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Chapter 5

Normal Stress

Up till now, we have only dealt with the scaling of the shear stress, σxy. We will
now turn our attention to the normal components of the stress: σxx and σyy.
Our 3E model can be naturally extended to these two components, although
we will need to include a new empirical relation for the stress as a function of
the strain.

5.1 Scaling Model

Before we introduce the extension to our 3E model and test its predictions,
we note that the two normal stresses, σxx and σyy are close (not identical)
within the regime in which we consider the data. This can be seen in figure
5.1. While there is a bump in σxx compared to σyy, its magnitude is small
and we have not investigated it further. We will first discuss whether and how
the three ingredients of the 3E model for shear stresses, Eqs. 3.1, 3.2, 3.3, 3.4
and 3.5, need to be changed for the normal stress. The first ingredient, energy
conservation, Eq. 3.1, remains:

LxLyσxyγ̇ =
NZb

2

〈
∆v2

〉
. (5.1)

Energy is conserved no matter what component of the stress we consider. Note
that this suggests that the shear stress enters the description of the normal
stresses.

The second set of ingredients for our 3E model, the two expressions for
the yield strain, similar to Eq. 3.2, and the dynamic strain, similar to Eq. 3.3,
will also be unchanged, as we can still assign an effective strain based on
the compression and the relaxation time scale. We will, however, allow for
the balance between these contributions to be different from the shear case.
Therefore we have:

γeff = Bxxeff ∆φ+
γ̇d

∆v
, (5.2)
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62 CHAPTER 5. NORMAL STRESS

Figure 5.1: The ratio of the xx and yy components of the elastic stress. In the
regime where we consider the data, γ̇ < 10−2, left of the black line, the two
are equal. Red means high density, blue means low density, see the legend in
table 3.3

with Bxxeff a new undetermined coefficient. We will test this assumption to-
gether with the elasticity relation that we introduce next, just as we did for
the shear stress above.

The third ingredient describes the relationship between the stress and the
effective strain. For shear stresses, we proposed a linear, σxy ∼ Gγeff (Eq. 3.4),
and a quadratic, σxy ∼ γ2

eff (Eq. 3.5), regime. However, since the result of
Wyart et al. for the quadratic part is not necessarily valid for the normal
stress, we do not have a natural prediction for the elasticity relation. The
simplest relation is a linear one:

σxx = Axxkγeff (5.3)

The best way to find out, however, is to determine it empirically.

5.1.1 Testing the Elasticity Relation

We test the elasticity relation in exactly the same way as we did for the normal
stress: we plot σxx vs. γeff in figure 5.2 a. Since our expression for σxx,
Eq. 5.3 does not depend on the density, no further rescaling should be necessary
to attain collapse. It is immediately clear, however, that the data does not
collapse. This means at the very least that the expression we used for the
effective strain, γeff = Beff∆φ + γ̇d/∆v with Beff = 2.2, is not correct. If it
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Figure 5.2: Plot of the normal stress vs. the effective strain. a: using exactly
the same expression for γeff as we do in the shear stress case. b: changing
the value of Beff to achieve collapse. The dashed line is a power law with
exponent 1, the black line with exponent 1.3. Colors and symbols correspond
to the legend of table 3.3.

were correct we would have seen collapse. The shape of the collapsed curve
would then have told us the functional form of the dependence of σxx on γeff .

The most simple way in which our proposed formulation of the effective
strain can be incorrect is if the value of Beff is not the same in the shear
and normal cases. In other words: the normal stress is still determined by
an effective strain given by two contributions, a yield strain and a dynamic
strain, but the contributions balance differently. If this is the case, we should
be able to get better collapse by adjusting Beff to a new value that we call Bxxeff

to distinguish it from the previous result, which we will cal Bxyeff . The panel b
of figure 5.2 shows that we are indeed able to get collapse for Bxxeff = 23 ± 2,
which is an order of magnitude larger than Bxyeff , for which we found a value of
2.2. We note that it is not surprising that the static, compression based strain
is more important in determining the compressive component of the stress.

