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Chapter 1

Introduction

Soft disordered materials, like foams, emulsions, suspensions, granular media
or gels, display mechanical properties that are neither those of a crystalline
solid nor those of a molecular liquid. Instead, these materials often combine
solid- and liquid like behavior. Such disordered matter is extremely interesting,
not in the least because many disordered materials are incredibly important in
applications. The flow and dripping behavior of paint, the way forces distribute
in a ton of wheat grains contained in a silo or the tear-resistance of cell walls
are all problems whose practical interest is obvious. But these materials are
also inherently interesting on a theoretical level because of their disorder.

Initially, there was hope that the disorder in these systems could be treated
as a perturbation to crystalline solids or molecular liquids, for example by
simple effective medium theories [1–3]. But after intense interest in these ma-
terials in recent years [4–7], it is now clear that the disorder in these systems
makes them intrinsically different from either crystalline solids or simple ran-
dom systems. In addition, many of these materials are out of equilibrium,
either because their constituent particles are too large to be affected by ther-
mal fluctuations, as in sand [8] or foams [9], or because relaxation times exceed
experimental timescales, like in glasses [10].

In this thesis, we bring together two different approaches that are used to
study soft disordered materials: jamming and rheology. Jamming takes its cue
from hard condensed matter and aims to describe the elastic response of soft
materials [4]. This approach makes heavy use of simulations and bases much of
its framework on critical scaling theory, which is used as a model to describe
a transition from liquid-like to solid-like behavior. The jamming approach
has been successful in describing the elastic properties of disordered media
with phenomenological scaling functions. The second approach, rheology, is
more experimental in nature. It describes the flow-behavior of materials, often
resulting in phenomenological relations between the stress and the strain rate
called flow curves (see section 1.2 for a precise definition of stress and strain
rate).
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Figure 1.1: Schematic representation of soft repulsive particles as a function of
their packing fraction φ in relation to the critical packing fraction φc. Below
φc, particles are not touching, the pressure is zero, and there is no resistance to
deformations of the system as a whole. Above φc particles are jammed: they
deform each other, there is finite pressure and, in general, finite resistance to
further compression and deformations.

Here we aim to combine the scaling approach from jamming with the focus
on flowing behavior from rheology. We are not the first to do so: the 2007
paper of Olsson and Teitel [11] is an important milestone and combined studies
of jamming and rheology are much older than that [12]. Our aim is not only
to characterise the scaling of the rheology of soft particles near jamming, but
also to come to predictive (scaling) models for the rheology.

1.1 Jamming

When compressing a collection of loosely packed, purely repulsive, soft, ather-
mal particles in the absence of gravity, no resistance to compression is felt at
first, but at some critical compression the particle system can no longer be
freely compressed further: it is said to be jammed [4–7, 13, 14]. All materi-
als that consist of soft, mesoscopic particles show a similar transition: foams,
emulsions, colloidal suspensions and granular materials.

In describing this phenomenon, the packing fraction of the mesoscopic par-
ticles (bubbles, emulsion droplets, colloids or grains) in the material is a crucial
parameter. The packing fraction, φ, is given by the fraction of the total vol-
ume or area that is taken up by the mesoscopic particles. If φ is low, none of
the particles are in contact, see the left of fig 1.1. At this point, compressing
the system does not cost any energy as there are no forces to overcome: the
particles will be brought closer together, but as long as they don’t overlap
there is nothing that resists the compression.

Then, at some critical packing fraction, φc, also called the jamming density,



1.1. JAMMING 9

all particles suddenly come in contact with their closest neighbours, see the
middle of figure 1.1. The density at which this happens is around 0.64 in three
dimensions and around 0.84 in two dimensions [5]; these values coincide with
the respective random close packing densities in two and three dimensions1.
When the particles come in contact they can suddenly resist compression be-
cause they need to deform, which costs energy, see the right panel of figure 1.1.
Therefore the system now resists compression. The exact definition of when
something can be said to be jammed is more complicated than this simple
picture and we will discuss this in more detail below.

If the system is compressed further beyond the critical density φc, as shown
on the right of figure 1.1, the material starts to behave more and more like a
regular elastic solid, but at or near the jamming density, the system exhibits
anomalous behavior. As an example of this anomalous behavior we discuss
here the response of jammed systems to small deformations. Specifically we
compare the bulk modulus K and the shear modulus G, defined by

σxx = Kγxx (1.1)

σxy = Gγxy, (1.2)

where γ is the strain or deformation of the material, σxx is the pressure and σxy
is the shear stress2. O’Hern et al. have found [5] that the shear modulus scales
with the difference between the density and the critical density, ∆φ = φ− φc.
For harmonic particles they found that

G ∼ ∆φ
1
2 (1.3)

In other words: G = 0 at the jamming density. The bulk modulus, in contrast,
as O’Hern et al. have also found, has a finite value at the jamming transition [5].
As a consequence G

K becomes arbitrarily small upon approaching the jamming
density φc. This means that as we approach the jamming transition from
above it will become infinitely easier to shear the system than to compress
it. K and G are not the only quantities that show scaling with ∆φ. The
jamming transition can be described as critical transition with ∆φ as the
control parameter [5]. One of the features of a critical transition that is present
is a diverging length scale, although it is not an obvious one [14,15].

One way, to define a jammed solid is to demand that there must be a finite
critical stress below which the system behaves elastically for at least some
finite time [5].The time scale in this definition is important because reducing
the density is not the only way to go from the solid-like jammed state to the
unjammed state. Increasing the temperature, T , and increasing the driving, σ
also drive a system away from the jammed state. This idea can be represented
in a so-called jamming diagram shown in figure 1.2. In both cases, the extra
excitations fluidize the system by introducing plasticity. This interplay of three

1In two dimensions it is necessary to use polydisperse particles to prevent crystalization
2see section 1.2 for an exact definition of the shear stress
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Figure 1.2: There are three ways to take a system from a jammed state to an
unjammed state: decreasing the packing fraction φ, increasing the temperature
T or increasing the driving σ. Figure from [6]

different variables is complicated, however, and the simplest case of σ = T = 0
is therefore studied extensively. Here we expect a sharp transition, called point
J , and that is indeed what is found [5].

For foams, the system that inspires the numerical and theoretical work
in this thesis, shear driving is crucial a crucial parameter in addition to the
packing fraction, or wetness of the foam. When exposed to stresses below some
critical threshold called the yield stress, foams show solid-like behavior, but
when exposed to stresses above this threshold, foams exhibit plastic flow [16].
In other words: large stresses unjam foams, just as the jamming diagram
describes. Evidently this means that the other perspective on soft matter, the
rheological perspective that studies flow, is also relevant for foams.

1.2 Rheology of Complex Fluids

Rheology is the study of the flow of materials. The most basic ways in which
one can classify the flow behavior of a material is by its rheological curve. The
rheological curve of a material gives the relation between the flow rate and the
amount of driving, where driving is measured by the shear stress, σxy. In two
dimensions this is the force in the direction of the flow per unit length, see
figure 1.3. The amount of flow is measured by the strain rate, γ̇, which is the
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Figure 1.3: A force Fy is applied on one side of a lump of material with length
Ly and width Lx, resulting in a position dependent shear flow with velocity
profile vy(x). The shear stress σxy is defined as Fy/Ly. The strain rate γ̇ is
defined as (vy(Lx)− vy(0)) /Lx.

difference in flow speed per unit of length perpendicular to the flow direction,
see figure 1.3. Both quantities are assumed to be distributed homogeneously
throughout the system, at least on average.

Simple fluids, such as molecular materials in the liquid state, like water or
oil, exhibit the simplest form of rheological behavior. They are called Newto-
nian fluids and the shear stress needed to induce flow is directly proportional
to the desired strain rate:

σxy = ηγ̇, (1.4)

in which the constant of proportionality η is called the viscosity [17]. Besides
simple fluids, there is also a large variety of complex fluids: foams, granular
media or gels, for example. The rheological curves of such complex fluids are
usually different from that of a Newtonian fluid and they are therefore called
non-Newtonian fluids. Their rheological curves typically include a number of
common ingredients that we will discuss here.

The first such ingredient is the yield stress, σy. A yield stress is the minimal
stress that needs to be applied for persistent flow in the system. In some
materials, the stress needed to start persistent flow, which is called the static
yield stress, is higher than the stress needed to sustain flow, which is called
the dynamic yield stress. In our simulations, though, they are equal and we
will no longer distinguish between the two. If a stress smaller than the yield
stress is applied, the system will usually display elastic or plastic behavior but
no steady flow. A fluid that only differs from a Newtonian fluid in the fact
that it has a non-zero yield stress is called a Bingham (plastic) fluid [18]. A
rheological curve for a Bingham fluid is shown and compared to the curve of
a Newtonian fluid in figure 1.4 a and c.
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Figure 1.4: Examples of rheological curves on double logarithmic axes (a and
b) and linear axes (c and d). The purple line represents a Newtonian fluid,
the black lines represent Bingham (plastic) fluids, the red line represents a
shear-thinning fluid and the blue line a shear-thickening one. The yield stress
is indicated by σy in panels a and c.

Figure 1.5: Different levels of stress on a material elicit different responses. A
stress below the plastic stress σp results in purely elastic behavior. A stress
between σp and the yield stress σy yields plastic behavior and creep. Only if
a stress above σy is applied can a system sustain steady flow.
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How does the yield stress compare to the critical stresses discussed in sec-
tion 1.1? In the rheological approach, σy is the minimal stress needed to get a
material to sustain steady flow. In the jamming description, one is interested
in the maximum stress before a material stops displaying a purely elastic re-
sponse. We call this the plastic stress, σp. There can be a whole range of stress
between these two limits where a system no longer exhibits elastic behavior,
but no steady flow either, see figure 1.5.

In addition to the presence of a yield stress, the second way in which the
rheology of non-Newtonian fluids can differ from that of Newtonian fluids is
that the variation of the shear stress with the strain rate is no longer linear,
but, for example, a power law (once the stress exceeds the yield stress). This
may be considered a shear stress dependent viscosity: if σxy = σy + η0γ̇

β , this
can also be written as σxy − σy = ηeff γ̇ with ηeff = η0γ̇

β−1. If β < 1, the fluid
is called shear thinning as the effective viscosity decreases when the flow rate
is increased. If β > 1, the material is called shear thickening. Many materials
that have a yield stress are also shear thinning and the two can be hard to
distinguish in everyday life (as in both cases flow becomes easier when more
shear stress is applied). Shear thickening materials are rarer, but examples
include silly putty and corn starch in water. A fluid that has both a non-zero
yield stress and a power law relationship between shear stress and strain rate
is called a Herschel-Bulkley fluid [19].

Other deviations from Newtonian behavior make it impossible to describe
the flow behavior of a system with a single rheological curve at all. Two of these
are shear banding and thixotropy. In the case of shear banding the flow is not
homogeneous in the system. While this is often caused by an inhomogeneous
distribution of the shear stress3, it can also be caused by instabilities in the
fluid itself, [21]. If the strain rate becomes location dependent, as is the case
for shear banding, it is no longer clear that it is meaningful to look at the
global strain rate.

In thixotropic fluids the viscosity decreases over time when the system is
sheared. This can be seen in many dairy desserts that are packaged in cups:
when just opened they appear fairly solid, but stirring them briefly makes them
much more fluid. This process is called shear rejuvenation. If a thixotropic
fluid is allowed to rest, its viscosity will increase again; this is called ageing [21].
The reverse of thixotropy, in which the viscosity increases while sheared, also
exists and is called rheopecty. It is much less common than thixotropy. Since a
rheological curve assumes time-independence it cannot represent such effects.

In the foam systems that we will describe, and that we will introduce in
depth below, neither shear banding nor thixotropy plays a significant role [22],
and we can describe our system using rheological curves.

3The Taylor-Couette cell, an apparatus often used in rheology, has inhomogeneous dis-
tribution of shear stress due to its cylindrical shape, for example [20].
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Figure 1.6: Rheological curves from the simulations of Olsson & Teitel. Left
panel: raw data that depends on the density. Right panel: data collapsed onto
master curve by rescaling with appropriate powers of ∆φ. Figure from [11]

1.3 Jamming & Rheology

Most of what has been described in the previous section is phenomenological.
It is often unknown how the meso-/microscopic properties of complex liquids
determine their rheology and whether there are universal mechanism that lead
to the appearance of, for example, shear-thinning. Conversely, in jamming we
have seen that many - static - quantities show critical scaling. An obvious
question is, then, whether the rheology near the jamming point will also be
governed by critical scaling functions.

This question was first asked by Olsson & Teitel in 2007 [11], using simu-
lations of soft and repulsive model particles. They found that the rheological
curve of a jammed system depends on the packing fraction, although they
represent this through the inverse shear viscosity η−1 = γ̇

σ , see the left panel
of figure 1.6. When both axes, and therefore the stress and the strain rate,
are rescaled by appropriate powers of the packing fraction, ∆φ, all data col-
lapses onto two master curves, one below jamming and one above jamming,
see the right panel of figure 1.6. Just as in the case of static jamming, this is
reminiscent of critical scaling theory, with ∆φ as the scaling parameter.

Specifically, Olsson & Teitel found a critical regime for high strain rate and
small |∆φ| where the original rheological curve is independent of the density.
Rheologically, this regime corresponds to the power law portion of a Herschell-
Bulkley description. Therefore, the exponent of this critical regime or power
law regime, which we will call β, is interesting both from a scaling and therefore
jamming perspective, where it can be used to identify universality classes, and
from a rheological perspective, where it differentiates between shear-thinning
and shear-thickening behavior.

Therefore, it is somewhat disheartening that there is a complete lack of
agreement over the value of this exponent. Olsson & Teitel themselves have
shifted down their value for β from 0.42 [11] to 0.3 [23]. Other people find
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higher values: 0.54 [24], 0.64 [25], 0.72 [26] and even 1 [27]. Luckily, all these
different exponents are at least found in slightly different systems. For exam-
ple, some results are obtained using particles without mass [11,23,27], whereas
other results were obtained using particles with mass [25, 28, 29], though in
some cases the mass was explicitly assumed to be so small as to be negligi-
ble [24]. Another area of big differences between approaches is how the energy
that is put into the system by driving is dissipated. Possible dissipation mech-
anisms include viscous friction between particles moving past each other [24],
viscous friction with a background flow [11, 23, 27], inelastic collisions [29, 30]
or even thermostats [25,28].

In the traditional critical scaling paradigm, such details of the microscopic
interactions might not be important for the critical exponents. However, in
static jamming we know that scaling relations often do depend microscopic
details. For example, the scaling relation for G of Eq. 1.3 is changed to G ∼ ∆φ
if the particles under consideration are not harmonic but hertzian, meaning
that their repulsive forces scale with overlap to the power 3

2 [5].
All this suggests that the details of the interactions are crucial to un-

derstand the rheology. Inspired by jamming studies, in this thesis we study
bubble models where the interactions between the bubbles are strictly repul-
sive. Moreover, we use local dissipative (viscous-like) interactions and do not
resort to mean field or other dissipation mechanism: we know that non-affine
deformations are crucial for capturing scaling behavior in static jamming [14]
and expect that the same is true in flow. Finally, in most of our work inertia
will be absent, which technically means that elastic and viscous forces have
to balance at all times. Although this leads to numerical complications, it is
simpler conceptually. After introducing our numerical model, we will perform
extensive simulations capturing both the global rheology and the microscopic
bubble motion. We will then develop a scaling model that predicts the rheo-
logical curve by explicitly linking microscopic fluctuations and the anomalous
shear elasticity near jamming.

1.4 Our Approach

In light of what was discussed above, we will start chapter 2 with introducing
the minimal jamming model that we use in our simulations. We will discuss
the microscopic interactions between our particles as well as our simulation
system and the way we implemented the dynamics in our simulation code. We
finish chapter 2 by showing some of the phenomenology of our microscopic
model such as rheological curves and probability distributions of velocities.

In chapter 3 we introduce the second pillar of our approach: the scaling
model that we will base our predictions on. Our model is based on three
relatively simple assumptions and will be called the 3E model - for Energy,
Effective strain and Elasticity, the three ingredients. We continue by solving
the 3E model and note that it predicts different behavior in three different
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regimes, depending on whether the system is densely packed and flowing slowly,
loosely packed and flowing fast, or somewhere in between. In the end, we
compare the predictions of the 3E model with our simulation results and find
that the model is consistent with our data. To go beyond ‘consistent’ and test
its predictive power, we need a more complete, quantitative model.

Therefore we go beyond the simple scaling formulation of the model in
chapter 4 to develop a quantitative model. We will call this model the Q3E
model to distinguish it from the scaling model. The quantitative Q3E model
allows us to make more precise predictions. These predictions are consistent
with our numerical data, further strengthening our model. The quantitative
formulation of Q3E also allows us to test the three assumptions of the model.
We find that they, too, are correct. In chapter 5 we then expand the model to
the normal components of the stress. If we formulate a natural extension of
our model to the normal stress we need to introduce a new elastic equation to
make the model work.

In chapter 6 we delve further into the remarkable behavior of the parti-
cles in jammed systems. In particular the distribution function of the relative
velocities, the source of energy dissipation, shows rich behavior that is sur-
prisingly amenable to a phenomenological description. We also delve into the
relationship between the global stress and the microscopic forces to answer the
question how elastic and viscous forces can balance on the bubble scale while
elastic stresses are so much bigger than viscous stresses.

Finally, we extend our microscopic model to include systems with nonlinear
microscopic interactions in chapter 7. We hypothesise an extension of our scal-
ing models and compare their predictions to two different experimental studies
to good effect. In chapter 8 we introduce a new computer implementation of
our nonlinear microscopic model to test our nonlinear scaling model. To ex-
tend our microscopic model we also need to include mass. While the results of
those studies are still very preliminary we can certainly say that changing the
microscopic interactions changes the global rheology. However, we have also
found evidence that the inclusion of mass is a singular perturbation, making
comparison to previous results complicated.



Chapter 2

Bubble Model and
Simulations

2.1 Microscopic Model

If a computer model is supposed to represent and describe the transition from
an unjammed state to a jammed state, it needs at least two properties. First,
the particles in the system need to have some concept of being ‘in contact’
or not, where forces between contacting particles are stronger than between
particles that are not in contact. Second, it needs some ‘softness’, meaning
that particles can still be compressed if they are in contact, so that it makes
sense to discuss densities higher than the jamming density.

The simplest of such a system, that has been used extensively in simulations
[5,11,27], is a system of discs that exert a hookean (linear) elastic force on each
other when they are in contact and that do not interact when not in contact:
particles i and j interact via an elastic force Feij given by

Feij = kδij dij < rij (2.1)

Feij = 0 dij > rij , (2.2)

in which k is a spring constant, δij is the overlap between bubbles i and j,
see figure 2.1, dij is the distance between (the centers of) bubbles i and j
and rij is the sum of their radii. In addition to satisfying the two minimum
demands introduced above (contacts and compressibility), these particles have
a number of properties that make them very simple, both conceptually and
computationally.

First of all, as shown by Eq. 2.2, these particles only interact when they
touch: there is no long range attraction or repulsion. Second, the interactions
between the particles are pairwise additive, meaning that the force between
particle i and j does not depend on whether particle i is also in contact with
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Figure 2.1: a two bubbles with a non-zero overlap δij exerting forces F e
ij = kδ

on each other. b two overlapping bubbles with different velocities vi and vj .
As a consequence bubble i experiences a velocity difference ∆vij and a force
F v
ij = −b∆vij . The opposite velocity difference and force working on bubble j

are not shown.

other particles. And third, since all forces are central, there are no torques
that need to be balanced to attain static equilibrium, only forces. Simulations
with these particles are often performed in two dimensions [5, 6, 11] as this
allows for a relatively small amount of particles (computationally cheap) with
relatively large linear size of the system (to minimise finite size effects) com-
pared to three dimensions. The disadvantage is that monodisperse particles
crystallize easily in two dimensions1. To counteract this it is customary to use
bidisperse discs, with radii with a ratio of 1:1.4, which prevents crystalliza-
tion [5]. Additionally, previous jamming research suggests that there are no
crucial differences between two and three dimensions [5].

The minimum requirements to expand this simple model to flowing or
dynamic systems are a means of energy dissipation, to offset the energy put into
the system by driving it, and equations of motion, to link forces to velocities.
For this, we use Durian’s bubble model [27]. In this model, if particles i and
j have relative velocity ∆vij they experience a viscous drag Fvij given by

Fvij = −b∆vij dij < rij (2.3)

Fvij = 0 dij > rij , (2.4)

with b the viscous force constant, see figure 2.1 for a simple illustration. Note
that such a force model still only has pairwise additive contact forces, but the
viscous force can make discontinuous jumps from zero to a finite value when
particles make or break contact, as the viscous force, once in contact, does

1because the locally optimal packing, the triangle, can tile space; i.e. there is no frustra-
tion [31]
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not depend on the overlap. The model takes the equations of motion to be
overdamped: forces balance at all time. Since the viscous forces depend on
the velocities, this allows the velocities to be determined once the positions
are given. Note that, even though the viscous force is not central, we still
disregard, as is customary [11,27], torque balance.

As the name implies, Durian’s bubble model was developed to describe col-
lections of bubbles, i.e. foams, though it is also thought to describe emulsions
well, since emulsions and foam share many of their important properties [6].
This is also the way we think about our minimal jamming model. Although
real foams deviate from the model as described above in several ways, we will
argue that these deviations are small in the regimes near jamming that we
study. First of all, the amount and arrangement of contacts on a bubble in-
fluences the contact force that that bubble will exert on other bubbles due to
deformation of the bubble. This effect does not become relevant until very high
densities, though, which is why we choose to neglect it. Second, gas bubbles
have non-zero mass and therefore will not strictly obey overdamped dynam-
ics. Still, since the mass of gas bubbles is small, bubbles accelerate rapidly and
any force imbalance will be very short lived. Finally, bubbles will show some
reaction to unbalanced torques, which this model does not take into account.
However, bubbles will certainly not rotate as rigid bodies under the effect of
torques - at best there will be fluid flow in the interface. In addition it has been
shown that the presence or absence of torque balance makes no difference in
linear response [32]. Therefore it is reasonable to not include torque balance.

2.1.1 Intermezzo: Roads not Traveled

Besides the microscopic model presented above, we have considered a number
of other options that were in the end discarded for various reasons. They are
briefly discussed here.

Mean Field Dissipation The method of dissipation described above is not
the simplest imaginable. A simpler method was introduced as an approxima-
tion by Durian in his original model [27] and has since been used often [11].
This simpler method of dissipation is called ‘Mean Field dissipation’ and has
dissipation take place not when contacting bubbles move relative to each other,
as in Eq. 2.3, but when bubbles move relative to the time averaged flow field:

Fvi = −b (vi − v (xi, yi)) , (2.5)

where v (xi, yi) is the value of the time averaged flow field at the position of
particle i. While this approximation was introduced mainly for its computa-
tional benefits, it has a clear physical interpretation: viscous drag with the
background fluid. Still, in actual foam systems dissipation takes place mostly
between bubbles and not between bubbles and the fluid [16].
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Therefore we must ask ourselves what the effect of this approximation
might be. Since we expect that non-affine flow, which is exactly the flow that
gets energetically punished by the mean field dissipation model, is prevalent
around jamming, we expect that this approximation will have a large effect.
We have nevertheless performed some simulations with the mean field model
for comparison and have found that the differences between the two dissipative
models are often small. For example, there seem to be few differences between
the stresses. For some quantities, however, the differences between the Mean
Field and the full Durian model are very big, see for example the correlation
lengths in section 2.3.3 and [33].

Overlap-Dependent Viscous Force We know from experiments that the
viscous force between bubbles depends not only on their relative velocity, but
also on their overlap [34]: if particles have a bigger overlap, they will experience
more viscous friction. Therefore, inclusion of this effect into our model would
make it more realistic, and could also take away the conceptual problem that
results from the fact that the viscous force is discontinuous when contacts are
made or broken.

Tangential Friction We have investigated a model in which the viscous
force was restricted to the direction perpendicular to the contact/parallel to
the contact line: bubbles moving strictly towards or away from each other do
not feel any viscous forces, only elastic forces.

This microscopic model has consistency problems, especially since we are
doing simulations without inertia. Consider the following situation: bubble
A and B are overlapping with each other, but not with any other bubbles.
A and B will feel, equal and opposite, elastic forces, acting parallel to the
vector connecting their centers. Whatever their relative velocities however,
the viscous force that they feel will always be perpendicular to the vector
connecting their centers; therefore force balance is impossible, independent
of their velocities. Because of these problems, that will not occur often but
are hard to overcome when they do, we have implemented a full vectorial
dissipative force.

2.2 Simulations

Before we discuss our simulations in depth, it is useful to switch to dimension-
less units. There are a number of free parameters in our model, shown in table
2.1, that can be used to construct non-dimensional units for length, time and
stress; these can then be used to construct units for any other quantity, such
as force or strain rate. As unit of length we pick the radius of the smallest bub-
bles, rs, as the bubble size seems more relevant than the system size. We fix
the other length scales by using the customary 1:1.4 ratio between small and
large bubbles discussed above and by taking a square box with Lx = Ly = 75
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Parameter SI unit

width of the system Lx m

height of the system Ly m

small bubble radius rs m

large bubble radius rl m

spring constant k N/m

viscous force constant b Ns/m

Table 2.1: Free parameters in our system that set dimensions. k and b are
defined in the microscopic force laws of Eqs. 2.1 and 2.3.

which leads, depending on density, to a particle number around 1000. We use
k as unit of stress since, in two dimensions, the unit of stress is also N/m.
Finally we construct a unit of time as b/k. This is the timescale over which a
relative displacement and an overlap of 1 (rs) result in equal forces. While this
is a huge overlap, due to the linearity of the forces this is also the timescale
over which a relative displacement and an overlap of 0.1 result in equal forces,
etc.

