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Cha p t e r 6

Metallic Stripes and the

Bond-stretching Phonon

Anomaly in Cuprates

6.1 Introduction

The phonon spectrum of the high-Tc superconducting cuprates is characterized
by a peculiar anomaly: halfway the Brillioun zone the bond-stretching Cu—O
vibration mode seems to suddenly dip down to a much lower frequency [226–228].
The line-width reaches its maximum at a wavevector somewhat shifted from the
frequency-dip position, while it narrows at higher temperatures [229, 230]. In
addition, the anomaly has a narrow intrinsic peak width as function of momen-
tum transversal to the mode propagation direction [229,230]. While the position
of the dip is doping-independent, the softening amplitude changes with dop-
ing [228, 231] tracking roughly the “Yamada plot” [232]. This is hard to explain
in a conventional fermiology framework, and interpretations invoking a coupling
between the phonon and purely electronic collective modes of the stripes acquired
credibility [233] by the recent demonstration that the anomaly is particularly pro-
nounced in La2−1/8Ba1/8 CuO4 [228–230], a system with a well developed static
stripe phase [96]. Initially, Kaneshita et al. [234] considered a crossing of the LO-
phonon with the transversal ’meandering’ stripe fluctuations [235] by computing
the Gaussian fluctuations around the Hartree-Fock stripe ground state. This in-
terpretation is however problematic: it was deduced [98] using the anisotropy of
the spin-fluctuations that in the untwinned YBCO superconducting crystal the
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phonon anomaly occurs for phonon-wavevectors parallel to the stripes, at a right
angle as compared to the expectations for transversal stripe modes.

A well known problem with the Hartree-Fock stripes is that they are “insu-
lating like” [93], while cuprate stripes are quite metallic. This supports the idea
that they form an electronic liquid crystal of the smectic kind as introduced by
Kivelson and coworkers [100, 236, 237] (see also Chapter 7). Here the transver-
sal modes are frozen out by commensuration effects and instead the low energy
physics is governed by on-stripe compressional fluctuations. As it was already
noticed some time ago [238], the electronic polarizability associated with the
on-stripe Luttinger-liquid like physics should be strongly enhanced at the on-
stripe 2kF wavevectors and this feature might well govern the phonon anomaly
(see Fig. 6.1). This view is actually supported by numerous experimental and
computational evidence. First of all, one-dimensional structure of the electron
momentum distribution function is documented by ARPES measurements in
non-superconducting La1.28Nd0.6Sr0.12CuO4 in the commensurate static stripe-
phase at 1/8 hole-doping [239]. Besides, the high resolution ARPES data [240]
in high-Tc (Tc = 40K) La1.85Sr0.15CuO4, followed by a more detailed data for Sr
concentration x ranging from x = 0.03 to x = 0.3 [241], indicate a dual nature of
the electronic spectrum, that contains one-dimensional straight segments in the
momentum distribution of the spectral weight in the (π, 0) and (0, π) antinodal
regions superimposed on the 2D-like spectral weight distribution in the nodal
direction [1, 1] predicted by LDA calculations. These straight segments in the
Brillouin zone would be expected to occur from 1D stripes along [1, 0] or/and
[0, 1] direction in the CuO plane. The momentum distribution function inte-
grated over 30meV interval around the Fermi-level, according to [240], suggests
two sets of constant energy contours defined by the |kx| = π/4 and |ky| = π/4
lines, which would be indeed expected for superposition of two perpendicularly
oriented stripe domains with quarter-filled charge stripes [239]. The 1D-like
spectral weight crosses the Fermi-level at about the optimal doping x = 0.15 in
La2−xSrxCuO4 [241]. This same spectral weight is observed as a “flat-band” or
as the extended van Hove singularities (VHS) below the Fermi-level [241, 242]
in the underdoped high-Tc cuprates, that are characterized with a transition
into the pseudo-gap state. From the LDA+U model computations [243] side,
there is also a prediction of metallic stripes with 4a0 (a0 is the lattice constant in
CuO plane) periodicity in La15/8Sr1/8CuO4 high-Tc compound. The calculations
give the semi-flat pieces of the quasi 1D Fermi-surface due to small interstripe
hybridization t⊥ ≈ 15 meV. Besides, recent STM measurements [99] in the so-
called electronic cluster glass state (ECG) of strongly underdoped Na-CCOC and
Dy-Bi2212 cuprates have revealed ’nanostripe domains’ with a short-range 4a0

interstripe periodicity (see also Chapter 7). In this relation we mention that,
as will become clear from the derivations presented here, the stripe-induced LO-
phonon softening effect considered in our work is independent of the length of the
stripe segments as long as the latter are longer than e.g. 10÷20 lattice constants
in the CuO plane, such that quantum size gap in the electronic spectrum related



6.2 Elastic model of the CuO layer in the stripe phase 89

with unidirectional motion along the finite length segment is substantially below
the optical phonon frequency ∼ 0.1eV.

