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Cha p t e r 5

Dislocations and the Identity

of Majorana Fermions

5.1 Introduction

As discussed in the introductory Chapter, the topological insulators (TI) [74,
81,203] have gapless edge (2DTI) or surface (3DTI) states that are helical (spin
direction is tied to propagation direction), topologically protected in the absence
of time-reversal symmetry (TRS) breaking fields. Breaking TRS by a deposition
of a magnetic (M) material can open an insulating energy gap in the edge states.
Depositing a superconductor (S) on the edge or surface induces, via the proximity
effect, a superconducting gap. Remarkably, the edge or surface can host Majorana
bound states (MBS) at an STIM interface, where the gap “changes sign” from
the M to the S type [204]. The situation where localized states are created at
interfaces where the induced gap in the Dirac spectrum changes is familiar: in
polyacetylene chains [29], the gap is opened by the Peierls distortion of the chain
(the unit-cell is doubled), and this gap will “change sign” at a domain wall where
the two different degenerate patterns of the Peierls distortion meet; in bilayer
graphene [165], it was shown that the domain wall between two regions with
opposite sign of applied electric potential also confines the Dirac particles. In
topological insulators, the TRS of the original system ensures the special property
that the bound states are Majorana fermions, meaning that the particle is its own
anti-particle.

There is a strong interest to realize, observe and manipulate Majorana
fermions, because of the non-Abelian statistics they possess [205], being the ba-
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sis for topological quantum computation [206]. Majorana fermions have been
argued to be present in the ν = 5/2 fractional quantum Hall state [205, 207],
in the p−wave superconductor Sr2RuO4 [208] and in topological insulator-
superconductor junctions [204,209,210]. In the context of the ν = 5/2 quantum
Hall state, recent experiments have identified the charge of the e/4 quasipar-
ticle modes [211, 212], and current efforts are focused on identifying their non-
Abelian nature. However, in superconductors, Majorana fermions have proven
much more elusive, since they are neutral. There has been a surge of sugges-
tions for the identification of these modes, ranging from rather indirect tunneling
experiments [213–215], to interference experiments [216,217].

In this Chapter, we will describe crystal dislocations as probes of the Majorana
states in topological insulators.

5.2 Dislocations and Majorana states: conduc-
tance symmetries

Here we identify the fundamental effect of dislocations on 2DTI edge states,
and propose a simple interferometer for using them to probe neutral Majorana
fermion states. This is a standard Aharonov-Bohm (AB) interferometer (cf.
Fig. 5.1), where the presence of dislocations within the interferometer area causes
a topological phase shift on the edge states due to the translational effect of the
dislocation Burgers vector on the edge wavefunction. This AB effect (see also
Section 2.2) is analogous to the effect of pierced magnetic flux [216, 217], except
that it preserves TRS. The magnetic flux induces electrical current flow, the
persistent current, in the ground state. Analogously, dislocations induce the TRS
invariant counterpart, dissipationless spin currents. Spin currents are typically
hard to observe, but appear to be useful for MBS detection. Dislocations in 3DTI
have also been found to host interesting states [218,219].

The STIM interface locally breaks TRS and particle-hole symmetry
(PHS) [204, 209, 210], so that clear experimental signatures in the two-terminal
AB interferometer are expected. For instance, asymmetries of the magnetocon-
ductance

G(φ) �= G(−φ), (5.1)

where φ is the threading magnetic flux, are typically absent due to TRS. We
find that the magnetoconductance remains even in the presence of MBS, due
to the topological helicity symmetry (exchange of the left/right moving up/down
spin, for the left/right moving down/up spin edge modes). But when dislocations
are present (this is controlled by straining the bulk of the TI), a spin current is
introduced in the interferometer which is sensitive to the helicity flip and therefore
can detect the signatures of MBS. Most strikingly, the oscillations δG(φ) switch
from even with period φ0/2 (φ0 is the flux quantum hc/e) to odd oscillations
with period φ0 when dislocations enter the device and the MBS are coupled (see
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Figure 5.1: The experimental setup we propose aimed at observing neutral Ma-
jorana fermion bound states (MBS). Edge modes of the 2D topological insula-
tor (TI, grey shaded area) traverse an interferometer, where at its upper arm
there is a pair of superconductor (SC) - ferromagnet (FM) - topological insulator
(TI) junctions, where the MBS (red dots) are present. Electrons circulating along
the edges interact with the MBS. The 2D TI is threaded by 3D dislocation lines
with a Burgers vector�b. The dislocation induces a translation on the half-plane of
missing atoms (dotted line), causing a topological phase shift exp (i �K ·�b), where
�K is the three-dimensional embedding of the edge state momentum K. The
two simplest Feynman paths (white and dashed green (light grey)) contribute
to Aharonov-Bohm oscillations in the two-terminal conductance, caused by the
topological phase shift of the dislocations and/or the magnetic flux φ.

Fig. 5.1), while oscillations vanish in the absence of MBS at the STIM. We predict
that the conductance satisfies the relation,

G(φ,E, φd) = G(−φ,−E,−φd) (5.2)

(E incident electron energy, and φd the dislocation scattering topological phase),
which allows the use of the topological effect of dislocations (φd) as a control
parameter to bring out the signatures of the MBS. We further expect the rightful
use of dislocation induced spin currents as novel TRS probes in the future. Given
the experimental observation of 2D [83] and 3D [87,88,220] topological insulators,
with dislocations being the most natural and abundant topological defects in
crystals (controllable by shear stresses), it seems plausible that the proposed
setup is experimentally possible, pending the STIM interface.

