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Chapter 9

Appendices

9.1 Z

We have found a clear dependence of the contact number, Z, on both the
strain rate and the density; see figure 9.1. In this appendix we will explain
the steps we have taken to try to find a functional form for this dependence,
as well as the results of those.

In the static, 2-dimensional case the dependence of Z on γ̇ is given by
Z − Zc = Z0∆φθ, with Zc = 4, Z0 = 3.6 and θ = 0.5 [5]. We assume for
now that this general form will still hold true in the dynamic case, though
with constants that are now a function of γ̇. Furthermore, we assume that
we recover the static case in the limit that γ̇ goes to 0. Blindly fitting to find
values for Z∗(γ̇), Z0(γ̇) and θ(γ̇) is difficult, as the zero with respect to which
everything is logarithmic itself depends on Z∗(γ̇).

We have done various variants of such fits: forcing Z0 to be independent of

Figure 9.1: Plots of the contact number vs. the density, a, and the strain rate,
b.
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Figure 9.2: a: plot of Z −Z∗(γ̇) vs. ∆φ. Z∗ has been obtained by finding the
best fit to a 1/2-power law for high density data. Note that all data collapses
onto the same line for high density. b: the same plot, now rescaled by γ̇ to
achieve collapse, the red line is y = (0.854 + (4x0.5)4)0.25. Symbols indicate
strain rate but are not consistent with table 3.3.

γ̇, forcing θ to be independent of γ̇ etc. When doing one such a fit, enforcing
θ = 0.5 and, erroneously, dramatically overvaluing the goodness of fit at high
density, we got results for which Z0 was also independent of γ̇ and moreover
was very close to the epitome value: 4, see fig. 9.2 a; in this case, Z∗(γ̇) seems
to be reasonably approximated by 4− 2.6γ̇0.28. We then tried if we could get
collapse for low densities by rescaling the axes with γ̇: plotting Z−Z∗

γ̇α vs. ∆φ
γ̇β

.

Because all data falls onto a 1/2 power law, we know that we should have
β = 2α. Trial and error finds good collapse for α = 1

6 and β = 1
3 , see figure

9.2 b. The data then seems to fall onto

Z − 4 + 2.6γ̇0.28

γ̇
1
6

= (0.854 + (4
∆φ

γ̇
1
3

0.5

)4)0.25 (9.1)

While fit and collapse are pretty good, this has 5 fit parameters; a little much.
Additionally, for low ∆φ the dependence is given by Z = 4−2.6γ̇0.28+0.85γ̇0.17,
which contains two terms with similar dependence on γ̇.

A third problem of this result is that it contains a rescaling of ∆φ with γ̇
that is different from any such rescaling we have already found in our scaling
model. We therefore wonder if we can also get good collapse and fit if we start
from a rescaling of ∆φ

γ̇0.5 ; if we still want to end up with a 1/2 power law, this

means we need to rescale Z − Z∗ with γ̇0.25. In figure 9.3 a we show such a
graph, in which we have adjusted Z∗ by hand to achieve collapse. The collapse
is decent but not phenomenal. If we now keep the same values for Z∗, but
revert the rescaling to Z−Z∗

γ̇0.17 and ∆φ
γ̇0.33 , the collapse is much better, as can be

seen in figure 9.3 b. A power law fit to Z∗(γ̇) gives Z∗ = 4 + 0.03− 7.8 ∗ γ̇0.58.
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Figure 9.3: a plot of Z−Z∗(γ̇)
γ̇0.25 vs. ∆φ

γ̇0.5 . Z∗(γ̇) has been selected by hand to

result in good collapse. b plot of Z−Z∗(γ̇)
γ̇0.17 vs. ∆φ

γ̇0.33 using the same values for

Z∗(γ̇). The red line is y = 1
((5x)−2+(4

√
x)−2)0.5

. Symbols indicate strain rate

but are not consistent with table 3.3.

The data then falls onto

Z − 4.03 + 7.8γ̇0.58

γ̇0.17
=

1((
5 ∆φ
γ̇0.33

)−2

+
(

4
√

∆φ
γ̇0.33

)−2
)0.5 (9.2)

Depending on how you count, this dependence has about 6 fit parameters,
so it’s even worse than before. There are two recurring features. The first
recurring features is the ∆φ1/2 scaling of Z for high ∆φ. This is the same
scaling as was found in static jamming [5]. The second recurring feature is
that we find collapse when rescaling ∆φ with γ̇0.33 and and rescaling - some
function of - Z with γ̇0.17. The first one was expected, and at some points
enforced, but certainly works very well. The second one was not expected;
perhaps it is the only new thing we may learn from this (though it’s still
unclear what it means exactly).

