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Chapter 2

Bubble Model and
Simulations

2.1 Microscopic Model

If a computer model is supposed to represent and describe the transition from
an unjammed state to a jammed state, it needs at least two properties. First,
the particles in the system need to have some concept of being ‘in contact’
or not, where forces between contacting particles are stronger than between
particles that are not in contact. Second, it needs some ‘softness’, meaning
that particles can still be compressed if they are in contact, so that it makes
sense to discuss densities higher than the jamming density.

The simplest of such a system, that has been used extensively in simulations
[5,11,27], is a system of discs that exert a hookean (linear) elastic force on each
other when they are in contact and that do not interact when not in contact:
particles i and j interact via an elastic force Feij given by

Feij = kδij dij < rij (2.1)

Feij = 0 dij > rij , (2.2)

in which k is a spring constant, δij is the overlap between bubbles i and j,
see figure 2.1, dij is the distance between (the centers of) bubbles i and j
and rij is the sum of their radii. In addition to satisfying the two minimum
demands introduced above (contacts and compressibility), these particles have
a number of properties that make them very simple, both conceptually and
computationally.

First of all, as shown by Eq. 2.2, these particles only interact when they
touch: there is no long range attraction or repulsion. Second, the interactions
between the particles are pairwise additive, meaning that the force between
particle i and j does not depend on whether particle i is also in contact with
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18 CHAPTER 2. BUBBLE MODEL AND SIMULATIONS

Figure 2.1: a two bubbles with a non-zero overlap δij exerting forces F e
ij = kδ

on each other. b two overlapping bubbles with different velocities vi and vj .
As a consequence bubble i experiences a velocity difference ∆vij and a force
F v
ij = −b∆vij . The opposite velocity difference and force working on bubble j

are not shown.

other particles. And third, since all forces are central, there are no torques
that need to be balanced to attain static equilibrium, only forces. Simulations
with these particles are often performed in two dimensions [5, 6, 11] as this
allows for a relatively small amount of particles (computationally cheap) with
relatively large linear size of the system (to minimise finite size effects) com-
pared to three dimensions. The disadvantage is that monodisperse particles
crystallize easily in two dimensions1. To counteract this it is customary to use
bidisperse discs, with radii with a ratio of 1:1.4, which prevents crystalliza-
tion [5]. Additionally, previous jamming research suggests that there are no
crucial differences between two and three dimensions [5].

The minimum requirements to expand this simple model to flowing or
dynamic systems are a means of energy dissipation, to offset the energy put into
the system by driving it, and equations of motion, to link forces to velocities.
For this, we use Durian’s bubble model [27]. In this model, if particles i and
j have relative velocity ∆vij they experience a viscous drag Fvij given by

Fvij = −b∆vij dij < rij (2.3)

Fvij = 0 dij > rij , (2.4)

with b the viscous force constant, see figure 2.1 for a simple illustration. Note
that such a force model still only has pairwise additive contact forces, but the
viscous force can make discontinuous jumps from zero to a finite value when
particles make or break contact, as the viscous force, once in contact, does

1because the locally optimal packing, the triangle, can tile space; i.e. there is no frustra-
tion [31]
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not depend on the overlap. The model takes the equations of motion to be
overdamped: forces balance at all time. Since the viscous forces depend on
the velocities, this allows the velocities to be determined once the positions
are given. Note that, even though the viscous force is not central, we still
disregard, as is customary [11,27], torque balance.

As the name implies, Durian’s bubble model was developed to describe col-
lections of bubbles, i.e. foams, though it is also thought to describe emulsions
well, since emulsions and foam share many of their important properties [6].
This is also the way we think about our minimal jamming model. Although
real foams deviate from the model as described above in several ways, we will
argue that these deviations are small in the regimes near jamming that we
study. First of all, the amount and arrangement of contacts on a bubble in-
fluences the contact force that that bubble will exert on other bubbles due to
deformation of the bubble. This effect does not become relevant until very high
densities, though, which is why we choose to neglect it. Second, gas bubbles
have non-zero mass and therefore will not strictly obey overdamped dynam-
ics. Still, since the mass of gas bubbles is small, bubbles accelerate rapidly and
any force imbalance will be very short lived. Finally, bubbles will show some
reaction to unbalanced torques, which this model does not take into account.
However, bubbles will certainly not rotate as rigid bodies under the effect of
torques - at best there will be fluid flow in the interface. In addition it has been
shown that the presence or absence of torque balance makes no difference in
linear response [32]. Therefore it is reasonable to not include torque balance.