Now we can also see that the expression for the elasticity that we formulated
in Eq. 5.3 is not correct. The dashed line in figure 5.2 b is a power law of
exponent 1, the expected linear behavior. Clearly, this does not match the
slope of the data. The data can still be described by a simple power law, but
it will have an exponent different from 1. In fact, as shown by the black line in
the figure 5.3 b, a power law with exponent 1.3 works well. This means that
the correct formulation of the elasticity relation is:

σxx = Axxkγ
1.3
eff (5.4)

We stress that this is an empirical result.
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5.2 Regimes

With the three ingredients formulated and checked, Eqs. 5.1, 5.2 and 5.4, we
can now derive the expressions for the normal stress as function of the density
and strain rate. Since there is now only one ingredient, the effective strain,
that has different behavior in different regimes, we expect to have only two
distinct scaling regimes for the normal stress, while we had four regimes for the
shear stress. We will call these regimes the Normal Yield regime, for ‘large’ ∆φ
and ‘small’ γ̇ so that Eq. 5.2 is dominated by the yield contribution Bxxeff ∆φ,
and the Normal Dynamic regime, for ‘small’ ∆φ and ‘large’ γ̇ so that Eq. 5.2 is
dominated by the dynamic contribution γ̇d/∆v. Our power balance expression
complicates this though, as we will illustrate below.

In the Normal Dynamic regime we have

σxx ∼ γ1.3
eff (5.5)

γeff ∼ γ̇

∆v
(5.6)

σxyγ̇ ∼ ∆v2, (5.7)

where we have used scaling expressions for simplicity. Substituting Eq. 5.7
into Eq. 5.6 yields

γeff ∼
γ̇√
σxyγ̇

. (5.8)

Substituting this into Eq. 5.5 then yields

σxx ∼
(√

γ̇

σxy

)1.3

(5.9)

Due to the dependence of the supplied power on the shear stress, σxy, the
shear stress enters the expression for the normal stress. We need to substitute
the expressions we found for the shear stress to express the normal stress as a
function of γ̇ and ∆φ. The shear stress, however, also has regimes. In principle,
this could split the Normal Dynamic regime into three regimes, one for each
regime of the shear stress. Fortunately, the crossover between the Yield and
Transition regimes is the same as the crossover between the Normal Yield
and the Normal Dynamic regimes: in both cases you are in the Yield regime
if ∆φ > γ̇/∆v 1. We will therefore refine our description to include three
regimes: the Normal Yield regime, in which the effective strain is determined
by the yield strain and the shear stress does not enter, the Normal Transition
regime, in which the effective strain is in the dynamic regime and the shear
stress in the Transition regime, and the Critical regime, in which the effective
strain is in the dynamic regime and the shear stress is in the Critical regime.

1In fact, we have seen that Bxx
eff > Bxy

eff , meaning that the crossover from the Normal
Yield to the Normal Dynamic regime takes place for much higher density than the crossover
from Yield to Transition regime
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Figure 5.3: Top: the regimes in the normal stress without taking into account
the shear stress dependence that enters through power balance. There are two
regimes in this case the Normal Yield (NY) regime and the Normal Dynamic
(ND) regime. Middle: the regimes of the shear stress. Bottom: the final
regimes of the normal stress. Vertical dashed arrows indicate the inheritance
of a crossover. NT denotes the Normal Transition regime and NC denotes the
Normal Critical regime.

Normal Critical Normal Transition Normal Yield

effective strain γeff ∼ γ̇/∆v γeff ∼ γ̇/∆v γeff ∼ ∆φ

shear stress σ ∼ γ̇1/2 σ ∼ ∆φ1/3γ̇1/3

rheology σ ∼ γ̇0.33 σ ∼ ∆φ−0.22γ̇0.43 σ ∼ ∆φ1.3

range ∆φ2 < γ̇ ∆φ7/2 < γ̇ ∆φ7/2 > γ̇

∆φ2 > γ̇

Table 5.1: The three rheological regimes with their definitions, results and
ranges of validity.
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These regimes are shown in figure 5.3. At the top we have Normal Yield
and Normal Dynamic regimes that follow from the analysis of the Normal
stress without taking into account the shear stress dependence of ∆v that
enters through power balance in the Normal Dynamic regime. In the middle
we show the Yield, Transition and Critical regime from the shear stress. Note
that the crossover from the Normal Yield to the Normal Dynamic regime and
the crossover from the Yield and the Transition regime have the same scaling
(γ̇ ∼ ∆φ2) as they are based on the same crossover from yield dominated γeff

to dynamic dominated γeff . However, since Bxxeff > Beff , the numerical value
for the crossover between the Normal Yield and Normal Dynamic regime is
higher. On the bottom of figure 5.3 we show the final regimes for the normal
stress. The final Normal Yield regime is not influenced by the shear stress
and therefore the crossover to the next regime is not changed. The crossover
between the Normal Transition and the Normal Critical regime is directly
inherited from the shear stress. Now that we have defined the three regimes
we can derive the rheological expressions in the same way we derived the results
fro the normal stress. The results are summarised in table 5.1 and given in a
little more detail below.