9.2 Appendix: First Moment

We investigate the first moments of the pdf of ∆v by considering the following
two components of the relative velocity:

∆vpar = ∆vx
rx
r

+ ∆vy
ry
r

(9.3)

∆vperp = ∆vy
rx
r
−∆vx

ry
r
, (9.4)

where ∆vpar signifies the component of the relative velocity parallel to the
vector r connecting the centres of the two bubbles and ∆vperp signifies the
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Figure 9.4: Left panel: the rotational component of the relative velocity,
∆vperp, as a function of the strain rate with the expected proportional be-
havior divided out. Right panel, the compressive component of the relative
velocity, ∆vpar. In both cases the black line indicates expected behavior. Color
denotes density as in table 3.3.

component perpendicular to the connecting vector. We have chosen sign con-
ventions such that bubbles moving apart will have a positive ∆vpar and bubbles
moving around each other in a clockwise direction will have a positive ∆vperp.

We expect 〈∆vpar〉 = 0 on physical grounds: there is no net expansion or
contraction and therefore every particle movement that brings particles closer
together must be balanced by particle movement that brings particles further
apart somewhere else. We do not expect 〈∆vperp〉 = 0, however, because the
applied strain enforces an overall rotation proportional to the applied strain
rate γ̇ and the bubble size d. These relations are tested in figure 9.4. As can be
seen, both components of ∆v behave as expected, although there are obvious
deviations from 0 for ∆vpar, they are symmetric and a simple consequence of
the fact that the pdfs widen for higher strain rates, as discussed above.

While on the one hand it is good that 〈∆vpar〉 and 〈∆vperp〉 behave as
we expect, this also means they don’t tell us anything new. In the end this
is because any component of 〈∆v〉 will just measure some component of the
overall velocity, which is prescribed, in the end, by the applied strain rate.
Therefore it is only the higher order moments, which tell us something about
the way the velocities are distributed around this average, that give us new
information about the behavior of the system.

9.3 Appendix: Correlation Strain

In section 4.5.2 we introduced the correlation strain γcorr as the strain over
which the autocorrelation of the stress signal has decayed to 0.5. In this
appendix we will show how we have determined that this strain is a linear
combination of the yield and dynamic strains with a different balance of terms
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Figure 9.5: Plots of the correlation strain vs. various strains from our model.
Top left: the yield strain, γy. Top right: the dynamic strain, γdyn. Bottom
left: the effective strain, γeff . Bottom right: the best fir linear combination of
γy and γdyn

from the effective strain.
First, though, we note that γcorr is not a complete characterization of the

decay of the autocorrelation, as can be seen in figure 4.13, as the autocor-
relation functions do not collapse completely when rescaled with this strain.
Moreover, there is a systematic trend: data from high-density simulations
tends to have a longer plateau before it commences on a steeper drop. Still,
γcorr seems to capture the behavior of the autocorrelation reasonably well.

The next step is to test if γcorr corresponds to the yield strain, γy, the
dynamic strain, γdyn, the effective strain, γeff = Beffγy + γdyn, or a more
general linear combination of:

γcorr = Bcorrγy + γdyn (9.5)

Note that this formulation allows the weight of γy but not γdyn to be zero.
This is intentional as we expect that the correlation strain may be dominantly
determined by γdyn as γdyn is the strain over which particles rearrange and
rearrangements play an important role in the fluctuations in the stress.

In figure 9.5 we can clearly see that neither of the three ‘simple’ strains from
our Q3E model, the yield, dynamic or effective strains, describe the correlation
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strain well. A general linear combination of γy and γdyn does work. First of all,
we see that the data collapses reasonably well, clearly scattering about a line.
This scatter is not surprising given that the γcorr that we extracted clearly does
not fully capture the behavior of the correlation function as shown. Second,
we note that the line around which the data points scatter is actually a linear
relation as we hypothesised. In conclusion: the correlation strain is clearly
related to the effective strain but is not equal to either the yield, the dynamic
or the effective strain.
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