2.1.1 Intermezzo: Roads not Traveled

Besides the microscopic model presented above, we have considered a number
of other options that were in the end discarded for various reasons. They are
briefly discussed here.

Mean Field Dissipation The method of dissipation described above is not
the simplest imaginable. A simpler method was introduced as an approxima-
tion by Durian in his original model [27] and has since been used often [11].
This simpler method of dissipation is called ‘Mean Field dissipation’ and has
dissipation take place not when contacting bubbles move relative to each other,
as in Eq. 2.3, but when bubbles move relative to the time averaged flow field:

Fvi = −b (vi − v (xi, yi)) , (2.5)

where v (xi, yi) is the value of the time averaged flow field at the position of
particle i. While this approximation was introduced mainly for its computa-
tional benefits, it has a clear physical interpretation: viscous drag with the
background fluid. Still, in actual foam systems dissipation takes place mostly
between bubbles and not between bubbles and the fluid [16].
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Therefore we must ask ourselves what the effect of this approximation
might be. Since we expect that non-affine flow, which is exactly the flow that
gets energetically punished by the mean field dissipation model, is prevalent
around jamming, we expect that this approximation will have a large effect.
We have nevertheless performed some simulations with the mean field model
for comparison and have found that the differences between the two dissipative
models are often small. For example, there seem to be few differences between
the stresses. For some quantities, however, the differences between the Mean
Field and the full Durian model are very big, see for example the correlation
lengths in section 2.3.3 and [33].

Overlap-Dependent Viscous Force We know from experiments that the
viscous force between bubbles depends not only on their relative velocity, but
also on their overlap [34]: if particles have a bigger overlap, they will experience
more viscous friction. Therefore, inclusion of this effect into our model would
make it more realistic, and could also take away the conceptual problem that
results from the fact that the viscous force is discontinuous when contacts are
made or broken.

Tangential Friction We have investigated a model in which the viscous
force was restricted to the direction perpendicular to the contact/parallel to
the contact line: bubbles moving strictly towards or away from each other do
not feel any viscous forces, only elastic forces.

This microscopic model has consistency problems, especially since we are
doing simulations without inertia. Consider the following situation: bubble
A and B are overlapping with each other, but not with any other bubbles.
A and B will feel, equal and opposite, elastic forces, acting parallel to the
vector connecting their centers. Whatever their relative velocities however,
the viscous force that they feel will always be perpendicular to the vector
connecting their centers; therefore force balance is impossible, independent
of their velocities. Because of these problems, that will not occur often but
are hard to overcome when they do, we have implemented a full vectorial
dissipative force.

2.2 Simulations

Before we discuss our simulations in depth, it is useful to switch to dimension-
less units. There are a number of free parameters in our model, shown in table
2.1, that can be used to construct non-dimensional units for length, time and
stress; these can then be used to construct units for any other quantity, such
as force or strain rate. As unit of length we pick the radius of the smallest bub-
bles, rs, as the bubble size seems more relevant than the system size. We fix
the other length scales by using the customary 1:1.4 ratio between small and
large bubbles discussed above and by taking a square box with Lx = Ly = 75
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Parameter SI unit

width of the system Lx m

height of the system Ly m

small bubble radius rs m

large bubble radius rl m

spring constant k N/m

viscous force constant b Ns/m

Table 2.1: Free parameters in our system that set dimensions. k and b are
defined in the microscopic force laws of Eqs. 2.1 and 2.3.

which leads, depending on density, to a particle number around 1000. We use
k as unit of stress since, in two dimensions, the unit of stress is also N/m.
Finally we construct a unit of time as b/k. This is the timescale over which a
relative displacement and an overlap of 1 (rs) result in equal forces. While this
is a huge overlap, due to the linearity of the forces this is also the timescale
over which a relative displacement and an overlap of 0.1 result in equal forces,
etc.

