2(θ) ≤ S

(k)∗
GL2(θ) if and only if

k(k − 1)

2

[
1− a(k) − d(k)

]
≥ (k − 1)

k∑
i=1

pi − 2
k−1∑
i=1

k∑
j=i+1

aij. (17.6)

Note that

k(k − 1)

2
a(k) ≤

k−1∑
i=1

k∑
j=i+1

aij (17.7)

is true, because any aij ≥ a(k) (in words: the proportion of 1s that two variables
share in the same positions is always equal or greater than the proportion of 1s that
the two variables and k−2 other variables share in the same position). Using similar
arguments it holds that

k(k − 1)

2

[
1− d(k)

]
≥

k−1∑
i=1

k∑
j=i+1

(1− dij). (17.8)

Since

(k − 1)
k∑

i=1

pi −
k−1∑
i=1

k∑
j=i+1

aij =
k−1∑
i=1

k∑
j=i+1

(1− dij) (17.9)

it follows that, adding −1 × (17.7) and (17.8) gives (17.6). Since both (17.7) and
(17.8) hold, (17.6) is true. This completes the proof. �

In Proposition 17.7 the multivariate formulation S
(k)
GL1(θ) of parameter family

SGL1(θ) from Chapter 16, is compared to multivariate extension S
(k)∗
GL1(θ) presented

in this chapter. Some properties derived in the proof of Proposition 17.6 are used
in the proof of Proposition 17.7.

Proposition 17.7. It holds that S
(k)
GL1(θ) ≤ S

(k)∗
GL1(θ).

Proof: Using some algebra, we obtain S
(k)
GL1(θ) ≤ S

(k)∗
GL1(θ) if and only if

[
1− d(k)

] k−1∑
i=1

k∑
j=i+1

aij ≤ a(k)

[
(k − 1)

k∑
i=1

pi −
k−1∑
i=1

k∑
j=i+1

aij

]
. (17.10)
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Using (17.9), (17.10) can be written as

1− d(k)

a(k)
≥
∑k−1

i=1

∑k
j=i+1(1− dij)∑k−1

i=1

∑k
j=i+1 aij

. (17.11)

Equation (17.11) holds if (17.7) and (17.8) are true. This completes the proof. �

Proposition 17.6 and Proposition 17.7 consider two families of coefficients that
are linear in both numerator and denominator. It follows from both assertions that
for these rational functions the multivariate formulation from Chapter 16 is equal or
smaller compared to the multivariate formulation of the same coefficient presented
in this chapter.

Three different multivariate generalizations of SGleas may be found in Chapter
16 and 17. From Proposition 17.7 it follows that S

(k)∗∗
Gleas ≥ S

(k)
Gleas. Proposition 17.8

is used to show that multivariate formulation S
(k)∗∗
Gleas is also equal to or greater than

S
(k)∗
Gleas. Which is the largest of S

(k)
Gleas or S

(k)∗
Gleas depends on the data.

Proposition 17.8. It holds that S
(k)∗∗
Gleas ≥ S

(k)∗
Gleas.

Proof: S
(k)∗∗
Gleas ≥ S

(k)∗
Dice if and only if (17.7) holds. �

17.5 Epilogue

In Chapter 4 it was shown that various coefficients become equivalent after correc-
tion for similarity due to chance. Similar to Chapter 16, this chapter was used to
present multivariate formulations of various similarity coefficients. First, family L
of coefficients that are of the form λ+µa, was extended to a family L(k) of multivari-
ate coefficients. The new family of multivariate coefficients preserves the properties
derived for the L family in Chapter 4. For example, multivariate formulation for
SSM presented in this chapter is given by

S
(k)∗
SM = 1 +

4

k(k − 1)

k−1∑
i=1

k∑
j=i+1

aij −
2

k

k∑
i=1

pi.

Coefficient S
(k)∗∗
Gleas and S

(k)∗
SM become S

(k)
Cohen after correction for chance agreement.

The heuristic used for coefficients in the L(k) family can also be used for coeffi-
cients not in the L(k) family. For example, the multivariate extension of SJac is given
by

S
(k)∗
Jac =

∑k−1
i=1

∑k
j=i+1 aij

(k − 1)
∑k

i=1 pi −
∑k−1

i=1

∑k
j=i+1 aij

.
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A multivariate coefficient that can be found in Loevinger (1947, 1948), Mokken
(1971) and Sijtsma and Molenaar (2002), which is also based on this heuristic, is
given by

S
(k)
Loe =

∑k−1
i=1

∑k
j=i+1(aij − pipj)∑k−1

i=1

∑k
j=i+1 min(pjqk, pkqj)

.

Coefficient S
(k)
Loe is a multivariate version of the two-way coefficient SLoe. The mul-

tivariate coefficient S
(k)
Loe uses the same heuristic as the other coefficients in this

chapter, and the coefficient may be used to measure the homogeneity of k test
items. Note that the generalization of Proposition 5.4 to S

(k)
Loe is straightforward.

In Section 17.4 we showed how the multivariate coefficients presented in this
chapter are related to the multivariate coefficients discussed in Chapter 16. Propo-
sition 17.6 and Proposition 17.7 consider two parameter families of coefficients that
are linear in both numerator and denominator. It follows from both assertions that
for these rational functions the multivariate formulation from Chapter 16 is equal
to or smaller than the multivariate formulation of the same coefficient presented in
this chapter.

In Section 17.2 a multivariate formulation of Cohen’s kappa (SCohen) was pre-

sented. The multivariate kappa (S
(k)
Cohen) was formulated for the case of two cate-

gories. The extension to the case of two or more categories is straightforward. As
it turns out, the formulation of S

(k)
Cohen for two or more categories is also proposed

in both Popping (1983a) and Heuvelmans and Sanders (1993). Both authors have
some form of motivation for why this multivariate kappa should be preferred over
other multivariate generalizations of Cohen’s kappa. However, it appears that the
properties of S

(k)
Cohen presented here are the first to provide a convincing argument.

In Section 2.2 the equivalence between Cohen’s kappa SCohen and the Hubert-
Arabie adjusted Rand index SHA was established. Note that S

(k)
Cohen would be an

appropriate multivariate formulation of the the adjusted Rand index. Then, when
comparing partitions of three (k = 3) cluster algorithms we do not require the
three-way matching table. Instead we need to obtain the three two-way matching
tables and then summarize these matching tables in three fourfold tables. Each
2×2 contingency table contains the four different types of pairs from two clustering
methods.





CHAPTER 18

Metric properties of multivariate
coe�cients

In Chapter 10 metric properties were studied of two-way dissimilarity coefficients
corresponding to various similarity coefficients. The dissimilarity coefficients were
obtained from the transformation D = 1 − S, D is the complement of S. In the
present chapter metric properties of the multivariate formulations of the two-way
coefficients from Chapter 10 are considered. Each dissimilarity coefficient of Chapter
10 satisfies the triangle inequality. In this chapter metric properties with respect to
the polyhedral generalization of the triangle inequality noted by De Rooij (2001, p.
128) are studied. The polyhedral inequality is given by

(k − 1)×D(x1,k) ≤
k∑

i=1

D(x−i
1,k+1) (18.1)

for k ≥ 3. Inequality (18.1) is also presented in (12.4), (14.13) and (15.2). In
Chapter 14 several functions were studied that satisfy polyhedral inequality (18.1).
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In Chapter 10 only a few dissimilarities obtained from the transformations D =
1− S turned out to be metric, that is, satisfied the triangle inequality. The present
chapter is limited to multivariate generalizations of two-way coefficients that sat-
isfy the triangle inequality. Before considering any metric properties, the following
notation is defined. Let P

(
x1

1,k

)
denote the proportion of 1s in variables x1 to xk.