In our simulations we impose a fixed packing fraction, φ, and a fixed strain
rate, γ̇, and we measure the stresses that are needed to maintain this driving.
We change the packing fraction by changing the number of particles in our
system. Since the number of particles has to be an integer, this limits the

resolution of our packing fraction to π12

752 ≈ 0.0006. In order to go beyond this
resolution we also slightly change the size of our box to fine-tune the packing
fraction and achieve a higher resolution.

We apply a constant strain rate using Lees-Edwards boundary conditions.
This means that we use normal periodic boundary conditions in the vertical
direction, the direction of flow. But along the horizontal direction, periodic
copies of the system are given an extra velocity γ̇Lx, both for updating the
positions of bubbles and for calculating the viscous force over the periodic
boundary, see figure 2.2.

2.2.1 Nuts and Bolts

We use a ‘forward Euler’ iteration scheme for our simulations, which works
as follows: at time t we know the positions, r(t), and the velocities, v(t),
of all bubbles. To move to the next time step, t + δt, we then move all
bubbles forward with their velocity: r(t + ∆t) = r(t) + v(t)∆t. This leads to
a new contact network in which we can calculate all elastic forces, as these
depend only on position2. We can then use the condition of force balance

2and the radii, but these are constant and known.
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Figure 2.2: Lees-Edwards boundary conditions: particles are simply copied
along the vertical, stream wise, direction and are copied with an extra velocity
γ̇L in the transverse direction.

together with the elastic forces on all bubbles to calculate the velocities of all
bubbles, as there is one 2-dimensional unknown velocity and one 2-dimensional
force balance constraint per bubble. We use a Newton-Raphson solver for this
problem. We now have the positions and velocities of all bubbles at time t+∆t
and we can repeat the procedure.

We make this mathematically explicit to show why this is computationally
more involved than the Mean Field approximation. Let us define the contact
matrix Ĉ, this is a Z by N matrix, Z being the total number of contacts
between bubbles and N the total number of bubbles in the system. If bubble
j is one of the two bubbles in contact i then Ĉij = 1 if j has the higher index of
the two participating bubbles and −1 if it has the lower3. With this definition
ĈV, V being a vector with the velocities of all N bubbles, gives a vector with
the relative velocities of all Z contacts. Conversely, applying ĈT to any vector
of contact quantities returns a vector of the sums over all contacts per bubble,
i.e. if Fe is the Z-dimensional vector of elastic forces in each contact, then
ĈTFe is the N -dimensional vector of total elastic forces on each bubble. This
means that once we have the positions, and therefore the contacts and elastic
forces, at time t we need to solve the following equation of force balance for
V:

ĈT
(
Fe − bĈV

)
= 0 (2.6)

This inverse problem is computationally expensive to solve.
In contrast, in the Mean Field approximation the viscous force that a

bubble experiences depends only on its own position and velocity, not those

3this is an arbitrary sign convention, corresponding with the definition of bond vectors
pointing from the lower to the higher index.
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of its neighbours. This makes it possible to solve the velocity of each bubble
explicitly. If a bubble has a two dimensional velocity4 v, then the viscous force
on that bubble is −b (v − γ̇x̂ry), where x̂ is the unit vector in the x- or flow
direction and ry is the y- or transverse component of the bubble position. If
the elastic force on a bubble is fe, force balance then requires that

fe − b (v − γ̇x̂ry) = 0 (2.7)

or v = bfe+ γ̇x̂ry, which can be calculated directly since fe and ry are known.

2.3 Phenomenology

In this section we will describe the main phenomenology of the bubble flows
from our simulations. Unless otherwise specified we use simulations of approx-
imately 20 units of strain for all strain rates to ensure proper averaging; the
transient is typically less then 1.5 units of strain and is excluded from the av-
eraging. Data samples are taken every 2/3 of a percent of strain, for a total of
3000 data points in the full 20 units of strain. The set of densities and strain
rates used differs, and will be discussed individually for each result presented
below.

2.3.1 Elastic and Viscous stress

Because we use overdamped equations of motion and the forces therefore bal-
ance at all times, we can calculate the shear stress needed to get a bubble
system flowing from all the forces between the bubbles with the Born-Huang
formulation [35]:

σxy =
1

2V

∑
<ij>

rij,xfij,y, (2.8)

here V is the volume of the simulation box, the sum is over all contacting
bubbles and r is the contact vector between two bubbles. A similar expression
can be formulated for the three other components of the stress, σxx, σyy and
σyx. There are two types of forces between the bubbles: elastic forces, as
from Eq. 2.1, and viscous forces, as from Eq. 2.3. This means that we can
decompose the (shear) stress into two components: the elastic shear stress,
σe
xy, due to the elastic forces and the viscous shear stress, σv

xy, due to the
viscous forces. Of course, since f e

ij + fv
ij = fij , the elastic and viscous shear

stresses taken together give the same stress as calculated in Eq 2.8, which we
will call the total (shear) stress, σtot

xy . Note also that, since there is no torque
balance, σxy 6= σyx

Figure 2.3 shows the elastic, viscous and total shear stresses a function
of both strain rate (a) and density (b). As can be seen, the viscous stress

4we will now use lower case letters to distinguish two-dimensional vectors from N - or
Z-dimensional vectors for which we have used capital letters.
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Figure 2.3: The viscous contribution to the stress (red), the elastic contribution
to the stress (blue) and the total stress (black). a: stresses as function of the
strain rate at fixed density (φ = 0.87). The red dotted line indicates linear
dependence on strain rate; the black dotted line is our cutoff strain rate. b:
stresses as a function of density (we have taken φj = 0.8423, see section 3.3.2)
at a fixed strain rate (γ̇ = 10−4).

is largely independent of the density and scales linearly with the strain rate;
it shows newtonian behavior. The elastic stress depends on both the density
and the strain rate and, as we will make abundantly clear below, does so in a
complicated fashion. Since we can also see from figure 2.3 that the elastic stress
tends to dominate the viscous stress, it is clear that any anomalous behavior of
the total stress must be caused by the elastic stress. Therefore, in everything
that follows we will study the elastic stress only, unless specified otherwise. In
order to minimise the effect of the viscous stress, we limit ourselves to those
strain rates where the elastic stress dominates the viscous stress: γ̇ < 10−2, left
of the dotted black line in figure 2.3. This means that to good approximation,
σe = σtot

2.3.2 Rheological Curves

Above, we have seen that the elastic stress has a complicated dependence on
both the strain rate and the density. To get a general feel for this dependence,
we plot full strain rate sweeps for three different densities in figure 2.4. We
have picked a density that is markedly above the jamming density, φ = 0.87,
one that is around the jamming density, φ = 0.8424, and one that is below the
jamming density, φ = 0.8.

In the rheological curves of figure 2.4 we recognise a number of different
aspects of the rheology of complex fluids that we discussed above. The first
aspect is that for the density below jamming, there is newtonian behavior in the
limit of small strain rates, indicated by the blue dotted line. The asymptotic
behavior at φ = 0.87 is very different though, showing a flattening of the curve,
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Figure 2.4: The shear stress as a function of strain rate for three different
densities: 0.8 (blue), 0.8424 (purple) and 0.87 (pink). All curves approach
a similar power law for high strain rate, indicated by the purple dotted line,
which has a slope of 1/2. For low strain rates the low density shows steeper
behavior and the high density shows flatter behavior. The blue dotted line
indicates linear newtonian behavior.

possibly approaching a yield stress plateau5.

The high strain rate asymptote is also interesting, as here all three densities
approach the same behavior, shown by the purple dotted line. In all three cases
we see shear-thinning behavior, i.e. a power law with exponent less than one.
Moreover this exponent appears to the same for all three densities. At the
jamming density this behavior extends all the way to low strain rates; for the
densities away from jamming it crosses over into the low strain rate asymptotes
discussed before.

All of this is consistent with observations from several other experiments
and simulations [11, 24, 27–29]. In fact, Olsson and Teitel have already shown
that by rescaling with appropriate powers of ∆φ all data can be collapsed onto
two branches, one below and one above jamming [11]. In the next chapter we
will introduce a scaling model that will predict these exponents, as well as the
shear-thinning exponent and a number of other surprising details, from three
simple assumptions. We will also find that this way of rescaling the data does
not capture the full behavior.

2.3.3 Correlation Length

Another phenomenon that Olsson and Teitel observe is a length scale in the
correlation of the non-affine motion. I.e. they calculate the following correla-

5though that plateau is not reached
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Figure 2.5: Two plots of the non-affine motion correlation length as a function
of streamwise displacement. a: the original data from Olsson and Teitel [11]
from simulations with Mean Field dissipation. b: data from our simulations
with fully resolved bubble-bubble dissipation; a strain rate of 10−5 and 3 ·10−3

are shown for each density.

tion function:

C (y) = 〈vx(0)vx(y)〉 , (2.9)

where <> denotes averaging over time and over all bubble pairs that are dis-
placed only in the stream wise direction6, vx is the x-component, and there-
fore crosswise component, of the velocity of each bubble. Since there is no
movement in the x-direction in the average flow profile, all movement in this
direction is non-affine. A length scale, ξ, can be extracted from this correla-
tion length and Olsson and Teitel find that ξ−1 ∼ |∆φ|0.6f

(
σ/∆φ1.2

)
, [11].

An example of the correlation functions that they find is shown in figure 2.5
a.

When we calculate the same correlation function however, we do not find
a length scale that changes with the density, see figure 2.5 b. In fact, if we
perform simulations for different system sizes, we find that we can collapse
the correlation data by simply rescaling with the linear size of the system.
Additionally, the shape of our correlation functions looks different from those
of Olsson and Teitel [33].

The most striking difference between our simulations and those of Olsson
and Teitel is the form of the dissipation. Olsson and Teitel use mean-field
dissipation, discussed in section 2.1.1, while we use the bubble-bubble dissi-
pation of the full Durian model. Since this is the biggest difference between
the two systems, it is the most likely explanation for the difference. In fact,

6The simulation box is divided into several stream wise ‘lanes’ and bubble velocities are
correlated only between bubbles in the same lane, therefore their cross wise displacement is
not necessarily zero, but will be bounded from above by the lane width
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Figure 2.6: The probability distribution function of the relative velocity be-
tween particles for different strain rates (color) and different densities ranging
from φ = 0.8424 to φ = 1.

if we perform our own simulations with mean field dissipation we recover the
Olsson and Teitel correlation functions with their characteristic dip. We can-
not fully explain why these two similar systems give such different correlation
lengths, especially since most of their other behavior is very similar. However,
in a tentative explanation we point to the fact non-affine motion is the source
of dissipation in the Mean Field model, but not in the full Durian model. In
section 6.1 we show that energy dissipation, which is caused by relative motion
between the bubbles7, sets the (second moment of the) distribution of relative
velocities. Therefore it is not unlikely that the non-affine velocity is largely
set by considerations of energy dissipation in the Mean Field model, but not
in the full Durian model.

We note, however, that the mean field model was introduced as an approx-
imation to the full Durian model under the assumption that it was a harmless
computational simplification [27]. As we have shown that there is at least one
significant difference between the two models we feel that it is highly preferable
to use the full Durian model.

2.3.4 ∆v-distributions

The role played by the non-affine velocity in the mean field model, that of
source of energy dissipation, is played by the relative velocity in the full Durian

7in the full Durian model
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model. Due to big differences in the energy supplied to systems of different
density or strain rate, there are also big differences in the behavior of the
relative velocity. As an example of this we show the probability distribution
functions of a wide range of data in figure 2.6. Note the incredible difference
in the fatness of the tails of the distributions. These differences lead to wildly
different behavior in the systems, an aspect that we will explore in section 6.1.



Chapter 3

Scaling Model

In this section we will introduce an analytical scaling model to capture the
variation of the shear stress, σxy, with the fixed packing fraction φ and applied
strain rate γ̇; the rheological curve, as we have called it above. This model is
based on three coupled scaling relations for σ, γ̇, and ∆φ. As we will discuss,
these relations involve two additional variables: the average relative velocity
between bubbles, ∆v, and an effective strain, γeff , that we will explain in more
detail below. The three scaling relations form a closed system and are therefore
enough to express the three dependent variables - σ, γeff and ∆v - in the two
independent variables: γ̇ and ∆φ.

Our scaling model is based on three assumptions:

1. The system is in power balance.

2. A flowing foam can be mapped to a static system that has been sheared
through an effective strain γeff .

3. The stress as a function of γeff is given by the constitutive relation for
sheared disordered spring networks.

Each of these assumptions will lead us to formulate an expression, these
three expressions will be introduced below. For ease of reference we introduce
the name 3E model for this model to denote expressions relating to Energy,
Effective strain and Elasticity.

3.1 Ingredients

3.1.1 Power Balance

The first relation is the most fundamental: power balance. In steady state, all
power that is put into the system by driving must also be dissipated by the
viscous drag in the bubble contacts. If a system resists a strain rate γ̇ with

29
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a stress σ, energy is supplied to that system at a rate of Pin ∼ σγ̇. The rate
of energy dissipation in the bubble contacts is given by Fvij · ∆vij and since
the viscous force itself scales with ∆v, Eq. 2.3, the dissipated power scales as
Pout ∼ ∆v2. This results in the following scaling relation:

σγ̇ ∼ ∆v2 (3.1)

Note that this relation is only true when averaged over long timescales; on
short timescales energy is temporarily stored in elastic deformations.

3.1.2 Effective Strain

Next, we would like to formulate an elasticity relation, expressing the elastic
stress as a function of the strain. Since for our data we have σe ≈ σtot, this will
also be an expression for the total stress. In our flowing system, however, the
strain is not a steady state quantity: it increases continuously with a constant
strain rate γ̇. Therefore we define an effective strain, γeff , instead. There are
two ingredients. The first is to simply consider the compression of the system:
a system compressed to a density ∆φ beyond the jamming density φc will have
strain that is proportional to ∆φ:

γeff ∼ ∆φ, (3.2)

The second ingredient is to consider the actual strain that grows linearly in
time with the strain rate. This strain effectively gets relaxed with each bubble
rearrangement. If we can therefore deduce a timescale on which rearrange-
ments take place, trex, we can determine the typical peak strain that can be
built up between relaxation events: γ̇trex. The rearrangement timescale de-
pends on the relative velocity between bubbles: if bubbles do not move relative
to each other, they cannot rearrange and the rearrangement time is infinite.
Therefore the rearrangement timescale scales inversely with ∆v and we have:

γeff ∼
γ̇

∆v
. (3.3)

We connect these two ingredients by assuming that both are valid, but each will
dominate in different regimes. The static contribution, Eq. 3.2, dominates in
the high density and/or low strain rate regime, while the dynamic contribution,
Eq. 3.3, dominates in the low density and/or high strain rate regime.

3.1.3 Elasticity Relation

We can now formulate an elasticity relation as the third ingredient: a depen-
dence of the stress on the effective strain. We will assume that we can use the
results from static jamming for this. In the linear response regime we have, by
definition, σ = Gγ, G being the shear modulus. The static jamming result for
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G for harmonic particles is G ∼ ∆φ1/2. Therefore, for small γeff we assume
that we have:

σ ∼ ∆φ1/2γeff . (3.4)

For larger strains, outside the linear response regime, we use another static
jamming result. Matthieu Wyart et al. have found that quadratic scaling in
γ, and independent of density, takes over for large strains [36]. Adapting that
to our model, using γeff in stead of γ, leads to

σ ∼ γ2
eff . (3.5)

For now we will simply assume that Eq. 3.4 holds for small γeff and Eq. 3.5
for large γeff , though we will formulate a single expression for the stress as a
function of the effective strain later on. The two relations introduced above
will then be the asymptotic behavior of that function for small, respectively
large, γeff .

3.2 Regimes

As indicated above, we can combine these scaling relations into a closed sys-
tem to express σ as a function of γ̇. However, since a number of the scaling
relations, for example Eq. 3.2, are valid only in a certain regime, the same
is true for the resulting systems of equations. Since two of the ingredients,
effective strain and elasticity relation, consist of two regimes each, there is a
total of four systems of equations, each describing the behavior in a certain
region of our ∆φ, γ̇-parameter space.

For example: if we look at strain rates that are ‘very high’ and densities that
are ’small’1, we see that the dynamic strain, Eq. 3.3 will be ‘large’, while the
static strain, Eq. 3.2, will not. The effective strain will therefore be dominated
by the dynamic contribution. Likewise, the stress will be dominated by the
quadratic contribution, Eq. 3.5, which scales faster with γeff , and therefore γ̇,
than the linear contribution, Eq. 3.4. We call this combination of parameters
the Critical regime. We therefore have the following system of equations in
the Critical regime:

σγ̇ ∼ ∆v2 (3.6)

γeff ∼ γ̇

∆v
(3.7)

σxy ∼ γ2
eff (3.8)

This system can be solved for either σ, ∆v or γeff by simple substitution.
Here we will demonstrate solving for σ; solving for ∆v or γeff is completely
analogous and we will only present the results below. To find an expression

1the definition of ‘very high’ and ‘small’ will turn out to depend on each other: the bigger
∆φ, the bigger γ̇ has to be to be considered ‘large’.
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Critical Transition

elasticity σ ∼ γ2
eff σ ∼ ∆φ1/2γeff

effective strain γeff ∼ γ̇/∆v γeff ∼ γ̇/∆v

rheology σ ∼ γ̇1/2 σ ∼ ∆φ1/3γ̇1/3

range γ̇ > ∆φ2 γ̇ > ∆φ7/2

γ̇ > ∆φ4 γ̇ < ∆φ2

Yield Dense

elasticity σ ∼ ∆φ1/2γeff σ ∼ γ2
eff

effective strain γeff ∼ ∆φ γeff ∼ ∆φ

rheology σ ∼ ∆φ3/2 σ ∼ ∆φ2

range γ̇ < ∆φ7/2 C < ∆φ

C > ∆φ γ̇ < ∆φ4

Table 3.1: The four rheological regimes with their definitions, results and
ranges of validity.

for the stress, we start by taking the dependence of the stress on the effective
strain, in which we substitute the expression for the effective strain:

σxy ∼
γ̇2

∆v2
(3.9)

Then we rewrite Eq. 3.6 to an expression for ∆v:

∆v ∼
√
σxyγ̇, (3.10)

which we substitute to yield:

σxy ∼
γ̇2

σxyγ̇
(3.11)

or,
σxy ∼ γ̇1/2. (3.12)

This means that for ‘high enough’ strain rates and ‘low enough’ densities
we find density independent shear thinning behavior. We summarise the full
results for this regime, giving not only σ, but also ∆v and γeff as a function
of γ̇ and ∆φ below:


σγ̇ ∼ ∆v2

γeff ∼ γ̇
∆v

σxy ∼ γ2
eff

⇒


∆v ∼ γ̇3/4

γeff ∼ γ̇1/4

σxy ∼ γ̇1/2

(3.13)
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In a similar way we can define three other regimes, that we call the Tran-
sition, Yield and Dense regime respectively, we will explain this terminology
below.

Yield Regime The Yield regime is the opposite of the Critical regime: it
is the regime we access for high density and low strain rate. This means that
the Yield contribution to the effective strain will dominate the dynamic one
and the stress will be dominated by the linear behavior:

σγ̇ ∼ ∆v2

γeff ∼ ∆φ

σxy ∼ ∆φ1/2γeff

⇒


∆v ∼ ∆φ3/4γ̇1/2

γeff ∼ ∆φ

σxy ∼ ∆φ3/2

(3.14)

As indicated by its name, the stress in the Yield regime is independent of the
strain rate and depends solely on the density.

Transition Regime Surprisingly, a third regime can be found ‘in between’
the Critical and Yield regimes. If the density is low enough that the effective
strain is dominated by the dynamic contribution, but high enough that we can
still use the linear expression for the elasticity expression we are in what we
call the Transition regime:

σγ̇ ∼ ∆v2

γeff ∼ γ̇/∆v
σxy ∼ ∆φ1/2γeff

⇒


∆v ∼ ∆φ1/6γ̇2/3

γeff ∼ ∆φ−1/6γ̇1/3

σxy ∼ ∆φ1/3γ̇1/3

(3.15)

Just as the ingredients for the Transition regime are shared partially with
the Critical and partially with the Yield regime, so does the rheology show
both γ̇-dependence, as in the Critical regime, and ∆φ-dependence, as in the
Yield regime. The existence of this regime is a novel and surprising prediction
of our scaling model.

Dense Regime The fourth and last regime is even more curious than the
Transition regime. We call this regime the Dense regime because it occurs for
densities that are very high. At very high densities, not only does the yield
strain dominate the dynamic strain, but the non-linear term in the elastic-
ity relation, which is quadratic in the strain and therefore in the density2,
dominates the linear contribution, which scales only as ∆φ3/2:

σγ̇ ∼ ∆v2

γeff ∼ ∆φ

σxy ∼ γ2
eff

⇒


∆v ∼ ∆φ γ̇1/2

γeff ∼ ∆φ

σxy ∼ ∆φ2

(3.16)

2because the yield contribution to the strain is proportional to the density
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As we will show in section 4.3, the densities for which are actually in the Dense
regime are so large that the Dense regime is irrelevant in practice.

3.2.1 Crossovers

We can now also make the definitions of the regimes more precise, defining
what ‘large strain rate’ or ‘low enough density’ mean precisely. For example,
If we compare the Yield and the Transition regime, we see that they agree on
the elasticity relation:

σxy ∼ ∆φ1/2γeff , (3.17)

but do not agree on which of the two contributions to the effective strain
dominates: if the yield contribution dominates we are in the yield regime but
if the dynamic contribution dominates we are in the Transition regime. This
means that we crossover from one to the other around the point where these
two contributions are equal:

γ̇

∆v
∼ ∆φ. (3.18)

We rewrite this expression by substituting the expression for ∆v of Eq. 3.10:

γ̇

(σxyγ̇)
1/2
∼ ∆φ. (3.19)

For σxy we can now enter either the Yield or the Transition expression as both
will be equal exactly at the crossover3. Here we pick the simpler expression of
the two, the Yield one, Eq. 3.14:

γ̇(
∆φ3/2γ̇

)1/2 ∼ ∆φ, (3.20)

or:
γ̇ ∼ ∆φ7/2. (3.21)

So, if γ̇ > ∆φ7/2 the dynamic contribution to the effective strain dominates
and we are in the Transition regime. Conversely, if γ̇ < ∆φ7/2, the yield
contribution to the effective strain dominates and we are in the Yield regime.

An equivalent derivation starts at the expressions for the stress in both
regimes. Exactly at the crossover these two expressions must be equal:

∆φ3/2 ∼ ∆φ1/3γ̇1/3 → γ̇ ∼ ∆φ7/2, (3.22)

which is the same as above, as it should be. Since the second approach is
computationally easier, we will present only that approach below for the other
crossovers. The results are presented on the last rows of table 3.1.

3This is the case because the only difference in their derivation is the expression we use for
the effective strain, but these are equal at the crossover by construction. As a consequence,
the stresses will be equal at the crossover as well.
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Transition to Critical By comparing the predictions for the stress in the
Transition and Critical regimes, we immediately obtain that the two regimes
have their crossover when:

∆φ1/3γ̇1/3 ∼ γ̇1/2 ⇒ γ̇ ∼ ∆φ2 (3.23)

Combining this result with the result for the crossover from the Yield to
the Transition regime above we see that for small enough densities, so that
∆φ7/2 < ∆φ2, increasing the strain rate will bring one from the Yield first to
the Transition and then to the Critical regime.

Yield to Dense From the Yield regime we can also, theoretically at least,
crossover to the Dense regime. This happens when the linear and non-linear
contributions to the elasticity balance, but the effective strain is dominated by
the yield contribution. Again, we find the crossover by equating the stress in
the two regimes:

∆φ3/2 ∼ ∆φ2 → ∆φ ∼ 1. (3.24)

Within this scaling model, we cannot derive the value of this density, though
we will find below that it is too large to be relevant. This crossover density will
be the same density as the one mentioned above, below which the transition
from Yield to Transition to Critical was valid.

Dense to Critical If we are at very high density, higher than the crossover
density identified above, we start out in the Dense regime for low strain rate.
Increasing the strain rate will still bring us to a different regime: the Critical
regime. For any fixed ∆φ, the dynamic contribution to the effective strain will
eventually surpass the yield contribution if the strain rate is high enough. To
find this crossover strain rate we equate the stresses in the Dense and Critical
regimes:

∆φ2 ∼ γ̇1/2 → γ̇ ∼ ∆φ4 (3.25)

A qualitative graphic depicting all four regimes and their crossovers in a
phase-diagram-like way is also depicted in figure 3.1 a. Since, as discussed,
we cannot realistically access the whole phase space - specifically, the Dense
regime is out of reach - a qualitative graphic depicting the accessible regimes
is also shown in figure 3.1 b.

3.3 Rescaling Flow Curves

Now that we have predictions for the behavior of the stress as a function of
the strain rate, we can test these predictions by plotting the results of our
simulations and seeing whether the data agrees with our predictions or not.
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Figure 3.1: a: effective phase diagram of the Yield (black), Transition (red),
Critical (blue) and Dense (purple) regimes as a function of γ̇ and ∆φ. b: the
part of this phase diagram that is realistically accessible, demarcated by the
dashed line in panel a.

3.3.1 Collapse Plots

In principle, one could try to plot all stress vs strain rate data in a single
collapsed plot - i.e. with no further ∆φ dependence - by plotting not σ vs.
γ̇ but σ̃ = σ/∆φ∆ vs. ˜̇γ = γ̇/∆φΓ with ∆ and Γ well-defined exponents.
However, our model suggests that our data can be in more than two regimes,
each with their own ∆φ dependence in the rheology, and there are only two
axes that can be rescaled. Therefore this may not be possible in general. At
best it is possible to get collapse in two regimes.

