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CHAPTER 2
Theory

Many physical phenomena in condensed matter physics, such as the
Hall effect and the quantized conductance, can be explained well con-
sidering electrons as spinless particles with a charge −e. However,
there are effects that cannot be described without taking the spin of the
electron into account, such as magnetism [20, 21], the Kondo effect [22]
and the spin Hall effect [23].

Spin is the intrinsic angular momentum of an electron, which is
characterized with the spin quantum number s, which is 1

2 for an elec-
tron. The spin angular momentum operator S is given by

S =
1

2
~σ, (2.1)

where ~ is the reduced Planck constant and σ are the Pauli spin matri-
ces

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

. (2.2)

In particular, when the spin is pointing along the z-axis, the corre-

sponding eigenstates are |↑〉 =

(

1
0

)

and |↓〉 =

(

0
1

)

and the spin

points either parallel (spin-up) or antiparallel (spin-down) to the z-axis.
The electron spin also possesses a magnetic moment µs

µs = −gµB

~
S, (2.3)
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where g is the g-factor equalling 2 for a free electron and µB is the Bohr
magneton.

2.1 Magnetism

Magnetic properties are closely related to the electronic structure of the
solid. Three different forms of magnetic states can be distinguished:
diamagnetic, paramagnetic and magnetically ordered systems (e.g. fer-
romagnets or antiferromagnets) [20, 21]. While a (weak) diamagnetic
contribution to the total magnetic susceptibility is present in all ma-
terials, paramagnetism or magnetic ordering can be observed only in
materials with incomplete electron shells.

Diamagnetism

In a diamagnet, the action of an external magnetic field on the elec-
trons moving in the orbitals induces a magnetic moment, which op-
poses the applied magnetic field (Lenz’s law). Another contribution,
Landau diamagnetism, originates from the Lorentz force acting on con-
duction electrons, which is, however, overshadowed by stronger Pauli
paramagnetic contribution. Diamagnetism is in general a very weak
phenomenon.

Paramagnetism

In atoms (ions) with incomplete atomic shells, the magnetic moment
µ is proportional to the total angular momentum L + S. Without an
applied magnetic field, the magnetic moments point in a random di-
rection if the interaction between the moments is negligible. In that
case, the magnetic susceptibility χ is strongly temperature dependent
and follows the Curie law χ = C/T .

In itinerant electron systems, the state of the electrons can be de-
scribed as a non-interacting gas of free electrons characterized by the
momentum k and the spin σ of the valence electrons. When a mag-
netic field H is applied, the electron band is split into two spin sub-
bands, where the energy of an electron is raised or lowered by 1

2gµBH
depending on the orientation of the spin, as is shown in Figure 2.1.a.
The Pauli magnetic susceptibilty χP of this non-interacting gas of free
electrons is then equal to [24]

χP =
M

H
= 2µ2

BN(EF ), (2.4)
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with M is the magnetization and N(EF ) the density of states (DOS) at
the Fermi energy.

Magnetically ordered systems - ferromagnetism

When the interaction between the moments is strong enough, the mate-
rial exhibits magnetic ordering below a characteristic temperature, the
Curie temperature TC in ferromagnets or the Néel temperature TN in
antiferromagnets. In ferromagnets, the exchange interactions lead to
parallel ordering of magnetic moments giving rise to non-zero magne-
tization already in zero magnetic field.

In the Stoner model for itinerant ferromagnets, the exchange inter-
action is treated in simplified form as a molecular field term with the
Stoner exchange factor I as a measure for the interaction. All the spins
feel an identical exchange field, which causes a splitting of the electron
band into two spin subbands. The energy of the n = n↑ + n↓ electrons
is raised or lowered by I n↑(↓)

n .
In the new state, the kinetic energy is increased as electrons origi-

nally occupying states with k < kF now occupy states with k > kF . The
increase in kinetic energy is compensated by a decrease in the Coulomb
energy, as more spins are aligned and the total spatial overlap of elec-
tron states is reduced.