Furthermore, let P
(
x1,0,1

1,i,k

)
denote the proportion of 1s in variables x1 to xk and 0 in

variable xi. Moreover, denote by P
(
x1,−,1

1,i,k

)
the proportion of 1s in variables x1 to

xk where xi drops out. An important property of the proportions in this notation
is that

P
(
x1,−,1

1,i,k

)
= P

(
x1

1,k

)
+ P

(
x1,0,1

1,i,k

)
. (18.2)

18.1 Russel-Rao coefficient

In this section the metric properties of two multivariate formulations of SRR are
studied. In Chapter 16 we encountered the Bennani-Heiser multivariate coefficient

S
(k)
RR = a(k) = P

(
x1

1,k

)
.

The second multivariate formulation of SRR can be obtained from the heuristics
considered in Chapter 17. This multivariate coefficient is given by

S
(k)∗
RR =

2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

aij.

The quantity 2/k(k−1) in the definition of S
(k)∗
RR is used to ensure that 0 ≤ S

(k)∗
RR ≤ 1.

Both Proposition 18.1 and 18.2 are generalizations of the first part of Theorem 10.1.
In Proposition 18.1 the metric property of 1 − S

(k)
RR is considered. The proof is a

generalization of the tool presented in Heiser and Bennani (1997, p. 197) for k = 3.

Proposition 18.1. The function

1− S
(k)
RR = 1− P

(
x1

1,k

)
satisfies (18.1).

Proof: Using 1− S
(k)
RR in (18.1) we obtain

(k − 1)− (k − 1)P
(
x1

1,k

)
≤ k −

k∑
i=1

P
(
x1,−,1

1,i,k+1

)
which equals

1 + (k − 1)P
(
x1

1,k

)
≥

k∑
i=1

P
(
x1,−,1

1,i,k+1

)
. (18.3)
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Using the property in (18.2), (18.3) becomes

1 + (k − 1)P
(
x1

1,k, x
1
k+1

)
+ (k − 1)P

(
x1

1,k, x
0
k+1

)
≥ kP

(
x1

1,k

)
+

k∑
i=1

P
(
x1,0,1

1,i,k+1

)
which equals

1 + (k − 1)P
(
x1

1,k, x
0
k+1

)
≥ P

(
x1

1,k+1

)
+

k∑
i=1

P
(
x1,0,1

1,i,k

)
. (18.4)

The fact that 1 is equal or larger than the right part of inequality (18.4) completes
the proof. �

In Proposition 18.2 the metric property of 1− S
(k)∗
RR is considered. The first proof

of the assertion is an application of Proposition 14.4 together with the first part of
Theorem 10.1. The second proof is a direct proof of the assertion.

Proposition 18.2. The function

1− S
(k)∗
RR = 1−

2
∑k−1

i=1

∑k
j=i+1 aij

k(k − 1)

satisfies (18.1).
Proof 1: By Proposition 14.4, the sum of k(k − 1)/2 quantities (1 − aij) satisfies
(18.1), if each quantity (1 − aij) satisfies the triangle inequality. The first part of
Theorem 10.1 shows that this is the case.
Proof 2: Using 1− S

(k)∗
RR in (18.1) we obtain the inequality

k(k − 1)

2
+

k−1∑
i=1

k∑
j=i+1

aij ≥ (k − 1)
k∑

i=1

aik+1. (18.5)

It holds that

k(k − 1)

2
≥ (k − 1)

k∑
i=1

aik+1

−
[
k(k − 1)

2

]
P
(
x1

1,k+1

)
−
[
(k − 1)(k − 2)

2

]
P
(
x0

1, x
1
2,k+1

)
.

Furthermore, it holds that

k−1∑
i=1

k∑
j=i+1

aij ≥
[
k(k − 1)

2

]
P
(
x1

1,k+1

)
+

[
(k − 1)(k − 2)

2

]
P
(
x0

1, x
1
2,k+1

)
.

Thus, inequality (18.5) holds, which completes the proof. �
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18.2 Simple matching coefficient

In this section the metric properties of two multivariate formulations of SSM are
studied. In Chapter 16 we encountered the Bennani-Heiser multivariate formulation
of SSM which is given by

S
(k)
SM = a(k) + d(k) = P

(
x1

1,k

)
+ P

(
x0

1,k

)
.

The second multivariate formulation of SSM was presented in Chapter 17 and is
given by

S
(k)∗
SM =

2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

(aij + dij).

Both Proposition 18.3 and 18.4 are generalizations of the second part of Theorem
10.1. In Proposition 18.3 the metric property of 1 − S

(k)
SM is considered. The proof

is a generalization of the tool presented in Heiser and Bennani (1997, p. 196) for
k = 3.

Proposition 18.3. The function

1− S
(k)
SM = 1− P

(
x1

1,k

)
− P

(
x0

1,k

)
satisfies (18.1).

Proof: Using 1− S
(k)
SM in (18.1) gives

(k − 1)− (k − 1)P
(
x1

1,k

)
− (k − 1)P

(
x0

1,k

)
≤

k −
k∑

i=1

P
(
x1,−,1

1,i,k+1

)
−

k∑
i=1

P
(
x0,−,0

1,i,k+1

)
which equals

1 + (k − 1)P
(
x1

1,k

)
+ (k − 1)P

(
x0

1,k

)
≥

k∑
i=1

P
(
x1,−,1

1,i,k+1

)
+

k∑
i=1

P
(
x0,−,0

1,i,k+1

)
. (18.6)

Using (18.2), (18.6) becomes

(k − 1)
[
P
(
x1

1,k, x
1
k+1

)
+ P

(
x1

1,k, x
0
k+1

)
+ P

(
x0

1,k, x
1
k+1

)
+ P

(
x0

1,k, x
0
k+1

)]
+

1 ≥ kP
(
x1

1,k+1

)
+ kP

(
x0

1,k+1

)
+

k∑
i=1

P
(
x1,0,1

1,i,k+1

)
+

k∑
i=1

P
(
x0,1,0

1,i,k+1

)
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which equals

1 + (k − 1)P
(
x1

1,k, x
0
k+1

)
+ (k − 1)P

(
x0

1,k, x
1
k+1

)
≥

P
(
x1

1,k+1

)
+ P

(
x0

1,k+1

)
+

k∑
i=1

P
(
x1,0,1

1,i,k

)
+

k∑
i=1

P
(
x0,1,0

1,i,k

)
. (18.7)

The fact that 1 is equal or larger than the right part of inequality (18.7) proves the
assertion. �

The metric property of 1− S
(k)∗
SM is presented in Proposition 18.4. The first proof

of the assertion is an application of Proposition 14.4 together with the second part
of Theorem 10.1. The second proof is a direct proof of the assertion.