Here we analyze the phonon anomaly as associated with an array of Luttinger
liquids embedded into a 2D optical phonon background. We employ two simpli-
fying assumptions: (i) we use the free fermion charge susceptibility (Lindhardt
function) instead of the fully interacting Luttinger liquid form, since the phonon
anomaly appears to be in first instance sensitive only to the gross features of the
1D electron dynamics. (ii) More critical, we assume that at the energy of the
anomaly ωLO ∼ 68meV the inter-stripe hopping ∝ t⊥, and interaction effects can
be neglected. Our theory gives a number of straightforward a posteriori expla-
nations of the experiment, as well as provides several important predictions that
are within reach of experiment. The list of both the explanations (three) and
predictions (four), that follow from our theory, is presented below in logically
formed sequence. (a) The stripe alignment problem is solved by construction,
thus explaining parallel to the stripes alignment [98] of the phonon-wavevectors
of the phonon anomaly in the untwinned YBCO superconducting crystal. Be-
sides, our theory gives the following important prediction: (b) the anomaly is now
caused by the phonon crossing the ubiquitous continuum of 1D charge excitations
centered at the intrastripe 2kF (Fig. 6.1). At the phonon frequency ω this con-
tinuum has a momentum width ∆q ≈ kFω/vc where vc is the electronic charge
velocity and this causes a ’double dip’ structure in the phonon spectral function
(Fig. 6.2) , as in the transversal stripe mode scenario [234] (inset Fig. 6.2). How-
ever, the big difference with the prediction [234] is that in the ’smectic scenario’
the phonon is completely (Landau) damped in the momentum region in between
the dips: high resolution neutron scattering measurements should be able to re-
solve this. (c) Another prediction is that the characteristic momentum where the
anomaly occurs is now determined by the intrastripe electron density and not by
the interstripe distance, hence, the position of the anomaly should have a dop-
ing dependence that is radically different from what is expected for transversal
modes (Fig. 6.3). (d) We find a natural explanation for the correlation between
the amplitude of the softening strength as function of doping and the Yamada
plot [231]. (e) We explain why the anomalous phonon linewidth ∆ω decreases
with increasing temperature (Fig.6.4). (f) We show that the form factors of the
electron-phonon interaction [244] localize the phonon anomaly in 2D momentum
space also in the direction perpendicular to the stripes (Fig. 6.4),thus explaining
the corresponding experiment [229, 230]. (g) Counterintuitively, we predict that
the transverse width should contract when temperature is raised.

6.2 Elastic model of the CuO layer in the stripe
phase

We embed the array of parallel metallic stripes in the 2D phonon universe by con-
sidering a simplified propagator: it describes non-interacting electrons in Bloch
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states on a periodic array of parallel lines in two dimensions, moving freely along
these lines, but with vanishing inter-line overlap of the ‘Wannier’ functions:

G(�r, �r′; iω) =
1
Nk

∑
�k

N−1∑
l,l′=0

ei�k(�r−�r′)+iQ(ly−l′y′)

iω − ε(�k)
(6.1)

where �r, �r′ span the the 1D Cu-centered stripes (lines) in real space; ω is the
Matsubara frequency. We consider an orthorombic CuO plane, with a (b) being
the unit cell spacing along the x(y)-axis. The stripe metallic direction is along the
x-axis and the stripe Umklapp momentum Q = 2π/bN is along the y-axis, where
N (= 4 at higher doping) is the number of unit cells in one inter-stripe (charge-
density) period. The momentum �k spans Nk sites in the reduced orthorombic
Brillouin zone 0 < ky < 2π/bN ; 0 < kx < 2π/a. The electron dispersion
ε(�k) ≈ ε(kx), ignoring inter-stripe t⊥ (see above).