Yield to Transition For example, if we want to attain collapse in the Yield
and Transition regimes we start by looking at the stress. Since the stress
depends only on the density but not on the strain rate in the Yield regime
via σ ∼ ∆φ3/2, we can use the expression for the stress in the Yield regime
to derive our exponent ∆. If we take ∆ = 3/2 then σ̃ = σ/∆φ3/2 = 1, which
is independent of ∆φ. Next, we consider the strain rate. Since the crossover
between the Yield and the Transition rate depends only the strain rate via
γ̇ ∼ ∆φ7/2, we see that by taking Γ = 7/2 we get ˜̇γ = γ̇/∆φ7/2 = 1 as location
of the crossover, this is again independent of the density.

In the process of deriving ∆ and Γ, we made sure that the stress in the Yield
regime and the crossover from the Yield to the Transition regime collapse. To
get full collapse of the data in the Yield and Transition regimes, we also need
to get collapse in the Transition regime itself. And indeed we do get collapse:
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In the Transition regime we have:

σ ∼ ∆φ1/3γ̇1/3 ∼ ˜̇γ1/3∆φ3/2 ⇒ σ̃ ∼ ˜̇γ1/3 (3.26)

Since we can write σ̃ as a function of ˜̇γ without ∆φ-dependence, we get collapse
in the Transition regime as well. Note that this is a mathematical necessity:
the crossover between the Yield and Transition is, by construction, the point
where the Yield and Transition stresses are equal. If this point is independent
of density (due to our choice of Γ) and the Yield stress itself is independent of
density (due to our choice of ∆) then the Transition stress must be independent
of density as well.

Theoretically, it is possible that this combination of Γ and ∆ also results
in collapse of the stress in the Critical regime. This is not mathematically
required, though, and there are no more free parameters that we can adjust.
All we can do is check whether the values of Γ and ∆ that we derived for the
Yield and Transition regimes also happen to lead to collapse in the Critical
regime. In fact, they do not. In the Critical regime we have:

σ ∼ γ̇1/2 ∼ ˜̇γ1/2∆φ7/4 ⇒ σ̃ ∼ ˜̇γ1/2∆φ1/4 (3.27)

This expression does depend on density and therefore the stress in the Critical
regime will not collapse when plotting σ̃ = σ/∆φ3/2 vs. ˜̇γ = γ̇/∆φ7/2.

Transition and Critical If we do want the stress to collapse in the Critical
regime, we need to pick different values of Γ and ∆. We can even choose to get
collapse in a second regime as well. Since the Transition and Critical regimes
are adjacent, it is logical to consider these two regimes first. The crossover
between the Transition and Critical regimes occurs when γ̇ ∼ ∆φ2, which
implies that ˜̇γ = γ̇/∆φ2. Rewriting our prediction for the scaling of the stress
in terms of ˜̇γ we obtain:

σ ∼ γ̇1/2 ∼ ˜̇γ1/2∆φ⇒ σ/∆φ ∼ ˜̇γ1/2 , (3.28)

which suggests that σ̃ = σ/∆φ. Consistently, we reach the same conclusion
for the transition regime, where

σ ∼ ∆φ1/3γ̇1/3 ∼ ˜̇γ1/3∆φ⇒ σ/∆φ ∼ ˜̇γ1/3 . (3.29)

Yield and Critical We can also plot the data to get collapse in the Yield
and Critical regimes. At first that may seem strange because these regimes
are not adjacent, but in fact there is no problem with having a collapsed Yield
and Critical regime, there will just be a non-collapsed Transition regime in
between. We again note that the stress in the Yield regime only depends on
the density and we can therefore get collapse only if we take σ̃xy ∼ σxy/∆φ3/2

as above. We substitute this into the stress in the Critical regime to find:

σ̃

∆φ3/2
∼ γ̇1/2 ⇒ σ̃ ∼

(
γ̇

∆φ3

)1/2

⇒ ˜̇γ ∼ γ̇

∆φ3
. (3.30)



38 CHAPTER 3. SCALING MODEL

Regime Combination rescaled axes

Critical and Transition σ/∆φ vs. γ̇/∆φ2

Yield and Transition σ/∆φ3/2 vs. γ̇/∆φ7/2

Yield and Critical σ/∆φ3/2 vs. γ̇/∆φ3

Table 3.2: Prescriptions of what to plot for collapse in the indicated regimes.

Strain Rate Density

3 · 10−3 × 0.8424 0.8436 0.8448 0.849 0.9

10−3 � 0.8426 0.8438 0.845 0.85 0.92

3 · 10−4 4 0.8428 0.8440 0.8455 0.855 0.94

10−4 � 0.8430 0.8442 0.846 0.86 0.96

3 · 10−5 ∗ 0.8432 0.8444 0.847 0.87 0.98

10−5 + 0.8434 0.8446 0.848 0.88 1.0

Table 3.3: In most plots in this thesis, strain rates are labeled with symbols
and densities are labeled with colours as indicated in this table.

The results for all three regime combinations are also shown in table 3.2.

3.3.2 Results

Data Range and Legend

Now that we know how to plot our numerical data to get collapse onto master
curves according to our scaling model, we can use this to finally test our model
by comparing its predictions with the results from the simulations that we
discussed in chapter 2. Unless we mention otherwise, all plots use six different
strain rates. The highest strain rate that we use is 3 · 10−3, which is chosen
so that σel > σvisc as discussed in section 2.3.1. The lowest strain rate that
we use is 10−5. Unless otherwise specified, these six strain rates are identified
with the same symbols as shown in table 3.3.

We have simulated these six strain rates in systems of 30 different densities,
ranging from just above the jamming density4 of 0.8423 to very high densities,
φ = 1. Note that a density of one does not mean that the entire system
is covered with bubbles as overlaps between two bubbles are counted twice.
Unless otherwise specified, these 30 densities are identified with colours ranging
from blue for low densities to red for high densities, see table 3.3. The large
amount of densities makes the difference in colour between adjacent densities
subtle at best. The purpose of this colouring scheme is to identify whether

4We will discuss how we came to our value of φc below
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Figure 3.2: Plot of our simulation data. a) Rescaled for collapse in the Transi-
tion and Critical regime. b) Rescaled for collapse in the Yield and Transition
regime. c) Rescaled for collapse in the Yield and Critical regime on the bottom.
A legend is given in table 3.3

certain data points correspond to ‘high’ or ‘low’ density. In a few plots it will
be necessary to identify the exact value of the density; a different color-and-
symbol-scheme will be employed there.

Collapse Plots

Figure 3.2 shows the simulation data plotted for collapse in the three different
combinations of regimes: a collapse in the Critical and Transition regimes, b
the Transition and Yield regimes, and c the Critical and Yield regimes. All
three graphs show decent collapse, and we might conclude from this that our
model works as well, but there are two caveats: non-collapsing regimes and
logarithmic axes.

First, our model does not just predict that we will get collapse in two
regimes by plotting the data in a certain way, as determined above, but also
that we will not get collapse in the third regime; strong non-collapse is not
evident in either of the three graphs of figure 3.2, although deviations are
most visible in the regime where no collapse is expected. Secondly, due to
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our logarithmic axes and many decades of data, it is quite possible for large
deviations to be hard to see: being a factor of 1.5 or 2 off is not very visible
on 6 decades of logarithmic axes. In this section we will discuss both issues,
though thorough treatment of especially the first one will need moving beyond
a scaling model, and will therefore have to wait for the next chapter in which
we do just that.

The Critical Regime

We start by looking at the Critical regime and note that the power law asymp-
tote on the right of the data in each graph, i.e. the Critical regime, looks
decently collapsed in all three panels of figure 3.2. However, it should not col-
lapse in panel b: only the Transition and Yield regimes should collapse there.
In fact, if we would get collapse in the Critical regime in the Yield and Tran-
sition plot of panel b, that implies a certain β: if the stress does not depend
on ∆φ in the Critical regime, which is a basic assumption of critical scaling
theory, then the collapse when plotting σ̃ vs ˜̇γ means that

σ̃ ∼ ˜̇γβ ⇒ σ ∼ ∆φ3/2−7β/2γ̇β (3.31)

is independent of ∆φ and therefore β = 3
2/

7
2 ≈ 0.43. On the other hand,

of course, collapse in panels a and c implies that β = 1/2. Obviously, both
cannot be true. While 0.43 is clearly not the same as 1/2, they may also not
be different enough that plotting data for which β = 1/2 in the way of panel b
results in clearly bad collapse. The conclusion is then that judging a straight
line on logarithmic axes is not the best way to determine whether data has
collapsed onto a power law master curve or not: we need a more discriminating
method.

Such a method is easily devised: if we divide out the expected power law
- σ ∼ γ̇1/2, σ ∼ γ̇0.43 or σ ∼ γ̇β more generally - the data should asymptote
towards a horizontal line. Horizontal lines are easier to identify by eye, but
more importantly they allow us to switch to a linear, instead of a logarithmic,
vertical axis so that deviations of a factor 1.5 or 2 can be easily detected.

In panels a and b of figure 3.3, we plot σ/γ̇β as a function of γ̇/∆φΓ (in a
using the values for the Critical and Transition regime: β = 0.50 and Γ = 2, in
b using the values for the Yield and Transition regime: β = 0.43 and Γ = 3.5)
In neither of these two panels does the data collapse to a flat asymptote on the
right and therefore neither β = 0.50 nor β = 0.43 is the ‘real’ β that describes
the Critical regime of our simulation data, though we can clearly see that the
model prediction of β = 1/2 leads to better collapse than β = 0.43. We can
now try to find the β for which collapse is optimal. There is the small problem
of what Γ to take for the horizontal axis, but since displacing a horizontal line
horizontally does not affect the degree of collapse we pick our model value of
Γ = 2 here. From panel c of figure 3.3, we see that an exponent of β = 0.47
gives much better collapse than either β = 0.50 or 0.43.
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Figure 3.3: The stress in our system with specific power laws of exponent β
divided out. The legend indicates which density corresponds to which color-
shape combination.

In our opinion, this is a success for our model: with no fit parameters
we have predicted the power law exponent of the rheological curve, β, of
soft viscous particles to within 10%. The discrepancy may have a number of
different causes: higher order terms in the elasticity expression, the presence
of non-zero viscous stresses, adjustments to the effective strain or finite size
effects. In fact it is quite remarkable that a scaling model with such limited
and basic ingredients gets the exponent right to such a high degree of accuracy.

One final caveat is the claim of zero fit parameters above; this is not strictly
true: the critical jamming density φj is not predicted by the model nor is it
enforced externally. We have determined that φj = 0.8423 ± 0.001 by deter-
mining where our collapse plots look good. However, within this range, β is
not sensitive to φj as we show in figure 3.3 d: changing φj slightly, from 0.8423
to 0.8433 does not change the fact that β = 0.47 results in a flat residue.

Yield and Transition Regime

Now we turn our attention to the Yield regime. Since we predict that the
stress is independent of the strain rate in this regime, the standard collapse
plots of figure 3.2 are already have the expected Yield behavior ‘divided out’:
data in the Yield regime should already be horizontal. In none of the three
representations, however, do we see a clear horizontal asymptote on the left.
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There are two possible explanations for this: the Yield regime does not exist
or our data is not dense and/or slow enough to be in the Yield regime.

We have two reasons to think that the second explanation is correct. First
of all, the existence of a yield stress in soft viscous systems is fairly well-
established and seen in many previous simulations and experiments [11,36,37].
Its existence is not a novel claim of our model, and we actually interpreted
the prediction of a yield stress by our model as one of the first positive signs
regarding its validity. Secondly, we see a clear flattening out of the data on
the left of the curves. While we cannot be sure that this flattening out does
not stop before it reaches the horizontal5 it is certainly consistent with our
predictions of a yield stress.

But if there is indeed not much data that is squarely in the Yield regime,
why is there a clearly not-fully-collapsing cloud of points on the Critical-and-
Transition data plot, figure 3.2 a? We claim that this is because the crossover
from the Yield to the Transition regime is very soft, meaning that there is
a large region of parameter space where the rheological behavior cannot be
viewed as either purely Yield or purely Transition but is a mixture between
the two. Since only data that is purely in the Transition (or Critical) regime
will collapse, this mixed data will not collapse. We will substantiate this claim
in the next chapter.

3.3.3 Conclusion

Our 3E scaling model is based on three simple assumptions and includes no
fit parameters. Yet, the 3E model is able to predict the scaling of the stress
surprisingly well, even though it does not capture the Critical exponent, β,
exactly. There are also some questions, for example in which of the three
regimes a certain data point is located, that the current 3E model can not
answer. Therefore, we will also develop a fully quantitative model, that does
not just predict the scaling, but also the value of the stress, in the next chapter.

5or, in fact, proceeds beyond it and curves up again, although that seems even less likely



Chapter 4

Scaling Model under
Scrutiny

In the previous chapter we have seen that our 3E model makes correct predic-
tions for the scaling of the stress with the strain rate and the density. To test
the 3E model more thoroughly, we are going to test the individual assumptions
that went into the model in detail in this chapter.

4.1 Ingedrients in Full Form

In order to test all three assumptions and their resulting ingredients - power
balance, the concept of an effective strain and a constitutive elasticity relation
- it is advantageous to formulate these ingredients not in scaling form as we
have done above, but in their full form, including all constants and prefactors.

Power Balance The first ingredient of our the 3E model is power balance:
the power that is put into the system, Pi, should, when averaged over long
times, be the same as the power dissipated by the system, Pd, or 〈Pi〉t =
〈Pd〉t. If Lx and Ly are the linear dimensions of our system then the power
that is put into the system is given by the force, σxyLx, multiplied by the
driving velocity, γ̇Ly, or Pi = LxLyσxyγ̇. The dissipated power is given by
the average power dissipated per contact times the total number of contacts.
From our microscopic force law we derive that the power dissipated in the
contact between bubble i and j is given by b (∆vij)

2
with b the microscopic

viscous force constant and ∆vij the absolute value of the velocity difference
between bubble i and j. Since the total number of contacts is given by NZ/2,

we get for the dissipated power: Pd = NZ/2
〈
b (∆v)

2
〉
ij

, in which 〈〉ij denotes

43
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averaging over contacts. The full equation for power balance is then given by:

LxLyγ̇ 〈σxy〉t =
Nb

2
〈Z〉t

〈
∆v2

〉
t,ij

(4.1)

Effective Strain The next set of ingredients of our scaling model is the
definition of three strains: the yield strain γy, the dynamic strain γdyn and the
effective strain γeff that is a linear combination of the other two. The yield
strain is simply proportional to the compression ∆φ. If we call the constant
of proportionality A, we get γy = A∆φ. The dynamic strain is a measure
for the strain that builds up in the system between rearrangements and is
proportional to the product of the strain rate and the rearrangement timescale.
The rearrangement timescale is proportional to the time that two bubbles that
are in contact take to move apart, i.e. move over a distance that is proportional
to their average diameter. Since the average speed with which two bubbles
move apart is given by 〈∆v〉t,ij , the rearrangement timescale is proportional
to d/ 〈∆v〉t,ij . Combining this and subsuming all these proportionalities into
one constant, B, this yields γdyn = Bγ̇d/ 〈∆v〉t,ij .

The effective strain, as a linear combination of the yield and dynamic
strains, can be written as γeff = Cγy + Dγdyn. In principle, this yields
γeff = CA∆φ + DBγ̇d/ 〈∆v〉t,ij . However, as long as we cannot measure
the yield, dynamic and effective strains directly - see section 4.5.2 - we have
no information about their exact magnitude. Therefore, the only relevant pa-
rameter is one that sets the relative magnitude of the two contributions to the
effective strain, we will call this parameter Beff :

γy = ∆φ (4.2)

γdyn =
γ̇d

〈∆v〉t,ij
(4.3)

γeff = Beffγy + γdyn (4.4)

Elasticity Relation The final ingredients of the scaling model are the elas-
ticity equations that link the stress to the effective strain and so close the
system of equations. If we assume that, for small effective strain, we can use
the static results replacing the strain with our effective strain, we come to
the conclusion that σelxy = Gγxyeff = A1k∆φ1/2γxyeff , the A1 being a numeri-
cal constant of proportionality. This leads to a problem for the shear stress
though: in the jamming limit, ∆φ ↓ 0, the stress goes to zero. According to
Wyart et al. [36], there is a second contribution to the shear stress in spring
networks: one that is quadratic in the size of the strain. Therefore we as-
sume that the dependence of the shear stress on the effective strain has two
regimes here as well: one for small effective strain and/or large ∆φ, in which
the static contribution is dominant, and one for large effective strain and/or
small ∆φ, in which Wyart’s contribution is dominant. If we want to write
a single expression that combines these two contributions, a simple addition,
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Figure 4.1: a: Power input, LxLy 〈σxy〉 γ̇, vs. dissipated power, ZNb
〈
∆v2

〉
.

b: Ratio of power input and dissipated power vs. dissipated power. The black
line represents expected behavior. Colors and symbols indicate density and
strain rate as in in table 3.3.

like σ ∼ ∆φ1/2γeff + |γeff |γeff , may respect the symmetry, but is not analytic1.
While we want the expression to be non-analytic in the critical jamming point,
it needs to be analytic outside of it. We will use the simplest form that is ana-
lytic everywhere outside the critical point and respects the symmetries of the
system [33]:

σelxy = A1k∆φ1/2γxyeff

√
1 +A2

2

γxy2
eff

∆φ
(4.5)

4.2 Testing Power Balance

Power balance is such a fundamental concept that any discrepancy between
the simulation results and our formulation of power balance must be inter-
preted as a problem with the simulations. In this section we will show that
the simulations do indeed satisfy power balance. We can test the expression
for power balance, Eq. 4.1, directly, because it contains no undetermined co-
efficients, only known quantities. The values of Lx, Ly, N and b are imposed
externally. The situation for Z is slightly more complex. Z is not imposed by
us, but can be straightforwardly measured form the simulations.

In order to test the expression for power balance we plot the power that
is put in to the system, Pi = LxLy 〈σxy〉 γ̇, versus the total dissipated power,
Pd = ZNb

〈
∆v2

〉
in figure 4.1. Power balance predicts that these two are

equal: a scatter plot of Pi vs. Pd should result in a straight line with a slope of
1. As figure 4.1 a shows, that is indeed the case. Due to the logarithmic scale
on the axes of figure 4.1 a, small deviations that might exist would be hard to
see. Therefore, we also plot the ratio of energy input to energy output, Pi/Pd,

1another possible formulation, σ ∼ ∆φ1/2γeff +γ2
eff , is analytic, but does not respect the

reflection symmetry
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Figure 4.2: The average number of contacts per bubble, Z, a as a function of
∆φ and b as a function of γ̇. Colors in a and symbols in b indicate density
and strain rate as in table 3.3.

as a function of the dissipated power in figure 4.1 b. This ratio should be 1,
and this is indeed what we find. Although there are small deviations, these
stay within 5%, do not show any trend and are likely due to the fact that the
identity only holds for infinite time; we have averaged over a total strain of
approximately 17.

In our 3E model we have, however, implicitly made two approximations
to power balance. The first approximation concerns Z. As expected from the
jamming literature [5] Z in our simulations depends both on γ̇ and ∆φ. We
have tried to describe the functional form of Z (γ̇,∆φ), but have not found
a satisfying answer; our attempts are described in detail in appendix 9.1. In
our 3E scaling model we have, implicitly, assumed Z to be constant by not
including it as a scaling term in the power balance equation 3.1.1, though.
Since Z stays between approximately 3.8 and 5.4, see figure 4.2, with lower
values being overrepresented, here we have approximate the contact number
as Z = 4, so that the dissipated power becomes Pd ≈ 2Nb

〈
∆v2

〉
. The second

approximation is that we focus on the regime where the elastic shear stress,
σelxy dominates the viscous stress, σviscxy , so that σxy ≈ σelxy and we can use
our expression for the elastic stress, Eq. 4.5. The power input then becomes
Pi ≈ LxLy

〈
σelxy
〉
γ̇

If we plot our approximated expressions for the power input, Pi, vs. the
dissipated power, Pd, as we do in figure 4.3 a, we indeed see deviations from
the predicted equality. To get a better grasp of the severity of the deviations
from equality between power input and dissipated power in our approximation,
we again look at the ratio between the two, see figure 4.3 b. There are clear
deviations from unity. These deviations are strongest for high energy dissipa-
tion, the right side of the graph, and low density, blue color. This is exactly
as we expected as these are the cases in which the viscous stress is relatively
dominant. The worst case scenario sees a deviation of about 40%, which is
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Figure 4.3: (a) Approximated power input, LxLy
〈
σelxy
〉
γ̇, vs. approximated

dissipated power, 3Nb
〈
∆v2

〉
. (b) Ratio of approximated power input and

approximated dissipated power vs. approximated dissipated power. The black
line represents expected behavior. Colors and symbols indicate density and
strain rate as in in table 3.3.

Regime Full Expression

Critical σ =
√
A1A2d2NZ/2LxLy γ̇

1/2

Transition σ = (A1d)
2/3

(NZ/2LxLy)
1/3

∆φ1/3γ̇1/3

Yield σ = A1Beff∆φ3/2

crossover Critical Transition γ̇ = 2LxLyA1/NZA
3
2d

2 ∆φ2

crossover Transition Yield γ̇ = 2A1B
3
effLxLy/d

2NZ∆φ7/2

Table 4.1: Full expressions for the four regimes and their crossovers in dimen-
sionless form.

quite big. When compared to the full range of data that we have available
as seen in figure 4.3 a, however, these deviations are not very important. In
conclusion: the simulations agree with the full expression for energy balance
and our approximations, concerning Z and σelxy, have a clear, but in the end
minor.

4.3 Extracting Coefficients

To test either of the other two ingredients, the effective strain of Eq. 4.2 or the
elasticity relation of Eq. 4.5, we will need values for A1, A2 and Beff . One way
to get these values is by extracting them from collapsed rheological plots like
those from section 3.3.2. This is possible because, now that we have rewritten
all three ingredients in their full form, we can do the same for the resulting
expressions of stress as a function of strain rate and density. We can derive
these expressions by simply redoing the calculation of section 3.2 with the full
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Figure 4.4: Fitted line to the behavior in the Critical regime; the shown line
is given by σ̃ = 0.1 ˜̇γ1/2. Colors and symbols indicate density and strain rate
as in in table 3.3.

instead of the scaling ingredients. The resulting expressions are given in table
4.1. The expressions are given in dimensionless form, i.e. all stresses and strain
rates in these equations are dimensionless quantities. Note that while these
expressions look much less appealing than the scaling expressions above, only
numerical constants were added: none of the dependences on γ̇ and ∆φ have
changed. We call this model the Q3E model as it is a Quantitative version of
our original 3E model.

These expressions allow us to find the values of the three undetermined
constants A1, A2 and Beff by comparing the simulation data with these ex-
pressions. Using automated fitting routines to find the prefactors is problem-
atic because a priori it is unclear which data falls in which regime. Since we
do know the shapes of the curves for all regimes, either a simple power law or
even a just a flat line in the Yield regime, we can quite easily get a reasonable
fit by hand. For example, in figure 4.4 we show the collapse plot of the stress
vs. the strain rate that we showed before. It is clear that the data in the
Critical regime is well described by σ ≈ 0.1γ̇1/2, from which we can deduce,
using the expression from table 4.1 that

√
A1A2d2NZ

2LxLy
= 0.1± 0.02 (4.6)
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Figure 4.5: Fitted line to the behavior in the Transition regime; the shown
line is given by σ̃ = 0.15 ˜̇γ1/3. Colors and symbols as in figure 3.3

Now we substitute the relevant numerical values:

d = 2.4 (4.7)

N = 1100± 100 (4.8)

Z = 4± 1 (4.9)

Lx = Ly = 75 (4.10)

and we find that
A1A2 = 0.0045± 0.001 (4.11)

Note that these considerable error bars are due both to the fitting by hand
and using single values for the non-constant Z and N . Now we can use the
behavior in the other regimes to get extra restraints on other combinations of
A1, A2 and Beff . The plan is to use the expressions in the other two regimes
to get the two additional constraints that we need to get a closed system.

While it was easy to get a good estimate on the prefactor in the Critical
regime, because it contains a lot of data and is easily identifiable, it is harder to
get a reliable estimate of the prefactor in the Transition regime. Our solution is
to test the fit in both in a Critical-Transition collapse plot and in a Transition-
Yield collapse plot. Figure 4.5 shows σ̃ = 0.14˜̇γ1/3 in both collapse plots; it
looks convincing in both. Combining this result with our model expression
from table 4.1 we find

(A1d)
2/3

(
NZ

2LxLy

)1/3

= 0.14± 0.02 (4.12)

Using the same numerical values as before, Eqs. 4.7 to 4.10, we find that
A1 = 0.035± 0.005. Substituting this into Eq. 4.11 we find A2 = 0.13± 0.02.

This leaves Beff as the only undetermined parameter. Beff appears in the
expression for the stress in the Yield regime, but as we have seen before, for
example in figure 4.5, we do not have much data that is governed purely by
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Figure 4.6: Plot σ − σT /∆φ3/2. The shown line is the fit to the behavior in
the Yield regime: σ̃ = σ/∆φ3/2 = 0.077

the flat expression for the stress in the Yield regime. Since we now know,
to good approximation, the stress in the Transition regime, we can subtract
this contribution, leaving only the Yield contribution. We do this in figure
4.6. Note that a completely flat plateau is not reached. This means that the
crossover in the stress is not actually given by σ = σY + σT, an issue that we
will further explore later in this chapter. However, the data is sloping down
only very little, and it is reasonable to assign a value of 0.077 to the plateau
that the data will reach2. Here, the expression for the stress is σ = 0.077∆φ3/2.
Comparing to the result in table 4.1, this means that

A1Beff = 0.077± 0.02, (4.13)

or Beff = 2.2 ± 0.3. This we have now determined all three undetermined
constants:

A1 = 0.035± 0.005 (4.14)

A2 = 0.13± 0.02 (4.15)

Beff = 2.2± 0.3, (4.16)

which means that we can make quantitative predictions, and not just scaling
predictions, for all quantities.