Proposition 18.4. The function

1− S
(k)∗
SM = 1− 2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

(aij + dij)

satisfies (18.1).
Proof 1: By Proposition 14.4, the sum of k(k−1)/2 quantities (1−aij−dij) satisfies
(18.1), if each quantity (1 − aij − dij) satisfies the triangle inequality. The second
part of Theorem 10.1 shows that this is the case.
Proof 2: Filling in 1− S

(k)∗
SM in (18.1) we obtain the inequality

k(k − 1)

2
+

k−1∑
i=1

k∑
j=i+1

(aij + dij) ≥ (k − 1)
k∑

i=1

(aik+1 + dik+1). (18.8)

It holds that

k(k − 1)

2
≥ (k − 1)

k∑
i=1

(aik+1 + dik+1)

−
[
k(k − 1)

2

] [
P
(
x1

1,k+1

)
+ P

(
x0

1,k+1

)]
−
[
(k − 1)(k − 2)

2

] [
P
(
x0

1, x
1
2,k+1

)
+ P

(
x1

1, x
0
2,k+1

)]
.

Furthermore, it holds that

k−1∑
i=1

k∑
j=i+1

(aij + dij) ≥
[
k(k − 1)

2

] [
P
(
x1

1,k+1

)
+ P

(
x0

1,k+1

)]
+

[
(k − 1)(k − 2)

2

] [
P
(
x0

1, x
1
2,k+1

)
+ P

(
x1

1, x
0
2,k+1

)]
.

Thus, inequality (18.8) holds, which completes the proof. �



196 Metric properties of multivariate coefficients

18.3 Jaccard coefficient

In this final section the metric properties of multivariate formulations of the Jaccard
(1912) coefficient SJac and the parameter family SGL1(θ) are studied. In Chapter 16
we encountered the Bennani-Heiser multivariate formulation of SJac given by

S
(k)
Jac =

a(k)

1− d(k)
=

P
(
x1

1,k

)
1− P

(
x0

1,k

) .
In Proposition 18.5 the metric property of 1 − S

(k)
Jac is considered. The proof is a

generalization of the proof used in the first part of Theorem 10.2. In the proof, the
relation between multivariate coefficients S

(k)
SM and S

(k)
Jac given by

1− S
(k)
SM =

[
1− P

(
x0

1,k

)] [
1− S

(k)
Jac

]
(18.9)

is used.

Proposition 18.5. The function

1− S
(k)
Jac = 1−

P
(
x1

1,k

)
1− P

(
x0

1,k

)
satisfies (18.1).
Proof: It holds that

1 ≥ P
(
x1

1,k+1

)
+

k+1∑
i=1

P
(
x1,0,1

1,i,k+1

)
+ P

(
x0

1,k+1

)
+

k+1∑
i=1

P
(
x0,1,0

1,i,k+1

)
. (18.10)

Note that for k = 2, inequality (18.10) becomes an equality. Adding

(k − 1)
[
P
(
x1

1,k, x
0
k+1

)
+ P

(
x0

1,k, x
1
k+1

)]
to both sides of (18.10), the inequality can be written as

k∑
i=1

[
1− S

(k)
SM

(
x−i

1,k+1

)]
− (k − 1)

[
1− S

(k)
SM (x1,k)

]
(18.11)

≥ k
[
P
(
x1

1,k, x
0
k+1

)
+ P

(
x0

1,k, x
1
k+1

)]
.

Using (18.9) in (18.11) we obtain

[
1− P

(
x0

1,k+1

)]
×

(
k∑

i=1

[
1− S

(k)
Jac

(
x−i

1,k+1

)]
− (k − 1)

[
1− S

(k)
Jac (x1,k)

])

≥kP
(
x1

1,k, x
0
k+1

)
+

k∑
i=1

[
1− S

(k)
Jac

(
x−i

1,k+1

)]
P
(
x0,1,0

1,i,k+1

)
+P

(
x0

1,k, x
1
k+1

) [
1 + (k − 1)S

(k)
Jac (x1,k)

]
.

With respect to the first term of the inequality P
(
x0

1,k+1

)
≤ 1. Hence, we conclude

that 1− S
(k)
Jac satisfies (18.1). �
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We end this chapter with a generalization of Theorem 10.4. From Chapter 16 we
obtain the multivariate formulation of parameter family SGL1(θ), which is given by

S
(k)
GL1(θ) =

P
(
x1

1,k

)
(1− θ)P

(
x1

1,k

)
+ θ

[
1− P

(
x0

1,k

)] .
In Proposition 18.6 the metric property of 1−S

(k)
GL1(θ) is considered. In order to proof

the assertion, the result in Proposition 18.5 on 1−S
(k)
Jac is used. With respect to the

proof of Proposition 18.6 it assumed that Conjecture 15.1, which is a generalization
of Theorem 10.3, is true. We have the following metric property with respect to
1− S

(k)
GL1(θ).

Proposition 18.6. The function

1− S
(k)
GL1(θ) = 1−

P
(
x1

1,k

)
(1− θ)P

(
x1

1,k

)
+ θ

[
1− P

(
x0

1,k

)] (18.12)

satisfies (18.1) for 0 < θ ≤ 1.

Proof: By Proposition 18.5 1−S
(k)
GL1(θ = 1) = 1−S

(k)
Jac satisfies (18.1). For 0 < θ < 1,

let θ = (c + 1)/c where c is a strictly positive real number. Equation (18.12) equals

θ
[
1− S

(k)
SM

]
P
(
x1

1,k

)
+ θ

[
1− S

(k)
SM

] =
(c + 1)

[
1− S

(k)
SM

]
cP
(
x1

1,k

)
+ (c + 1)

[
1− S

(k)
SM

] . (18.13)

Dividing both numerator and denominator of (18.13) by 1− P
(
x0

1,k

)
we obtain

1− S
(k)
GL1(θ) =

(c + 1)
[
1− S

(k)
Jac

]
cS

(k)
Jac + (c + 1)

[
1− S

(k)
Jac

] =
(c + 1)

[
1− S

(k)
Jac

]
c + 1− S

(k)
Jac

. (18.14)

Because 1 − S
(k)
Jac satisfies (18.1) due to Proposition 18.5, the result follows if Con-

jecture 15.1 is valid.
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18.4 Epilogue

In this chapter metric properties of several multivariate coefficients were presented.
Each of the functions satisfies the strong polyhedral inequality (18.1), which is a gen-
eralization formulated by De Rooij (2001) of the tetrahedral inequality considered
in Heiser and Bennani (1997). Although no well-established multi-way metric struc-
ture emerged from the study in Chapter 12, we have gathered several interesting
properties of the polyhedral inequality in some of the chapters following Chapter 12.
In Chapter 13 it was shown that the polyhedral inequality was the strongest multi-
way metric implied by the an ultrametric. In Chapter 14 we formulated multi-way
extensions of two three-way functions that satisfy this polyhedral inequality. In this
particular chapter it was shown that several multivariate coefficients from Chapters
16 and 17 also satisfy the polyhedral inequality (18.1). So far, the preliminary re-
sults in these chapters suggest that the inequality is definitely the most interesting
multi-way generalization of the triangle inequality.



CHAPTER 19

Robinson cubes

Robinson matrices were studied in Chapter 7. In this chapter the three-way gener-
alization of the Robinson matrix is studied, which will be referred to as a Robinson
cube. Whereas a matrix is characterized by rows and columns, a cube consists of
rows, columns and pillars. A cube has six faces. The twelve rows, columns and pil-
lars where two faces cross are called the edges. The eight entries where three edges
meet are called the vertices of the cube. Some aspects of a cube are demonstrated
in Figure 19.1.