The susceptibility χ is then equal to

χs =
2µ2

BN(EF )

1− IN(EF )
, (2.5)

with I the Stoner exchange factor. When IN(EF ) becomes larger than
one, the susceptibility becomes negative, indicating that the interact-
ing electron gas forms a spontaneous moment. For the transition met-
als, the Stoner exchange constants I are of comparable order (approxi-
mately 1 eV) and the transition to a ferromagnetic state depends mostly
on the density of states at the Fermi energy. This implicates that narrow
bands at the Fermi energy are needed that can give rise to a large DOS.

In a ferromagnetic material, the total energy is built up from (short
range) exchange interactions and (long range) dipole fields, including
shape and demagnetization effects. It is therefore usually energetically
favourable to form magnetic domains to keep the magnetization inside
the material and minimize the demagnetization fields. Each domain
has a single orientation of the magnetization vector. In the absence of a
magnetic field, the magnetization of a ferromagnet is close to zero.

With an increasing magnetic field, the amount of domains with a
magnetization that is aligned with the applied field increases. When
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Figure 2.1: a) Density of states of an itinerant electron gas showing
the splitting of the energy bands. b) The magnetization hysteresis loop
for a ferromagnet. The saturation magnetization Ms is the maximum
magnetization that can be obtained when all the magnetic moments are
aligned, while the remanence or remanent magnetizationMr shows the
magnetization of a ferromagnet when no external field is applied. The
coercive field Hc is the opposite field needed to obtain zero magnetiza-
tion.

the magnetization of all domains is aligned in the same direction, the
maximum magnetization of the material is obtained: the saturation
magnetization Ms. When the magnetic field is decreased to zero, the
magnetization direction of the domains are not aligned all in the same
direction and the remaining magnetization without an applied mag-
netic field is called the remanence or remanent magnetization Mr. The
opposite magnetic field needed to drive the magnetization to zero is the
coercive field Hc. Figure 2.1.b. shows an example of a magnetization
hysteresis loop. Such a loop shows the magnetization of a ferromagnet
as a function of an applied field.

2.2 Spin current

A key ingredient to describe spin transport properties are spin currents.
A charge current Ic and spin current Is are described as [25, 26]

Ic = e
∑

k

vk↑fk↑ + vk↓fk↓, Is = e
∑

k

vk↑fk↑ − vk↓fk↓, (2.6)

where vkσ is the velocity of an electron with momentum k and spin
σ and fkσ is the distribution function for electrons with momentum k

and spin σ.
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The distribution function fkσ can be calculated using the Boltzmann
transport equation [25, 26]

vk ·
fkσ

∂r
+
e

~
E · fkσ

∂k
=

(

∂fkσ

∂t

)

scattering
, (2.7)

where E is an external electric field. In many situations, the external
fields produce only a small change gkσ in the equilibrium distribution
function f0

kσ . The scattering term can then be rewritten using the relax-
ation time approximation [25] as

(

∂fkσ

∂t

)

scattering
= −gkσ

τσ
− fkσ − fk−σ

τsf
, (2.8)

where τσ is the relaxation time for electrons with spin σ and τsf is the
spin-flip time, that defines the time between two elastic collisions or
two spin-flip collisions, respectively. The distance an electron ballis-
tically travels between two collisions is the electron mean free path ℓ,
which is equal to ℓ = vF τσ , with vF the Fermi velocity and the dis-
tance an electron ballistically travels between spin-flips is the spin-flip
length ℓsf, which is equal to ℓsf = vF τsf. A third length scale is the spin
diffusion length lSD =

√
Dτsf, with D the diffusion constant. The spin

diffusion length is the distance the electron diffuses through the mate-
rial between spin-flip collisions [27].

Using equation 2.6, three different types of current can be distin-
guished. When vk↑fk↑ = vk↓fk↓, there is a pure charge current and no
spin current is present. When vk↑fk↑ = −vk↓fk↓, there exists a pure
spin current and no charge current. In other cases, a spin polarized
current with polarization P is present. The creation and the control of
pure spin currents is a very attractive feature of spintronics, as it was
argued by Murakami et al. [28] that pure spin currents have even time-
reversal-symmetry. So, when time is reversed, both the direction of the
current and spin are reversed and the spin current remains unchanged.
In theory, devices can be constructed which carry pure and dissipation-
less spin currents, and which could thus overcome the major bottleneck
when scaling down normal silicon based technology: heating.