In our simulations we impose a fixed packing fraction, φ, and a fixed strain
rate, γ̇, and we measure the stresses that are needed to maintain this driving.
We change the packing fraction by changing the number of particles in our
system. Since the number of particles has to be an integer, this limits the

resolution of our packing fraction to π12

752 ≈ 0.0006. In order to go beyond this
resolution we also slightly change the size of our box to fine-tune the packing
fraction and achieve a higher resolution.

We apply a constant strain rate using Lees-Edwards boundary conditions.
This means that we use normal periodic boundary conditions in the vertical
direction, the direction of flow. But along the horizontal direction, periodic
copies of the system are given an extra velocity γ̇Lx, both for updating the
positions of bubbles and for calculating the viscous force over the periodic
boundary, see figure 2.2.

2.2.1 Nuts and Bolts

We use a ‘forward Euler’ iteration scheme for our simulations, which works
as follows: at time t we know the positions, r(t), and the velocities, v(t),
of all bubbles. To move to the next time step, t + δt, we then move all
bubbles forward with their velocity: r(t + ∆t) = r(t) + v(t)∆t. This leads to
a new contact network in which we can calculate all elastic forces, as these
depend only on position2. We can then use the condition of force balance

2and the radii, but these are constant and known.
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Figure 2.2: Lees-Edwards boundary conditions: particles are simply copied
along the vertical, stream wise, direction and are copied with an extra velocity
γ̇L in the transverse direction.

together with the elastic forces on all bubbles to calculate the velocities of all
bubbles, as there is one 2-dimensional unknown velocity and one 2-dimensional
force balance constraint per bubble. We use a Newton-Raphson solver for this
problem. We now have the positions and velocities of all bubbles at time t+∆t
and we can repeat the procedure.

We make this mathematically explicit to show why this is computationally
more involved than the Mean Field approximation. Let us define the contact
matrix Ĉ, this is a Z by N matrix, Z being the total number of contacts
between bubbles and N the total number of bubbles in the system. If bubble
j is one of the two bubbles in contact i then Ĉij = 1 if j has the higher index of
the two participating bubbles and −1 if it has the lower3. With this definition
ĈV, V being a vector with the velocities of all N bubbles, gives a vector with
the relative velocities of all Z contacts. Conversely, applying ĈT to any vector
of contact quantities returns a vector of the sums over all contacts per bubble,
i.e. if Fe is the Z-dimensional vector of elastic forces in each contact, then
ĈTFe is the N -dimensional vector of total elastic forces on each bubble. This
means that once we have the positions, and therefore the contacts and elastic
forces, at time t we need to solve the following equation of force balance for
V:

ĈT
(
Fe − bĈV

)
= 0 (2.6)

This inverse problem is computationally expensive to solve.
In contrast, in the Mean Field approximation the viscous force that a

bubble experiences depends only on its own position and velocity, not those

3this is an arbitrary sign convention, corresponding with the definition of bond vectors
pointing from the lower to the higher index.
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of its neighbours. This makes it possible to solve the velocity of each bubble
explicitly. If a bubble has a two dimensional velocity4 v, then the viscous force
on that bubble is −b (v − γ̇x̂ry), where x̂ is the unit vector in the x- or flow
direction and ry is the y- or transverse component of the bubble position. If
the elastic force on a bubble is fe, force balance then requires that

fe − b (v − γ̇x̂ry) = 0 (2.7)

or v = bfe+ γ̇x̂ry, which can be calculated directly since fe and ry are known.

2.3 Phenomenology

In this section we will describe the main phenomenology of the bubble flows
from our simulations. Unless otherwise specified we use simulations of approx-
imately 20 units of strain for all strain rates to ensure proper averaging; the
transient is typically less then 1.5 units of strain and is excluded from the av-
eraging. Data samples are taken every 2/3 of a percent of strain, for a total of
3000 data points in the full 20 units of strain. The set of densities and strain
rates used differs, and will be discussed individually for each result presented
below.