First some definitions of a Robinson cube are presented. A similarity cube is
called a Robinson cube if the highest entries within each row, column and pillar
are on the main diagonal and moving away from this diagonal, the entries never
increase. Next, it is considered what three-way functions and similarity coefficients
satisfy these definitions.

0This chapter appeared in a slightly adapted version in Warrens, M.J. and Heiser, W.J. (2007),
Robinson Cubes, in P. Brito, P. Bertrand, G. Cucumel and F. de Caravalho (Eds.), Selected
Contributions in Data Analysis and Classification, 515–523, Berlin: Springer.
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Figure 19.1: Several aspects of a cube.

19.1 Definitions

Before defining a Robinson cube we turn our attention to two natural requirements
for cubes. Similar to a matrix, we may require that a similarity cube S(3) satisfies
three-way symmetry, that is,

S(x1, x2, x3) = S(x1, x3, x2) = S(x2, x1, x3)

=S(x2, x3, x1) = S(x3, x1, x2) = S(x3, x2, x1)

for all x1, x2 and x3. Another natural requirement for a similarity cube is the
restriction

S(x1, x2, x1) = S(x1, x2, x2) for all x1 and x2. (19.1)

This requirement together with three-way symmetry implies the so-called diagonal-
plane equality (Section 11.2; Heiser and Bennani, 1997, p. 191) which requires
equality of the three matrices defined by the elements S(x1, x1, x2), S(x1, x2, x1)
and S(x1, x2, x2), that are formed by cutting the cube diagonally, starting at one of
the three edges joining at the vertex S(1, 1, 1). A weak extension of the Robinson
matrix is the following definition.

A similarity cube S(3) is called a Robinson cube if the highest entries within each
row, column and tube are on the main diagonal (elements S(x1, x1, x1)) and moving
away from this diagonal, the entries never increase.
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Hence, S(3) of size m×m×m is a Robinson cube if

1 ≤ x1 < x2 ≤ m ⇒


S(x1, x2, x2) ≤ S(x1 + 1, x2, x2)

S(x2, x1, x2) ≤ S(x2, x1 + 1, x2)

S(x2, x2, x1) ≤ S(x2, x2, x1 + 1)

1 ≤ x2 < x1 ≤ m ⇒


S(x1, x2, x2) ≥ S(x1 + 1, x2, x2)

S(x2, x1, x2) ≥ S(x2, x1 + 1, x2)

S(x2, x2, x1) ≥ S(x2, x2, x1 + 1).

If the cube S(3) satisfies the requirement in (19.1), then S(3) is a Robinson matrix if
we have

1 ≤ x1 < x2 ≤ m ⇒

{
S(x1, x2, x2) ≤ S(x1 + 1, x2, x2)

S(x2, x1, x2) ≤ S(x2, x1 + 1, x2)

1 ≤ x2 < x1 ≤ m ⇒

{
S(x1, x2, x2) ≥ S(x1 + 1, x2, x2)

S(x2, x1, x2) ≥ S(x2, x1 + 1, x2).

Moreover, if the cube S(3) satisfies three-way symmetry, then S(3) is a Robinson cube
if we have

1 ≤ x1 < x2 ≤ m ⇒ S(x1, x2, x2) ≤ S(x1 + 1, x2, x2)

1 ≤ x2 < x1 ≤ m ⇒ S(x1, x2, x2) ≥ S(x1 + 1, x2, x2).

For the definition of a dissimilarity cube D(3) the roles of ≤ and ≥ in the compar-
isons involving cube elements must be interchanged. Note that, although this is
perhaps suggested in the above arguments, a Robinson cube that satisfies three-way
symmetry does not necessarily satisfy requirement (19.1). In the above definition of
a Robinson cube not all entries are involved. More precisely, only those entries that
are in a row, column or pillar with an entry of the main diagonal are involved. A
stronger definition of a Robinson cube is the following.

A cube S(3) is called a regular Robinson cube if

1. S(3) is a Robinson cube

2. all matrices, which are formed by cutting the cube perpendicularly, where for
each matrix S(2) entry S(2)(1, 1) is an element of one of the three edges joining
at the vertex S(3)(1, 1, 1) (with S(2)(1, 1) = S(3)(1, 1, 1) if S(2)(1, 1) is one of
the three faces joining at the vertex S(2)(1, 1, 1)), are Robinson matrices.

A regular Robinson cube has some interesting features. For example, if S(3) is a
regular Robinson cube then it satisfies both three-way symmetry and the diagonal-
plane equality. These properties become clear from the following result on the
composition of a regular Robinson cube.



202 Robinson cubes

Proposition 19.1. Let x4 = min(x1, x2, x3) and x5 = max(x1, x2, x3). If S(3) is a
regular Robinson cube, then its entries S(3)(x1, x2, x3) equal

S(3)(x4, x6, x5) = S(3)(x6, x4, x5) = S(3)(x4, x5, x6) =

S(3)(x6, x5, x4) = S(3)(x5, x4, x6) = S(3)(x5, x6, x4) for x6 = x4, ..., x5.

Proof: First let S be the front face of the cube, where S(2)(1, 1) = S(3)(1, 1, 1). Since
S(3)(2, 2, 1) is a diagonal element of S, S is a Robinson matrix if
S(3)(1, 2, 1) ≤ S(3)(2, 2, 1). Next let S be the cutting perpendicular on the front
face of the cube, with S(2)(1, 1) = S(3)(1, 2, 1). Since S(3)(1, 2, 1) is a diagonal
element of S, the latter is a Robinson matrix if S(3)(1, 2, 1) ≥ S(3)(2, 2, 1). Thus,
if S(3) is a regular Robinson cube, then S(3)(1, 2, 1) = S(3)(2, 2, 1) (= S(3)(2, 1, 1) =
S(3)(2, 1, 2) = S(3)(1, 1, 2) = S(3)(1, 2, 2)). �

19.2 Functions

Let D(x1, x2, x3) denote a three-way dissimilarity. One of the more popular functions
for three-way dissimilarities used in classification literature are the symmetric Lp-
transforms defined as

D(x1, x2, x3) = ([D(x1, x2)]
p + [D(x1, x3)]

p + [D(x2, x3)]
p)1/p .

For instance, for p = 1 we have the perimeter function, for p = 2 the generalized
Euclidean function. For p = ∞ we obtain the generalized dominance function or
maximum distance (Section 14.4)

D(x1, x2, x3) = max[D(x1, x2), D(x1, x3), D(x2, x3)].

Somewhat lesser known is the variance function (De Rooij and Gower, 2003, p. 188)

[D(x1, x2, x3)]
2 =var[D(x1, x2), D(x1, x3), D(x2, x3)]

=([D(x1, x2)]
2 + [D(x1, x3)]

2 + [D(x2, x3)]
2)

−1

3
[D(x1, x2) + D(x1, x3) + D(x2, x3)]

2.

The variance function is symmetric in x1, x2 and x3.