2.3 Ferromagnetic heterostructures

During the last 30 years, the number of studies of heterostructures of
ferromagnets (F) with normal metals (N), semiconductors (Sc) and su-
perconductors (S) has grown impressively. Due to the discovery of
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the Giant Magnetoresistance (GMR) effect at the end of the eighties
by Baibich et al. [29] and Binasch et al. [30], the study between fer-
romagnets and normal metals became an area of intense fundamen-
tal and applied research. Nowadays the GMR effect is used in many
products, ranging from magnetic sensors to magnetoresistive random-
access memories (MRAM).

The GMR effect appears in thin films composed of alternating fer-
romagnetic and non-magnetic layers. The relative orientation of the
magnetization direction of the ferromagnetic layers determines the re-
sistance in the multilayer. Figure 2.2 shows a ferromagnet (F1)/normal
metal (N)/ferromagnet (F2) trilayer, where the coercive field Hc1 of
layer F1 is larger than the coercive field Hc2 of layer F2. A current that
flows through layer F1 becomes spin polarized. When the thickness of
the N layer is smaller than the spin diffusion length, the spin polarized
current will reach layer F2. For simplicity, we assume that both layers
are 100% spin polarized and all the electrons are either transmitted or
reflected at the interface of layer F2. When the magnetization of layer F2

is parallel to F1, all electrons can be transmitted (Figure 2.2.a) through
F2 and a current will flow through the trilayer. When the magnetiza-
tion of layer F2 is antiparallel to layer F1, all electrons are reflected off
F2 (Figure 2.2.b) and no current will flow through the trilayer. The re-
sulting resistance as a function of the applied external field H, the mag-
netoresistance, is plotted in Figure 2.2.c. The fixed F1 layer and free
F2 layer behave different to the applied external magnetic field and the
magnetization direction switches at a different applied field, Hc1 and
Hc2 respectively.

The transport properties through GMR devices with ferromagnets
with spin polarization P and where both ferromagnetic layers have a
collinear magnetization, where the magnetization is aligned with the
spin quantization axis, can be described using the two-channel series
resistor model that was introduced by Valet and Fert [31]. In the Valet-
Fert model, the total current is modelled as two individual currents for
the spin-up and spin-down channel, limited by a channel dependent
resistances that represent the bulk and interface scattering.

The attraction of the interaction between ferromagnets and normal
metals lies in the fact that already at room temperature large effects
can be observed. Theoretically, they can be explained well using the
framework of static magnetoelectronic circuit theory [32]. This theory
describes the charge and spin transport in multilayers by dividing the
device in a circuit with reservoirs, resistors and nodes. An important
contribution here comes from the interface. For a collinear magnetiza-
tion, the spin dependent interface conductance, G↑(↓), is given by the
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Figure 2.2: Giant magnetoresistance in a ferromagnet (F1)/normal
metal (N)/ferromagnet (F2) trilayer. The incoming unpolarized elec-
trons from the left side are polarized by the F1 layer. Depending on the
orientation of the magnetization of the F2 layer with respect to F1, the
electrons are either fully transmitted (a) or reflected (b). In (c), the resis-
tance of the F1/N/F2 trilayer is shown as a function of the applied field
H. The magnetization direction of the F1 and F2-layer switches at differ-
ent applied field (Hc1 and Hc2). A higher resistance, RAP, occurs when
the magnetization in the ferromagnetic layers is in the antiparallel (↑↓
or ↓↑) state and a lower resistance, RP , occurs when the magnetization
in F1 and F2 is in a parallel (↑↑ or ↓↓) state.

Landauer-Büttiker formula in a two-spin channel model and is equal
to

G↑(↓) =
e2

h

∑

nm

∣

∣

∣
t↑(↓)
nm

∣

∣

∣

2

, (2.9)

where
∣

∣

∣
t
↑(↓)
nm

∣

∣

∣

2

is the probability that a spin-up(spin-down) electron in
mode n is transmitted at the interface as a spin-up(spin-down) electron
in mode m. For transport between non-collinear ferromagnets, also the
spin-mixing conductance G↑↓ should be taken into account [33]. It is
equal to

G↑↓ =
e2

h

[

M −
∑

nm

r↑
nm

(

r↓
nm

)∗

]

, (2.10)
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where M is the total number of transport channels and r
↑(↓)
nm are the

reflection coefficients between transport channels n and m. The spin-
mixing conductance is a complex quantity, where the product r↑

nm

(

r↓
nm

)∗

describes the angle between the incoming spin-up electron and reflected
spin-down electron at a normal metal/ferromagnet interface [34].

