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Chapter 8

Testing the Non-linear
Scaling Model

Now that we have fully derived the predictions for rheological behavior in our
non-linear scaling method, we will test these predictions by direct simulation
of a nonlinear particle model. The ‘bubble model’ code that we have used
sofar (chapter 2), can not handle αe 6= 1, but does allow us to test αv 6= 1.
Then in section 8.2.1 we will introduce a new code that, in principle, should be
able to handle αe 6= 1. This new code is for particles of finite mass, allowing
us to test the validity of our assumption of masslessness. To distinguish these
two simulation codes we will call the one we have used until now the ‘massless
particle code’ and the one that will be introduced in section 8.2.1 the massive
particle code.

8.1 Massless Particle Code

With the massless particle code that we used throughout this thesis we have
performed simulations of a wide range a different αv’s, including both αv < 1,
αv = 0.75 and αv = 0.5, and αv > 1, αv = 1.1, αv = 1.25, αv = 1.5 and
αv = 2. Unfortunately, we only have a limited sense of densities available for
each α: 0.86, 0.85, 0.844 and in some cases 0.8424. We do have the full range
of strain rate at our disposal, though.

In figure 8.1 we show collapse plots for the Transition and Critical regime
for all six values of α, rescaled with the exponents given by table 7.1. While
the data is preliminary, the results are consistent with our model predictions
because we find collapse in all six plots onto power laws whose exponents are
consistent with the predicted β’s with the possible exceptions of the largest
(αv = 2) and smallest (αv = 0.5) viscous exponents, see table 8.1. Two
aspects of these plots are striking. First, the fact that for αv < 1, the highest
strain-rate data falls below their power law curves. Second, the fact that
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108 CHAPTER 8. TESTING THE NON-LINEAR SCALING MODEL

↵v = 0.5 ↵v = 0.75

↵v = 1.1 ↵v = 1.25

↵v = 1.5 ↵v = 2

Figure 8.1: Transition and Critical regime collapse plots for a αv = 0.5, b
αv = 0.75, c αv = 1.1, d αv = 1.25, e αv = 1.5 and f αv = 2. Symbols
represent strain rates as in table 3.3. Colors represent density. From blue to
red in a and b: 0.8424, 0.844, 0.85 and 0.86; and from blue to red in c, d, e
and f: 0.844, 0.85 and 0.86. Black lines indicate best estimate power laws with
exponent βest, these values are consistent with our model predictions of table
8.1, except for αv − 2 - although the scaling range there is rather limited.
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αv βest βmodel

0.5 0.27 0.29

0.75 0.38 0.4

1.1 0.52 0.54

1.25 0.54 0.59

1.5 0.67 0.67

2 0.67 0.8

Table 8.1: Our estimate of β, βest, for six different values of α compared to
our model prediction, βmodel.

Figure 8.2: a Elastic (blue), viscous (red) and total (black) stress as a function
of strain rate for αv = 0.5. b Transition and Critical collapse plot for the
slowest three strain rates of α = 0.5. Colors represent density; from blue to
red: 0.8424, 0.844, 0.85 and 0.86.

the Transition regime becomes more prominent for higher αv. Both can be
explained in the framework of our model.

First, the reason that high strain rate data falls below the curve in figures
8.1 a and b is that our strain rate criterion that γ̇ < 10−2 for ensuring that
the elastic stress dominates the viscous stress is no longer sufficient for αv < 1.
As we show in figure 8.2 a, for αv = 0.5 the viscous stress, red, is larger than
the elastic stress, blue, even for some strain rates that are smaller then 10−2.
This is in contrast to αv = 1 where, as we have seen in figure 2.3, the elastic
stress is significantly larger for all γ̇ < 10−2. However, if we now plot only
those strain rates for which the elastic stress is larger than the viscous stress,
as we do in figure 8.2 b, we find that all data points now follow a single power
law.