Proposition 19.2. Suppose D(x1, x2, x3) is defined as a Lp-transform or equals
the variance function. Then the cube D(3) with elements D(x1, x2, x3) is a Robinson
cube if and only if the matrix D with elements D(x1, x2) is a Robinson matrix.
Proof: For 1 ≤ x1 < x2 ≤ m with respect to any Lp-transform, we have

D(x1, x2, x2) = (2[D(x1, x2]
p)1/p ≥ (2D[x1 + 1, x2]

p)1/p = D(x1 + 1, x2, x2)

if and only if D(x1, x2) ≥ D(x1 + 1, x2).
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For 1 ≤ x1 < x2 ≤ m with respect to the variance function, we have

[D(x1, x2, x2)]
2 = [2D(x1, x2)]

2 − 1

3
[2D(x1, x2)]

2

≥ [2D(x1 + 1, x2)]
2 − 1

3
[2D(x1 + 1, x2)]

2

= [D(x1 + 1, x2, x2)]
2

if and only if

2

3
[D(x1, x2)]

2 ≥ 2

3
[D(x1, x2)]

2 if and only if D(x1, x2) ≥ D(x1 + 1, x2).

A similar property holds for D(x1, x2, x2) ≤ D(x1 + 1, x2, x2) for 1 ≤ x2 ≤ x1 < m.
�

A stronger result holds for the dominance function

D(x1, x2, x3) = max[D(x1, x2), D(x1, x3), D(x2, x3)] for dissimilarities

or equivalently

S(x1, x2, x3) = min[S(x1, x2), S(x1, x3), S(x2, x3)] for similarities.

Proposition 19.3. Let S and S(3) be respectively a similarity matrix and cube.
If

S(x1, x2, x3) = min[S(x1, x2), S(x1, x3), S(x2, x3)]

then S(3) is a regular Robinson cube if and only if S is a Robinson matrix.
Proof: If S is a Robinson matrix then the minimum function satisfies

S(x1, x2, x3) = min [S(x1, x2), S(x1, x3), S(x2, x3)] = S(x1, x3)

for 1 ≤ x1 ≤ x2 ≤ x3 ≤ m, which demonstrates the second requirement of a regular
Robinson cube. Moreover, we have

S(x1, x2, x2) = S(x1, x2) ≤ S(x1 + 1, x2) = S(x1 + 1, x2, x2)

for 1 ≤ x1 < x2 ≤ m, and

S(x1, x2, x2) = S(x1, x2) ≥ S(x1 + 1, x2) = S(x1 + 1, x2, x2)

for 1 ≤ x2 ≤ x1 < m, which demonstrates the first requirement of a regular Robinson
cube. �
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19.3 Coefficient properties

In this section it is shown for several three-way Bennani-Heiser similarity coefficients
that the corresponding cube is a Robinson cube if and only if the matrix correspond-
ing to the two-way similarity coefficient is a Robinson matrix. Let x1, x2 and x3

be binary variables. Let P
(

1
x1,

1
x2,

1
x3

)
denote the proportion of 1s shared by x1,

x2 and x3 in the same positions. All matrices and cubes in this section are of the
similarity kind. Yet, for all results below there exist an equivalent formulation in
terms of dissimilarities.

Proposition 19.4 considers the Robinson property for the family SGL1(θ) given
by

SGL1(θ) =
P
(

1
x1,

1
x2

)
(1− θ)P

(
1
x1,

1
x2

)
+ θ

[
1− P

(
0
x1,

0
x2

)] .
The three-way generalization of SGL1(θ) from Chapter 16 is given by

S
(3)
GL1(θ) =

P
(

1
x1,

1
x2,

1
x3

)
(1− θ)P

(
1
x1,

1
x2,

1
x3

)
+ θ

[
1− P

(
0
x1,

0
x2,

0
x2

)] .
Proposition 19.4. The cube S

(3)
GL1 with elements S

(3)
GL1(θ) for some θ is a Robinson

cube if and only if the matrix SGL1 with elements S
(2)
GL1(θ) using the same θ is a

Robinson matrix.
Proof: Due to Proposition 16.1, the proof can be limited to a specific value of θ.
S

(2)
Jac(x1, x2) = S

(2)
GL1(θ = 1) and S

(3)
Jac(x1, x2, x3) = S

(3)
GL1(θ = 1). S

(3)
Jac(x1, x2, x3) can

be written as

S
(3)
Jac =

P
(

1
x1,

1
x2,

1
x3

)
1− P

(
0
x1,

0
x2,

0
x2

) .

The result then follows from the property

S
(2)
Jac(x1, x2) =

P
(

1
x1,

1
x2

)
1− P

(
0
x1,

0
x2

) = S
(3)
Jac(x1, x2, x2). �

Proposition 19.5 considers the Robinson property for the matrix SRR with ele-
ments

SRR(x1, x2) = P
(

1
x1,

1
x2

)
.

The three-way generalization of SRR from Chapter 15 is the cube S
(3)
RR with elements

S
(3)
RR(x1, x2, x3) = P

(
1
x1,

1
x2,

1
x3

)
.
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Proposition 19.5. The following statements are equivalent:

1. SRR is a Robinson matrix

2. S
(3)
RR is a regular Robinson cube

3. S
(3)
RR(x1, x2, x3) = min [SRR(x1, x2), SRR(x1, x3), SRR(x2, x3)].

Proof: The result follows from the fact that P
(

1
x1,

1
x2,

1
x2

)
= P

(
1
x1,

1
x2

)
and if SRR is

a Robinson matrix, then P
(

1
x1,

1
x2,

1
x3

)
has the property, for 1 ≤ x1 ≤ x2 ≤ x3 ≤ m,

we have

P
(

1
x1,

1
x2,

1
x3

)
= min

[
P
(

1
x1,

1
x2

)
, P
(

1
x1,

1
x3

)
, P
(

1
x2,

1
x3

)]
= P

(
1
x1,

1
x3

)
. �

A sufficient condition for SRR in Proposition 19.5 is given in Theorem 7.1. It
follows from Proposition 19.5 that this condition is then also sufficient for S

(3)
RR to

be a Robinson cube. Alternatively, it is also possible to generalize the second proof
of Theorem 7.1.

Proposition 19.6. If X is row Petrie then S
(3)
RR is a regular Robinson cube.

Proof: For the sake of an example let X be given by

X =


1 0 0
1 1 0
0 1 0
1 1 1
0 1 1
0 0 1


where x1, x2 and x3 identify the columns of X. The proof is further depicted in

Figure 19.2. The first six cubes are the similarity cubes with elements P
(

1
x1,

1
x2,

1
x3

)
corresponding to the six rows of X. If a column has consecutive 1s, the similarity
cube corresponding to this row, is a Robinson cube. The seventh and last cube

in Figure 19.2 is the cube with elements P
(

1
x1,

1
x2,

1
x3

)
for the complete table X.

Figure 19.2 visualizes an interesting property of regular Robinson cubes, that is, the
sum of regular Robinson cubes is again a regular Robinson cube. �

19.4 Epilogue

A data array arranged in a cube in which rows, columns and pillars refer to the same
objects has been called three-way one-mode, or triadic data. Such data have been
studied in attempts to identify higher order interactions among objects (Heiser and
Bennani, 1997). In this chapter, we have shown that we can recognize a simple order
among the objects in three-way data, by a generalization of the Robinson property



206 Robinson cubes

for two-way data. We have discussed a general version of the Robinson cube, and
a more specific one. Studying several definitions of three-way (dis)similarities, we
found that in most cases, if a two-way (dis)similarity is Robinsonian, then the tri-
adic (dis)similarity is Robinsonian too. A regular Robinson cube occurs only with
the Russel and Rao (1940) coefficient calculated on an attribute matrix with the
consecutive 1s property, and with the dominance metric for dissimilarities.