A hole on site �r inside the stripe communicates with neighboring oxygens’
bond-stretching displacements u�r

±i ≡ ui(�r±�i/2),�i = �a,�b and we take the effective
coupling between those and the Zhang-Rice singlets as introduced by Khaliullin
and Horsch [244],

He−ph = g0
∑

�r

(
u�r

x − u�r
−x + u�r

y − u�r
−y

)
c†�rc�r (6.2)

with g0 ≈ 2eV/Ȧ, using the standard estimates for the charge transfer energy
and hoppings [245]. This is actually our main step: from this Hamiltonian and
the 2D ’striped’ electron propagator Eq. (6.1) it is straightforward to calculate
the self-energy part of the dynamical matrix associated with the CuO plane:

ΛEα,β
x,y (�q, ω) =

ω0

Nk
Π(qx, ω)

(
s2x sxsy

sxsy s2y

)
(6.3)

where ω0 is bare phonon frequency, sx = sin (qxa/2), sy = sin (qyb/2), and
α, β = 1, 2, 3 enumerate ions in the in-plane Cu—O unit cell: this particular
form of the electron-phonon form-factors follows immediately from the tight bind-
ing Hamiltonian Eq. (6.2), implying actually a substantial dependence on the
momentum qy perpendicular to the stripes. Π(qx, ω) corresponds with the po-
larization propagator of the (in principle, interacting) on-stripe Luttinger liquid,
depending on the momentum component qx along the stripes, while its fermion
lines are given by the propagator Eq.(6.1). The prefactor 1/Nk arises because in
the < G×G ∼ Π > product only terms diagonal in stripe-index are retained in
the approximation of ’independent stripe Luttinger liquids’: there are Nk such
terms, while G×G ∝ 1/N2

k according to Eq. (6.1).
This self-energy has to be added to the bare (undoped) ab-plane ionic 6 × 6

dynamic matrix ΛIα,β
i,j (�q, ω) of the orthorombic planes, constructed to be in close
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agreement with the experimental data [228] for the in-plane bond-stretching LO
phonon modes in the undoped cuprates:

ΛIα,β
i,j (�q, ω) ∝ (6.4)

∝




γ2(F +G) 0 −γF cx 0 −γG cy 0
0 γ2(F ′ +G′) 0 −γF ′ cx 0 −γG′ cy

−γF cx 0 F 0 0 0
0 −γF ′ cx 0 F ′ 0 0

−γG cy 0 0 0 G 0
0 −γG′ cy 0 0 0 G′




where γ ≡
√

mO

mCu
, with mO and mCu being respectively the oxygen and copper

ionic masses; Cx and Cy are shorthand for cos(qxa/2) and cos(qyb/2), respec-
tively. We use F = 0.44, F ′ = 0.18, G = 0.17 and G′ = 0.40 in units of
εF ≈ t̃pd/2 ∼ 100meV . Here F is Cu—O coupling constant along the bond a
parallel to the x-axis, and is slightly bigger than G′, which is Cu—O coupling
along the bond b parallel to the y-axis. The number of different constants (four)
reflects assumed orthorombic symmetry of the unit cell in the CuO plane. This
matrix allows for two mid-bond oxygen atoms surrounding the Cu atom in the
in-plane orthorombic unit cell. We concentrate on the in-plane stretching modes,
thus, the apical oxygen degrees of freedom are neglected.

The phonon spectra ωσ(�q) associated with polarizations �eα
�q,σ are obtained by

the diagonalization of the total dynamic matrix [246].This is done by solving the
following dynamic matrix equation [246]:∑

β,j

{
ΛIα,β

i,j (�q, ω) + ΛEα,β
i,j (�q, ω)

}
eβ

j,�q,σ = ω2
σ(�q)eα

i,�q,σ (6.5)

From these solutions the phonon spectral functions given by the imaginary part
of the phonon propagator D(�q, ω) are obtained. Notice that the ΛE ’s are in
general complex quantities, with the effect that ωσ(�q) acquires an imaginary
part representing the phonon damping.