For example, we can calculate the density for which we enter the Dense
regime from the Yield regime. Above, we have posited that this would be

2Note that we assume here that there will be a plateau, this does not follow strongly
form the data.



4.4. REGIMES AND CROSSOVERS REVISITED 51

unrealistically high, now we can substantiate that. Substituting all values into
the expression for the crossover from the Yield to the Dense regime from table
4.1 yields:

∆φY→D =

(
1

2.2 · 0.13

)2

= 12 (4.17)

Clearly, this density is not attainable in any realistic situation and is certainly
far beyond the highest density that we have used in our simulation (which is
1).

4.4 Regimes and Crossovers revisited

Above in section 3.3.2, we claimed that the crossover from the Yield to the
Transition regime is very soft. We used this to explain why we had bad collapse
in figure 3.2 a even though there was little to no data in the Yield regime3.
Now that we have a full quantitative description off the model, we also have
predictions for the size of the regimes and we can test whether the fitted values
for our prefactors, the extent of the three regimes and the presence or absence
of collapse are mutually consistent.

4.4.1 Regimes

The first thing we can do now is to see which regime is dominant for each indi-
vidual data point; the Q3E gives a prediction for that without further fitting,
making this a consistency test. Figure 4.7 shows a Critical-Transition collapse
plot with data points for which the Yield contribution is dominant coloured
black, points for which the Transition contribution is dominant coloured red
and points dominated by Critical behavior coloured blue. Note that there are
very little points in the Yield regime; this is in accordance with our previous
observation. It also means that we have to explain why many of the red data
points to the left do not collapse even though intuitively our model says that
they should, given that we have plotted the data to collapse in the Transition
and Critical regime.

Exactly at the crossover γy = γdyn by construction and therefore γeff =
γy + γdyn = 2γdyn. Furthermore, since σ ∼ γ in both the Yield and Transition
regime, if we are just beyond the crossover at the Transition side, the stress
is actually twice as big as the Transition contribution alone would have one
believe4. It may not be strange that data consisting of almost 50% Yield con-
tribution does not show fully Transition-like scaling, resulting in non-collapse
when plotted taking only Transition scaling into account. We can now won-
der how far beyond the crossover we have to move into the formal Transition

3As evidenced by the lack of a plateau.
4and conversely, on the Yield side of the crossover the the stress is twice as big as the

Yield contribution
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Figure 4.7: Transition-Critical collapse plot with data points coloured accord-
ing to the regime in which they dominantly are.

regime to reach the ‘real’ Transition regime: where the Transition contribution
markedly dominates the Yield contribution.

What we can do is take the actual ratio of the Yield and Transition/dynamic
contribution to the effective strain and compare them for all data points, i.e.
calculate:

RY T =
γy

γdyn
=
Beff∆φ

dγ̇/∆v
=
Beff∆φ

√
2σV

d
√
γ̇ZN

. (4.18)

Clearly for data in the Yield regime RY T ≥ 1 and for data in the Transition
(and Critical) regime RY T ≤ 1. It seems reasonable to demand collapse only
from those data points for which the Yield contribution is an order of mag-
nitude smaller than the Transition contribution, RY T ≤ 0.1. Conversely, we
cannot expect pure Yield behavior, i.e. a plateau until the Yield contribution
dominates absolutely, RY T ≥ 10. In figure 4.8 we have coloured those data
points for which 0.1 ≤ RY T ≤ 10 and neither the Yield nor the Transition con-
tribution dominates. We immediately note that the purple crossover regime is
in fact very wide. It completely replaces the actual Yield regime, which was
small to begin with, but also a large part of the Transition regime. That part,
in fact, that was not collapsing. If we only look at the data that is really in
the transition regime, the red data points for which RY T ≤ 0.1, we find that
the data collapses as our Q3E model predicts. Below we will present a second
approach to come to the same conclusions.
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Figure 4.8: Transition-Critical collapse plot with data points coloured ac-
cording to the regime in which dominantly are. The purple Yield-Transition
crossover regime represents this data points for which neither the Yield nor
the Transition contribution can be said to be dominant

4.4.2 Synthetic data

A second way in which we can test our claim that the poor collapse in the Tran-
sition regime when rescaling for collapse in that regime (and, say, the Critical
regime as in figure 3.2 a) is to synthesise data which we know adheres to our
model. If we can then show that this data, too, has weak crossovers and, as a
consequence, poor collapse around the crossover, this is strong corroboration
of our model.

Since we do not have a full analytical expression for our Q3E model, only
piecewise expressions in the three regimes, we will also create the synthetic
data in a piecewise fashion. This means that we will need to make a number
of approximations. We hope to show two things: first, that the softness from
the Yield-Transition crossover explains the bad collapse that we have seen in
the Transition regime in figure 3.2. Second, that collapse in the Critical regime
does not look bad even when plotting for collapse in the yield and Transition
regime5.

In order to show this we make the following approximations. Data points
that are formally in the Critical regime will be considered to be fully in the
Critical regime. In other words, we neglect the Transition contribution beyond
the Transition crossover, since we only intend to show that the data in the
Critical regime looks good despite being plotted for collapse in the Transition

5and therefore non-collapse in the Critical regime
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Figure 4.9: Transition and Critical regime collapse plot of synthetic data. The
data is coloured according to the regime it is in. a: data points corresponding
to our simulation data. b: data with an extra two slower decades of strain
rates.

(and Yield) regime. Disregarding the, collapsing, Transition contribution will
not make the data look more collapsed, it will make it look less collapsed.

For data on the dense or slow side of the Transition-Critical crossover we
use the following expression for the stress:

σ = σY + σT = A1k∆φ1/2(γY + γT) (4.19)

At first this may not seem like an approximation: we use the expression for
the elasticity that is valid in both the Yield and Transition regime with the
full expression of the effective strain. However, in the Transition regime the
effective strain is given by dγ̇/∆v. ∆v in turn depends on the stress. In this
case, this should be the full stress: the Yield and the Transition contribution.
In the derivation of the Transition stress, though we used only the Transition
stress. Therefore, the expression of Eq. 4.19 is an approximation, though
corrections are of higher order.

In figure 4.9 we show the synthetic data in a Transition-Critical collapse
plot. In panel a we use exactly the same γ̇ and ∆φ as we use in the simulations.
We note that the blue data points in the Critical regime collapse exactly onto
a straight line. This is purely a consequence of the way we defined the data.
We also note there is clear non-collapse in the red Transition data that borders
the, very small, set of black Yield data. This is exactly what we saw in figure
3.2: data in the Transition regime that should collapse is not collapsing. The
fact that we see it again here, where we know, by construction, that the data
obeys our model, means that the non-collapse in the Transition data of figure
3.2 is perfectly consistent with our model and is likely the consequence of the
soft crossover between the Yield and Transition regimes.

If we add two additional slower decades of strain rate, as we do in figure
4.9 b, we note two things. First, the amount of data in the Yield regime
increases because there is more slow (and dense) data. Second, we note that the
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Figure 4.10: Yield and Transition regime collapse plot of synthetic data. The
data is coloured according to the regime it is in. a: data points corresponding
to our simulation data. b: data with an extra three decades of density closer
to jamming.

Figure 4.11: Plots of our synthetic data. Panel a uses a much smaller data set
then our simulation data: φmax = 0.9 and γ̇min = 10−4 rescaled for collapse in
the Critical and Transition regime. Panel b uses a larger one: φmax = 1 and
γ̇min = 10−7 and is rescaled for collapse in the Yield and Transition regime.

cloud of Transition data that does not collapse becomes even more noticeable.
Compared to figure 4.9 b, panel a looks almost nicely collapsed.

In figure 4.10 we show the other side of the coin. We plot our synthetic data,
in panel a again using the same γ̇ and ∆φ as our simulations, for collapse in the
Yield and Transition regime. We note that these two regimes indeed collapse
very well and that we are still quite some distance away from reaching a Yield
plateau. We also note that the data in the Critical regime looks reasonably
collapsed too, even though, by construction the data does not collapse. To see
if this is a consequence of not approaching the jamming density close enough,
we add three extra decades of density closer to the jamming density in figure
4.10 b. Clearly even going down to ∆φ = 10−7 does not make the collapse
look appreciatively bad.
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The fact that a collapse plot can look good even though it contains data
that is not collapsed and the fact that there are three regimes lead to complica-
tions when using a fitting algorithm that assumes two regimes, and therefore
the possibility of full collapse. You might imagine, for example, that when
having data with only moderately slow strain rates, even fewer than in figure
4.9 a, a blind fitting algorithm that optimises collapse of all data would return
something close to our Transition and Critical collapse, as in figure 4.11 a.
If this rescaling would be interpreted from a Herschell-Bulkley (and therefore
two-regime) perspective, one would assume that the yield plateau would scale
as ∆φ1, which is inconsistent with our model, and that the high strain rate
asymptote would scale as γ̇1/2, which is consistent.

Improving the data by adding slower and slower strain rates and using the
same blind fitting algorithm that assumes two regimes will likely in the end
yield our Yield and Transition rescaling like in figure 4.11 b. Figure 4.11 b
is certainly better collapsed than figure 4.9 b, which contains the same data
points. Interpreting this result from a Herschell-Bulkley perspective yields
∆φ3/2 scaling in the Yield plateau, which is consistent, and γ̇0.42 scaling in the
high strain rate asymptote, which is inconsistent. This shows that approaching
the data with an incorrect theoretical model may lead one to conclusions that
may be wrong; in this case finding two shifting exponents where there are
three constant ones.

4.4.3 Conclusion

In conclusion, many of the properties of our simulation data that seemed
to be in contradiction with our 3E model are perfectly consistent with it.
Most importantly, the fact that there is poor collapse well into the Transition
regime even when rescaling in such a way that the Critical and Transition
regime should collapse, is a consequence of the slow crossover between the
Yield and Transition regime. What is more, it is possible to plot the data in
ways that look good, but do not actually say much about the data. This latest
realisation becomes even more important if one approaches the data with the
preconception that there are two regimes and tries to determine the exponents
with a blind fitting procedure [11].

4.5 Testing the Other Model Ingredients

Now that we have full, quantitative expressions for all three ingredients, we
can test whether the assumptions going into our model were correct. If so, our
model describes actual physical behavior. If not, our success in describing the
rheology was coincidental.
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Figure 4.12: The stress plotted vs. the effective strain, rescaled for collapse.
The superimposed black line is our model prediction, Eq. 4.5, with the coeffi-
cients as determined above.

4.5.1 Testing Elasticity Relations

The second ingredient of the Q3E model that we will test is the elasticity
equation 4.5. Since this equation includes the effective strain, we will also
indirectly test our expressions for that, but we will look at the effective strain
in more depth in the next section.

We predict that the shear stress depends on both the effective strain and
the density. This means that, in order to get full collapse if we plot the stress
vs. the effective strain, we need to rescale both with an appropriate power of
∆φ. If we consider σ̃ = σ/∆φ and γ̃eff = γ/∆φ1/2, equation 4.5 becomes

σ̃xy = A1kγ̃eff

√
1 +A2

2γ̃
2
eff . (4.20)

This means that if we plot σ̃ vs. γ̃eff we predict full collapse of the data, with
asymptotic linear behavior for small γ̃eff and asymptotic quadratic behavior
for large γ̃eff . Note that γeff , and therefore γ̃eff , depends on Beff , which we
have just determined above.

As can be seen in figure 4.12, our predictions for the elasticity relation
describe the data well. Note that there are no fitting parameters here, all un-
determined parameters having been determined from the rheology data above.
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One can wonder, of course, whether this test of the model is independent
from tests we have performed previously. In principle, it is not an independent
test since our predictions for the rheology follow purely from power balance
on the one hand and the effective strain and elasticity relations on the other.
Therefore, if our predictions for the rheology hold, which were tested in figures
3.2 and 3.3 and our expression for power balance holds, which we tested in
figure 4.2, then our expressions for elasticity and effective strain must also
hold. In practice, it is not that clear-cut, however, since the above statement
only holds if our predictions were upheld exactly. This is not the case, in
fact, we have seen that power balance as we use it in our model6 can lead to
acceptable but noticeable errors. Therefore we think it is correct to consider
this test of the elasticity relation a useful consistency check.

4.5.2 Testing the Two Strains

The third and final ingredient of the model that we will test is the concept of
the two strains: the yield strain, γy, and the dynamic strain, γdyn; see equation
4.2. While testing the elasticity relation in the previous paragraph, we have
already found indirect evidence that our definition of the effective strain makes
sense: the data collapses if plotted as function of this strain. However, we
would like to measure actual strains that behave like our effective strain or,
even better, the yield or dynamic strain individually.

We have tried a number of different approaches to identify strains in the
system. The first approach we have tried was to instantaneously reverse the
direction of the strain rate during a simulation. We then planned to determine
the strain scale over which the stress achieved its new (reverse direction) steady
state. Since the effective strain is in some ways a measure of how deformed the
system is due to flow, one would expect the strain scale that we measure this
way to reflect the effective strain. However, the stress exhibited much richer
behavior than the expected exponential decay towards the new steady state
value such as a discontinuous rise or dip directly after reversal. Therefore
any strain scale that we might have found in this scenario could hardly be
classified as an easily accessible and simple test for the effective strain. We
have also looked at the anisotropy in the contact network as a possible measure
of the effective strain, another measure of the deformation due to flow, but did
not find the proposed scaling with ∆φ or γ̇ in any of the first three Fourier
components of the contact density as a function of angle.

Therefore we ended up looking at the strain scale over which the stress
signal correlates with itself: in a system with a large effective strain we expect
there to be a large strain distance between subsequent ‘hills’ and ‘valleys’ in
the stress signal because it takes more strain to deform the system to a new
configuration that is just about to rearrange and vice versa. Therefore, we
calculated the autocorrelation function of the stress signals, Cσσ, and assigned

6so based on just the elastic stress and assuming constant Z, see section 4.2
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Figure 4.13: Autocorrelation of the stress, rescaled by the strain for which the
correlation is 0.5. Data is colored according to density: red curves correspond
to high density and blue curves correspond to low density. Colors correspond
to table 3.3 but strain rates are not indicated.

a strain scale to the decay of this autocorrelation. This was done by taking
the strain for which the autocorrelation was 0.5 and calling it the correlation
strain, γcorr. We have used linear interpolation between the data points for
higher resolution. As we show in more detail in Appendix 9.3, γcorr is a linear
combination of the yield and dynamic strain, however, the balance of the two
contributions is not the same as for the effective strain. We have thus not
found a conceptually simple and easy to measure strain in the system that is
proportional to the effective strain.

4.6 Conclusion

Our expanded Q3E model has passed the extra tests of this chapter. Power
balance holds exactly in our simulations and the approximations to the expres-
sion for power balance that we make in our Q3E model is reasonable. We have
not been able to measure the effective strain directly, though. As a consistency
check, our Q3E model also describes the elasticity relation exactly without fit
parameters. Finally, through a variety of approaches we have made plausible
that the seeming inconsistencies between the data and our 3E model in section
3.3.2 were the consequence of surprisingly soft crossovers.
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Chapter 5

Normal Stress

Up till now, we have only dealt with the scaling of the shear stress, σxy. We will
now turn our attention to the normal components of the stress: σxx and σyy.
Our 3E model can be naturally extended to these two components, although
we will need to include a new empirical relation for the stress as a function of
the strain.

5.1 Scaling Model

Before we introduce the extension to our 3E model and test its predictions,
we note that the two normal stresses, σxx and σyy are close (not identical)
within the regime in which we consider the data. This can be seen in figure
5.1. While there is a bump in σxx compared to σyy, its magnitude is small
and we have not investigated it further. We will first discuss whether and how
the three ingredients of the 3E model for shear stresses, Eqs. 3.1, 3.2, 3.3, 3.4
and 3.5, need to be changed for the normal stress. The first ingredient, energy
conservation, Eq. 3.1, remains:

LxLyσxyγ̇ =
NZb

2

〈
∆v2

〉
. (5.1)

Energy is conserved no matter what component of the stress we consider. Note
that this suggests that the shear stress enters the description of the normal
stresses.

The second set of ingredients for our 3E model, the two expressions for
the yield strain, similar to Eq. 3.2, and the dynamic strain, similar to Eq. 3.3,
will also be unchanged, as we can still assign an effective strain based on
the compression and the relaxation time scale. We will, however, allow for
the balance between these contributions to be different from the shear case.
Therefore we have:

γeff = Bxxeff ∆φ+
γ̇d

∆v
, (5.2)
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Figure 5.1: The ratio of the xx and yy components of the elastic stress. In the
regime where we consider the data, γ̇ < 10−2, left of the black line, the two
are equal. Red means high density, blue means low density, see the legend in
table 3.3

with Bxxeff a new undetermined coefficient. We will test this assumption to-
gether with the elasticity relation that we introduce next, just as we did for
the shear stress above.

The third ingredient describes the relationship between the stress and the
effective strain. For shear stresses, we proposed a linear, σxy ∼ Gγeff (Eq. 3.4),
and a quadratic, σxy ∼ γ2

eff (Eq. 3.5), regime. However, since the result of
Wyart et al. for the quadratic part is not necessarily valid for the normal
stress, we do not have a natural prediction for the elasticity relation. The
simplest relation is a linear one:

σxx = Axxkγeff (5.3)

The best way to find out, however, is to determine it empirically.

5.1.1 Testing the Elasticity Relation

We test the elasticity relation in exactly the same way as we did for the normal
stress: we plot σxx vs. γeff in figure 5.2 a. Since our expression for σxx,
Eq. 5.3 does not depend on the density, no further rescaling should be necessary
to attain collapse. It is immediately clear, however, that the data does not
collapse. This means at the very least that the expression we used for the
effective strain, γeff = Beff∆φ + γ̇d/∆v with Beff = 2.2, is not correct. If it
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Figure 5.2: Plot of the normal stress vs. the effective strain. a: using exactly
the same expression for γeff as we do in the shear stress case. b: changing
the value of Beff to achieve collapse. The dashed line is a power law with
exponent 1, the black line with exponent 1.3. Colors and symbols correspond
to the legend of table 3.3.

were correct we would have seen collapse. The shape of the collapsed curve
would then have told us the functional form of the dependence of σxx on γeff .

The most simple way in which our proposed formulation of the effective
strain can be incorrect is if the value of Beff is not the same in the shear
and normal cases. In other words: the normal stress is still determined by
an effective strain given by two contributions, a yield strain and a dynamic
strain, but the contributions balance differently. If this is the case, we should
be able to get better collapse by adjusting Beff to a new value that we call Bxxeff

to distinguish it from the previous result, which we will cal Bxyeff . The panel b
of figure 5.2 shows that we are indeed able to get collapse for Bxxeff = 23 ± 2,
which is an order of magnitude larger than Bxyeff , for which we found a value of
2.2. We note that it is not surprising that the static, compression based strain
is more important in determining the compressive component of the stress.

Now we can also see that the expression for the elasticity that we formulated
in Eq. 5.3 is not correct. The dashed line in figure 5.2 b is a power law of
exponent 1, the expected linear behavior. Clearly, this does not match the
slope of the data. The data can still be described by a simple power law, but
it will have an exponent different from 1. In fact, as shown by the black line in
the figure 5.3 b, a power law with exponent 1.3 works well. This means that
the correct formulation of the elasticity relation is:

σxx = Axxkγ
1.3
eff (5.4)

We stress that this is an empirical result.



64 CHAPTER 5. NORMAL STRESS

5.2 Regimes

With the three ingredients formulated and checked, Eqs. 5.1, 5.2 and 5.4, we
can now derive the expressions for the normal stress as function of the density
and strain rate. Since there is now only one ingredient, the effective strain,
that has different behavior in different regimes, we expect to have only two
distinct scaling regimes for the normal stress, while we had four regimes for the
shear stress. We will call these regimes the Normal Yield regime, for ‘large’ ∆φ
and ‘small’ γ̇ so that Eq. 5.2 is dominated by the yield contribution Bxxeff ∆φ,
and the Normal Dynamic regime, for ‘small’ ∆φ and ‘large’ γ̇ so that Eq. 5.2 is
dominated by the dynamic contribution γ̇d/∆v. Our power balance expression
complicates this though, as we will illustrate below.

In the Normal Dynamic regime we have

σxx ∼ γ1.3
eff (5.5)

γeff ∼ γ̇

∆v
(5.6)

σxyγ̇ ∼ ∆v2, (5.7)

where we have used scaling expressions for simplicity. Substituting Eq. 5.7
into Eq. 5.6 yields

γeff ∼
γ̇√
σxyγ̇

. (5.8)

Substituting this into Eq. 5.5 then yields

σxx ∼
(√

γ̇

σxy

)1.3

(5.9)

Due to the dependence of the supplied power on the shear stress, σxy, the
shear stress enters the expression for the normal stress. We need to substitute
the expressions we found for the shear stress to express the normal stress as a
function of γ̇ and ∆φ. The shear stress, however, also has regimes. In principle,
this could split the Normal Dynamic regime into three regimes, one for each
regime of the shear stress. Fortunately, the crossover between the Yield and
Transition regimes is the same as the crossover between the Normal Yield
and the Normal Dynamic regimes: in both cases you are in the Yield regime
if ∆φ > γ̇/∆v 1. We will therefore refine our description to include three
regimes: the Normal Yield regime, in which the effective strain is determined
by the yield strain and the shear stress does not enter, the Normal Transition
regime, in which the effective strain is in the dynamic regime and the shear
stress in the Transition regime, and the Critical regime, in which the effective
strain is in the dynamic regime and the shear stress is in the Critical regime.

1In fact, we have seen that Bxx
eff > Bxy

eff , meaning that the crossover from the Normal
Yield to the Normal Dynamic regime takes place for much higher density than the crossover
from Yield to Transition regime
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Figure 5.3: Top: the regimes in the normal stress without taking into account
the shear stress dependence that enters through power balance. There are two
regimes in this case the Normal Yield (NY) regime and the Normal Dynamic
(ND) regime. Middle: the regimes of the shear stress. Bottom: the final
regimes of the normal stress. Vertical dashed arrows indicate the inheritance
of a crossover. NT denotes the Normal Transition regime and NC denotes the
Normal Critical regime.

Normal Critical Normal Transition Normal Yield

effective strain γeff ∼ γ̇/∆v γeff ∼ γ̇/∆v γeff ∼ ∆φ

shear stress σ ∼ γ̇1/2 σ ∼ ∆φ1/3γ̇1/3

rheology σ ∼ γ̇0.33 σ ∼ ∆φ−0.22γ̇0.43 σ ∼ ∆φ1.3

range ∆φ2 < γ̇ ∆φ7/2 < γ̇ ∆φ7/2 > γ̇

∆φ2 > γ̇

Table 5.1: The three rheological regimes with their definitions, results and
ranges of validity.
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These regimes are shown in figure 5.3. At the top we have Normal Yield
and Normal Dynamic regimes that follow from the analysis of the Normal
stress without taking into account the shear stress dependence of ∆v that
enters through power balance in the Normal Dynamic regime. In the middle
we show the Yield, Transition and Critical regime from the shear stress. Note
that the crossover from the Normal Yield to the Normal Dynamic regime and
the crossover from the Yield and the Transition regime have the same scaling
(γ̇ ∼ ∆φ2) as they are based on the same crossover from yield dominated γeff

to dynamic dominated γeff . However, since Bxxeff > Beff , the numerical value
for the crossover between the Normal Yield and Normal Dynamic regime is
higher. On the bottom of figure 5.3 we show the final regimes for the normal
stress. The final Normal Yield regime is not influenced by the shear stress
and therefore the crossover to the next regime is not changed. The crossover
between the Normal Transition and the Normal Critical regime is directly
inherited from the shear stress. Now that we have defined the three regimes
we can derive the rheological expressions in the same way we derived the results
fro the normal stress. The results are summarised in table 5.1 and given in a
little more detail below.

Normal Yield In the Normal Yield regime we have:


σxyγ̇ ∼ ∆v2

γeff ∼ ∆φ

σxx ∼ γ1.3
eff

σxy ∼ ∆φ3/2

⇒


∆v ∼ γ̇1/2∆φ3/4

γeff ∼ ∆φ

σxx ∼ ∆φ1.3

(5.10)

Note that our scaling for the normal stress in the limit of zero strain rate,
σxx ∼ ∆φ1.3 is not the same as our prediction for the shear stress in the limit
of zero strain rate, σxy ∼ ∆φ3/2. This is in contrast to the expectations and
findings of many [23, 38]. We note that we do not have strong empirical data
that corroborates that either σxy ∼ ∆φ3/2 or σxx ∼ ∆φ1.3.

Normal Transition In the normal Transition regime we have:


σxyγ̇ ∼ ∆v2

γeff ∼ γ̇
〈∆v〉

σxx ∼ γ1.3
eff

σxy ∼ ∆φ1/3γ̇1/3

⇒


∆v ∼ ∆φ1/6γ̇2/3

γeff ∼ ∆φ−1/6γ̇1/3

σxx ∼ ∆φ−1.3/6γ̇1.3/3

(5.11)

Normal Critical In the Normal Critical regime we have:
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Regime Combination Rescaled Axes

Critical and Transition σ/∆φ0.65 vs. γ̇/∆φ2

Yield and Transition σ/∆φ1.3 vs. γ̇/∆φ7/2

Yield and Critical σ/∆φ1.3 vs. γ̇/∆φ3.9

Table 5.2: Prescriptions of what to plot for collapse of the normal stress in the
indicated regimes.