Normal Yield In the Normal Yield regime we have:


σxyγ̇ ∼ ∆v2

γeff ∼ ∆φ

σxx ∼ γ1.3
eff

σxy ∼ ∆φ3/2

⇒


∆v ∼ γ̇1/2∆φ3/4

γeff ∼ ∆φ

σxx ∼ ∆φ1.3

(5.10)

Note that our scaling for the normal stress in the limit of zero strain rate,
σxx ∼ ∆φ1.3 is not the same as our prediction for the shear stress in the limit
of zero strain rate, σxy ∼ ∆φ3/2. This is in contrast to the expectations and
findings of many [23, 38]. We note that we do not have strong empirical data
that corroborates that either σxy ∼ ∆φ3/2 or σxx ∼ ∆φ1.3.

Normal Transition In the normal Transition regime we have:


σxyγ̇ ∼ ∆v2

γeff ∼ γ̇
〈∆v〉

σxx ∼ γ1.3
eff

σxy ∼ ∆φ1/3γ̇1/3

⇒


∆v ∼ ∆φ1/6γ̇2/3

γeff ∼ ∆φ−1/6γ̇1/3

σxx ∼ ∆φ−1.3/6γ̇1.3/3

(5.11)

Normal Critical In the Normal Critical regime we have:
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Regime Combination Rescaled Axes

Critical and Transition σ/∆φ0.65 vs. γ̇/∆φ2

Yield and Transition σ/∆φ1.3 vs. γ̇/∆φ7/2

Yield and Critical σ/∆φ1.3 vs. γ̇/∆φ3.9

Table 5.2: Prescriptions of what to plot for collapse of the normal stress in the
indicated regimes.


σxyγ̇ ∼ ∆v2

γeff ∼ γ̇
〈∆v〉

σxx ∼ γ1.3
eff

σxy ∼ γ̇1/2

⇒


∆v ∼ γ̇3/4

γeff ∼ γ̇1/4

σxx ∼ γ̇1.3/4

(5.12)

5.2.1 Crossovers

As we have discussed above and illustrated in figure 5.3, the crossover be-
tween the Normal Transition and the Normal Critical regimes is the same as
the crossover from the Transition to the Critical regime by construction and
therefore scales as γ̇ ∼ ∆φ7/2. The crossover from the Normal Yield to the
normal Transition regime scales the same as the crossover from the Yield to
the Transition regime, γ̇ ∼ ∆φ2, as both take place where the yield contri-
bution and the dynamic contribution to the effective strain are equal. Since,
however, the yield contribution is bigger for the normal stress, the numerical
value of the crossover will be different.

5.3 Plotting and Results

5.3.1 Collapse Plots

Just as in the case of the shear stress, we can now determine the exponents ∆
and Γ for which a plot of σxx/∆φ

∆ vs. γ̇/∆φΓ results in collapse in the various
regimes. The analysis is completely analogous to that of section 3.3.1 and no
new interesting physics is found; in fact, due to the inherited crossovers, some
of the results are identical to the shear case. The results are presented in table
5.2.

Normal Yield and Normal Transition Regimes As mentioned above,
the strain rate needs to be rescaled to make the crossover between the Normal
Yield and Normal Transition regimes, which is the same as for the shear tress,
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Regime Full Expression

Normal Critical σxx = Axx
(
d2NZ/2LxLyA1A2

)1.3/4
γ̇1.3/4

Normal Transition σxx = Axx
(
NZd2/2LxLyA1

)1.3/3
∆φ−1.3/6γ̇1.3/3

Normal Yield σxx = AxxB
xx 1.3
eff ∆φ1.3

crossover Transition Yield γ̇ = 2A1B
xx 3
eff LxLy/d

2NZ ∆φ7/2

crossover Critical Transition γ̇ = 2LxLyA1/NZA
3
2d

2 ∆φ2

Table 5.3: Full expressions for the three regimes and their crossovers in di-
mensionless form.

collapse: ˜̇γ ∼ γ̇/∆φ7/2. Since the stress in the Normal Yield regime depends
only on the density, this prescribes the rescaling of the stress: σxx ∼ ∆φ1.3.