This chapter was limited to Robinson cubes. For the three-way case, two defini-
tions of a Robinson cube may be adopted, one is a special case of the other. As it
turns out, similar to the multi-way ultrametrics in Chapter 13, for the four-way case
up to three definitions of a Robinson 4-cube or a Robinson tesseract can be given.
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Figure 19.2: The sum of the six regular Robinson cubes is a regular Robinson cube.
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List of similarity coe�cients

In this appendix we present a list of the two-way coefficients for binary data that
one may find in the literature. The coefficients are ordered on year of appearance.

Peirce (1884):

SPeir1 =
ad− bc

p1q1

and SPeir2 =
ad− bc

p2q2

Doolittle (1885), Pearson (1926):

SDoo =
(ad− bc)2

p1p2q1q2

Yule (1900), Montgomery and Crittenden (1977):

SYule1 =
ad− bc

ad + bc

Pearson (1905) (quoted by Yule and Kendall, 1950):

Chi-square χ2 =
n(ad− bc)2

p1p2q1q2

Forbes (1907):

SForbes =
na

p1p2

Jaccard (1912):

SJac =
a

a + b + c
Yule (1912), Pearson and Heron (1913):

phi coefficient SPhi =
ad− bc
√

p1p2q1q2

Yule (1912):

SYule2 =

√
ad−

√
bc√

ad +
√

bc
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220 List of similarity coefficients

Gleason (1920), Dice (1945), Sørenson (1948), Nei and Li (1979):

SGleas =
2a

p1 + p2

Michael (1920):

SMich =
4(ad− bc)

(a + d)2 + (b + c)2

Kulczyński (1927), Driver and Kroeber (1932):

SKul =
1

2

(
a

p1

+
a

p2

)
and SKul2 =

a

b + c

Braun-Blanquet (1932):

SBB =
a

max(p1, p2)

Driver and Kroeber (1932), Ochiai (1957), Fowlkes and Mallows (1983):

SDK =
a

√
p1p2

Kuder and Richardson (1937), Cronbach (1951) for two binary variables:

SKR =
4(ad− bc)

p1q1 + p2q2 + 2(ad− bc)

Russel and Rao (1940):

SRR =
a

a + b + c + d

Simpson (1943):

SSim =
a

min(p1, p2)

Dice (1945), Wallace (1983), Post and Snijders (1993):

SDice1 =
a

p1

and SDice2 =
a

p2

Loevinger (1947, 1948), Mokken (1971), Sijtsma and Molenaar (2002):

SLoe =
ad− bc

min(p1q2, p2q1)

Cole (1949):

SCole1 =
ad− bc

p1q2

and SCole2 =
ad− bc

p2q1

Goodman and Kruskal (1954):

SGK =
2 min(a, d)− b− c

2 min(a, d) + b + c

Scott (1955):

SScott =
4ad− (b + c)2

(p1 + p2)(q1 + q2)
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Sokal and Michener (1958), Rand (1971), Brennan and Light (1974):

Simple matching coefficient SSM =
a + d

a + b + c + d

Sorgenfrei (1958), Cheetham and Hazel (1969):

Correlation ratio SSorg =
a2

p1p1

Cohen (1960):

SCohen =
2(ad− bc)

p1q2 + p2q1

Rogers and Tanimoto (1960), Farkas (1978):

SRT =
a + d

a + 2(b + c) + d

Stiles (1961):

SSti = log10

n
(
|ad− bc| − n

2

)2
p1p2q1q2

Hamann (1961), Holley and Guilford (1964), Hubert (1977):

SHam =
a− b− c + d

a + b + c + d

Mountford (1962):

SMount =
2a

a(b + c) + 2bc

Fager and McGowan (1963):

SFM =
a

√
p1p2

− 1

2
√

max(p1, p2)

Sokal and Sneath (1963):

SSS1 =
a

a + 2(b + c)
SSS2 =

2(a + d)

2a + b + c + 2d

SSS3 =
1

4

(
a

p1

+
a

p2

+
d

q1

+
d

q2

)
SSS4 =

ad
√

p1p2q1q2

and SSS5 =
a + d

b + c

McConnaughey (1964):

SMcC =
a2 − bc

p1p2

Rogot and Goldberg (1966):

SRG =
a

p1 + p2

+
d

q1 + q2

Johnson (1967):

SJohn =
a

p1

+
a

p2
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Hawkins and Dotson (1968):

SHD =
1

2

(
a

a + b + c
+

d

b + c + d

)
Maxwell and Pilliner (1968):

SMP =
2(ad− bc)

p1q1 + p2q2

Fleiss (1975):

SFleiss =
(ad− bc)[p1q2 + p2q1]

2p1p2q1q2

Clement (1976):

SClem =
aq1

p1

+
dp1

q1

Baroni-Urabani and Buser (1976):

SBUB =
a +

√
ad

a + b + c +
√

ad
and SBUB2 =

a− b− c +
√

ad

a + b + c +
√

ad

Kent and Foster (1977):

SKF1 =
−bc

bp1 + cp2 + bc
and SKF2 =

−bc

bq1 + cq2 + bc

Harris and Lahey (1978):

SHL =
a(q1 + q2)

2(a + b + c)
+

d(p1 + p2)

2(b + c + d)

Digby (1983):

SDigby =
(ad)3/4 − (bc)3/4

(ad)3/4 + (bc)3/4

Some coefficients for which no source was found in the literature:
2a− b− c

2a + b + c
,

2d

b + c + 2d
,

2d− b− c

b + c + 2d

4ad

4ad + (a + d)(b + c)
which is the harmonic mean of

a

p1

,
a

p2

,
d

q1

and
d

q2

ad− bc

min(p1p2, q1q2)
for which its minimum value of −1 is tenable.



Summary of coe�cient properties

For some of the vast amount of similarity coefficients in the appendix entitled “List of
similarity coefficients”, several mathematical properties were studied in this thesis.
Seven coefficients stand out in the sense that for these coefficients multiple attractive
properties were established in this thesis. A practical conclusion is that in most
data-analytic applications the choice for the right coefficient for binary variables
can probably be limited to the following seven coefficients.

Source Jaccard (1912)
Formula SJac = a/(a + b + c)
Properties – Value indeterminate if d = 1

– Member of parameter family SGL1 = a/[a + θ(b + c)];
members are interchangeable with respect to an
ordinal comparison

– Bounded below by correlation ratio SSorg = a2/p1p2

– Bounded above by SBB = a/ max(p1, p2)
– DJac = 1− SJac satisfies the triangle inequality
– Coefficient matrix is a Robinson matrix if X is

double Petrie
– A multivariate generalization satisfies a strong

generalization of the triangle inequality
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Source Gleason (1920), Dice (1945), Sørenson (1948),
Bray (1956), Bray and Curtis (1957),
Nei and Li (1979)

Formula SGleas = 2a/(p1 + p2)
Properties – Value indeterminate if d = 1

– Member of parameter family SGL1 = a/[a + θ(b + c)];
members are interchangeable with respect to an
ordinal comparison

– Special case of a coefficient by Czekanowski (1932)
– Bounded below by SBB = a/ max(p1, p2)
– Bounded above by SDK = a/

√
p1p2

– Becomes SCohen after correction for chance using
E(a + d) = p1p2 + q1q2

– Coefficient matrix is a Robinson matrix if X is
double Petrie

– Three straightforward multivariate generalizations

Source Braun-Blanquet (1932)
Formula SBB = a/ max(p1, p2)
Properties – Value indeterminate if d = 1