σxyγ̇ ∼ ∆v2

γeff ∼ γ̇
〈∆v〉

σxx ∼ γ1.3
eff

σxy ∼ γ̇1/2

⇒


∆v ∼ γ̇3/4

γeff ∼ γ̇1/4

σxx ∼ γ̇1.3/4

(5.12)

5.2.1 Crossovers

As we have discussed above and illustrated in figure 5.3, the crossover be-
tween the Normal Transition and the Normal Critical regimes is the same as
the crossover from the Transition to the Critical regime by construction and
therefore scales as γ̇ ∼ ∆φ7/2. The crossover from the Normal Yield to the
normal Transition regime scales the same as the crossover from the Yield to
the Transition regime, γ̇ ∼ ∆φ2, as both take place where the yield contri-
bution and the dynamic contribution to the effective strain are equal. Since,
however, the yield contribution is bigger for the normal stress, the numerical
value of the crossover will be different.

5.3 Plotting and Results

5.3.1 Collapse Plots

Just as in the case of the shear stress, we can now determine the exponents ∆
and Γ for which a plot of σxx/∆φ

∆ vs. γ̇/∆φΓ results in collapse in the various
regimes. The analysis is completely analogous to that of section 3.3.1 and no
new interesting physics is found; in fact, due to the inherited crossovers, some
of the results are identical to the shear case. The results are presented in table
5.2.

Normal Yield and Normal Transition Regimes As mentioned above,
the strain rate needs to be rescaled to make the crossover between the Normal
Yield and Normal Transition regimes, which is the same as for the shear tress,
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Regime Full Expression

Normal Critical σxx = Axx
(
d2NZ/2LxLyA1A2

)1.3/4
γ̇1.3/4

Normal Transition σxx = Axx
(
NZd2/2LxLyA1

)1.3/3
∆φ−1.3/6γ̇1.3/3

Normal Yield σxx = AxxB
xx 1.3
eff ∆φ1.3

crossover Transition Yield γ̇ = 2A1B
xx 3
eff LxLy/d

2NZ ∆φ7/2

crossover Critical Transition γ̇ = 2LxLyA1/NZA
3
2d

2 ∆φ2

Table 5.3: Full expressions for the three regimes and their crossovers in di-
mensionless form.

collapse: ˜̇γ ∼ γ̇/∆φ7/2. Since the stress in the Normal Yield regime depends
only on the density, this prescribes the rescaling of the stress: σxx ∼ ∆φ1.3.

Normal Transition and Normal Critical Regimes Between the Normal
Transition and the Normal Critical regime there is again a crossover that
determines the strain rate rescaling: ˜̇γ ∼ γ̇/∆φ2. Substituting this into the
expression for the stress in the Normal Critical regime yields:

σxx ∼ γ̇1.3/4 = ˜̇γ1.3/4∆φ1.3/2 ⇒ σ̃xx ∼ σxx/∆φ1.3/2. (5.13)

Normal Yield and Normal Critical Regimes Again, the dependence of
the Normal Yield stress on the density prescribes the rescaling of the stress:
σxx ∼ ∆φ1.3. This can be substituted into the expression for the stress in the
Critical regime to deduce the rescaling of the strain rate:

σxx ∼ γ̇1.3/4 ⇒ σ̃xx ∼ γ̇1.3/4/∆φ1.3 ⇒ ˜̇γ ∼ γ̇/∆φ4 (5.14)

5.3.2 Prefactors

The final detail that is necessary to complete our Q3E model for the normal
stress is the value of any new prefactors that were introduced. Since we already
have determined that Bxxeff = 23± 2, the only remaining new parameter is Axx
in Eq. 5.4. The approach for determining this fit factor is the same as for
the shear case: comparing the data to our full expression for the stress in the
Critical regime. This and all the other full expressions are given in table 5.3.
The next step is to plot the data for collapse, so that we can fit a power law.

Figure 5.4 plots the normal stress vs. the strain rate rescaled for collapse
in the Yield and Critical regime. Firstly, we note that collapse looks good
over the entire range, we will return to this below. For now, we focus on the

fact that the black line, given by 0.03
(
γ̇/∆φ3.9

)1.3/4
describes the data in

the Critical asymptote very well. This allows us to derive the value of Axx,
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Figure 5.4: Plot of the stress vs. the strain rate rescaled for collapse in the

Yield and Transition regime. The black line is given by 0.03
(
γ̇/∆φ3.9

)1.3/4
.

Colors and symbols correspond to density and strain rate as in table 3.3.

because

Axx

(
d2NZ

2LxLyA1A2

)1.3/4

= 0.3± 0.05, (5.15)

in which Axx is the only unknown. Substituting the values for d, N , Z,
Lx, Ly, A1 and A2 that we set, approximated or fitted before, we find that
Axx = 0.004± 0.001. This completes the normal extension to the Q3E model
and we can focus on the width of the regimes to see where we would expect
collapse when rescaling the data.

5.3.3 Regimes and Collapse

Figure 5.5 shows the same data as figure 5.4 but now coloured according to
the regimes in which the various data points are located: Yield data points in
black, Transition data points in red and Critical data points in blue. We can
clearly see that the Transition regime is much smaller for the normal stress
than for the shear stress, see figure 4.7, which is completely expected as Bxxeff

is about an order of magnitude larger than Bxyeff . As we discussed above in
section 4.4.1, data that is ‘purely’ in the Transition regime is already rare for
the shear stress, but it will be virtually non-existent for the normal stress. This
is why plotting for collapse in the Yield and Critical regime, as we have done
in figure 5.5 is the appropriate way to plot the data and we expect collapse
nearly everywhere.
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Figure 5.5: Collapse plot of the stress vs. the strain rate. Data points are
coloured according to the regimes they are in: blue for Critical regime, red for
Transition regime and black for Yield regime.

Figure 5.6: Plots of the stress vs. the strain rate with a Critical power law
divided out. a with the model prediction of γ̇1.3/4 ≈ γ̇0.34 divided out. b with
the power law that best yields a horizontal residue: γ̇0.36 divided out. The
legend indicates which density corresponds to each symbol-color-combination.
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However, just as was the case for the shear stress, this is not a reliable
way to determine whether our predicted exponent in the Critical regime, β,
is exactly correct. The real β cannot be too different from 1.3/4 ≈ 0.34,
otherwise we would not have had good collapse. However, it can be slightly
different. And in fact, in figure 5.6 b we see that dividing out our model
prediction of γ̇1.3/4 does not result in perfectly flat residual data. Instead, as
we show in figure 5.6 b, we best achieve flat behavior when dividing out γ̇0.36.
Just as in the case of the shear stress, this exponent is slightly different from
the model prediction but it is close enough to be considered consistent with
our model.

It should be noted that this results is different from the most recent result
by Olsson & Teitel [23] in two ways. First, the numerical value of the exponent
in the Critical regime is different, 0.36 for us as opposed to 0.28 for Olsson &
Teitel. And second, Olsson and Teitel find that the exponents for the shear
stress and normal stress in the critical regime are the same, while we find that
they are different: 0.47 vs. 0.36.

5.4 Conclusion

We have successfully extended our Q3E model to the normal component of
the stress tensor. While there were some surprises, a different balance between
the components of the effective strain and especially an unexpected elasticity
relation, we have been able to account for these in our Q3E model. With
these inclusions the Q3E model describes the simulation data well.The best
numerical estimate for the value of the critical exponent β is within 5% our
prediction.
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Chapter 6

Microscopic Behavior

Our model directly describes the most important macroscopic behavior of the
system: its rheology. In this chapter we will explore some of the remark-
able microscopic behavior in the system, namely the relative velocities of the
particles and the organisation of the forces.

6.1 Dissipation and Relative Velocity Distribu-
tion

As was discussed in both section 3.1.1 and section 4, energy dissipation is
governed by the relative velocities of the bubbles, ∆v. In this section we take
a closer look at the probability distribution of ∆v; we will be able to describe
this distribution in surprising detail.

6.1.1 Second Moment

Specifically, we can look at the second moment of the distribution:
〈
∆v2

〉
.

We have already seen in section 2.3.4 that the distribution functions have
widely varying width and therefore widely varying

〈
∆v2

〉
. Naively, one would

expect this second moment to scale with γ̇2: doubling the driving velocity
would double the velocities of all bubbles and therefore all relative velocities.
However, as can be seen in figure 6.1 a, this is not true: the distribution
functions of ∆v/γ̇ do not collapse. This is not surprising because we know
that 〈

∆v2
〉
∼ σxyγ̇ (6.1)

And indeed, we see that p
(
∆v/

〈
∆v2

〉)
= p

(
∆v/

√
σxyγ̇

)
does result in dis-

tribution functions of comparable width, as can be seen in figure 6.1 b. We
also note, though, that the distributions functions themselves do not collapse.

73
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Figure 6.1: The probability distribution functions of ∆v. a: the absences of
collapse of p (∆v/γ̇) illustrates the non-trivial nature of the velocity fluctua-
tions. b: when scaled by

√
σγ̇, the second moment of ∆v collapses but the

full distributions do not.

Below, we will first discuss the implications of Eq. 6.1 and then investigate the
fact that the distribution functions do not collapse.

To get a good grasp on the implications of Eq. 6.1, we rewrite the original
expression for power balance:

LxLyγ̇ 〈σxy〉t =
Nb

2
〈Z〉t

〈
∆v2

〉
t,ij

(6.2)

by rescaling ∆v with γ̇, as discussed above, to take out the trivial dependence
of velocities on the driving velocity; we denote v∗ := ∆v/γ̇. We can also
take together a number of the constants to form the contact density C =
NZ/2LxLy. This results in

〈
v2
∗
〉
t,ij

C =
〈σxy〉t
bγ̇

(6.3)

Here we can interpret bγ̇ as an affine shear stress: if all particles were to move
affinely, they would all feel a force b∆vij = bγ̇rij on one side and the same force
in the other direction on the other side, for a total stress of (1/2V )2N (rbγ̇r) =
(Nπr2/V )(2/π)bγ̇ = (2φ/π)bγ̇.

We can now deduce the dependencies of v∗ on ∆φ and γ̇ by considering the
right hand side of Eq. 6.3. These dependencies are complex since σxy depends
on both ∆φ and γ̇, and with different exponents in different regimes. We
start by considering ∆φ: since σxy never shrinks with increasing density, and
grows with increasing density in two out of three regimes1, we can generally
say that increasing ∆φ increases v∗. Physically, this means the following. In
more densely packed foams, a higher stress is needed to sustain steady flow at
a fixed shear rate. Therefore, more energy is put into the system and more

1the Yield and Transition regimes
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Increasing!
Fluctuations

Figure 6.2: Fluctuations in the relative velocity increase with increasing den-
sity or decreasing strain rate.

energy needs to be dissipated. The only way the system can dissipate more
energy is by increasing the relative velocity between the particles.

Now we consider the dependence of v∗ on γ̇. σxy always increases with
increasing γ̇, though the degree with which it does so depends on the regime.
However, the dependence is always sublinear. Because σxy is sublinear in
γ̇, σxy/γ̇ is a decreasing function of γ̇. As a consequence, v∗ decreases as γ̇
increases. Physically this is because increasing the strain rate, at constant den-
sity, will not increase the input power as much as the resulting extra (relative)
movement will increase the dissipated power; therefore less relative velocity is
needed/possible to keep a balance between the input and dissipated power.

Both dependencies are illustrated in figure 6.2. Note that the fact that
fluctuations increase with increasing density is opposite to the trend in to
static jamming, where various measures of randomness and non-affinity in-
crease when decreasing the density towards the jamming density [5]. Here the
randomness increases with increasing density. It should be noted, though that
the static jamming results have been obtained in the quasi-static regime, while
here we are at finite strain rate.

We can now return to the probability distribution function of 〈∆v〉: we
know how the second moment scales,

〈
∆v2

〉
∼ σxyγ̇, and can take this into

account in plotting the data. Figure 6.1 b shows that the distribution functions
are now of equal width, but not of similar shape. This means that the second
moment does not capture the full behavior of the pdfs. In other words: higher
order moments will also display non-trivial scaling. To investigate this, we
will look at the higher order even moments of the relative velocity distribution
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Figure 6.3: The fourth moment of the relative velocity distribution function vs.

powers of σ/γ̇. a The naive Gaussian assumption of
〈
v4
∗
〉
t,ij

C2 ∼
(
〈σxy〉t /bγ̇

)2
does not hold as the data is not parallel to the black line that indicates linear

scaling. b
〈
v4
∗
〉
t,ij

C2 ∼
(
〈σxy〉t /bγ̇

)2.35
describes a large range of the data

well, as the data is parallel to the black line that indicates linear scaling. In
both plots, colours and shapes represent density and strain rate as in table
3.3.

because they also scale as moments of the dissipation. For example, for the

next even moment, the fourth moment, we have
〈
∆v4

〉
=
〈(

∆v2
)2〉 ∼ 〈P 2

diss

〉
.

In appendix 9.2 we also discuss the simple scaling of the first moment.

6.1.2 Fourth Moment

The first higher order even moment of the relative velocity distribution that
will contribute to the non-collapse of the rescaled probability distribution func-
tions is the fourth moment. The most simple possible scaling would be if the
fourth movement scaled as the square of the second moment:

〈
v4
∗
〉
t,ij

C2 ∼
(〈
v2
∗
〉
t,ij

C
)2

=

( 〈σxy〉t
bγ̇

)2

, (6.4)

as is the case for central moments in a Gaussian distribution, for example.
However, as we show in figure 6.3 a, this naive assumption does not hold as
the data is not parallel to the black line that indicates linear scaling

Therefore, we try a slightly different approach, namely the critical scaling-
like description that has already been applied successfully to many quantities
in static and non-static jamming. Thus, we hypothesise that we can describe
the fourth moment of the relative velocity distribution in the following way:

〈
v4
∗
〉
t,ij

C2 =

( 〈σxy〉
bγ̇

)α
F (∆φ, (b/k)γ̇) . (6.5)
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Figure 6.4: a the fourth moment of the relative velocity distribution function
with an exponent 2.35 power law of σxy/γ̇ divided out. b, c: plotting vs.
either of the two crossovers, γ̇ ∼ ∆φ2 and γ̇ ∼ ∆φ3.5, does not result in good
collapse in the non-power law portion of the curve. In all three plots, colours
and shapes represent density and strain rate as in table 3.3.



78 CHAPTER 6. MICROSCOPIC BEHAVIOR

Figure 6.5: The same scaling plot for the fourth moment of v∗ as figure 6.4 a,
now for a system of one fourth the linear size, or one sixteenth the size. Note
that the crossover from flat to curved takes place around 102, just as in figure
6.4 a.

In figure 6.3 we see that
〈
v4
∗
〉
t,ij

C2 ∼
(
〈σxy〉t /bγ̇

)2.35
describes a large part,

but not all, of the data well. Therefore, we expect α = 2.35. Next, we try to
describe F as precisely as possible. To plot F , we need to plot〈

v4
∗
〉
t,ij

C2(
〈σxy〉
bγ̇

)2.35 = F (∆φ, (b/k)γ̇) (6.6)

on the vertical axis. Then, we can determine the combination of γ̇ and ∆φ of
which F is a function by determining for what combination the data collapses.
Since we know that the power law description is worst for high density (red data
points) and low strain rates (+’s and ∗’s) we start with trial combinations of
the form ∆φχ/ (b/k) γ̇, with χ an exponent that is essentially a fit-parameter.
From figure 6.4 a we see that we get good collapse for χ = 1.4. There is
not enough data to make an accurate description of the functional form of F ,
however.

Note that the rescaling by ∆φ1.4/ (b/k) γ̇ introduces a new combination
of γ̇ and ∆φ in addition to ∆φ2/γ̇ and ∆φ3.5/γ̇ that emerged as crossovers



6.1. DISSIPATION AND RELATIVE VELOCITY DISTRIBUTION 79

E⇤Ē
All particles have 
energy

Only one particle 
has energy

Figure 6.6: Two different energy distributions. On the left, the energy is
equally distributed and the participation ratio is 1; on the right the energy is
concentrated in one particle and the participation ratio is 1/N

in our 3E scaling model. Intuitively these two relations would have been
likely candidates for the argument of F , but as figure 6.4 b and c show,
they perform markedly worse than ∆φ1.4/ (b/k) γ̇. Currently, we do not have
an interpretation of this new quantity. We have investigated whether this
deviation from a simple power law is a finite size effect, by checking whether
the part of the data that is described well by the power law grows smaller in
smaller system sizes, but have found this not to be the case, as can be seen in
figure 6.5, where we see that the position of the crossover does not change2 if
we reduce the size of the system by a factor of 16. However, it is surprising in
itself that we are able to describe the fourth moment of the relative velocity
distribution so accurately, even if the description is only empirical.

We can also offer an interpretation of what it means that the fourth moment
does not show the naive Gaussian-like scaling that we introduced above and
for that we have to consider a quantity called the participation ratio. The
participation ratio of some quantity E, typically an energy, is defined as:

Part(E) =
〈E〉2
〈E2〉 . (6.7)

With this definition, if the quantity E has a value of Ē at each particle, as
on the left of figure 6.6, 〈E〉 is just Ē and thus 〈E〉2 = Ē2. Similarly, since
the value of E2 in each particle will just be Ē2, we also have

〈
E2
〉

= Ē2.
Substituting these quantities in the participation ratio yields Part(E) = 1,
meaning that the system fully participates in the process associated with the
quantity E. Conversely, if only one particle has a non-zero value of E, let’s

2though the collapse is worse, possibly as a consequence of reduced statistics
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call it E∗, the average value of E is E ∗ /N , where N is the total number

of particles. This means that 〈E〉2 = E ∗2 /N2. Similarly
〈
E2
〉

= E ∗2
/N . Substituting these two quantities yields Part(E) = 1/N : only one of N
particles is participating in the process associated with E.

If we now take the dissipation as the relevant quantity, we have:

Part(Pdiss) =
〈Pdiss〉2
〈P 2

diss〉
∼
〈
∆v2

〉2
〈∆v4〉 . (6.8)

Therefore, the fourth moment of the relative velocity distribution enters in
the participation ratio. Since, as we have seen above, the fourth moment does
not simply scale as the square of the second moment, this will mean that the
participation ratio will differ between systems at different strain rates and/or
densities. Moreover, since we have accurate expressions for the second and
fourth moments, we can write down an expression for the participation ratio
of the dissipation:

Part(Pdiss) ∼
(

γ̇

〈σxy〉

)0.35

F

(
(b/k)γ̇

∆φ1.4

)
. (6.9)

We can now investigate the parameter values for which the participation
ratio is large or small. Since the function F is the same function as above and
therefore a strictly increasing function and since the shear stress increases with
density, increasing the density will decrease the participation ratio. Conversely,
since the shear stress depends sub-linearly on the strain rate, increasing the
strain rate will increase the participation ratio. Thus, for high strain rate
and low density, closest to the critical point, the participation ratio will be
highest and the dissipation will be most evenly spread throughout the system.
On the other hand, if we have high density and low strain rate, approaching
the quasi-static regime, the participation ratio will be very low. This means
that all dissipation occurs in just a few bubbles. This means that we have
identified the same regions with the extremes of randomness as above for the
relative velocity fluctuations: high density, low strain rate is more localised;
low density high strain rate is less localised, the parameter space picture of
figure 6.2 therefore applies here as well.

To get a qualitative feeling for the actual difference between the distribution
of the dissipation in these extreme cases we show two snapshots of our system
coloured by dissipation in figure 6.7. Snapshot a is for ∆φ = 0.98 and γ̇ =
10−5, the densest and slowest system we study. It therefore has the lowest
participation ratio. Snapshot b is for ∆φ = 0.8424 and γ̇ = 3 · 10−3, the least
dense and fastest system with the highest participation ratio. There is a clear
difference between the two: in snapshot a we can clearly identify individual
dissipation events, though they still involve multiple bubbles, while the rest
of the bubbles do not participate in the dissipation; in snapshot b there is a
large extended area of bubbles experiencing dissipation.
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Figure 6.7: Two snapshots of our systems coloured by dissipation. Red means
high dissipation while white means no dissipation. Both colour scales have
been individually rescaled by their maximum dissipation. a has φ = 0.98,
γ̇ = 10−5 and N = 1020; b has φ = 0.8424 ≈ φc, γ̇ = 3 · 10−3 and N = 1200.

6.1.3 Sixth and Higher Moments

Since we had such success in describing the fourth moment of the relative veloc-
ity distribution function, we can try a similar approach for the sixth moment.

Based on our results for the fourth moment, we assume that
〈
v6
∗
〉
∼
〈
v4
∗
〉3/2

or
〈
v6
∗
〉
t,ij

C3 = (〈σxy〉 /bγ̇)
3.5
F 3/2

(
∆φ1.4/(b/k)γ̇

)
. Figure 6.8 a shows that

this simple assumption is not correct: the data collapses poorly. However, the
shape is similar enough to that seen for the fourth moment in figure 6.4 that
we can try a more general scaling expression of the form:〈

v6
∗
〉
t,ij

C3 =

( 〈σxy〉
bγ̇

)χ
F 3/2

(
∆φξ

(b/k)γ̇

)
(6.10)

As we show in figure 6.8 b, we get good collapse for χ = 3.85 and ξ = 1. It is
remarkable that it is possible to describe the sixth moment of a complicated
distribution like p(∆v) to such a level of detail.

Still, there is markedly more noise in the data for the sixth moment than
for the fourth moment, which is not surprising given that we are looking at
the distribution in more and more detail. Because of this and the fact that we
have neither an explanation nor an interpretation of this result,we have not
investigated the eighth or higher moments.

6.1.4 Conclusion

We have been able to describe the probability distribution function of the
relative velocities, ∆v, in surprising detail, finding expression for both the
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Figure 6.8: Possible scaling expressions for the sixth moment. a assum-

ing that
〈
v6
∗
〉
t,ij
∼
〈
v4
∗
〉3/2
t,ij

. b the best fit is achieved for
〈
v6
∗
〉
t,ij

C3 =

(〈σxy〉 /bγ̇)
3.85

F 3/2 (∆φ/(b/k)γ̇). In both plots, colours and shapes represent
density and strain rate as in table 3.3.

second, fourth and sixth moments. Analysis of each of these moments reveals
a similar picture. For high strain rate and low density the system is in a
relatively homogeneous state: few fluctuations in ∆v and a high participation
ratio of the dissipation. The more the strain rate is increased or the density is
decreased, however, the more fluctuations appear and the more inhomogeneous
the system becomes.

6.2 Forces and Stresses

We have seen above in section 2.3.1 that, in the range that we limit ourselves
to, σel >> σvisc, see again in figure 6.9. On the other hand, all viscous and
elastic forces together must balance on each bubble. We also know that the
forces determine the stress via the Born-Huang formula [35]

σxy =
1

2V

∑
<ij>

rij,xfij,y, (6.11)

How can elastic and viscous forces balance, while elastic and viscous stresses
differ by orders of magnitude? The answer must lie in the organization of the
forces and the way they combine on each bubble.

In order to look at the distribution of the forces we look at four different
quantities. The first two are the second moments of the elastic and viscous
force distributions:

< f2
e >=

1

NZ

∑
<ij>

f2
e (6.12)

and similarly for < f2
v >, where the sum is over all contacts < ij >, N is the

total number of particles, Z is the average number of contacts per particle and



6.2. FORCES AND STRESSES 83

Figure 6.9: Scatterplot of the viscous vs. the elastic shear stress. The black
line represents equality, but is never reached. Colours and shapes represent
density and strain rate as in table 3.3.

NZ is the total amount of forces in the system3. The data is also averaged
over a strain of approximately 13 corresponding to 2000 data samples with our
sampling rate of 0.0067 strain. The second two are the second moments of the
distributions of net elastic and viscous forces on a particle:

< f2
e,net >=

1

N

∑
i

∑
j

f ije

2

(6.13)

and similarly for < f2
v,net >, where the first sum is over all particles i and the

second sum over all particles j in contact with particle i. Averaging over time
is the same as above.

First, to get an impression how the individual forces add to net forces,
we plot these in a scatterplot: < f2

e > vs. < f2
e,net > and < f2

v > vs.
< f2

v,net >. These plots can be seen in figure 6.10. These figures clearly
show different behavior for the viscous and elastic forces. Panel a shows that
the elastic net forces, < f2

e,net >, are much smaller than the elastic forces,
< f2

e >. This means that, typically, the elastic forces on a bubble largely
balance and cancel each other. The magnitude of the imbalance, however,
varies and clearly depends on both the density and the strain rate. Panel
b, in contrast, shows that the viscous net forces, < f2

v,net >, are larger than
the viscous forces, < f2

v >. This means that the viscous forces typically do

3this is twice the number of contacts, because each contact < ij > carries two forces:
one from particle i on particle j and one from particle j on particle i
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Figure 6.10: The second moment of the average force vs. the second moment
of the average net force per bubble. a for the elastic force, b for the viscous
force. The black lines represent equality. In both plots, colours and shapes
represent density and strain rate as in table 3.3.

Figure 6.11: The various stress and force quantities that we will try to connect
to each other.

not cancel per particle but instead add up. In addition there seems to be an
approximately linear relation between the individual and net viscous forces.
Finally, comparing the values of < f2

e > and < f2
v >, we observe that < f2

e >,
ranging from 10−11 to 10−8, is bigger than < f2

v >, which ranges from 10−15

to 10−11.