2.4 Magnetization dynamics

A shift from studying the static to the dynamical properties of ferromagnetic-
normal metal multilayers was initiated by Berger [12] and Slonczewski [13]
in 1996, who proposed that electric currents can induce a reorienta-
tion of the magnetization direction in multilayer structures, by the spin
transfer torque (STT) mechanism. Already two years later, Tsoi et al. [35]
demonstrated that when injecting a very high current density, order of
1012 A/m2, using a point contact into (Co/Cu)N multilayers, magneti-
zation precession can be induced. In 1999, Myers et al. [36] showed that
when injecting a very high current density via a lithographic point con-
tact into a Co/Cu/Co multilayer, the orientation of a magnetic domain
in the Co layer can be switched. The subsequent discovery of Kiselev
et al. [37] that the STT leads to a persistent oscillation at the gigahertz
range in a Cu/Co/Cu/Co/Cu/Pt nanopillar opened the field of high
frequency detection and manipulation of dynamical STT effects.

2.4.1 Landau-Lifshitz-Gilbert equation of motion

In ferromagnets, the magnetic moments are coupled via the exchange
interaction. Therefore, the whole spin system with magnetization M

can be considered as one macrospin. The dynamics of this macrospin
is usually described by the phenomenological Landau-Lifshitz-Gilbert
(LLG) equation of motion [38–41]

dm

dt
= −γm×Heff + αm× dm

dt
+ τ , (2.11)

where m = M

|M| is the unit direction vector of the magnetization M, γ
the gyromagnetic ratio, which is defined as γ = gµB/~ > 0, Heff is the
local effective magnetic field including the external, demagnetization
and crystal anisotropy fields, α the dimensionless Gilbert damping,
with a typical intrinsic value of α0 ≈ 10−3 - 10−2 for transition-metal
ferromagnets [42] and τ accounts for the extra torques present in the
system that are induced due to either current and/or spin orbit effects.
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The parameter α is sometimes also encountered as the Gilbert param-
eter G = αγMs. Note that, since m is a unit direction vector, the LLG
equation describes transverse magnetization dynamics. The first term
on the right side of equation 2.11 describes how the magnetization pre-
cesses around the local effective field Heff at the Larmor frequency ωL =
γHeff. The second term describes how the magnetization spirals down
on a time scale (αω)−1 to this local effective field.

2.4.2 Spin-transfer torque

A more general description for the GMR effect described in section 2.3
takes into account that the magnetization direction of both magnetic
layers does not need to be collinear. In Figure 2.3.a, a F1/N/F2 trilayer
is shown where the angle between the magnetization of the F2 and F1

layer is equal to θ and the magnetization in F2 is aligned with the spin
quantization axis. The resistance is used to monitor the orientation of
the magnetization between the two ferromagnetic layers of the trilayer.

When an electron flows through layer F1, where the magnetization
is not aligned with the spin quantization axis, the state of the electron is
a superposition of the spin-up |↑〉 and spin-down |↓〉 state. The |↑〉-state
can cross the interface between N and F2 and the |↓〉 state is reflected.
Comparing the angular momentum of the electron before and after the
scattering process shows that angular momentum is absorbed by the
magnetization of the ferromagnet F2 within the transverse magnetic
coherence length [43]

λc =
π

|kF
↑ − kF

↓ |
, (2.12)

where kF
↑(↓) are the spin-up and spin-down Fermi wave vectors. In the

transition metal ferromagnets Co, Fe and Ni, the transverse magnetic
coherence length is in the order of a few Ångström (a tenth of a nm).