Second, since the crossover from the Transition to the Critical regime scales
as γ̇ ∼ ∆φ(3+αv)/2αv , this crossover shifts to higher strain rate as αv increases.
Therefore, if data in the same density and strain rate range for different αv
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is compared, as it is in figure 8.1, more data will be in the Transition regime,
and less data in the Critical regime for higher αv. This is exactly what we see.
Of course, since we rescale the horizontal γ̇ axis with ∆φ(3+αv)/2αv to obtain
collapse of this crossover, the crossover should always take place at the same
value of γ̇/∆φΓ, and indeed if we compare the panels of figure 8.1, we see that
the crossover always appears1 at γ̇/∆φΓ ≈ 1.

8.1.1 Conclusion

Our nonlinear scaling model predicts that the critical exponent β depends
on the details of the (viscous) interaction. The data above, preliminary as
it might be, corroborates this prediction, as shown in table 8.1. Even if the
model would turn out to be not exact, it is clear that β does depend on α,
and therefore the microscopic details of the interaction.

Our model does not make claims how changing the mode of dissipation
to Mean Field [11,27], inelastic collisions [29,30] or thermostats [25,28] might
change the β, but since these changes are more far-reaching than simply chang-
ing the exponent of inter-particle viscous dissipation, we think it is unreason-
able to assume that these changes will not impact β.

8.2 Massive Particle Code

The experimental and numerical results presented above have strengthened our
belief that microscopic details are important for the rheology of soft particles
near the jamming transition. Therefore we will investigate the effect of a non-
zero mass in this section. In order to do this, we use a new simulation code
developed jointly with Ellak Somfai. Below we will first introduce this new
code that we will call the massive particle code, describing how it differs from
the original massless particle code, and then discuss the findings that we have
obtained using the code.

8.2.1 Implementation

Now that we have mass, and therefore acceleration, in our system, the first
order forward Euler approach is no longer applicable. Therefore, the code is
based on a second order ‘velocity Verlet’ algorithm. The algorithm works as
follows:

• At time t we have x(t), v(t) and a(t).

• We calculate the new position: x(t+ dt) = x(t) + v(t)dt+ 1
2a(t)dt2.

• We predict the new velocity: ṽ = v(t)+0.65a(t)dt; the value 0.65 can be
changed, be have picked 0.65 because it was found to be optimal by [40].

1except for αv = 0.5, where all data points are to the right of γ̇/∆φΓ ≈ 1
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• We calculate the forces, F̃ , based on x(t+dt) and ṽ, using the microscopic
force expressions of Eqs. 7.1 and 7.2.

• We calculate the new acceleration: a(t+ dt) = F̃
m .

• We calculate the actual new velocity: v(t+dt) = v(t)+ 1
2 [a(t)+a(t+dt)]dt.

• Now we have x(t+dt), v(t+dt) and a(t+dt) and we can start the next
iteration.

The mass of each particle is an adjustable parameter, meaning that we
can, in principle, tune the importance of mass in the simulations. The unit of
mass is chosen such that the density is 1, we label2 this situation m = 1; in
some cases we have also used particles with a masses that are ten times as big,
denoted by m = 10, and 100 times as big, denoted by m = 100. An important
caveat is that going to small mass will necessitate the use of very small time
steps in order to prevent overshoots due to high acceleration. In practice this
limits the range over which we can reduce the mass. Unless specified otherwise,
the mass of each particle is proportional to its area (i.e. its two-dimensional
volume) and set so that the density of the system is unity.

In addition, for a reason that we have not been able to determine, changing
αe away from 1, the linear case, requires going to very small time steps and
causes crashes if the time step is too large. Unfortunately, this has made it
impossible to study the effect of changing αe away from 1 in our simulations.

8.2.2 Testing the Effect of Mass

We have performed a number of tests to see if the results of simulations with
the new code make sense and in which regimes, if any, the effects of the presence
of mass are strong and which regimes they are weak. We perform three tests:
we have checked whether power balance is upheld is the new simulations, we
have checked where the kinetic stress, that we use as a proxy for the presence
of mass, is largest and we have directly compared the elastic stress in both the
massless and massive particle codes.