These observations answers the question how elastic and viscous forces
can balance, while elastic and viscous stresses differ by orders of magnitude.
Namely, elastic stresses are much larger than viscous stresses because the indi-
vidual elastic forces are much larger than the individual viscous forces. How-
ever, since all elastic forces on a bubble largely cancel, the net elastic force on
a bubble is relatively small, which allows it to be balanced by the net viscous
force on the bubble, which is made up of the much smaller, but non-cancelling,
individual viscous forces.
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Figure 6.12: The second moments of the distributions of the net elastic and
viscous force per bubble in a scatterplot. The black line indicates equality.
Colours and shapes represent density and strain rate as in table 3.3.

We will now fully explore the relationships between the forces and stresses
discussed here. Figure 6.11 displays which quantities we will try to link to-
gether: the shear stress, its two components and the four force quantities
discussed above. Some of the relations will be exact since they follow from, for
example, force or power balance. Other relations will be approximate and/or
empirical.

The first exact relation, which we have already tested before, is power
balance. Although we have formulated power balance in terms of the velocity
difference ∆v in our model, we can also formulate it in terms of the viscous
force fv because the two are strictly proportional: fv = −b∆v. This different
formulation of power balance is:

LxLyγ̇σxy =
N

2b
Z
〈
f2
v

〉
(6.14)

This relationship is represented by the green line labeled with an a in figure
6.14.

The second exact relation, also mentioned before, is force balance. Since
there are only two kinds of forces in our system, elastic and viscous forces, and
since we use overdamped dynamics, the net viscous and elastic force must bal-
ance each other on each bubble. The averages of their squares must therefore
also be the same, or:

< f2
v,net >=< f2

e,net > . (6.15)

Figure 6.12 shows that this is indeed the case. This relationship is represented
by the green line labeled with a b in figure 6.14.

The third relation has been mentioned a number of times before and con-
cerns the total and elastic stresses. Since we select our data on the condition
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Figure 6.13: The ratio of the second moment of the distribution of net forces
per bubble,< f2

v,net >, and the second moment of the distribution of individual
forces,< f2

v > multiplied with different powers of the contact number. In panel
a, a value of 1, indicated by the black line, represents total decorrelation of the
forces. In panel b, a value of 1 means total coherence. In both plots, colours
and shapes represent density and strain rate as in table 3.3.

that the viscous stress is small compared to the elastic stress, we also know
that the total stress must be approximately equal to the elastic stress:

σe
xy ≈ σxy. (6.16)

This relation differs from the previous two in that it is not an exact rela-
tion.This relationship is represented by the red line labeled with a c in figure
6.14.

We have seen above that there is a roughly linear relationship between the
second moments of the distribution of viscous forces and the distribution of
net viscous forces. Here we will investigate this relationship in more detail.
The most simple and natural reason for such a linear relationship would be
a complete lack of correlation between the individual forces. In this case we
would have:

< f2
v,net >= Z < f2

v > . (6.17)

A different hypothesis that would also result in a linear dependence would be
complete coherence; in that case we would have:

< f2
v,net >= Z2 < f2

v > . (6.18)

In general, the ratio of < f2
v,net > and < f2

v > can go from Z2, total correlation,
through Z, total decorrelation to 0, total anti-correlation in such a way that
viscous forces alone balance on each bubble. In figure 6.13 a we plot < f2

v,net >
/Z < f2

v >. While the value of the ratio iremains between 1 and 2, clearly
this is not the entire story. Conversely, on figure 6.13 b we plot < f2

v,net >
/Z2 < f2

v >. This ratio lies between 0.3 and 0.4, but there is much less scatter,
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Figure 6.14: Tying together the various force and stress expressions. Green
lines indicate exact relations, red lines indicate empirical and approximate
relations. The relations are given by: a LxLyγ̇ 〈σxy〉t = (N/2b) 〈Z〉t

〈
f2
v

〉
t,ij

energy balance, b < f2
v,net >=< f2

e,net > force balance, c σe
xy ≈ σxy, elastic

stress dominates and d < f2
v,net >≈ Z < f2

v > decorrelation of viscous forces.

especially for slower strain rates. Since the assumption of total decorrelation
is never off by more than a factor of two we will write that:

< f2
v,net >≈ 1.5Z < f2

v > . (6.19)

This relationship is represented by the red line indicated with a d in figure
6.14.

A graphic overview of the four relations discussed above is given in figure
6.14. Two things can be noted. First, the four relations that we have described
form a chain: each of the five quantities involved can be linked to any of the
four other quantities. This allows us, for example, to link the elastic stress to
the viscous forces.

Two quantities are currently not linked to the rest: σv
xy and < f2

e >. Two
possible ingredients for a relation to σv

xy are σxy and < f2
v >. Two possible

candidates for a relation to < f2
e > are σe

xy and < f2
e,net >. For simplicity we

will investigate the relationship between σv
xy and < f2

v > and the relationship
between σe

xy and < f2
e >.

The stress is calculated as a function of forces:

σxy =
1

2V

∑
<ij>

rijx f
ij
y , (6.20)

where the sum runs over all contacts and r is the vector connecting the centres
of the two contacting bubbles. If the orientations of all contacts and forces were
uniformly distributed over the circle and there were no correlations between
the orientation of a contact, the orientation of the force in that contact and
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Figure 6.15: The ratio of actual to maximal elastic shear stress given by〈
f2

e

〉1/2
NZ < r > /2. Colours and shapes represent density and strain rate

as in table 3.3.

the size of that force4 then the total stress would be zero as all contributions
would cancel on average. This means that the appearance of an overall stress
implies some correlation or anisotropy.

The best way to approach the amount of anisotropy is from the other
extreme: the case where the anisotropy maximises the stress. We first consider
the elastic stress:

σel
xy =

1

2V

∑
<ij>

rijx f
elij
y . (6.21)

Since f el is always in the same direction as r, this product will be maximised
when all contacts are along 45 degree angles with respect to the x- and y-axes.
On average rijx f

elij
y will then be (1/

√
2) < r > (1/

√
2) < |f el| >. The full

expression of the maximal elastic stress, given the average elastic force is then:

σel,max
xy =

NZ

4V
〈r〉
√
〈f2

el〉. (6.22)

The actually attained elastic shear stress, as a fraction of this maximal stress,
is shown in figure 6.15, which shows that (this particular kind of) anisotropy
is maximised for low density, the blue points, and high strain rate, the family
of crosses on the right. In our range of ∆φ and γ̇ the anisotropy is never larger
than 0.1 and never smaller than 0.03.

4and the length of the connection vector, but since this is always of the order of the
bubble radius anyway, we can ignore its variations.
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Figure 6.16: The ratio of actual to maximal viscous shear stress given by〈
f2

e

〉1/2
NZ < r >. Colours and shapes represent density and strain rate as in

table 3.3.

A similar analysis can be performed for the viscous stress. Since the vis-
cous force does not have to be along r, the configuration that maximises the∑
<ij> r

ij
x f

vij
y will be different. In fact, the optimal configuration will be one

in which all contacts are horizontal, so that rx = r, and all viscous force are
vertical, so that fv

y = fv. The full expression for the maximal viscous stress,
given the average viscous force is then:

σv,max
xy =

NZ

2V
〈r〉
√
〈f2

v 〉. (6.23)

The actually attained viscous shear stress, as a fraction of this maximal stress,
is shown in figure 6.16, which shows that the (second kind of) anisotropy is
also maximised for low density and high strain rate. But while these different
forms of anisotropy are maximised in the same regime, they attain different
values: the viscous anisotropy can reach values up to 0.4.

The two relationships that we have described, between σel
xy and

〈
f2

el

〉
on

the one hand and σv
xy and

〈
f2

v

〉
on the other hand, are not identities. They

cannot be used to write one of the quantities in terms of the other, they
only maximise one, the shear stress, in terms of the other, the average force.
More usefully, the degree to which this maximum is attained or not gives
us information about correlations in the contact network. In this sense it is
very similar to the relation between

〈
f2

v,net

〉
and

〈
f2

v

〉
: one (

〈
f2

v

〉
) gives a

maximum on the other (
〈
f2

v,net

〉
) and the degree to which this maximum is
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Figure 6.17: Tying together the various force and stress expressions. Green
lines indicate necessary and exact relations, red lines indicate empirical and
approximate relations, purple lines indicate relations that cannot satisfactorily
be reduced to an equality. The relations are given by: a LxLyγ̇ 〈σxy〉t =
(N/2b) 〈Z〉t

〈
f2
v

〉
t,ij

energy balance, b < f2
v,net >=< f2

e,net > force balance, c

σe
xy ≈ σxy, elastic stress dominates, d < f2

v,net >≈ Z < f2
v > decorrelation of

viscous forces and e the relations between the actual and maximally possible
shear stresses that give an indication of the anisotropy.

attained gives some information about correlations (between the individual
forces on a bubble). The relation between the two viscous force quantities is
only different in the sense that a reasonably well-defined, and, perhaps more
importantly, clearly interpretable, identity could be derived. Figure 6.17 adds
the the two stress-force relationships that we discussed here to the previous
overview for completeness’ sake.

6.2.1 Conclusion

We have resolved the apparent contradiction between the balancing of viscous
and elastic stresses on each bubble and the orders of magnitude size difference
between the viscous and elastic stresses. Elastic forces are indeed, on average,
larger than viscous forces, hence the difference between the stresses. However,
since the elastic forces on each bubble largely cancel the resulting elastic force
is small enough to be canceled by the viscous forces. In addition we tested
and derived a number of other relations between the various components of
the stress and forces, allowing us, for example, to express the elastic stress in
the viscous forces.



Chapter 7

Non-linear Scaling Model

All of the preceding chapters dealt with a linear microscopic model: the elastic
forces of Eq. 2.1 and the viscous forces of Eq. 2.3 are linear in respectively the
overlap and the relative velocity. There are two good reasons to consider a
larger class of microscopic models. The first reason is that many systems, for
example the foams that we claim to describe, do not actually have linear (vis-
cous) interactions. The second reason is that this allows us to probe whether
changing the microscopic interactions influences the critical exponents. Given
the way we have derived our ‘critical’ exponents, it does not seem likely that
our exponents are independent of the microscopic interactions, and this aspect
will be investigated in detail in this chapter.

7.1 Microscopic Model

We generalise our original, linear, microscopic model by changing the interac-
tions into more general power law dependences:

Fe
ij = kδαe

ij r̂ (7.1)

Fv
ij = −b∆vαv

ij ∆v̂ij , (7.2)

with r̂ the unit vector connecting the centres of particles i and j and αe and
αv being general power law exponents that can take any (positive) value.
Note that both forces will still be zero when particles are not in contact and
that setting αe = αv = 1 recovers the linear Durian model of the preceding
chapters. This new formulation will allow our model to describe many more
experimentally relevant systems. For example, the model can describe hertzian
particles like grains in which F e ∼ δ3/2. More importantly, foams do not
have linear viscous interactions, but are microscopically shear thinning, F ∼
∆v2/3 [37]. Our new model can therefore make predictions for the rheology of
these kinds of systems. These predictions will be developed and tested in this
chapter.

91
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7.2 Scaling Model

We will now investigate how the three ingredients of our original 3E scaling
model, power balance Eq. 4.1, effective strain Eq. 4.2 and the elasticity relation
Eq. 4.5, change when we change from the linear microscopic model to the more
general power law microscopic model.

7.2.1 Energy Balance

The first ingredient of our 3E model is an equation for power balance. The
power that is put into a system of linear size L by shearing is given by σxyγ̇L

2.
This power is dissipated by the viscous interactions between the bubbles. The
power that is dissipated between two bubbles, i and j, is given by ∆vij ·Fv

ij , the
inner product of their relative velocity and the dissipative force they exert on
each other. Averaging both expressions over time and averaging the dissipation
over all contacts then yields

〈σxy〉t γ̇L2 = N/2
〈
Z
〈
∆vij · Fv

ij

〉
ij

〉
t
, (7.3)

with 〈·〉ij indicating averaging over all contacts. Since the viscous force is so
explicitly present in the formulation of power balance, it is clear that, and
how, changing the exponent of the viscous force will change the formulation of
power balance. Substituting our definition for the dissipative force, equation
7.2, we get the following expression:

〈σxy〉t γ̇L2 = bN/2
〈
Z
〈
∆v1+αv

〉
ij

〉
t
, (7.4)

7.2.2 Effective Strain

The effective strain will not depend explicitly on the microscopic force laws
in our system: the yield strain, γy, is a function of the compression only and
while the way the compression depends on, for example, the pressure may
depend on the microscopic interactions, the formulation of the effective strain
as a function of ∆φ will not. Similarly, the dynamic strain, γdyn, depends on
the timescale in which particles rearrange, which itself depends on the strain
rate with which the system is driven and the average relative velocity between
particles. Although the average relative velocity will probably not be the same
in systems with different microscopic force laws, the way the dynamic strain
depends on this difference is purely geometric and therefore will not change.



7.2. SCALING MODEL 93

This means that we can simply copy the relation that we had before:

γy = ∆φ (7.5)

γdyn =
γ̇d

〈∆v〉t,ij
(7.6)

γxyeff = Bxyeffγy + γdyn (7.7)

γxxeff = Bxxeff γy + γdyn (7.8)

7.2.3 Elasticity Relation

The situation for the elasticity is more complicated. It will turn out to depend
on the elastic force law, but not in such a straightforward way as our power
balance expression depended on the viscous force law. In order to derive this
dependence we start by looking at the dimensionless stress. In the linear case
we had the following expression

σ̃ =
σ

k
(7.9)

In our non-linear microscopic model, however, the unit of k is no longer Nm−1

but Nm−αe and the resulting σ̃ is not dimensionless. Therefore, we need to
formulate a more general expression for the dimensionless stress which reduces
to Eq. 7.9 for linear interactions but gives a dimensionless stress for all values of
αe (and αv). One possible approach is to divide not by the bare spring constant
k, but by the effective spring constant keff = 〈dF e/dδ〉ij =

〈
αekδ

αe−1
〉
, which

will always have units of Nm−1. Note that in the linear case keff = k. If we
assume that the typical overlap will scale with the global effective strain and
the particle size, we get:

keff = αek (dγeff)
αe−1

(7.10)

We also assume that the non-dimensional stress will still depend on the
effective strain in the same way as in the linear case, Eqs. 4.5 and 5.4. Es-
pecially in the case of the normal stress, where our elasticity equation was
purely phenomenological, this is a strong assumption. We must first give the
elasticity relation in non-dimensional form, but since we only have to divide
by k in the linear case, this is straightforward:

σ̃e
xy = Axy1 ∆φ1/2γxyeff

√
1 +

(Axy2 γxyeff )
2

∆φ
(7.11)

σ̃e
xx = Axx1 γxx1.3

eff . (7.12)

Multiplying this with keff to recover the expression for the full, dimensional
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Critical Transition

elasticity σ ∼ γ1+αe

eff σ ∼ ∆φ1/2γαe

eff

effective strain γeff ∼ γ̇/∆v γeff ∼ γ̇/∆v

rheology σ ∼ γ̇
αv(1+αe)
2+αv+αe σ ∼ ∆φ

1+αv
2(1+αv+αe) γ̇

αeαv
1+αv+αe

range γ̇ > ∆φ
2+αv+αe

2αv γ̇ > ∆φ
3/2+αv+αe

αv

γ̇ > ∆φ2+αv+αe γ̇ < ∆φ
2+αv+αe

2αv

Yield Dense

elasticity σ ∼ ∆φ1/2γαe

eff σ ∼ γ1+αe

eff

effective strain γeff ∼ ∆φ γeff ∼ ∆φ

rheology σ ∼ ∆φαe+1/2 σ ∼ ∆φαe+1

range γ̇ < ∆φ
3/2+αv+αe

αv C < ∆φ

C > ∆φ γ̇ < ∆φ2+αv+αe

Table 7.1: The four rheological regimes for the shear stress in our general
power law scaling model with their definitions, results and ranges of validity.

stress we get:

σe
xy = Axy1 αekd

αe−1∆φ1/2γxyαe

eff

√
1 +

(Axy2 γxyeff )
2

∆φ
(7.13)

σe
xx = Axx1 αekd

αe−1γxxαe+0.3
eff . (7.14)

7.3 Regimes

Now that we have our three scaling model ingredients for the general power law
case, we note two things. First, both microscopic force law exponents enter
in them and will therefore presumably impact the rheology. Second, there
are still two regimes for the effective strain, Eq. 7.5 and two, respectively one,
regimes for the shear, respectively normal, stress elasticity, Eq. 7.13, 7.14. This
means that we can still apply the same methodology as in the linear case: we
divide the full parameter space in four, for the shear stress, and three, for the
normal stress, regimes, as indicated in table 7.1; then solve the rheological
relations by simple substitution in each regime and finally use these results to
determine the crossovers between the regimes. While the resulting exponents
will be more involved, featuring fractions and combinations of αe and αv, the
methods are completely similar to those used in section 3.2. Therefore, the
rheological results are presented in tables 7.1 and 7.2. In the section below we
list the full results, including expressions for ∆v and γeff .
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Normal Critical Normal Transition

shear stress σxy ∼ γ̇
αv(1+αe)
2+αv+αe σxy ∼ ∆φ

1+αv
2(1+αv+αe) γ̇

αeαv
1+αv+αe

effective strain γeff ∼ γ̇/∆v γeff ∼ γ̇/∆v

rheology σxx ∼ γ̇
αv(αe+0.3)
2+αv+αe σxx ∼ ∆φ

−(αe+0.3)
2(1+αv+αe) γ̇

αv(αe+0.3)
1+αv+αe

range γ̇ > ∆φ
2+αv+αe

2αv γ̇ > ∆φ
3/2+αv+αe

αv

γ̇ < ∆φ
2+αv+αe

2αv

Normal Yield

effective strain γeff ∼ ∆φ

rheology σxx ∼ ∆φαe+0.3

range γ̇ < ∆φ
3/2+αv+αe

αv

Table 7.2: The three rheological regimes for the normal stress with their defi-
nitions, results and ranges of validity. Note that the shear stress enters as one
of the ingredients that determines the regime.

7.3.1 Shear Stress

Yield Regime We will start with the shear stress in the Yield regime. The
definition of this regime is the same as in the linear case: the effective strain,
Eq. 7.5, is dominated by the yield contribution and the elasticity relation,
Eq. 7.13, is dominated by the linear contribution:

σγ̇ ∼ ∆v1+αv

γeff ∼ ∆φ

σxy ∼ ∆φ1/2γαe

eff

⇒


∆v ∼ γ̇ 1

1+αv ∆φ
2αe+1

2(1+αv)

γeff ∼ ∆φ

σxy ∼ ∆φαe+1/2

(7.15)

Not surprisingly, the stress in the Yield regime, in which the material is thought
to exhibit elastic behavior, depends on the elastic but not the viscous exponent.
Also note that all relations reduce to their linear equivalents, found in Eq. 3.14,
if we take αe = αv = 1.

Transition Regime In the Transition regime, the elasticity relation is dom-
inated by the linear contribution, but the effective strain is dominated by the
dynamic contribution:


σγ̇ ∼ ∆v1+αv

γeff ∼ γ̇/∆v
σxy ∼ ∆φ1/2γαe

eff

⇒


∆v ∼ ∆φ

1
2(1+αv+αe) γ̇

1+αe
1+αv+αe

γeff ∼ ∆φ
−1

2(1+αv+αe) γ̇
v

1+αv+αe

σxy ∼ ∆φ
1+αv

2(1+αv+αe) γ̇
αvαe

1+αv+αe

(7.16)



96 CHAPTER 7. NON-LINEAR SCALING MODEL

Due to the, appearance of both αv and αe these expressions look rather unap-
pealing. Still, it is again easy to check that substituting αv = αe = 1 recovers
the linear expressions of Eq. 3.15.

Critical Regime In the Critical regime, the elasticity is dominated by the
non-linear contribution and the effective strain is dominated by the dynamic
strain:


σγ̇ ∼ ∆v1+αv

γeff ∼ γ̇
∆v

σxy ∼ γ1+αe

eff

⇒


∆v ∼ γ̇ 2+αe

2+αv+αe

γeff ∼ γ̇
αv

2+αv+αe

σxy ∼ γ̇
αv(1+αe)
2+αv+αe

(7.17)

Again, the expressions are unappealing but reduce to the linear results of
Eq. 3.13 for αv = αe = 1.

Dense Regime For completeness’ sake we also give the results for the inac-
cessible Dense regime:


σγ̇ ∼ ∆v1+αv

γeff ∼ ∆φ

σxy ∼ γ1+αe

eff

⇒


∆v ∼ ∆φ

1+αe
1+αv γ̇

1
1+αv

γeff ∼ ∆φ

σxy ∼ ∆φαe+1

(7.18)

Crossovers

Now that we have the rheological behavior in all four regimes, we can derive
expression for the crossovers between the various regimes. These will again
depend on the exponents αe and αv. The methodology is the same as in the
linear case, equating the expressions for the stress in two regimes, though the
exponents will be more involved; they are given in table 7.1

We start by comparing the stress in the Yield and the Transition regime:

∆φαe+1/2 ∼ ∆φ
1+αv

2(1+αv+αe) γ̇
αvαe

1+αv+αe ⇒ γ̇ ∼ ∆φ
3/2+αv+αe

αv . (7.19)

The next crossover, from the Transition to the Critical regime, we find by
comparing the expressions for the stress in those two regimes:

∆φ
1+αv

2(1+αv+αe) γ̇
αvαe

1+αv+αe ∼ γ̇
αv(1+αe)
2+αv+αe ⇒ γ̇ ∼ ∆φ

2+αv+αe
2αv . (7.20)

Note that the exponent of the density here, (2 + αv + αe)/2αv, is always
smaller than the exponent of the density in the Yield-to-Transition crossover,
(3/2 +αv +αe)/αv, independent of αv and αe. Therefore: for every (positive)
value of αe and αv, when the density is small, we will first crossover from the
Yield to the Transition regime and then from the Transition to the Critical
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regime when γ̇ is increased. Of course, we had already seen that this was so
for the specific case of αe = αv = 1; now we know that this behavior is general.

The crossover from the Yield to the Dense regime still takes place at a fixed
density:

∆φαe+1/2 ∼ ∆φαe+1 ⇒ ∆φ ∼ 1 , (7.21)

this ‘derivation’ makes it clear that changing αv or αe will not impact this
result.

For the final crossover, form the Dense to the Critical regime, we find:

∆φαe+1 ∼ γ̇
αv(1+αe)
2+αv+αe ⇒ γ̇ ∼ ∆φ

2+αv+αe
αv . (7.22)

As already mentioned above, changing the exponents will also change the
crossovers quantitatively, but will not change the nature of the crossovers
qualitatively. The general trends shown in figure 3.1 are therefore applicable
to all exponents.

7.3.2 Normal Stress

As in the linear case, the rheology for the normal stress is somewhat special be-
cause the expressions for the shear stress that we derived above enter through
energy balance. This causes the appearance of a third regime, even though
there is only one ingredient with two regimes. We summarise the results for
the stress in table 7.2 and present the full results below. Note that, just like the
linear case 〈∆v〉 is set by the shear behavior and not by the normal behavior.

Normal Yield For the Normal Yield regime we have:


σxyγ̇ ∼ ∆v1+αv

γeff ∼ ∆φ

σxx ∼ γαe+0.3
eff

σxy ∼ γαe+1/2
eff

⇒


∆v ∼ γ̇ 1

1+αv ∆φ
2αe+1

2(1+αv)

γeff ∼ ∆φ

σxx ∼ ∆φαe+0.3

(7.23)

Normal Transition In the Normal Transition regime we have:


σxyγ̇ ∼ ∆v1+αv

γeff ∼ γ̇
〈∆v〉

σxx ∼ γαe+0.3
eff

σxy ∼ ∆φ
1+αv

2(1+αv+αe) γ̇
αvαe

1+αv+αe

⇒


∆v ∼ ∆φ

1
2(1+αv+αe) γ̇

1+αe
1+αv+αe

γeff ∼ ∆φ
−1

2(1+αv+αe) γ̇
αv

1+αv+αe

σxx ∼ ∆φ
−(αe+0.3)

2(1+αv+αe) γ̇
αv(αe+0.3)
1+αv+αe

(7.24)
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Regime Combination rescaled axes

Critical and Transition σ/∆φ
1+αe

2 vs. γ̇/∆φ
2+αv+αe

2αv

Yield and Transition σ/∆φαe+1/2 vs. γ̇/∆φ
3/2+αe+αv

αv

Yield and Critical σ/∆φαe+1/2 vs. γ̇/∆φ
(αe+1/2)(2+αv+αe)

αv(1+αe)

Table 7.3: Prescriptions of what to plot for collapse in the indicated regimes.

Regime Combination rescaled axes

Normal Critical and Normal Transition σ/∆φ
αe+0.3

2 vs. γ̇/∆φ
2+αv+αe

2αv

Normal Yield and Normal Transition σ/∆φαe+0.3 vs. γ̇/∆φ
3/2+αe+αv

αv

Normal Yield and Normal Critical σ/∆φαe+0.3 vs. γ̇/∆φ
2+αv+αe

αv

Table 7.4: Prescriptions of what to plot for collapse of the normal stress in the
indicated regimes.

Normal Critical In the Normal critical regime we have:


σxyγ̇ ∼ ∆v1+αv

γeff ∼ γ̇
〈∆v〉

σxx ∼ γαe+0.3
eff

σxy ∼ γ̇
αv(1+αe)
2+αv+αe

⇒


∆v ∼ γ̇ 2+αe

2+αv+αe

γeff ∼ γ̇
αv

2+αv+αe

σxx ∼ γ̇
αv(αe+0.3)
2+αv+αe

(7.25)

Crossovers

The crossovers for the normal stress are simply inherited from the crossovers
of the shear stress, just like in the linear case.