A non-collinear spin current can be decomposed in three polariza-
tion components: parallel to the magnetization; perpendicular to the
magnetization and spin-current, Is ×M, the so-called field-like torque
τ FLT; or parallel to the spin-current, M × (Is ×M), the spin-transfer
torque τ STT. The total torque τ that acts on the magnetization is then [32]

τ = τ STT + τ FLT

= −~

e
Re(G↑↓)m× (µ×m)− ~

e
Im(G↑↓)µ×m, (2.13)

with µ the total spin-accumulation in the adjacent normal metal. It
should be no surprise that both τ STT and τ FLT are determined by the
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b)a)

Figure 2.3: a) Spin transfer torque in a F1/N/F2 trilayer. The angle
between the magnetization direction of layers F1 and F2 is equal to θ.
The right moving electrons are polarized in the F1 layer and will exert
a torque on the magnetization in F2. The reflected electron, whose po-
larization is antiparallel to F2, will exert a torque on F1. During each
reflection, the electron exerts a torque on either F1 or F2, but the influ-
ence of higher order scatterings is small as the electron flux decreases
with each scattering. b) Differential resistance as a function of the volt-
age bias for a mechanical point contact to a (Co/Cu)N multilayer, for
different out-of-plane applied magnetic fields. The peaks in the dif-
ferential resistance indicate the onset of the STT. The inset shows that
the threshold current is a linear function of the applied magnetic field.
Figure b) adapted from [35].

interface spin mixing parameter G↑↓, given the smallness of the trans-
verse coherence length λc.

For metallic systems, the STT is the dominant torque, as Re (G↑↓)
≫ Im (G↑↓) [44], and the field-like torque can be disregarded in many
practical situations.

The change in magnetization due to the transfer of angular momen-
tum of only one spin is very small, but when the current density Jc >
1010 A/m2, the induced STT becomes of the same order as the magne-
tization.

In Figure 2.4, trajectories are plotted of the magnetization M in a
free magnetic layer without anisotropies, that are a solution of the Landau-
Lifshitz-Gilbert equation of motion. As shown in Figure 2.4.a, without
damping and spin-transfer torque, the magnetization precesses in a cir-
cle due to the torque of the applied magnetic field. If there is also damp-
ing present in the system, after the magnetization is perturbed away

18



Figure 2.4: Precession of the magnetization in a free magnetic layer
without anisotropy. In a), no Gilbert damping and STT is present and
the magnetization precesses in a constant trajectory. When damping is
introduced, the magnetization precesses slowly back until it is aligned
with Heff as shown in b). In c) a large STT is introduced that can switch
the magnetization. Images adapted from [45]

from the equilibrium state, it will slowly spiral back until the magne-
tization is aligned with the local effective magnetic field as is shown
in Figure 2.4.b. For a spin polarized current below some critical cur-
rent, the STT acting on the magnetization is not large enough to change
the magnetization direction. After the magnetization is perturbed, the
magnetization will spiral back, until it is aligned with the local effec-
tive magnetic field. When the spin polarized current is larger than the
critical current, the STT is large enough to change the magnetization di-
rection and the magnetization spirals away to an equilibrium situation
where the damping and the STT are in equilibrium, or the STT can even
switch the magnetization direction direction as shown in Figure 2.4.c.

2.4.3 Spin-orbit torque

When an electron with momentum k is orbiting the nucleus, in the lab-
oratory frame at rest it feels an electric field E from the nucleus. This
electric field gives rise to a magnetic field B in the reference frame of the
electron [46]. This magnetic field interacts with the spin of the electron
and gives rise to the spin-orbit HamiltonianHSO

HSO = − ~

4m2c2
σ ·

(

~k×∇Ṽ
)

, (2.14)

where m is the electron mass, c is the speed of light and Ṽ is the total
potential. The total potential consist of a periodic crystal potential and a
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potential due to local impurities, confinement, boundaries and external
electrical fields [47].

Recently, van der Bijl and Duine [48] showed using linear-response
matrix theory that when also the spin-orbit coupling is taken into ac-
count, a whole zoo of new current induced torques appear. As with the
field-like-torque and the spin-transfer torque, these torques appear in
pairs and have the form τ ⊥ = m × τ . Some of these torques can be
attributed to known physical effects like the inhomogeneous magneti-
zation, the anisotropic magnetoresistance and the anomalous or spin
Hall effect, but not all derived torques have a straightforward physical
interpretation.

Spin-orbit torques can also be related to either structure inversion
or bulk inversion asymmetry of the underlying structure, resulting in a
Rashba or a Dresselhaus spin-orbit coupling, respectively. Well known
systems where such a lack of bulk inversion symmetry can be found are
semiconductors with the zinc blende structure such as (Ga,Mn)As [49–
51] or crystals from the B20 space group such as FeGe [52] and MnSi [53]
which shows a chiral spin-orbit interaction.