6.3 “Fingerprints” of 1D stripe polarization in
the phonon anomaly

We use for Π(qx, ω) the well known 1D Lindhardt function [247],

ReΠ(q, ω) = − ω0ξ

4πqτ

∫ ∞

0

ln
∣∣∣∣∆+

∆−

∣∣∣∣cosh−2

(
p2 − 1

2τ

)
pdp (6.6)

ImΠ(q, ω) =
ω0ξ

8

[
tanh

ω + 2(q − 2)
4τ

+ tanh
ω − 2(q − 2)

4τ

]
, (6.7)
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Figure 6.1: Real— (black line) and imaginary (red line) part of the on-stripe
electronic phonon self-energy Π(qx, ω) at T = 10K at a fixed (phonon) frequency
ω = 68meV, as function of the momentum component qx parallel to the stripes.
We take for the dimensionless electron-phonon coupling a value representative for
the cuprates: ξ = 1.0. In the inset the results are shown at a higher T = 300K.

where ∆± = (2p ± q)2q2 − ω2, all momenta and energies are measured in units
of the Fermi-gas parameters kF and εF ≡ k2

F /2m ∼ 0.1eV, while τ = kBT/εF is
a dimensionless temperature. The dimensionless electron-phonon coupling con-
stant ξ = g2

0/KεF ∼ 1 is representative for cuprates with K ≈ 25eV/Ȧ2 the
lattice force constant [244].

6.3.1 Doping dependence of the phonon anomaly

The effect of this 1D polarizability on the phonons follows from the behavior
of Π(qx, ω) at the phonon-frequency ω = ω0 as function of qx (Fig. 1). The
continuum of charge excitations in a 1D fermi-gas is the well known fan in the
momentum-frequency plane, centered at 2kF at ω = 0 and bounded by 2kF ±
ω/vF at finite frequency. For non-interacting electrons the spectral function
(ImΠ) is just the box of Fig. (6.1), while in the presence of interactions the
spectral weight will pile up at the edges. Since Π is proportional to the phonon
self-energy, the phonon spectral function, Fig. (6.2), indicates that the phonon
dispersion is pushed downwards when it approaches the edges of the quasi 1D
electron-hole continuum from either side, to broaden strongly when it enters
the continuum. This is markedly different from the result based on a mode
coupling between the phonon and a propagating mode as for instance discussed
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Figure 6.2: False color plot of the LO phonon spectral function vs momentum in
the stripe direction and energy at low temperature (10K) for 1D εF ∼ 0.1eV and
the same parameters as in Fig. 6.1. Phonons couple merely to the 1D Fermi-gas
like charge excitations of the metallic electron system confined in the stripes.
Strong phonon damping in a momentum region ’inside’ the anomaly is caused
by the decay in the continuum of quasi 1D electron-hole excitations. Left inset:
different behavior of the ’standard’ mode coupling of the phonon with a prop-
agating stripe collective mode (e.g., Ref. [234]). Right inset: the renormalized
phonon dispersions determined by the crossing of the phonon frequency ω0 and
the real part of the 1D polarization propagator of Fig. 6.1 (see text).

by Kaneshita et al. [234] and shown in the inset of Fig. (6.2): in this case there
is no phonon damping and the intensity is just distributed over the propagating
modes subjected to an avoided level crossing. The bottomline is that the gross
effect of the two scenarios is quite similar and to find out the difference higher
resolution measurements are required.

A distinction between the effects of the transversal stripe modes and the
internal 1D-like fermionic excitations on the phonon anomaly should also be
revealed by the different doping dependence of the locus of the phonon anomaly
in momentum space. The transversal fluctuations emerge at the stripe ordering
wavevectors and these should follow the famous Yamada plot [232], correlating
the stripe ordering wavevectors δ with doping x (Fig. 6.3), such that at low
dopings the anomaly should live at a wavevector qa ∼ 1/x. On the other hand,
dealing with the quasi 1D modes the locus of the anomaly is determined by
the on-stripe hole density and according to the Yamada plot this stays constant
(’half-filled’) at qa = 2kF = π/2a up to xc = 1/8, while at higher dopings x > xc
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Figure 6.3: The qualitatively different doping dependences expected for the char-
acteristic wavevector of the anomaly when transversal stripe model (1) or the
intra-stripe quasi 1D electron excitations (2) are responsible. In case (1) the
anomaly should follow the stripe-ordering incommensurate wavevector δ depen-
dence on doping x: the famous “Yamada plot” [232] (black dots); (blue line) is
for the softened phonon wavevector q = 2kF , and black dots — for the softening
strength in case (2).