Normal Transition and Normal Critical Regimes Between the Normal
Transition and the Normal Critical regime there is again a crossover that
determines the strain rate rescaling: ˜̇γ ∼ γ̇/∆φ2. Substituting this into the
expression for the stress in the Normal Critical regime yields:

σxx ∼ γ̇1.3/4 = ˜̇γ1.3/4∆φ1.3/2 ⇒ σ̃xx ∼ σxx/∆φ1.3/2. (5.13)

Normal Yield and Normal Critical Regimes Again, the dependence of
the Normal Yield stress on the density prescribes the rescaling of the stress:
σxx ∼ ∆φ1.3. This can be substituted into the expression for the stress in the
Critical regime to deduce the rescaling of the strain rate:

σxx ∼ γ̇1.3/4 ⇒ σ̃xx ∼ γ̇1.3/4/∆φ1.3 ⇒ ˜̇γ ∼ γ̇/∆φ4 (5.14)

5.3.2 Prefactors

The final detail that is necessary to complete our Q3E model for the normal
stress is the value of any new prefactors that were introduced. Since we already
have determined that Bxxeff = 23± 2, the only remaining new parameter is Axx
in Eq. 5.4. The approach for determining this fit factor is the same as for
the shear case: comparing the data to our full expression for the stress in the
Critical regime. This and all the other full expressions are given in table 5.3.
The next step is to plot the data for collapse, so that we can fit a power law.

Figure 5.4 plots the normal stress vs. the strain rate rescaled for collapse
in the Yield and Critical regime. Firstly, we note that collapse looks good
over the entire range, we will return to this below. For now, we focus on the

fact that the black line, given by 0.03
(
γ̇/∆φ3.9

)1.3/4
describes the data in

the Critical asymptote very well. This allows us to derive the value of Axx,



5.3. PLOTTING AND RESULTS 69

Figure 5.4: Plot of the stress vs. the strain rate rescaled for collapse in the

Yield and Transition regime. The black line is given by 0.03
(
γ̇/∆φ3.9

)1.3/4
.

Colors and symbols correspond to density and strain rate as in table 3.3.

because

Axx

(
d2NZ

2LxLyA1A2

)1.3/4

= 0.3± 0.05, (5.15)

in which Axx is the only unknown. Substituting the values for d, N , Z,
Lx, Ly, A1 and A2 that we set, approximated or fitted before, we find that
Axx = 0.004± 0.001. This completes the normal extension to the Q3E model
and we can focus on the width of the regimes to see where we would expect
collapse when rescaling the data.

5.3.3 Regimes and Collapse

Figure 5.5 shows the same data as figure 5.4 but now coloured according to
the regimes in which the various data points are located: Yield data points in
black, Transition data points in red and Critical data points in blue. We can
clearly see that the Transition regime is much smaller for the normal stress
than for the shear stress, see figure 4.7, which is completely expected as Bxxeff

is about an order of magnitude larger than Bxyeff . As we discussed above in
section 4.4.1, data that is ‘purely’ in the Transition regime is already rare for
the shear stress, but it will be virtually non-existent for the normal stress. This
is why plotting for collapse in the Yield and Critical regime, as we have done
in figure 5.5 is the appropriate way to plot the data and we expect collapse
nearly everywhere.
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Figure 5.5: Collapse plot of the stress vs. the strain rate. Data points are
coloured according to the regimes they are in: blue for Critical regime, red for
Transition regime and black for Yield regime.

Figure 5.6: Plots of the stress vs. the strain rate with a Critical power law
divided out. a with the model prediction of γ̇1.3/4 ≈ γ̇0.34 divided out. b with
the power law that best yields a horizontal residue: γ̇0.36 divided out. The
legend indicates which density corresponds to each symbol-color-combination.
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However, just as was the case for the shear stress, this is not a reliable
way to determine whether our predicted exponent in the Critical regime, β,
is exactly correct. The real β cannot be too different from 1.3/4 ≈ 0.34,
otherwise we would not have had good collapse. However, it can be slightly
different. And in fact, in figure 5.6 b we see that dividing out our model
prediction of γ̇1.3/4 does not result in perfectly flat residual data. Instead, as
we show in figure 5.6 b, we best achieve flat behavior when dividing out γ̇0.36.
Just as in the case of the shear stress, this exponent is slightly different from
the model prediction but it is close enough to be considered consistent with
our model.

It should be noted that this results is different from the most recent result
by Olsson & Teitel [23] in two ways. First, the numerical value of the exponent
in the Critical regime is different, 0.36 for us as opposed to 0.28 for Olsson &
Teitel. And second, Olsson and Teitel find that the exponents for the shear
stress and normal stress in the critical regime are the same, while we find that
they are different: 0.47 vs. 0.36.

5.4 Conclusion

We have successfully extended our Q3E model to the normal component of
the stress tensor. While there were some surprises, a different balance between
the components of the effective strain and especially an unexpected elasticity
relation, we have been able to account for these in our Q3E model. With
these inclusions the Q3E model describes the simulation data well.The best
numerical estimate for the value of the critical exponent β is within 5% our
prediction.
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