Recently, experiments and theory indicated that also in ultrathin
metallic multilayers , Rashba spin-orbit coupling might be present. A
static electric field E = E0ez in the laboratory rest frame, where ez

points normal to the surface of the multilayers, produces a magnetic
field B ∝ kxey − kyex in the frame of the moving object, where kxey −
kyex is known as the Rashba spin-orbit coupling.

Experimentally, there is not yet agreement about the observations
of a Rashba spin-orbit torque, that was measured by Miron et al. [14]
and follow up experiments [54, 55]. In these experiments, magnetiza-
tion switching of a very thin ferromagnetic layer is studied, driven by
the current through the layer in the presence of spin-orbit torques. In
all studies performed to date, the ferromagnetic layer has either been
asymmetrically sandwiched between a heavy metal layer and an oxide
layer, e.g. Pt/Co/AlOx or Ta/CoFeB/MgO [14, 54–57] or in periodic
crystals that lack inversion symmetry like (Ga,Mn)As [49–51].

Two different torques are found in these experiments; one torque
is an even function of the direction of the magnetization m and the
other is an odd function of the direction of the magnetization. The even
torque,
T

even = T even
m × [(êz ×E)×m], where E is the applied electric field

and êz is a unit vector perpendicular to the interface of the ferromag-
netic heterostructure, is expected to be driven by the spin current due to
the spin Hall effect (SHE), see below, in the heavy-metal layer [58, 59].
The odd torque,
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T
odd = T odd(êz×E)×m, is expected to originate from the effective mag-

netic field due to spin dependent scattering in combination with the
Rashba interaction, which originates from the broken inversion sym-
metry in the ferromagnetic heterostructures.

2.4.4 Spin Hall effect

When a current is sent through a crystal or thin film and a magnetic
field is applied normal to the current, a Hall voltage can be measured
perpendicular to both the current and magnetic field [60]. In ferromag-
netic materials, the Hall voltage consists of a contribution of the normal
Hall effect and the anomalous Hall effect (AHE). When a current flows
through a ferromagnet, the spin-orbit interaction gives rise to asymmet-
ric scattering of the electrons. So, if the spin-up electrons have a larger
probability to scatter to the left then the spin-down electrons have a
larger probability to scatter to the right.

In 1971, Dyakonov and Perel [61, 62] predicted that the same mech-
anism responsible for the AHE, could cause a spin imbalance in a non-
magnetic material. The work was rediscovered in 1999 by Hirsch [15],
who labelled this phenomenon as spin Hall effect (SHE).

In the SHE, a spin current Is is generated transverse to a charge cur-
rent Ic, because the spin-orbit interaction causes an asymmetric scatter-
ing of the spin-up and -down electrons as shown in Figure 2.5. The spin
current Is is equal to

Is = αSHEσ × Ic, (2.15)

where αSHE is a material dependent parameter characterizing the effi-
ciency of the SHE. The spin-orbit interaction causing the SHE is also
able to convert a spin current into a charge current by the inverse spin
Hall effect (ISHE), where the charge current is equal to

Ic = αSHEIs × σ. (2.16)

The SHE and ISHE make a full-electric manipulation of spin pos-
sible, even without the use of magnetic materials. To obtain a large
spin current, a large αSHE is needed. Up to now, most experiments use
heavy paramagnetic materials such as Pt and Pd, because the strength
of the spin-orbit coupling and thus also αSHE scales withZ4, Z being the
atomic number. Recently, it has been shown that a large SHE can also be
obtained when Cu is doped with Bi impurities [63, 64] or when heavy
transition metals are grown in a high resistive phases as β-Ta [57] and β-
W [65]. Wang et al. [66] proposed that the SHE can also be induced into
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Figure 2.5: a) A spin current is induced by the spin Hall effect in a para-
magnetic material. When sending a charge current in the x-direction, a
spin current is generated in the y-direction due to the spin-orbit inter-
action. b) The inverse spin Hall effect induces a charge current in the
y-direction when a spin current flows in the x-direction.

a thin normal metal when it is sandwiched between dissimilar insula-
tors. The asymmetric interfaces break the inversion symmetry, which
leads to a Rashba-type spin-orbit interaction. This spin-orbit interac-
tion gives rise to a giant spin Hall conductivity.