7.4 Plotting

Since the general structure of the rheology has not changed: three (accessible)
regimes, power laws of strain rate and density, we can still hope to plot the
rheological curves as we could in the linear case: collapsed by rescaling with
the density. Short derivations will be presented in the section below, but the
important results are summarized in tables 7.3 and 7.4

7.4.1 Shear Stress

For the shear stress there are, realistically, three regimes. This means that, as
before, it will not be possible to collapse the full curve, at best we can rescale
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two regimes. Below we will discuss the rescaling with ∆φ that is necessary to
get collapse in each combination of two regimes.

Yield and Transition If we want to attain collapse in the Yield and Tran-
sition regimes we start by looking at the stress in the Yield regime: it depends
on density, but not on the strain rate. Therefore the only way to get the stress
to collapse in the Yield regime is by picking the correct rescaling in the stress.
Since the stress in the Yield regime is given by σxy ∼ ∆φαe+1/2, we have σ̃xy ∼
σxy/∆φ

αe+1/2. In addition, we rescale the γ̇-axis with the ∆φ dependence of
the crossover so that we get collapse there as well: ˜̇γ ∼ γ̇/∆φ(3/2+αe+αv)/αv .
As in the linear case this will automatically result in collapse in the Transition
regime as well.

Transition and Critical To get collapse in both the Critical and the Tran-
sition regime, the first thing we must do is collapse the crossover by plotting
˜̇γ ∼ γ̇/∆φ(2+αv+αe)/2αv . With this relation we can now derive how we need
to plot the stress to get collapse in the Critical regime:

σxy ∼ γ̇
αv(1+αe)
2+αv+αe = ˜̇γ

αv(1+αe)
2+αv+αe ∆φ

αv(1+αe)
2αv ⇒ σ̃xy ∼ σxy/∆φ

αv(1+αe)
2αv (7.26)

Again, this will also give collapse in the Transition regime.

Yield and Critical Again we need to plot σ̃xy ∼ σxy/∆φαe+1/2 for collapse
of the Yield stress. We substitute this expression into the rheological relation
for the Critical regime to find the required strain rate rescaling:

σxy ∼ γ̇
αv(1+αe)
2+αv+αe ⇒ σ̃xy ∼ γ̇

αv(1+αe)
2+αv+αe /∆φαe+1/2 ⇒ ˜̇γ ∼ γ̇/∆φ

(αe+1/2)(2+αv+αe)
αv(1+αe) .

(7.27)
This will not result in collapse in either the Transition regime, of the crossover
from the Yield to the Transition regime or of the crossover from the Transition
to the Critical regime.

7.4.2 Normal Stress

Plotting the normal stress will be similar to the shear stress in some cases,
because the same crossovers need to be collapsed, but different in most cases,
since the stress scales differently.

Normal Yield and Normal Transition Regimes As mentioned above,
the strain rate needs to be rescaled to make the crossover between the Normal
Yield and Normal Transition regimes, which is the same as for the shear tress,
collapse: ˜̇γ ∼ γ̇/∆φ(3/2+αe+αv)/αv . Since the stress in the Normal Yield regime
depends only on the density, this prescribes the rescaling of the stress: σxx ∼
∆φαe+0.3.
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Normal Transition and Normal Critical Regimes Between the Normal
Transition and the Normal Critical regime there is a crossover that determines
the strain rate rescaling: ˜̇γ ∼ γ̇/∆φ(2+αv+αe)/2αv . Substituting this into the
expression for the stress in the Normal Critical regime yields:

σxx ∼ γ̇
αv(αe+0.3)
2+αv+αe = ˜̇γ

αv(αe+0.3)
2+αv+αe ∆φ

αe+0.3
2 ⇒ σ̃xx ∼ σxx/∆φ

αe+0.3
2 . (7.28)

Normal Yield and Normal Critical Regimes Again, the dependence of
the Normal Yield stress on the density prescribes the rescaling of the stress:
σxx ∼ ∆φαe+0.3. This can be substituted into the expression for the stress in
the Critical regime to deduce the rescaling of the strain rate:

σxx ∼ γ̇
αv(αe+0.3)
2+αv+αe ⇒ σ̃xx ∼ γ̇

αv(αe+0.3)
2+αv+αe /∆φαe+0.3 ⇒ ˜̇γ ∼ γ̇/∆φ 2+αv+αe

αv (7.29)

7.5 Experimental Implementations

Now we will compare the predictions from our scaling model with previous
experiments done by other people. Since our model describes a much wider
array of systems than artificial linear model, we will be able to accurately
describe real systems. We will compare our model to experimental data of
flowing foams by Katgert et al. [37] and experimental data of colloid rheol-
ogy by Nordstrom et al. [39] .These two systems also have the advantage of
being theoretically interesting because they decouple the effects of non-linear
elasticity and non-linear viscosity. This is because the foam system has linear
elasticity but non-linear viscosity, αv = 2/3, while the colloid system has linear
viscosity but non-linear elasticity, αe = 3/2.

7.5.1 Katgert Foam Data

We start by looking at systems of flowing foam, the system we had in our mind
when developing the original linear model. For this we can use experiments
performed by Gijs Katgert et al. In the experiments, a two dimensional bubble
layer is confined between the liquid surface on the bottom and a glass plate
on top. Two large wheels then apply a constant strain rate to the system,
bringing it in steady shear. A picture of the setup is given in figure 7.1. In
this system, Katgert can modify the strain rate and, within a narrow range,
the density.

An important difference between the system of Katgert et al. and our
system is the presence of a top plate. The top plate exerts a drag force on
all bubbles. Since this drag force depends on the velocities of the bubbles
with respect to this top plate, there is an additional energetic penalty to high
velocities, which results in shear banding. In effect, the top plate breaks
galilean symmetry and enforces the laboratory frame as a special frame.
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Figure 7.1: Figure from [37]. Side view of the setup used by Katgert et al.

In spite of this, Katgert has developed a model that allows him to take,
amongst other things, the degree of shear banding and get out the ‘pure’
rheological behavior: the dependence of the required shear stress on the applied
strain rate: he gets a good fit for Herschell-Bulkley behavior:

σxy ∼ σY + γ̇0.36, (7.30)

where σY is a yield stress. Our model should predict, then, that the exponent
with which the shear stress depends on the strain rate in the Critical regime
has a value 0.36± 0.05, taking into account he error bars on the experimental
result. In what follows we will call this exponent β to facilitate the discussion.
In order to see if our model indeed predicts β = 0.36, we need to know the
exponents in the force laws between the individual bubbles, αe and αv.

According to Katgert, his bubbles have linear elastic interactions, αe = 1,
but non-linear viscous interactions. He measures their viscous interactions to
follow αv = 2/3 [37]. If we substitute these two values into the expression we
derived for the stress in the Critical regime, Eq. 7.17, we find:

σxy ∼ γ̇
αv(1+αe)
2+αv+αe = γ̇

4/3
3+2/3 = γ̇4/11 = γ̇0.36, (7.31)

which is in excellent agreement with the experimental value of 0.36± 0.05.
Of course, there are some caveats. First of all, the fact that the exponents

match so closely cannot be attributed to anything besides luck because there
are considerable experimental error bars on both αv and β, and Katgert et
al. present a number of slightly different values in a later paper [34]. Still this
does not change the result that our model prediction for β is consistent with
the experiment.

Second, and slightly more problematic, is the apparent lack of a Transition
regime in the data of Katgert et al. ; while our model predicts three regimes,
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Katgert only finds two. We claim that this is reasonable because the Transi-
tion regime can be hard to pin down experimentally: it can be very small, as
we have seen in section 4.4.1, and the exponent with which the stress depends
on the strain rate is usually not so different between the Transition and the
Critical regime, 0.25 and 0.36 respectively1. These two factors can conspire to
make the Transition regime simply look like the crossover from the Yield to
the Critical regime, especially when noise is an issue, as it often is in experi-
ments. Therefore, the lack of an obvious Transition regime is not immediately
worrying.

Thirdly, and still more problematic is the analysis that Katgert performs in
his later paper [34] to determine the dependence of the stress on the density.
He finds two main results: the exponent β does not depend on the density
but a prefactor that he calls k does via k ∼ ∆φ−1. The fact that β does
not depend on ∆φ is fully consistent with the results from our model, see
Eq. 7.17, but the result for k is problematic. Using the definitions of Katgert
et al. k ∼ ∆φ−1 can be translated to σ ∼ ∆φ in our language, however our
model predicts that σ is independent of ∆φ in the Critical regime. According
to Katgert, this dependence of the viscous force on the density is a consequence
of the fact that the viscous force between two bubbles also depends on their
overlap: bubble pairs with a bigger overlap have a bigger contact surface and
therefore experience more drag from each other. Our model does not account
for this property of the forces between bubbles and therefore it is not strange
that we do not predict its consequences, but that is a weakness in the model
nonetheless.

The most reasonable approach might be that our model takes into account
all sources of strain rate or velocity dependence in foams and is therefore able
to predict the dependence of the stress on the strain rate correctly. However,
the model does not correctly take into account all sources of density or overlap
dependence, leading to incorrect predictions concerning the dependence of the
the stress on the density. If this is indeed the correct way to look at the
results above, then our model should correctly predict the density dependence
in a system where there are no density effects that are unaccounted for in our
model, like colloids.

7.5.2 Nordstrom Colloid Data

The second experimental system that we look at is the colloidal system of
Nordstrom et al. [39]. In this system, N-isopropylacrylamide, or NIPA, col-
loidal particles of about a µm in size are forced through a tube of size L by
a pressure difference, ∆P between the ends of the tube, see figure 7.2 a. The
particles are suspended in water and, since they swell by absorbing water, they
are nearly index and density matched with the water. Due to the change in

1These values are found by substituting the experimental value of αv = 2/3 into the
relation for the stress in the Transition regime as given in in table 7.1.
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Figure 7.2: Schematic of the microfluidics setup used by Nordstrom et al. a
Side view of the setup. b horizontal slice at half height in the channel, showing
an example velocity profile. c Real data example, showing three example
velocity profiles. Figure from [39]

stress as a function of the coordinate perpendicular to the direction of flow,
y, the strain rate will also depend on y. Since the strain rate itself is the
spatial derivative of the velocity profile, Nordstrom et al. were able to obtain
the strain rate at different points in their setup by numerically differentiating
their velocity profiles, some examples are shown in figure 7.2 c. Stress and
strain rates as a function of position in the channel can then be combined into
a rheological curve linking stress and strain rate directly. This novel technique
allows them to get a full rheology curve for a particular density from only one
experiment.

Following Olsson & Teitel [11] and the original predictions of our 3E model,
[33], Nordstrom et al. plot their rheological data in a collapse plot, shown in
figure 7.5.2. As can be seen from the figure they find good collapse when
plotting σ/∆φ2.1 vs. γ̇/∆φ4.1, finding an exponent of the stress in the Critical
regime of β = 0.48

This rheological curve can be compared to our theoretical predictions if
we know the microscopic interactions between NIPA particles. Nordstrom et
al. claim that their particles have simple linear viscous drag, but that they

have hertzian elastic interactions, meaning that F e
ij ∼ δ

3/2
ij , or αe = 3/2.

Substituting these values into our model gives an exponent in the Critical
regime, β, of

αv(1 + αe)

2 + αv + αe
=

1 + 3/2

2 + 1 + 3/2
= 5/9 = 0.55. (7.32)

The question of the correct exponents of ∆φ to obtain collapse, ∆ and Γ in
the language of Nordstrom et al. , is a little bit more complicated, as there
are three options, collapsing any two of the three regimes, Critical, Transition
and Yield. We obviously have collapse in the Critical regime and the authors
consider the Yield stress collapsed, so we should look at our predictions for
collapsing the Critical and Yield regimes. With the exponents for these colloids
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FIG. 4: (Color online) Fitting parameters vs volume fraction
φ: (a) the exponent β, (b) the dimensionless yield stress σy/E,
and (c) the dimensionless timescale τE/η. The large symbols
are for the main system of particles, as in Figs. 1 and 3; the
small symbols in part (a) are for particles about 8 times less
massive.

ior and Ref. [20] finds β = 0.45, while Refs. [21–24] fit
to forms that cross between different limiting viscosities
at low and high strain rates. The value β = 1/2 is pre-
dicted near jamming for viscously-interacting athermal
particles [25]. For simplicity, and so that K has constant
units, we henceforth fix β = 1/2 and repeat the fits.

The fitting parameters σy and τ = (K/σy)1/β are
collected in Fig. 4b-c as a function of φ. Both the
yield stress and the time constant have been rendered
dimensionless by appropriate factors of particle elastic-
ity and fluid viscosity. This also serves to eliminate the
spurious φ-dependence originating from the variation of
E with particle swelling. While the consistency is al-
ways well-defined, the yield stress and time constant ex-
ist only above jamming and respectively appear to van-
ish and diverge on approach to φc. As shown in the
main plots, the results may be fitted to power-law forms
σy/E ∼ (φ−φc)

∆ and τE/η ∼ 1/(φ−φc)
Γ, giving {φc =

0.633 ± 0.002, ∆ = 2.2 ± 0.4} and {φc = 0.637 ± 0.002,
Γ = 3.8 ± 0.6}. The two values for φc are in agreement
and average to 0.635 ± 0.003, consistent with random-
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FIG. 5: (Color online) Collapse of the stress vs strain rate
using the critcal exponents ∆ and Γ. The dashed lines are
fits to the Herschel-Bulkley form with β = 1/2.

close packing of spheres. Fixing φc to this value, we
plot σy/E and τE/η vs φ − φc on log-log axes as insets
in Figs. 4b-c. These demonstrate power-law behavior,
and give refined scaling exponents as ∆ = 2.1 ± 0.2 and
Γ = 4.1±0.3. However we will conservatively take the fi-
nal statistical uncertainties to be twice as large, as given
by fits where φc floats. The systematic errors based on
the allowed range of β are 0.1 and 0.4 for ∆ and Γ, re-
spectively. Note that ∆ = βΓ holds within uncertainty,
which is required so that K remains finite and nonzero
at φc and so that at large strain rates the stress scales
as (ηγ̇)βE(1−β) independent of φ. Also, the very same
exponents are found within experimental uncertainty for
NIPA particles about 8 times less massive [18].

The observed value of the yield-stress exponent may be
understood in terms of the scaling of the shear modulus
G and the yield strain γy. For repulsive particles with
interaction energy proportional to overlap raised to the
power α, numerical simulations find G ∼ (φ − φc)

α−3/2;
this differs from the naive expectation α − 2 due to φ-
dependent non-affine motion [2, 4]. If the yield strain
scales as γy ∼ (φ − φc), and if the yield stress scales as
σy ≈ Gγy ∼ (φ − φc)

α−1/2, then ∆ = α − 1/2 [25]; for
Hertzian elastic particles, α = 5/2, this predicts ∆ = 2
in accord with our data. For harmonic repulsion and
viscous drag, these same arguments predict {∆ = 3/2,
Γ = 3, β = 1/2} in fair agreement with the simulation
results {∆ = 1.2, Γ = 2.9, β = 0.42} of Ref. [7] for
massless particles. Ref. [8] finds {∆ = 1.2, Γ = 1.9} and
{∆ = 1.9, Γ = 2.4}, respectively, for massive harmonic
and Hertzian particles.

The “distance” φ − φc to jamming thus controls the
yield stress σy and the time constant τ appearing in the
Herschel-Bulkley form of stress vs strain rate, Eq. (1), ac-
cording to respective scaling exponents ∆ and Γ. There-
fore, for volume fractions above φc, the shear rheology

Figure 7.3: Stress and strain rate from the colloidal experiments of Nordstrom
et al. E denotes the bulk modulus, η the viscosity of the water. Figure
from [39]

substituted, we predict that we get collapse for

∆ = 2 (7.33)

Γ = 3.6 (7.34)

These values for ∆ and Γ agree quite well with the experimental results
of Nordstrom et al. , ∆ = 2.1 ± 0.4 and Γ = 4.1 ± 0.6. Our predicted value
of β, 0.55, is outside the experimental range of 0.48 ± 0.03 though. This is
strange because, β = ∆/Γ. However, Nordstrom et al. don’t get β from the
collapse plot, they get it by fitting datasets at a fixed density to the following
Herschell-Bulkely expression:

σxy ∼ σy + γ̇β , (7.35)

in which σy is a yield stress. This expression does not properly account for
the Transition regime and trying to fit data that is partially in the Transition
in stead of in the Critical regime will result in a value for β that is closer to
the Transition exponent of 0.42. Since it is extremely likely that at least the
red dataset in figure 7.5.2 is in the Transition regime, it is not surprising that
Nordstrom et al. find an exponent of 0.48 in between the Transition exponent
of 0.42 and the Critical exponent of 0.55.

7.5.3 Conclusion

We have extended our 3E model to nonlinear microscopic interactions. We
have compared the predictions of that model with the results of two experi-
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ments: the foams of Katgert, which have nonlinear viscous interactions and
the colloids of Nordstrom, which have nonlinear elastic interactions. In both
cases the model performed well. However, in both cases there were some issues,
specifically the presence or absence of a Transition regime. In order to be able
to study this in more detail and for a wider range of microscopic exponents,
we would like to perform computer simulations again. These are discussed in
the next chapter.
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Chapter 8

Testing the Non-linear
Scaling Model

Now that we have fully derived the predictions for rheological behavior in our
non-linear scaling method, we will test these predictions by direct simulation
of a nonlinear particle model. The ‘bubble model’ code that we have used
sofar (chapter 2), can not handle αe 6= 1, but does allow us to test αv 6= 1.
Then in section 8.2.1 we will introduce a new code that, in principle, should be
able to handle αe 6= 1. This new code is for particles of finite mass, allowing
us to test the validity of our assumption of masslessness. To distinguish these
two simulation codes we will call the one we have used until now the ‘massless
particle code’ and the one that will be introduced in section 8.2.1 the massive
particle code.

8.1 Massless Particle Code

With the massless particle code that we used throughout this thesis we have
performed simulations of a wide range a different αv’s, including both αv < 1,
αv = 0.75 and αv = 0.5, and αv > 1, αv = 1.1, αv = 1.25, αv = 1.5 and
αv = 2. Unfortunately, we only have a limited sense of densities available for
each α: 0.86, 0.85, 0.844 and in some cases 0.8424. We do have the full range
of strain rate at our disposal, though.

In figure 8.1 we show collapse plots for the Transition and Critical regime
for all six values of α, rescaled with the exponents given by table 7.1. While
the data is preliminary, the results are consistent with our model predictions
because we find collapse in all six plots onto power laws whose exponents are
consistent with the predicted β’s with the possible exceptions of the largest
(αv = 2) and smallest (αv = 0.5) viscous exponents, see table 8.1. Two
aspects of these plots are striking. First, the fact that for αv < 1, the highest
strain-rate data falls below their power law curves. Second, the fact that
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↵v = 0.5 ↵v = 0.75

↵v = 1.1 ↵v = 1.25

↵v = 1.5 ↵v = 2

Figure 8.1: Transition and Critical regime collapse plots for a αv = 0.5, b
αv = 0.75, c αv = 1.1, d αv = 1.25, e αv = 1.5 and f αv = 2. Symbols
represent strain rates as in table 3.3. Colors represent density. From blue to
red in a and b: 0.8424, 0.844, 0.85 and 0.86; and from blue to red in c, d, e
and f: 0.844, 0.85 and 0.86. Black lines indicate best estimate power laws with
exponent βest, these values are consistent with our model predictions of table
8.1, except for αv − 2 - although the scaling range there is rather limited.
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αv βest βmodel

0.5 0.27 0.29

0.75 0.38 0.4

1.1 0.52 0.54

1.25 0.54 0.59

1.5 0.67 0.67

2 0.67 0.8

Table 8.1: Our estimate of β, βest, for six different values of α compared to
our model prediction, βmodel.

Figure 8.2: a Elastic (blue), viscous (red) and total (black) stress as a function
of strain rate for αv = 0.5. b Transition and Critical collapse plot for the
slowest three strain rates of α = 0.5. Colors represent density; from blue to
red: 0.8424, 0.844, 0.85 and 0.86.

the Transition regime becomes more prominent for higher αv. Both can be
explained in the framework of our model.

First, the reason that high strain rate data falls below the curve in figures
8.1 a and b is that our strain rate criterion that γ̇ < 10−2 for ensuring that
the elastic stress dominates the viscous stress is no longer sufficient for αv < 1.
As we show in figure 8.2 a, for αv = 0.5 the viscous stress, red, is larger than
the elastic stress, blue, even for some strain rates that are smaller then 10−2.
This is in contrast to αv = 1 where, as we have seen in figure 2.3, the elastic
stress is significantly larger for all γ̇ < 10−2. However, if we now plot only
those strain rates for which the elastic stress is larger than the viscous stress,
as we do in figure 8.2 b, we find that all data points now follow a single power
law.

Second, since the crossover from the Transition to the Critical regime scales
as γ̇ ∼ ∆φ(3+αv)/2αv , this crossover shifts to higher strain rate as αv increases.
Therefore, if data in the same density and strain rate range for different αv
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is compared, as it is in figure 8.1, more data will be in the Transition regime,
and less data in the Critical regime for higher αv. This is exactly what we see.
Of course, since we rescale the horizontal γ̇ axis with ∆φ(3+αv)/2αv to obtain
collapse of this crossover, the crossover should always take place at the same
value of γ̇/∆φΓ, and indeed if we compare the panels of figure 8.1, we see that
the crossover always appears1 at γ̇/∆φΓ ≈ 1.

8.1.1 Conclusion

Our nonlinear scaling model predicts that the critical exponent β depends
on the details of the (viscous) interaction. The data above, preliminary as
it might be, corroborates this prediction, as shown in table 8.1. Even if the
model would turn out to be not exact, it is clear that β does depend on α,
and therefore the microscopic details of the interaction.

Our model does not make claims how changing the mode of dissipation
to Mean Field [11,27], inelastic collisions [29,30] or thermostats [25,28] might
change the β, but since these changes are more far-reaching than simply chang-
ing the exponent of inter-particle viscous dissipation, we think it is unreason-
able to assume that these changes will not impact β.

8.2 Massive Particle Code

The experimental and numerical results presented above have strengthened our
belief that microscopic details are important for the rheology of soft particles
near the jamming transition. Therefore we will investigate the effect of a non-
zero mass in this section. In order to do this, we use a new simulation code
developed jointly with Ellak Somfai. Below we will first introduce this new
code that we will call the massive particle code, describing how it differs from
the original massless particle code, and then discuss the findings that we have
obtained using the code.

8.2.1 Implementation

Now that we have mass, and therefore acceleration, in our system, the first
order forward Euler approach is no longer applicable. Therefore, the code is
based on a second order ‘velocity Verlet’ algorithm. The algorithm works as
follows:

• At time t we have x(t), v(t) and a(t).

• We calculate the new position: x(t+ dt) = x(t) + v(t)dt+ 1
2a(t)dt2.

• We predict the new velocity: ṽ = v(t)+0.65a(t)dt; the value 0.65 can be
changed, be have picked 0.65 because it was found to be optimal by [40].

1except for αv = 0.5, where all data points are to the right of γ̇/∆φΓ ≈ 1
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• We calculate the forces, F̃ , based on x(t+dt) and ṽ, using the microscopic
force expressions of Eqs. 7.1 and 7.2.

• We calculate the new acceleration: a(t+ dt) = F̃
m .

• We calculate the actual new velocity: v(t+dt) = v(t)+ 1
2 [a(t)+a(t+dt)]dt.

• Now we have x(t+dt), v(t+dt) and a(t+dt) and we can start the next
iteration.

The mass of each particle is an adjustable parameter, meaning that we
can, in principle, tune the importance of mass in the simulations. The unit of
mass is chosen such that the density is 1, we label2 this situation m = 1; in
some cases we have also used particles with a masses that are ten times as big,
denoted by m = 10, and 100 times as big, denoted by m = 100. An important
caveat is that going to small mass will necessitate the use of very small time
steps in order to prevent overshoots due to high acceleration. In practice this
limits the range over which we can reduce the mass. Unless specified otherwise,
the mass of each particle is proportional to its area (i.e. its two-dimensional
volume) and set so that the density of the system is unity.

In addition, for a reason that we have not been able to determine, changing
αe away from 1, the linear case, requires going to very small time steps and
causes crashes if the time step is too large. Unfortunately, this has made it
impossible to study the effect of changing αe away from 1 in our simulations.

8.2.2 Testing the Effect of Mass

We have performed a number of tests to see if the results of simulations with
the new code make sense and in which regimes, if any, the effects of the presence
of mass are strong and which regimes they are weak. We perform three tests:
we have checked whether power balance is upheld is the new simulations, we
have checked where the kinetic stress, that we use as a proxy for the presence
of mass, is largest and we have directly compared the elastic stress in both the
massless and massive particle codes.

Power Balance

Power balance is a fundamental concept and should hold in our system with
mass also. The presence of mass does give a new way to temporarily store
energy: in the form of kinetic energy. However, in steady state the amount of
kinetic energy is constant (when averaged over long enough time scales). This

2This is indeed merely a label because the bidiserse particles have different masses and
neither of them are 1; however we are not interested in the value of the mass, merely in the
relative size of the mass between different simulations.
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Figure 8.3: Power balance is upheld for αv = 1 and αv = 1.5

means there can be no net growth or decline of the kinetic energy and therefore
the general expression for power balance that we introduced in Eq. 7.4:

σxyγ̇ ∼ ∆v1+αv (8.1)

must hold. In figures 8.3 we show graphs testing power balance for two different
αv: αv = 1 in panel a and αv = 3/2 in panel b. As expected, power balance
holds for both αv = 1, the simple linear case, and αv = 3

2 , giving an indication
that these simulations are doing what they should do.