– Special case of a coefficient by Robinson (1951)
– Bounded below by SJac = a/(a + b + c)
– Bounded above by SGleas = 2a/(p1 + p2)
– Coefficient matrix is a Robinson matrix if X is

double Petrie
– Coefficient matrix is a Robinson matrix with a

monotonic stochastic model
– First eigenvector of coefficient matrix reflects a

stochastic model
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Source Russel-Rao (1940)
Formula SRR = a/(a + b + c + d)
Properties – No indeterminate values

– DRR = 1− SRR satisfies the triangle inequality
– Coefficient matrix is a Robinson matrix if X is row

Petrie
– Coefficient matrix is totally positive of order 2 if X

is double Petrie
– First eigenvector of coefficient matrix reflects an

ordering of a stochastic model
– Two multivariate generalizations satisfy a strong

generalization of the triangle inequality

Source Loevinger (1947, 1948)
Formula SLoe = (ad− bc)/ min(p1q2, p2q1)
Properties – SLoe = [a− E(a)]/[amax − E(a)] with E(a) = p1p2

and amax = min(p1, p2)
– Coefficient SSim = a/ min(p1, p2) becomes SLoe

after correction for chance using E(a) = p1p2

– Various coefficients, including SCohen and SPhi,
become SLoe, after correction for maximum value

– Coefficients that are linear in (a + d) become SLoe

after correction for chance using
E(a + d) = p1p2 + q1q2 and correction for
maximum value; the result is irrespective of
what correction is applied first
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Source Sokal and Michener (1958)
Formula SSM = (a + d)/(a + b + c + d)

“Simple matching coefficient”
Properties – No indeterminate values

– Is a special case of proportion of agreement for two
nominal variables

– Is equivalent to coefficients by Rand (1971) and
Brennan and Light (1974)

– Member of parameter family SGL2 =
(a + d)/[a + θ(b + c) + d]; members are
interchangeable with respect to an ordinal
comparison

– Becomes SCohen after correction for chance using
E(a + d) = p1p2 + q1q2

– DSM = 1− SSM satisfies the triangle inequality
– Two multivariate generalizations satisfy a strong

generalization of the triangle inequality

Source Cohen (1960)
Formula SCohen = 2(ad− bc)/(p1q2 + p2q1)
Properties – SCohen is a special case of Cohen’s kappa for two

nominal variables
– Bounded below by SScott =

(4ad− (b + c)2)/(p1 + p2)(q1 + q2)
– A variety of coefficients that are linear in (a + d),

like SSM and SGleas, become SCohen after
correction for chance using
E(a + d) = p1p2 + q1q2

– Is equivalent to the Adjusted Rand index by
Hubert and Arabie (1985)
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Summary in Dutch (Samenvatting)

We spreken van binaire of dichotome data als er sprake is van een reeks getallen
die slechts twee waardes aannemen. De twee waardes kunnen gezien worden als
twee, elkaar uitsluitende, categorieën die voor het gemak als 1 en 0 kunnen worden
gecodeerd. Een binaire reeks, bijvoorbeeld {0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0}, kan verkre-
gen worden door van een aantal personen het geslacht vast te stellen, waarbij bi-
jvoorbeeld, 1=vrouw en 0=man. Een binaire reeks kan ook verkregen worden door
voor een persoon te coderen welke vragen hij of zij goed of fout had op een toets.
Duidelijk is dat binaire reeksen simpel te verkrijgen zijn door allerlei tweeledigheden
te verzamelen: goed/fout, voor/tegen, wel/niet, nieuw/oud, ja/nee, aanwezig/niet
aanwezig, of PSV-fan/geen kampioen worden.

Als er twee of meer binaire reeksen beschikbaar zijn kan het interessant zijn om
te weten in hoeverre de twee reeksen op elkaar lijken. Een bioloog die voor twee ge-
bieden heeft gecodeerd welke diersoorten er wel of niet leven, bijvoorbeeld {0, 1, 1, 0}
en {1, 0, 1, 0}, kan zich afvragen in hoeverre de twee gebieden (reeksen) op elkaar
lijken. Om twee reeksen te kunnen vergelijken moeten de posities van de reeksen
wel dezelfde diersoorten weergeven. De eerste reeks geeft bijvoorbeeld aan dat in
het eerste gebied geen vogels, wel paarden, wel muizen, maar geen schildpadden
leven; de tweede reeks geeft aan dat in het tweede gebied wel vogels, geen paarden,
wel muizen, en geen schildpadden leven. Twee reeksen kunnen nu vergeleken wor-
den met elkaar door na te gaan hoeveel 1n of 0n ze gemeenschappelijk hebben in
dezelfde posities. In de biologie zijn twee leefomgevingen meer in overeenstemming
naarmate er meer diersoorten in beide gebieden aanwezig zijn (het is niet gebruikelijk
om overeenstemming te definiëren in termen van afwezigheid).

Essentieel bij het bestuderen van binaire reeksen is het uitgangspunt dat alle
informatie in twee reeksen van gelijke lengte uitputtend kan worden samengevat in
vier getallen: a = #(1, 1) = het aantal posities dat beide reeksen een 1 hebben
(1, 1), d = #(0, 0) = het aantal posities dat beide reeksen een 0 hebben (0, 0),
en b = #(1, 0) en c = #(0, 1) = de aantallen posities dat er een 1 staat in de
ene reeks en een nul in de andere reeks. Willen we de overeenstemming van twee
binaire reeksen quantificeren dan kan dat met behulp van overeenstemmingsmaten
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of gelijkheidscoëfficiënten. Een overeenstemmingsmaat drukt de gelijkheid van twee
binaire reeksen uit in een getal. Voor de vergelijking van twee binaire reeksen is
door de jaren heen echter een groot aantal maten voorgesteld. Ondanks het groot
aantal verschillende overeenstemmingsmaten, zijn ze allemaal een of andere functie
van de getallen of variabelen a, b, c, en d. Een voorbeeld is de Jaccard coefficient
met de formule a/(a + b + c).

Omdat het niet altijd duidelijk is wat nu in welke situatie de meeste geschikte
coëfficiënt of associatiemaat is, is het nuttig om de coëfficiënten en hun eigenschap-
pen te bestuderen. Dit kan op een veelvoud van manieren, maar in dit proefschrift
is gekozen voor een mathematische bestudering van de coëfficiënten en hun eigen-
schappen. Kortweg wordt hiermee bedoeld dat het niet echt uitmaakt welke waardes
de getallen a, b, c, en d aannemen, maar dat het alleen van uitmaakt hoe a, b, c,
en d zich (in een formule) tot elkaar verhouden. Eigenlijk worden in het gehele
proefschrift verschillende combinaties (formules), allemaal functies van a, b, c, en d,
met elkaar vergeleken.