2.4.5 Spin pumping

Where the spin transfer torque transfers angular momentum from a
spin current to the magnetization of a ferromagnet, also the inverse
process is possible. A precessing magnetization can emit an alternat-
ing spin current into an adjacent layer; a process called spin pumping,
proposed by Berger [12] and Tserkovnyak [43, 67].

In Figure 2.6, spin pumping is schematically illustrated. In Fig-
ure 2.6.a, a ferromagnet in equilibrium is shown, where the density of
states consists of a spin-up and spin-down band that are both filled up
to the Fermi energy. If the magnetization of the ferromagnet is brought
into a non-equilibrium state, the magnetization will relax by a spin-flip
process of an electron above the Fermi energy into an empty state in the
lower energy band. This process is called intrinsic damping [68, 69].
When there is an adjacent layer present, an additional relaxation pro-
cess can occur. For ferromagnets that are thicker than the transverse
coherence length, Tserkovnyak et al. [67] showed that the precessing
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Figure 2.6: a) shows the Stoner model of a ferromagnet in equilibrium.
Both the spin-up and -down band are filled up to the Fermi level EF .
They are shifted with respect to each other by the exchange energy Eex.
When the magnetization is brought into a non-equilibrium state (b),
intrinsic relaxation can bring the ferromagnet back into equilibrium (c).
When an adjacent layers is present, a spin current can be emitted into
this layer to accelerate the relaxation (b). Adapted from [70].

magnetization emits a pure spin current

Is =
~

4π

[

Re(G↑↓)m× dm

dt
+ Im(G↑↓)

dm

dt

]

(2.17)

into the adjacent layer with a spin-flip probability ǫ. If the adjacent
layer is a good spin sink, ǫ >10−2, the spin current is efficiently ab-
sorbed, causing a decrease in the relaxation time. If the adjacent layer
is a bad spin sink, ǫ <10−2, no change in the magnetization dynamics
will be observed. A bad spin sink can be turned into a good spin sink
by doping it with spin-flip scatterers like heavy or magnetic impurities.

The spin-flip probability of a normal metals is mostly determined by
the spin-orbit scattering. In normal metals, the spin-flip probability ǫ is
equal to the ratio between the elastic and spin-orbit relaxation time, τel

τso
.

τso rapidly decreases with increasing Z and the spin sink effect becomes
much more dominant with heavier elements such as Pt and Pd.

Furthermore, when the thickness d of the adjacent layer is smaller
than the spin diffusion length lSD, a spin accumulation is built up in
the adjacent layer. Because the spins in the adjacent layer accumulate
transverse to the magnetization of the ferromagnetic layer, the spin ac-
cumulation driven transport is described using the spin mixing con-
ductance. Taking into account the spin accumulation, the spin mixing
conductanceG↑↓ in equation 2.17 is replaced by an effective spin pump-
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ing efficiency A↑↓
eff [43]

1

A↑↓
eff

=
1

G↑↓
+

Rsd

tanh(d/λSD)
, (2.18)

with Rsd is the resistance of the adjacent layer.
The extra damping α′ and the possible modification of the gyromag-

netic ratio γ due to spin pumping is equal to [43]

α′ =
γeff

γ

[

α+
~γ

4πMsAdf
Re

(

A↑↓
eff

)

]

, (2.19)

where A is the area, df the thickness of the ferromagnet and γeff is the
modified gyromagnetic ratio equal to [43]

γ

γeff
= 1− ~γ

4πMsAdf
Im

(

A↑↓
eff

)

. (2.20)

These two equations show that the spin pumping effect scales with
1/df .