However, in figure 8.4 we show that for αv = 1
2 , power balance breaks

down for small strain rate, where the dissipated power appears to become
larger than the input power. We hypothesise that this is a consequence of
the concave shape of the microscopic viscous force for αv < 1. In this case,
a relatively small ∆v already induces a relatively large force and there is a
singularity at ∆v = 0. To illustrate how this might lead to an overestimation
of the dissipated power, consider the following example. Two bubbles, A and
B, are moving in the same direction with velocities that are very similar, but
A is slightly faster. These bubbles will exert viscous forces on each other that
are comparatively large due to the square root viscous force law: A will pull B
forward, B will drag A backwards. Thus, if the time step is not small enough,
it may happen that the velocity adjustment that is a consequence of the viscous
force will actually overshoot the ‘intended’ result of equal velocities: now B
is faster than A. Instead of quickly reaching the same velocity, A and B keep
rubbing past each other, dissipating large amounts of energy as they go. Such
numerical problems may explain why the dissipated power is too large for small
strain rates for αv < 1.
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Figure 8.4: Power balance is not upheld for αv = 0.5 for small strain rates.

Kinetic Stress

When elastic and viscous forces are not balanced, there is an extra contribution
to the stress, called the kinetic stress, σxykin = m/2V

∑
<ij> vij,xvij,y. In effect,

the kinetic stress is the stress caused by the net forces on each particle. Clearly,
if there is a sizeable kinetic stress relative to the elastic contribution to the
stress3, then mass plays an important role. We cannot strictly say that if the
kinetic stress is small than the mass must have no effect. However, it is hard
to imagine mass playing an important role in a system in which inertial effects
are minimal, therefore we think that the ratio of the kinetic stress to the elastic
stress is a good proxy for the effect of mass in our system.

Figure 8.5 shows the value of the kinetic stress as a fraction of the elastic
stress. This fraction is plotted vs. the strain rate. In principle there should be
graphs for all four components - xx, yy, xy, yx - but we have simply plotted
the component for which the kinetic stress ratio is highest, the normal stress.
Even in this case, though, the kinetic stress never passes beyond 1% of the
elastic stress. The relative size of the kinetic stress is mostly determined by the
strain rate - the higher the strain rate, the more important the kinetic stress -
and is approximately linear in the strain rate for large densities. Hence, based
on the relative magnitude of kinetic and elastic stresses, we would expect that
the theologies of massive and massless particles would deviate most for high
strain rates.

3Since, in our case, the elastic stress dominates, it is the relevant quantity to compare
with.



114 CHAPTER 8. TESTING THE NON-LINEAR SCALING MODEL

Figure 8.5: The kinetic stress as a fraction of the elastic stress as a function
of strain rate for m = 1.

Direct Comparison

Instead of looking at whether the mass has an effect on the behavior at the
system in general, we can directly check if it has an effect on the most im-
portant aspect of the system: the elastic stress. Figure 8.6 shows the elastic
stress as a function of the strain rate (rescaled for collapse in the Transition
and Yield regimes) for the massless particle code and three different values of
the mass in the massive particle code: m = 1, m = 10 and m = 100. We
immediately notice interesting behavior in the Yield stress regime: all three
datasets with mass go to the same plateau, while the massless data does not
go there. This is a strong indication that mass does not only play a role, but
that the m ↓ 0 limit might be singular. The behavior in the Critical regime is
much more similar between mass and no mass and certainly seems more well
behaved in the sense that the no-mass behavior seems to be the m ↓ 0 limit
of the data with a mass. What is surprising, considering the results for the
kinetic stress ratio above, is that the most fundamental effect of mass is in
the Yield regime. In this regime the strain rate is low and the density is high,
exactly the opposite of where the kinetic stress ratio was highest.

In conclusion, it seems that the kinetic stress ratio is not a good predictor
of how much the elastic stress will change due to the presence of mass. This
is somewhat problematic because it means we do not have a way to judge the
impact of mass in systems in which we can not compare to the massless case
as we did for the αe = αv = 1 linear case above. One other parameter that
we investigated is the distribution of ∆v as this is another quantity where we
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Figure 8.6: The elastic shear stress in simulations with different masses. There
appears to be a fundamental difference between having any mass and having
no mass at all.

Figure 8.7: Comparison between the probability distribution functions of the
relative velocity for the massless (line) and massive (∗) particle codes for a
system in the Critical regime (a: φ = 0.8424, γ̇ = 3 · 10−3) and in the Yield
regime (b: φ = 0.94, γ̇ = 10−5).
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αv β

1.5 0.67

1.75 0.74

2 0.8

3 1

Table 8.2: Our model predictions β for the four different values of α that we
investigate in this section.

expect the mass, through the acceleration, to have a large effect. As we show
in figure 8.7 we do see that there is a large difference between p(∆v) in the
massless and massive particle codes in the Yield regime, while this difference
is much smaller in the Critical regimes. This result agrees with our direct
comparison of the elastic stresses: differences are large in the Yield regime
and small(er) in the Critical regime.

8.2.3 Different αv

Although the behavior of the elastic stress in the Critical regime does depend
on the mass, for αv = 1 it does so in a well-behaved way: reducing the mass
reduces the deviations from massless behavior. Therefore, it is possible to
compare the exponent of the stress in the Critical regime, β, between our
model predictions and massless simulations on the one hand and the massive
simulations on the other hand if we pick a small mass and focus on the Critical
regime. This we will do in the section below.

Since, as we have seen above, there are some numerical issues when picking
an αv below 1, we will focus on αv > 1, namely αv = 1.5, αv = 1.75, αv = 2
and αv = 3. Table 8.2 lists our model predictions β for the four different values
of α that we investigate in this section.

Figure 8.8 shows a rescaled plot of stress vs. strain rate for αv = 1.5,
αv = 1.75, αv = 2 and αv = 3. Panel a, αv = 1.5, shows clear collapse
in the Critical regime, as we predict. Moreover, the Critical regime shows a
2
3 power law; also as we predict. The behavior in the Yield plateau is not
as we expect: we expect no collapse (we plot for collapse in the Transition
and Critical regimes) but we do see strong collapse of most data points. As
discussed above, we think this is a consequence of the fact that mass influences
the Yield regime in a singular fashion. So far our model does well: it correctly
predicts that what we expected it to predict: the Critical regime.

Collapse is slightly worse but for αv = 1.75, panel b, and much worse for
αv = 2, panel c. It is clear that our model prediction completely break down
for αv = 3, panel d. There are two possible explanations for the fact that
the predictions of our model become worse as αv increases. The first possible
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Figure 8.8: Elastic stress vs. the strain rate for αv = 1.5, αv = 1.75, αv = 2
and αv = 3, rescaled for collapse in the Transition and Critical regimes.
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explanation is that some new physics enters for higher αv that our model
fails to take into account properly. The second possible explanation is that at
higher αv, the mass has an increasing effect on that is necessary to avoid the
effects of mass in the Critical regime, thus necessitating runs with m = 0.1 or
smaller, which are numerically prohibitive..

8.3 Conclusion

We have tested the prediction of our model that β depends on the microscopic
viscous interactions between our particles. We have tested this in two different
simulation codes, one using massless particles and one using massive particles.
The results from the massless particle simulations agree with our model for
all investigated values of αv. The picture is more complicated for the massive
particle code: there are technical problems for αv < 1 and for high αv, 2 and
3, the model prediction does not agree with the simulation results. This may
be a consequence of the fact that for various quantities adding mass to the
simulations appears to be a singular perturbation.



Chapter 9

Appendices

9.1 Z

We have found a clear dependence of the contact number, Z, on both the
strain rate and the density; see figure 9.1. In this appendix we will explain
the steps we have taken to try to find a functional form for this dependence,
as well as the results of those.

In the static, 2-dimensional case the dependence of Z on γ̇ is given by
Z − Zc = Z0∆φθ, with Zc = 4, Z0 = 3.6 and θ = 0.5 [5]. We assume for
now that this general form will still hold true in the dynamic case, though
with constants that are now a function of γ̇. Furthermore, we assume that
we recover the static case in the limit that γ̇ goes to 0. Blindly fitting to find
values for Z∗(γ̇), Z0(γ̇) and θ(γ̇) is difficult, as the zero with respect to which
everything is logarithmic itself depends on Z∗(γ̇).

We have done various variants of such fits: forcing Z0 to be independent of

Figure 9.1: Plots of the contact number vs. the density, a, and the strain rate,
b.
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Figure 9.2: a: plot of Z −Z∗(γ̇) vs. ∆φ. Z∗ has been obtained by finding the
best fit to a 1/2-power law for high density data. Note that all data collapses
onto the same line for high density. b: the same plot, now rescaled by γ̇ to
achieve collapse, the red line is y = (0.854 + (4x0.5)4)0.25. Symbols indicate
strain rate but are not consistent with table 3.3.

γ̇, forcing θ to be independent of γ̇ etc. When doing one such a fit, enforcing
θ = 0.5 and, erroneously, dramatically overvaluing the goodness of fit at high
density, we got results for which Z0 was also independent of γ̇ and moreover
was very close to the epitome value: 4, see fig. 9.2 a; in this case, Z∗(γ̇) seems
to be reasonably approximated by 4− 2.6γ̇0.28. We then tried if we could get
collapse for low densities by rescaling the axes with γ̇: plotting Z−Z∗

γ̇α vs. ∆φ
γ̇β

.

Because all data falls onto a 1/2 power law, we know that we should have
β = 2α. Trial and error finds good collapse for α = 1

6 and β = 1
3 , see figure

9.2 b. The data then seems to fall onto

Z − 4 + 2.6γ̇0.28

γ̇
1
6

= (0.854 + (4
∆φ

γ̇
1
3

0.5

)4)0.25 (9.1)

While fit and collapse are pretty good, this has 5 fit parameters; a little much.
Additionally, for low ∆φ the dependence is given by Z = 4−2.6γ̇0.28+0.85γ̇0.17,
which contains two terms with similar dependence on γ̇.

A third problem of this result is that it contains a rescaling of ∆φ with γ̇
that is different from any such rescaling we have already found in our scaling
model. We therefore wonder if we can also get good collapse and fit if we start
from a rescaling of ∆φ

γ̇0.5 ; if we still want to end up with a 1/2 power law, this

means we need to rescale Z − Z∗ with γ̇0.25. In figure 9.3 a we show such a
graph, in which we have adjusted Z∗ by hand to achieve collapse. The collapse
is decent but not phenomenal. If we now keep the same values for Z∗, but
revert the rescaling to Z−Z∗

γ̇0.17 and ∆φ
γ̇0.33 , the collapse is much better, as can be

seen in figure 9.3 b. A power law fit to Z∗(γ̇) gives Z∗ = 4 + 0.03− 7.8 ∗ γ̇0.58.
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Figure 9.3: a plot of Z−Z∗(γ̇)
γ̇0.25 vs. ∆φ

γ̇0.5 . Z∗(γ̇) has been selected by hand to

result in good collapse. b plot of Z−Z∗(γ̇)
γ̇0.17 vs. ∆φ

γ̇0.33 using the same values for

Z∗(γ̇). The red line is y = 1
((5x)−2+(4

√
x)−2)0.5

. Symbols indicate strain rate

but are not consistent with table 3.3.

The data then falls onto

Z − 4.03 + 7.8γ̇0.58

γ̇0.17
=

1((
5 ∆φ
γ̇0.33

)−2

+
(

4
√

∆φ
γ̇0.33

)−2
)0.5 (9.2)

Depending on how you count, this dependence has about 6 fit parameters,
so it’s even worse than before. There are two recurring features. The first
recurring features is the ∆φ1/2 scaling of Z for high ∆φ. This is the same
scaling as was found in static jamming [5]. The second recurring feature is
that we find collapse when rescaling ∆φ with γ̇0.33 and and rescaling - some
function of - Z with γ̇0.17. The first one was expected, and at some points
enforced, but certainly works very well. The second one was not expected;
perhaps it is the only new thing we may learn from this (though it’s still
unclear what it means exactly).

9.2 Appendix: First Moment

We investigate the first moments of the pdf of ∆v by considering the following
two components of the relative velocity:

∆vpar = ∆vx
rx
r

+ ∆vy
ry
r

(9.3)

∆vperp = ∆vy
rx
r
−∆vx

ry
r
, (9.4)

where ∆vpar signifies the component of the relative velocity parallel to the
vector r connecting the centres of the two bubbles and ∆vperp signifies the

121



Figure 9.4: Left panel: the rotational component of the relative velocity,
∆vperp, as a function of the strain rate with the expected proportional be-
havior divided out. Right panel, the compressive component of the relative
velocity, ∆vpar. In both cases the black line indicates expected behavior. Color
denotes density as in table 3.3.

component perpendicular to the connecting vector. We have chosen sign con-
ventions such that bubbles moving apart will have a positive ∆vpar and bubbles
moving around each other in a clockwise direction will have a positive ∆vperp.

We expect 〈∆vpar〉 = 0 on physical grounds: there is no net expansion or
contraction and therefore every particle movement that brings particles closer
together must be balanced by particle movement that brings particles further
apart somewhere else. We do not expect 〈∆vperp〉 = 0, however, because the
applied strain enforces an overall rotation proportional to the applied strain
rate γ̇ and the bubble size d. These relations are tested in figure 9.4. As can be
seen, both components of ∆v behave as expected, although there are obvious
deviations from 0 for ∆vpar, they are symmetric and a simple consequence of
the fact that the pdfs widen for higher strain rates, as discussed above.

While on the one hand it is good that 〈∆vpar〉 and 〈∆vperp〉 behave as
we expect, this also means they don’t tell us anything new. In the end this
is because any component of 〈∆v〉 will just measure some component of the
overall velocity, which is prescribed, in the end, by the applied strain rate.
Therefore it is only the higher order moments, which tell us something about
the way the velocities are distributed around this average, that give us new
information about the behavior of the system.

9.3 Appendix: Correlation Strain

In section 4.5.2 we introduced the correlation strain γcorr as the strain over
which the autocorrelation of the stress signal has decayed to 0.5. In this
appendix we will show how we have determined that this strain is a linear
combination of the yield and dynamic strains with a different balance of terms
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Figure 9.5: Plots of the correlation strain vs. various strains from our model.
Top left: the yield strain, γy. Top right: the dynamic strain, γdyn. Bottom
left: the effective strain, γeff . Bottom right: the best fir linear combination of
γy and γdyn

from the effective strain.
First, though, we note that γcorr is not a complete characterization of the

decay of the autocorrelation, as can be seen in figure 4.13, as the autocor-
relation functions do not collapse completely when rescaled with this strain.
Moreover, there is a systematic trend: data from high-density simulations
tends to have a longer plateau before it commences on a steeper drop. Still,
γcorr seems to capture the behavior of the autocorrelation reasonably well.

The next step is to test if γcorr corresponds to the yield strain, γy, the
dynamic strain, γdyn, the effective strain, γeff = Beffγy + γdyn, or a more
general linear combination of:

γcorr = Bcorrγy + γdyn (9.5)

Note that this formulation allows the weight of γy but not γdyn to be zero.
This is intentional as we expect that the correlation strain may be dominantly
determined by γdyn as γdyn is the strain over which particles rearrange and
rearrangements play an important role in the fluctuations in the stress.

In figure 9.5 we can clearly see that neither of the three ‘simple’ strains from
our Q3E model, the yield, dynamic or effective strains, describe the correlation
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strain well. A general linear combination of γy and γdyn does work. First of all,
we see that the data collapses reasonably well, clearly scattering about a line.
This scatter is not surprising given that the γcorr that we extracted clearly does
not fully capture the behavior of the correlation function as shown. Second,
we note that the line around which the data points scatter is actually a linear
relation as we hypothesised. In conclusion: the correlation strain is clearly
related to the effective strain but is not equal to either the yield, the dynamic
or the effective strain.
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Summary

When soft, repulsive particles, like foam bubbles or emulsion droplets, are
sheared, they show interesting scaling behaviour. This behaviour is governed
by a critical point, called the jamming point, which resides at zero applied
strain rate and a packing fraction of around 0.84. The complex flow behaviour,
or rheology, of systems near jamming is the subject of intense interest and was
pioneered by Olsson and Teitel [11]. As we discuss in chapter 1, different
groups have found different, often contradictory, phenomenological descrip-
tions of the rheological behaviour in slightly different systems. While small
differences in the microscopic interactions between particles should not im-
pact the rheology in a standard critical scaling framework, we claim that these
microscopic details are important in determining the rheological behaviour of
flowing systems around the jamming transition.

In order to show this, we develop, in chapter 3, a simple scaling model
that captures the rheological behavior starting from three assumptions that
explicitly depend on the microscopic interactions. This model starts from three
ingredients: Energy conservation, the concept of an Effective steady state
strain in our flowing system and a constitutive Elasticity equation linking the
effective strain to the shear stress. We call this model the 3E model. From
these three assumptions we predict the presence of a flowing shear thinning
Critical regime - for high strain rate and low density -, a solid-like Yield regime
- for low strain rate and high density - and a novel Transition regime between
the previous two.

In chapter 3 we test our model in computer simulations of soft, massless
particles under steady shear and find that the numerics are broadly consistent
with our 3E model. However, the Yield regime is difficult to access: it needs
either very high densities or very low strain rates, and the crossover from the
Yield to the Transition regime is very soft, making it hard to disentangle the
two. This makes it hard to test our model in as much detail as we want.
To further test the model and expand its predictive power, we have made a
number of extensions to our 3E scaling model

The first extension of our model is to go to a fully quantitative model,
which we introduce in chapter 4 and call the Q3E model, where all prefac-
tors are made explicit and included. This formulation allows us to explicitly
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and quantitatively test the three ingredients of our model. Again the simu-
lations are consistent with our model. In chapter 5 we extend our model to
describe the normal component of the stress tensor. Here we find that we
need an empirical adjustment of the constitutive elasticity equation making
the stress depend nonlinearly, instead of linearly, on the effective strain. With
this adjustment, the model is consistent with our simulations.

In chapter 6 we turn our attention to the fluctuations in the relative motion
of the particles in steady flow; the 3E model predicts that the ratio of relative
velocities ∆v and strain rate γ̇ should diverge for slow flows. This is a direct
consequence of power balance in our system, where the dissipation rate is
determined by the second moment of the distribution of ∆v. We confirm this
trend for the second moment of ∆v in numerical simulations. Remarkably, we
are able to describe the full probability distribution function of the relative
velocities of particles in detail. While we lack an explanation for the scaling of
the fourth and sixth moment of the distribution, we are able to describe these
using similar scaling forms as for the second moment.

Finally, in chapter 7, we extend our model for non-linear microscopic parti-
cle interactions. We introduce a natural extension to our model and find that
it indeed predicts that the global rheological behaviour depends on the details
of the microscopic interactions between the particles - in contrast to standard
critical scaling theory.

We test this important prediction in three different ways. The first test that
we perform is the comparison of our model predictions with two experimental
studies: the flowing foams of Katgert et al. [37] and the colloid rheology of
Nordstrom et al. [39]. In both cases the model performs well, with some
caveats. The second test of our model, described in chapter 8, is to compare
it to computer simulations. This allows us to use a much wider range of
microscopic interactions. Though our simulation data here is preliminary, it is
consistent with the model and clearly shows that the macroscopic behaviour
depends on the microscopic interactions. Finally we compare our model to
simulations with a new code that includes particle mass. The inclusion of
mass makes the code more realistic but less robust. Nevertheless, we are able
to test for a limited range of microscopic interactions and find agreement with
our model in a subset of our simulations only. This is possibly due to the fact
that the inclusion of mass is a singular perturbation to the massless case.
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Samenvatting

Als zachte, elkaar afstotende deeltjes, zoals schuimbellen en emulsiedruppels,
langs elkaar worden geschoven, vertonen zij interessant, schalingsgedrag. Dit
gedrag wordt beheerst door een kritische punt, dat het jammingpunt wordt
genoemd; dit punt bevindt zich bij een schuifsnelheid van nul en een pakkings-
dichtheid van ongeveer 0,84. Het complexe stromingsgedrag, of de rheologie,
van systemen nabij jamming is het onderwerp van intense studie, aangezwen-
geld door het werk van Olsson en Teitel [11]. Zoals we bespreken in hoofd-
stuk 1, hebben verschillende onderzoeksgroepen verschillende, vaak tegenstrij-
dige, fenomenologische beschrijvingen van het rheologisch gedrag gevonden
in systemen die onderling licht van elkaar verschillen. Hoewel volgens het
standaard kritische schalingsparadigma kleine verschillen in de microscopische
wisselwerking tussen de deeltjes geen invloed zouden moeten hebben op het
rheologisch gedrag, beweren wij dat deze microscopische details wel degelijk
belangrijk zijn voor het rheologisch gedrag van stromende materialen rond de
jammingovergang.

Om dit te laten zien, ontwikkelen we in hoofdstuk 3 een model dat het rhe-
ologisch gedrag beschrijft, uitgaande van drie aannames die expliciet afhangen
van de microscopische wisselwerking tussen de deeltjes. Dit model gaat uit van
drie ingrediënten: behoud van Energie, het concept van een Effectieve defor-
matie in de stationaire toestand, en een constitutieve Elasticiteitsvergelijking
die de effectieve deformatie en de schuifspanning verbindt. We noemen dit
model het 3E model. Uit deze drie aannames voorspellen we het bestaan van
een stromend Kritisch regime waarin de viscositeit afneemt bij toenemende
afschuifsnelheid (bij hoge afschuifsnelheid en lage dichtheid), een vastestofach-
tig Vloeigrensregime (bij lage afschuifsnelheid en hoge dichtheid) en een nieuw
Overgangsregime ertussenin.

In hoofdstuk 3 testen we ons model in computer simulaties van zachte mas-
saloze deeltjes onder constante afschuiving en de resultaten van de simulaties
zijn ruwweg consistent met ons 3E model. Echter, het Vloeigrensregime is
lastig te bereiken: het vereist ofwel zeer hoge dichtheden ofwel zeer lage af-
schuifsnelheden; daarnaast is de overgang van het Vloeigrens- naar het Over-
gangsregime erg geleidelijk, waardoor de twee regimes lastig uit elkaar te halen
zijn. Hierdoor is het moeilijk het model tot in alle details te testen. Om het
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model toch beter te kunnen testen en het voorspellend vermogen van het model
te vergroten hebben we een aantal uitbreidingen aan ons 3E schalingsmodel
gemaakt.

De eerste uitbreiding van ons model is de overstap naar een volledig kwan-
titatief model, hetgeen we in hoofdstuk 4 introduceren en het Q3E model
noemen. In dit kwantitatieve model zijn alle voorfactoren expliciet gemaakt
en opgenomen. Deze nieuwe formulering stelt ons in staat om de drie in-
grediënten van het model expliciet en kwantitatief te testen. Wederom zijn de
simulaties consistent met ons model. In hoofdstuk 5 breiden we ons model uit
naar een beschrijving van de loodrechte componenten van de spanningstensor.
Hier blijkt dat we een empirische aanpassing van de constitutieve elasticiteits-
vergelijking nodig hebben: de spanning hangt niet-lineair, in plaats van lineair,
af van de effectieve deformatie. Met deze aanpassing is het model wederom
consistent met onze simulaties.

In hoofdstuk 6 richten we onze aandacht op de fluctuaties in de relatieve be-
weging van de deeltjes bij stationaire stroming; het 3E model voorspelt dat de
verhouding tussen de relatieve snelheden ∆v en de afschuifsnelheid divergeert
voor langzame stromingen. Dit is een direct gevolg van energiebehoud in ons
systeem, waar de dissipatiesnelheid wordt bepaald door het tweede moment
van de verdeling van ∆v. We bevestigen deze trend in het tweede moment van
∆v in computer simulaties. Opvallend genoeg zijn we in staat om de volledige
waarschijnlijkheidsverdeling van de relatieve snelheid van deeltjes in contact in
detail te beschrijven. Hoewel een verklaring ontbreekt voor het schalen van het
vierde en zesde moment van de verdeling, zijn we in staat deze te beschrijven
met vergelijkbare schalingsfuncties als bij het tweede moment.

Ten slotte breiden we, in hoofdstuk 7, ons model uit voor niet-lineaire
microscopische wisselwerking tussen de deeltjes. We stellen een natuurlijke
uitbreiding van ons model voor en leiden af dat het inderdaad voorspelt dat
het globale rheologische gedrag afhangt van de details van de microscopische
wisselwerking tussen de deeltjes - in tegenstelling tot wat standaard kritische
schalingstheorie zegt.

We testen deze belangrijke voorspelling op drie verschillende manieren. De
eerste test die we hebben uitgevoerd is de vergelijking van ons model met twee
experimentele onderzoeken: het stromende schuim van Katgert et al. [37] en
de collöıd rheologie van Nordstrom et al. [39]. In beide gevallen presteert het
model goed, al zijn er enkele uitzonderingen. De tweede test is het vergelij-
ken van het model met simulaties, beschreven in hoofdstuk 8. Dit stelt ons in
staat om de microscopische wisselwerking over een groter bereik te veranderen.
Hoewel we slechts voorlopige resultaten uit onze simulaties hebben verkregen,
zijn deze consistent met het model en laten ze duidelijk zien dat het macrosco-
pisch gedrag afhangt van de microscopische wisselwerking tussen de deeltjes.
Ten slotte vergelijken we ons model met simulaties op basis van een nieuwe
code die ook de massa van de deeltjes meeneemt. Dit maakt de code realis-
tischer maar helaas ook minder robuust. Daardoor zijn we beperkt tot een
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kleine groep microscopische wisselwerkingen. Zelfs binnen deze kleine groep is
maar een gedeelte consistent met ons model. Mogelijk wordt dit veroorzaakt
door het feit dat de aanwezigheid van massa een singuliere verstoring is op het
massaloze geval.
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