Power Balance

Power balance is a fundamental concept and should hold in our system with
mass also. The presence of mass does give a new way to temporarily store
energy: in the form of kinetic energy. However, in steady state the amount of
kinetic energy is constant (when averaged over long enough time scales). This

2This is indeed merely a label because the bidiserse particles have different masses and
neither of them are 1; however we are not interested in the value of the mass, merely in the
relative size of the mass between different simulations.
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Figure 8.3: Power balance is upheld for αv = 1 and αv = 1.5

means there can be no net growth or decline of the kinetic energy and therefore
the general expression for power balance that we introduced in Eq. 7.4:

σxyγ̇ ∼ ∆v1+αv (8.1)

must hold. In figures 8.3 we show graphs testing power balance for two different
αv: αv = 1 in panel a and αv = 3/2 in panel b. As expected, power balance
holds for both αv = 1, the simple linear case, and αv = 3

2 , giving an indication
that these simulations are doing what they should do.

However, in figure 8.4 we show that for αv = 1
2 , power balance breaks

down for small strain rate, where the dissipated power appears to become
larger than the input power. We hypothesise that this is a consequence of
the concave shape of the microscopic viscous force for αv < 1. In this case,
a relatively small ∆v already induces a relatively large force and there is a
singularity at ∆v = 0. To illustrate how this might lead to an overestimation
of the dissipated power, consider the following example. Two bubbles, A and
B, are moving in the same direction with velocities that are very similar, but
A is slightly faster. These bubbles will exert viscous forces on each other that
are comparatively large due to the square root viscous force law: A will pull B
forward, B will drag A backwards. Thus, if the time step is not small enough,
it may happen that the velocity adjustment that is a consequence of the viscous
force will actually overshoot the ‘intended’ result of equal velocities: now B
is faster than A. Instead of quickly reaching the same velocity, A and B keep
rubbing past each other, dissipating large amounts of energy as they go. Such
numerical problems may explain why the dissipated power is too large for small
strain rates for αv < 1.
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Figure 8.4: Power balance is not upheld for αv = 0.5 for small strain rates.

Kinetic Stress

When elastic and viscous forces are not balanced, there is an extra contribution
to the stress, called the kinetic stress, σxykin = m/2V

∑
<ij> vij,xvij,y. In effect,

the kinetic stress is the stress caused by the net forces on each particle. Clearly,
if there is a sizeable kinetic stress relative to the elastic contribution to the
stress3, then mass plays an important role. We cannot strictly say that if the
kinetic stress is small than the mass must have no effect. However, it is hard
to imagine mass playing an important role in a system in which inertial effects
are minimal, therefore we think that the ratio of the kinetic stress to the elastic
stress is a good proxy for the effect of mass in our system.

Figure 8.5 shows the value of the kinetic stress as a fraction of the elastic
stress. This fraction is plotted vs. the strain rate. In principle there should be
graphs for all four components - xx, yy, xy, yx - but we have simply plotted
the component for which the kinetic stress ratio is highest, the normal stress.
Even in this case, though, the kinetic stress never passes beyond 1% of the
elastic stress. The relative size of the kinetic stress is mostly determined by the
strain rate - the higher the strain rate, the more important the kinetic stress -
and is approximately linear in the strain rate for large densities. Hence, based
on the relative magnitude of kinetic and elastic stresses, we would expect that
the theologies of massive and massless particles would deviate most for high
strain rates.

3Since, in our case, the elastic stress dominates, it is the relevant quantity to compare
with.
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Figure 8.5: The kinetic stress as a fraction of the elastic stress as a function
of strain rate for m = 1.

Direct Comparison

Instead of looking at whether the mass has an effect on the behavior at the
system in general, we can directly check if it has an effect on the most im-
portant aspect of the system: the elastic stress. Figure 8.6 shows the elastic
stress as a function of the strain rate (rescaled for collapse in the Transition
and Yield regimes) for the massless particle code and three different values of
the mass in the massive particle code: m = 1, m = 10 and m = 100. We
immediately notice interesting behavior in the Yield stress regime: all three
datasets with mass go to the same plateau, while the massless data does not
go there. This is a strong indication that mass does not only play a role, but
that the m ↓ 0 limit might be singular. The behavior in the Critical regime is
much more similar between mass and no mass and certainly seems more well
behaved in the sense that the no-mass behavior seems to be the m ↓ 0 limit
of the data with a mass. What is surprising, considering the results for the
kinetic stress ratio above, is that the most fundamental effect of mass is in
the Yield regime. In this regime the strain rate is low and the density is high,
exactly the opposite of where the kinetic stress ratio was highest.