it should follow qa = 2kF ∝ x because the on-stripe hole density is increasing
(the blue line in Fig. 6.3). Experimentally the locus of the anomaly in k-space
is conspicuously doping independent [228], actually arguing strongly against the
transversal mode. It would be interesting to find out if the ’center of mass’ of
the anomaly does shift at higher dopings. Remarkably, the prefactor 1/Nk in the
phonon self-energy Eq. (6.3) and, hence, the softening amplitude ∆ω ∝ Π/Nk

depends on doping x roughly in the same way as given by the “Yamada plot” [232]
(black dots in Fig. 6.3). This should be true for both the amplitude of the sharp
feature around qa ∼ 2kF = π/2a (the double-dip in Fig. 6.2), and the amplitude
of the “smooth” softening across the half Brillouin zone, which is caused by the
momentum-dependent form-factors sx,y = sin (qxa/2), sin (qyb/2) in the 2 × 2
matrix multiplied by Π/Nk in Eq. (6.3). The latter fact may explain naturally
why the amplitude A in the phenomenological function 0.5A cos (qxa)+B follows
the “Yamada plot” as function of hole doping x (see Fig. 4 of [231]), as long as
this function is used [231] to fit the smooth part of the measured bond-stretching
phonon softening in La2−xSrxCuO4.
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Figure 6.4: Calculated phonon spectral function ImD(qx, qy = 0;ω) dependence
on frequency ω, using the same parameters as in Fig.6.2, at different tempera-
tures. A temperature narrowing is manifest (in accord with experiment [229]),
accompanied by a phonon hardening at the ’dips’ seen in Fig.6.2. Inset: cal-
culated ImD(qx, qy;ω) momentum dependence in the ’transversal’ qy direction
perpendicular to the stripes, at fixed qx = 2kF and ω = 68meV. Counter intu-
itively, the anomaly even localizes further when temperature is raised.

6.3.2 Temperature and wave-vector dependence of the
phonon anomaly

Our theory yields a rationale for the observed gross temperature dependence of
the anomaly [229]. The rather counterintuitive narrowing of the frequency width
with increasing temperature follows naturally from the temperature dependence
of the 1D polarization propagator: ImΠ ∝ ω/T (Fig. 6.1). The effect of this
change on the phonon spectral function is shown in Fig. (6.4): a substantial nar-
rowing occurs at higher temperature. Moreover, right at the ’dips’ a substantial
phonon hardening occurs since the phonon positions at these momenta are most
sensitive to the details of the real part of the self energy.

The phonon anomaly behavior in the ’transversal’ qy-direction (inset, Fig. 6.4)
follows from our analysis of the expression for the phonon spectral function
ImD(qx, qy;ω), showing a substantial qy dependence close to the anomaly due to
the form-factors in Eq. (6.3):
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ImD(qx, qy;ω) ≈
ω0∆qx,qy

ImΠqx

4(ω̃qx,qy
− ω)2 + ∆2

qx,qy
Im2Πqx

, (6.8)

where ∆qx,qy
≡ s2qx

+ s2qy
, and ω̃qx,qy

≈ ω0 + 0.5∆qx,qy
ReΠqx

is the renormalized
optical phonon mode frequency. The width of the Lorentzian with respect to
qy at ω = ω̃qx=2kF ,qy=0 is: δqy ≈ 2/a

√
|ImΠ/ReΠ| ∼ 0.1 × 2π/a, assuming a

flat bare mode dispersion. Given the ratio under the square root, the width δqy
decreases when the temperature is raised.

6.4 Conclusions

In summary, we have analyzed a minimal, (over)simplifed model dealing with
the Luttinger liquid-like excitations coming from the electrons confined in stripes
interacting with optical lattice phonons. Our main new finding is that the gross
features of the phonon anomaly as measured experimentally are consistent with
the workings of a quasi 1D array of metallic intrastripe Luttinger liquids. Their
fingerprints described above include binding of the anomalous phonon momentum
to 1D inrastripe 2kF wavevector and hence to its doping dependence; a Yamada
plot behavior of the softening strength; a decrease with increasing temperature
of the phonon line-width and of the spread of the anomaly in the transverse
momentum; and finally, a double-dip structure of the bond-stretching phonon
anomaly that should be observable at high enough resolutions.