2.5 Spin-flip laser

In the previous sections we have seen what happens when a spin cur-
rent flows from a normal metal into a ferromagnet. If the polarization
of the spin current is non-collinear with the magnetization of the ferro-
magnet, the transverse component of the magnetization gives rise to a
spin-transfer torque that can change the magnetization of the ferromag-
net. Now, we will study what happens when a spin current is injected
into a normal metal. Already in 1996, Berger [12] proposed that an
injected current could excite spin waves in a ferromagnet. When inject-
ing a spin current from a ferromagnet into a direct band semiconduc-
tor, it has been experimentally shown that circular polarized light can
be emitted [71, 72]. In 2004, Kadigrobov [18, 19] proposed that when
creating a non-equilibrium spin distribution in a normal metal or ferro-
magnet, there is a chance that this relaxes via a direct spin-flip transition
and electromagnetic radiation is emitted. When it is possible to create
a population inversion, even a spin-flip laser could be built. In 2006,
Watts and van Wees [73] suggested that a MASER (Microwave Ampli-
fication by Stimulated Emission of Radiation) could be build when an
external spin current is driven through a microwave created spin accu-
mulation in a paramagnet.
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Figure 2.7: Four possible ferromagnet (F)/Normal metal (N) configu-
rations, where a spin-flip process could generate a photon. In a), the
magnetization M of F is antiparallel with the applied field H . Majority
electrons are injected from F into N, leading to an inverse population of
the Zeeman levels in N. A spontaneous or stimulated spin-flip process
will emit a photon with the frequency proportional to the applied field
H . b) When the magnetization M in F is parallel to the applied field
H , electrons from the N layer are injected mostly in the majority band
of F, resulting in an inversely populated Zeeman level in N. Again, a
spontaneous or stimulated spin-flip process will emit a photon with the
frequency proportional to the applied field H . In c), the magnetization
M of F is antiparallel with the applied fieldH , but now the F/N bilayer
is irradiated with photons with the energy equal to the Zeeman split-
ting. A spin-flip transition can be induced when a spin-down electron
absorbs a photon. This will induce a photocurrent through the N into
the F-layer. In d), the F layer is a minority type ferromagnet. When the
magnetization M∗ is parallel to the applied field, minority carriers will
flow from the F into the N layer, creating an inversely populated Zee-
man level. Again, a spontaneous or stimulated spin-flip process will
emit a photon with the frequency proportional to the applied field H.
Adopted from [74].



Figure 2.8: Two possible ferromagnet 1 (F1)/ferromagnet 2 (F2) config-
urations, where a spin-flip process could generate a photon. The nor-
mal metal layer is replaced with a second majority type (a) or minority
type (b) ferromagnet respectively. Photons are generated in a similar
way as in the F/N bilayer, but instead of splitting the energy states in
a normal metal with the Zeeman energy, now a ferromagnet is used
and the energy splitting is caused by the exchange energy J . Adapted
from [74].

In Figure 2.7, four different configurations are shown that can be
used to build a spin-flip laser from a normal metal/ferromagnetic bi-
layer. When an external magnetic field H is applied to a normal metal,
the energy eigenstates are Zeeman split. When injecting electrons into
the highest energy level or removing electrons from the lowest energy
level, a population inversion can be induced into the normal metal
layer. The relaxation of the population inversion requires spin-flip pro-
cesses. In the case the spin-flip relaxation mechanisms in the normal
metal is slow, so the normal metal should be a bad spin sink, a spin-flip
process accompanied with the emission of a photon with frequency

hν = 2gµBmsH, (2.21)

can increase the relaxation rate. For a normal metal with a g-value of 2,
the emitted frequency is equal to 28 GHz/T.

As predicted by Berger [75], a voltage can be generated in a mag-
netic multilayer undergoing ferromagnetic resonance when a magnon
is created or annilated by a spin-flip process. In Figure 2.7.c the inverse
process is shown, where the ferromagnet/normal metal bilayer is irra-
diated with photons and a photocurrent is induced through the bilayer.

When replacing the normal metal with a weak ferromagnet, no ex-
ternal field is needed to split the energy levels. In Figure 2.8, two
options are shown how a ferromagnet (F1)/ferromagnet (F2) spin-flip
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lasers can be built. Again, by injection or removing electrons, a pop-
ulation inversion can be created in F2, that can relax using a spin-flip
relaxation with the emission of a photon with frequency

hν = 2J, (2.22)

where J is the exchange energy of F2. For a ferromagnet, the exchange
energy can be tuned from a few meV for weak ferromagnets up to a
few eV for the strong ferromagnets. Since 1 eV would corresponds to
500 THz, a very broad frequency range can be obtained with a spin-flip
laser.
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