In conclusion, it seems that the kinetic stress ratio is not a good predictor
of how much the elastic stress will change due to the presence of mass. This
is somewhat problematic because it means we do not have a way to judge the
impact of mass in systems in which we can not compare to the massless case
as we did for the αe = αv = 1 linear case above. One other parameter that
we investigated is the distribution of ∆v as this is another quantity where we
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Figure 8.6: The elastic shear stress in simulations with different masses. There
appears to be a fundamental difference between having any mass and having
no mass at all.

Figure 8.7: Comparison between the probability distribution functions of the
relative velocity for the massless (line) and massive (∗) particle codes for a
system in the Critical regime (a: φ = 0.8424, γ̇ = 3 · 10−3) and in the Yield
regime (b: φ = 0.94, γ̇ = 10−5).
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αv β

1.5 0.67

1.75 0.74

2 0.8

3 1

Table 8.2: Our model predictions β for the four different values of α that we
investigate in this section.

expect the mass, through the acceleration, to have a large effect. As we show
in figure 8.7 we do see that there is a large difference between p(∆v) in the
massless and massive particle codes in the Yield regime, while this difference
is much smaller in the Critical regimes. This result agrees with our direct
comparison of the elastic stresses: differences are large in the Yield regime
and small(er) in the Critical regime.

8.2.3 Different αv

Although the behavior of the elastic stress in the Critical regime does depend
on the mass, for αv = 1 it does so in a well-behaved way: reducing the mass
reduces the deviations from massless behavior. Therefore, it is possible to
compare the exponent of the stress in the Critical regime, β, between our
model predictions and massless simulations on the one hand and the massive
simulations on the other hand if we pick a small mass and focus on the Critical
regime. This we will do in the section below.

Since, as we have seen above, there are some numerical issues when picking
an αv below 1, we will focus on αv > 1, namely αv = 1.5, αv = 1.75, αv = 2
and αv = 3. Table 8.2 lists our model predictions β for the four different values
of α that we investigate in this section.

Figure 8.8 shows a rescaled plot of stress vs. strain rate for αv = 1.5,
αv = 1.75, αv = 2 and αv = 3. Panel a, αv = 1.5, shows clear collapse
in the Critical regime, as we predict. Moreover, the Critical regime shows a
2
3 power law; also as we predict. The behavior in the Yield plateau is not
as we expect: we expect no collapse (we plot for collapse in the Transition
and Critical regimes) but we do see strong collapse of most data points. As
discussed above, we think this is a consequence of the fact that mass influences
the Yield regime in a singular fashion. So far our model does well: it correctly
predicts that what we expected it to predict: the Critical regime.

Collapse is slightly worse but for αv = 1.75, panel b, and much worse for
αv = 2, panel c. It is clear that our model prediction completely break down
for αv = 3, panel d. There are two possible explanations for the fact that
the predictions of our model become worse as αv increases. The first possible
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Figure 8.8: Elastic stress vs. the strain rate for αv = 1.5, αv = 1.75, αv = 2
and αv = 3, rescaled for collapse in the Transition and Critical regimes.
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explanation is that some new physics enters for higher αv that our model
fails to take into account properly. The second possible explanation is that at
higher αv, the mass has an increasing effect on that is necessary to avoid the
effects of mass in the Critical regime, thus necessitating runs with m = 0.1 or
smaller, which are numerically prohibitive..

8.3 Conclusion

We have tested the prediction of our model that β depends on the microscopic
viscous interactions between our particles. We have tested this in two different
simulation codes, one using massless particles and one using massive particles.
The results from the massless particle simulations agree with our model for
all investigated values of αv. The picture is more complicated for the massive
particle code: there are technical problems for αv < 1 and for high αv, 2 and
3, the model prediction does not agree with the simulation results. This may
be a consequence of the fact that for various quantities adding mass to the
simulations appears to be a singular perturbation.