Dit proefschrift bestaat uit negentien hoofdstukken verdeeld in vier delen. In
deel I worden steeds eigenschappen van coëfficiënten bestudeerd waar alleen de in-
dividuele formule voor nodig is. In dit deel worden er slechts twee binaire reeksen
tegelijk met elkaar vergeleken. In deel II en IV worden twee benaderingen bespro-
ken voor het geval dat we meer dan twee reeksen tegelijk beschouwen. In deel II
worden niet individuele coëfficiënten maar matrices van coëfficiënten bestudeerd.
Een matrix wordt verkregen door, bij meer dan twee binaire reeksen, tussen alle
paren van reeksen de associatiemaat te bepalen. Deze coëfficiënten kunnen dan
worden weergegeven in een coëfficiëntmatrix. In deel IV van dit proefschrift worden
coëfficiënten gedefiniëerd die de mate van associatie of overeenstemming reflecteren
van twee of meerdere binaire reeksen tegelijk. Voordat de meerweg coëfficiënten in
deel IV worden behandeld, wordt deel III gebruikt om een aantal meerweg concepten
te definiëren en te bestuderen.

Deel I bestaat uit vijf hoofdstukken. Notatie en enkele basisconcepten van
overeenstemmingsmaten worden gëıntroduceerd in Hoofdstuk 1. Hoofdstuk 2 stelt
de overeenstemmingsmaten voor binaire data in een breder perspectief. De formules
die in dit proefschrift worden behandeld zijn in veel gevallen een speciaal geval van
een formule die geschikt is voor algemenere data dan binaire gegevens. In dit hoofd-
stuk wordt aangetoond dat men de Hubert-Arabie adjusted Rand index kan uitreke-
nen door eerst de 2×2 tabel te formeren door het aantal objectparen te tellen dat in
hetzelfde cluster is geplaatst door beide methodes, dat in een cluster is geplaatst door
een methode maar in verschillende clusters door de andere methode, en het aantal
objectparen te tellen dat in verschillende clusters door beide methodes is geplaatst,
en vervolgens Cohen’s kappa uit te rekenen voor deze 2× 2 tabel. Hoofdstuk 3 laat
zien dat een aantal coëfficiënten behoren tot families van coëfficiënten. Het bestud-
eren van families in plaats van individuele coëfficiënten geeft ons vaak algemenere
inzichten en resultaten. Een hoge waarde van een coëfficiënt kan ook komen door
toeval. In hoofdstuk 4 worden coëfficiënten en correctie voor toeval bestudeerd en
wordt, bijvoorbeeld, aangetoond dat de simple matching coëfficiënt, Cohen’s kappa,
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Goodman en Kruskal’s lambda, Scott’s pi, Hamann’s eta, en overeenstemmings-
maten geintroduceerd door Gleason/Dice/Sørenson en Rogot en Goldberg, equiv-
alent worden na correctie voor toeval, ongeacht de verwachte waarde die gebruikt
wordt.

De maximale waarde van een coëfficiënt gegeven de marginale distributies (totaal
aantal 1n van de ene en andere binaire reeks) wordt bestudeerd in hoofstuk 5. Voor
sommige coëfficiënten is de maximale waarde niet onder alle omstandigheden gelijk
aan 1. De formule van deze coëfficiënten wordt een andere formule na correctie voor
de maximale waarde. Iedere overeenstemmingsmaat voor binaire data, waarvan
de teller gelijk is aan de covariantie en de noemer een functie is van de marginale
distributies, wordt gelijk aan de Loevinger coëfficiënt na correctie voor maximale
waarde gegeven de marginale dsitributies.

Deel II bestaat uit vijf hoofdstukken. Hoofdstuk 6 beschrijft een aantal manieren
waarop de 1n en 0n van twee of meer binaire reeksen aan elkaar gerelateerd kunnen
zijn. De modellen en data structuren die hier beschreven worden, dienen in hoofd-
stukken 7 en 8 als voldoende voorwaarden voor bepaalde matrices van coëfficiënten
om zekere eigenschappen te bezitten. Hoofdstuk 7 betreft Robinson matrices. Een
vierkante coëfficiëntenmatrix wordt een Robinson matrix genoemd als de hoogste
waardes in iedere rij en kolom op de hoofddiagonaal liggen, en wegbewegend van de
hoofddiagonaal zijn de waardes nooit oplopend. In hoofdstuk 8 worden eigenwaardes
en eigenvectoren van coëfficiëntenmatrices bestudeerd. Als het double monotonicity
model voor binaire items opgaat, dan wordt de correcte ordering van de items weer-
spiegeld in de elementen van de eigenvector behorende bij de grootste eigenwaarde
van de matrix met elementen a(i, j)/p(j), waar a(i, j) de proportie 1n is dat items i
en j in dezelfde posities hebben, en p(j) is de proportie item correct van item j. In
hoofdstuk 9 wordt een systematische vergelijking gemaakt tussen een eigenwaarde
techniek, homogeniteitsanalyse, en het logistische item response theory model met
twee parameters. Hoofdstuk 10 is het eerste hoofdstuk waar metrische eigenschap-
pen van coëfficiënten worden bestudeerd. Een functie wordt metrisch genoemd als
deze voldoet aan de driehoeksongelijkheid. Dit hoofdstuk dient als opstap naar
deel III, waar allerlei generalisaties van driehoeksongelijkheid worden gedefiniëerd
en besproken.

Deel III bestaat uit vijf hoofdstukken. Voordat meerweg coëfficiënten bestudeerd
kunnen worden in deel IV, wordt eerst een aantal meerweg concepten gedefiniëerd
en bestudeerd in deel III. Ideeën voor de meerweg concepten zijn vooral verkregen
door te kijken naar literatuur over drieweg data-analyse. Hoofdstuk 11 behandelt
axioma’s en basiseigenschappen die kunnen opgaan voor meerweg coëfficiënten en
hun complementen, afstandsmaten. In dit hoofdstuk wordt onder andere bestudeerd
wat mogelijk de kleinste sets van axioma’s zijn. In hoofdstuk 12 wordt geëxploreerd
op welke manieren de driehoeksongelijkheid kan worden gegeneraliseerd naar ongeli-
jkheden voor vier of meer objecten. Een voorbeeld is hier een ongelijkheid gebaseerd
op de tetraëder, waarbij het oppervlakte van een van de zijdes van de tetraëder al-
tijd kleiner of gelijk is aan de som van de oppervlaktes van de drie overige zijdes.
Deze ongelijkheden definiëren verschillende meerweg metrieken. In hoofdstuk 13
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worden meerweg ultrametrieken bestudeerd en hoofdstuk 14 gaat over hoe twee
specifieke drieweg functies gegeneraliseerd kunnen worden. Hoofdstuk 15 beschrijft
twee manieren om een resultaat uit hoofdstuk 10 te generaliseren. Dit resultaat
vertelt ons dat als een afstandsmaat k aan de driehoeksongelijkheid voldoet, dan
voldoet de functie k/(e + k) daar ook aan, waarbij e een positief getal is.

Als laatste bestaat deel IV uit vier hoofdstukken. In dit laatste deel worden
meerweg formuleringen van coëfficiënten behandeld. In hoofdstuk 17 zijn de for-
muleringen functies van de tweeweg informatie, ofwel de coëfficiënten uit deel I. De
meerweg coëfficiënten in hoofdstuk 16 zijn geen functies van de tweeweg informatie,
maar in dit hoofdstuk wordt een poging om coëfficiënten te formuleren die een kern
of basiseigenschap van de tweeweg coëfficiënten generaliseren. Metrische eigenschap-
pen van de meerweg coëfficiënten worden onderzocht in hoofdstuk 18. Hoofdstuk 19
behandelt de drieweg uitbreiding van de Robinson matrices uit hoofdstuk 7, Robin-
son kubussen genoemd.
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