2.3.1 Elastic and Viscous stress

Because we use overdamped equations of motion and the forces therefore bal-
ance at all times, we can calculate the shear stress needed to get a bubble
system flowing from all the forces between the bubbles with the Born-Huang
formulation [35]:

σxy =
1

2V

∑
<ij>

rij,xfij,y, (2.8)

here V is the volume of the simulation box, the sum is over all contacting
bubbles and r is the contact vector between two bubbles. A similar expression
can be formulated for the three other components of the stress, σxx, σyy and
σyx. There are two types of forces between the bubbles: elastic forces, as
from Eq. 2.1, and viscous forces, as from Eq. 2.3. This means that we can
decompose the (shear) stress into two components: the elastic shear stress,
σe
xy, due to the elastic forces and the viscous shear stress, σv

xy, due to the
viscous forces. Of course, since f e

ij + fv
ij = fij , the elastic and viscous shear

stresses taken together give the same stress as calculated in Eq 2.8, which we
will call the total (shear) stress, σtot

xy . Note also that, since there is no torque
balance, σxy 6= σyx

Figure 2.3 shows the elastic, viscous and total shear stresses a function
of both strain rate (a) and density (b). As can be seen, the viscous stress

4we will now use lower case letters to distinguish two-dimensional vectors from N - or
Z-dimensional vectors for which we have used capital letters.
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Figure 2.3: The viscous contribution to the stress (red), the elastic contribution
to the stress (blue) and the total stress (black). a: stresses as function of the
strain rate at fixed density (φ = 0.87). The red dotted line indicates linear
dependence on strain rate; the black dotted line is our cutoff strain rate. b:
stresses as a function of density (we have taken φj = 0.8423, see section 3.3.2)
at a fixed strain rate (γ̇ = 10−4).

is largely independent of the density and scales linearly with the strain rate;
it shows newtonian behavior. The elastic stress depends on both the density
and the strain rate and, as we will make abundantly clear below, does so in a
complicated fashion. Since we can also see from figure 2.3 that the elastic stress
tends to dominate the viscous stress, it is clear that any anomalous behavior of
the total stress must be caused by the elastic stress. Therefore, in everything
that follows we will study the elastic stress only, unless specified otherwise. In
order to minimise the effect of the viscous stress, we limit ourselves to those
strain rates where the elastic stress dominates the viscous stress: γ̇ < 10−2, left
of the dotted black line in figure 2.3. This means that to good approximation,
σe = σtot

2.3.2 Rheological Curves

Above, we have seen that the elastic stress has a complicated dependence on
both the strain rate and the density. To get a general feel for this dependence,
we plot full strain rate sweeps for three different densities in figure 2.4. We
have picked a density that is markedly above the jamming density, φ = 0.87,
one that is around the jamming density, φ = 0.8424, and one that is below the
jamming density, φ = 0.8.

In the rheological curves of figure 2.4 we recognise a number of different
aspects of the rheology of complex fluids that we discussed above. The first
aspect is that for the density below jamming, there is newtonian behavior in the
limit of small strain rates, indicated by the blue dotted line. The asymptotic
behavior at φ = 0.87 is very different though, showing a flattening of the curve,
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Figure 2.4: The shear stress as a function of strain rate for three different
densities: 0.8 (blue), 0.8424 (purple) and 0.87 (pink). All curves approach
a similar power law for high strain rate, indicated by the purple dotted line,
which has a slope of 1/2. For low strain rates the low density shows steeper
behavior and the high density shows flatter behavior. The blue dotted line
indicates linear newtonian behavior.

possibly approaching a yield stress plateau5.

The high strain rate asymptote is also interesting, as here all three densities
approach the same behavior, shown by the purple dotted line. In all three cases
we see shear-thinning behavior, i.e. a power law with exponent less than one.
Moreover this exponent appears to the same for all three densities. At the
jamming density this behavior extends all the way to low strain rates; for the
densities away from jamming it crosses over into the low strain rate asymptotes
discussed before.

All of this is consistent with observations from several other experiments
and simulations [11, 24, 27–29]. In fact, Olsson and Teitel have already shown
that by rescaling with appropriate powers of ∆φ all data can be collapsed onto
two branches, one below and one above jamming [11]. In the next chapter we
will introduce a scaling model that will predict these exponents, as well as the
shear-thinning exponent and a number of other surprising details, from three
simple assumptions. We will also find that this way of rescaling the data does
not capture the full behavior.

2.3.3 Correlation Length

Another phenomenon that Olsson and Teitel observe is a length scale in the
correlation of the non-affine motion. I.e. they calculate the following correla-

5though that plateau is not reached
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Figure 2.5: Two plots of the non-affine motion correlation length as a function
of streamwise displacement. a: the original data from Olsson and Teitel [11]
from simulations with Mean Field dissipation. b: data from our simulations
with fully resolved bubble-bubble dissipation; a strain rate of 10−5 and 3 ·10−3

are shown for each density.

tion function:

C (y) = 〈vx(0)vx(y)〉 , (2.9)

where <> denotes averaging over time and over all bubble pairs that are dis-
placed only in the stream wise direction6, vx is the x-component, and there-
fore crosswise component, of the velocity of each bubble. Since there is no
movement in the x-direction in the average flow profile, all movement in this
direction is non-affine. A length scale, ξ, can be extracted from this correla-
tion length and Olsson and Teitel find that ξ−1 ∼ |∆φ|0.6f

(
σ/∆φ1.2

)
, [11].

An example of the correlation functions that they find is shown in figure 2.5
a.

When we calculate the same correlation function however, we do not find
a length scale that changes with the density, see figure 2.5 b. In fact, if we
perform simulations for different system sizes, we find that we can collapse
the correlation data by simply rescaling with the linear size of the system.
Additionally, the shape of our correlation functions looks different from those
of Olsson and Teitel [33].

The most striking difference between our simulations and those of Olsson
and Teitel is the form of the dissipation. Olsson and Teitel use mean-field
dissipation, discussed in section 2.1.1, while we use the bubble-bubble dissi-
pation of the full Durian model. Since this is the biggest difference between
the two systems, it is the most likely explanation for the difference. In fact,

6The simulation box is divided into several stream wise ‘lanes’ and bubble velocities are
correlated only between bubbles in the same lane, therefore their cross wise displacement is
not necessarily zero, but will be bounded from above by the lane width
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Figure 2.6: The probability distribution function of the relative velocity be-
tween particles for different strain rates (color) and different densities ranging
from φ = 0.8424 to φ = 1.

if we perform our own simulations with mean field dissipation we recover the
Olsson and Teitel correlation functions with their characteristic dip. We can-
not fully explain why these two similar systems give such different correlation
lengths, especially since most of their other behavior is very similar. However,
in a tentative explanation we point to the fact non-affine motion is the source
of dissipation in the Mean Field model, but not in the full Durian model. In
section 6.1 we show that energy dissipation, which is caused by relative motion
between the bubbles7, sets the (second moment of the) distribution of relative
velocities. Therefore it is not unlikely that the non-affine velocity is largely
set by considerations of energy dissipation in the Mean Field model, but not
in the full Durian model.

We note, however, that the mean field model was introduced as an approx-
imation to the full Durian model under the assumption that it was a harmless
computational simplification [27]. As we have shown that there is at least one
significant difference between the two models we feel that it is highly preferable
to use the full Durian model.

2.3.4 ∆v-distributions

The role played by the non-affine velocity in the mean field model, that of
source of energy dissipation, is played by the relative velocity in the full Durian

7in the full Durian model
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model. Due to big differences in the energy supplied to systems of different
density or strain rate, there are also big differences in the behavior of the
relative velocity. As an example of this we show the probability distribution
functions of a wide range of data in figure 2.6. Note the incredible difference
in the fatness of the tails of the distributions. These differences lead to wildly
different behavior in the systems, an aspect that we will explore in section 6.1.