5.3 The proposed interferometer setup

Our interferometer is made up of a 2DTI (e.g. HgTe quantum well) (cf. Fig. 5.1)
shaped by two point contacts, and we model it using the scattering matrix for-
malism, which should provide a correct description at low temperatures in the
regime of coherent transport [221]. The edge segments comprising the interfer-
ometer support two chiral modes, one electron and one hole, traveling in both
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directions with opposite spin. The Bogoliubov - de Gennes Hamiltonian describ-
ing the edge segments is,

τ3(vF p̂ σ3 +Ad + τ3σ3eA/�c− EF )Ψ = EΨ, (5.3)

where p̂ ≡ −i�∂/∂x, EF the Fermi energy, vF the Fermi velocity, and A the mag-
netic vector potential. The four-component spinor is Ψ = (Ψe↑,Ψe↓,Ψh↑,Ψh↓)T

while the τ matrices mix the electron and hole parts of the wavefunction, and σ
the spin components.

The effect of dislocations is contained in the potential Ad of Eq. (5.3). It
encodes for the AB effect:

exp (i
∮
Ad dx) = exp (i2πφd), (5.4)

with pseudo-flux φd stemming from the topological effect of the dislocation on
the wavefunctions on the edge as they circulate the interferometer. As also pre-
viously introduced in Chapter 2, it is well known that this effect is described
by a translation by the Burgers vector �b on traversal of electron around the dis-
location core line [12]. The translation operator exp (i �K ·�b) ≡ exp (i2πφd) is
determined by the Burgers vector �b of the dislocation line threading the TI in-
side the ring-shaped area of the interferometer. The �b is three-dimensional and
could be due to any type (edge, screw or mixed) of dislocations. The wavec-
tor �K is the three-dimensional embedding of the edge wavefunction wavevector
K [74] (see Fig. 5.1). The dislocation effects discussed in this Letter depend on
one-dimensional momentum K on the edge being non-zero; such 2DTI variety is
not yet realized, but it is expected that such edge states are present in Heusler
alloys [222]. Dislocations preserve time reversal and particle hole (PHS) symme-
tries, represented by T = iσ2C and Ξ = τ2σ2C, respectively, with C the complex
conjugation, and they are distinct from ordinary disorder due to their intrinsic
gauge symmetry.

5.3.1 Scattering formalism

The Hamiltonian of Eq. (5.3) determines the energy dependent wavevector of
the left (spin down on upper edge), and right (spin up on upper edge), moving
electron, as well as their time reversed hole pairs. The point contacts, the two
halves of the upper ring arm, the coupled MBS between the two upper arm
halves, and the lower ring arm are all described by single scattering points with
corresponding matrices (Sscatt). Each matrix Sscatt connects the amplitudes (OL

and OR) of the modes outgoing to the left/right (L/R) side, to the amplitudes
(IL and IR) of the modes incoming from the left/right side, with respect to
that particular scatterer. Using OT = (OL,OR)T = (oL

e↓, o
L
h↑, o

R
e↑, o

R
h↓)

T and
IT = (IL, IR)T = (iLe↑, i

L
h↓, i

R
e↓, i

R
h↑)

T we formally have O = SscattI. On the lower
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edge, spin directions ↓, ↑ are reversed, because their directions are opposite due
to chirality. The scattering matrices have a block structure

Sscatt =
(
r t
t′ r′

)
, (5.5)

representing reflection (r, r′) and transmission (t, t′), where each block has elec-
tron/hole components:

t =
(
tee the

the thh

)
. (5.6)

When TRS is obeyed, backscattering is forbidden in the single-particle formalism,
i.e. r = r′ = 0 [223], because T 2 = −1. We compute the total scattering matrix
S for the four leads (labeled from 1 to 4 in Fig. 5.1), determining the conductance
of the device according to the Landauer-Büttiker quantum transport formalism.

Particle conservation is enforced by S†S = 1. For scattering matrices con-
necting two edge segments, TRS demands

Sscatt(φ) = −α3Sscatt(−φ)Tα3, (5.7)

and PHS is obeyed when

Sscatt(E) = β1Sscatt(−E)β1, (5.8)

where α and β are Pauli matrices acting on the L/R and e/h indices of Sscatt,
respectively. For scattering involving all four edges (like in S) one should only
replace α by α ⊗ α′, where α′ matrices exchange the two leads on the same
side (i.e. 1 and 4, or 2 and 3). The scattering caused by the coupling to, and
propagation through the two MBS in the upper arm is given by the scattering
matrix SMBS found in Ref. [210]. It is determined by two energy scales, the
coupling between the two MBS EM , and the coupling of edge states to the MBS
Γ. Length is measured in units of the ring circumference L, φ in units of the flux
quantum φ0 = hc/e, and energy in units of �vF /L. We consider the scattering
mechanisms as follows:

(a) Propagation in the lower arm Slow is determined by nonzero elements:

tee
low = exp [ild(E + 2πφd − 2πφ)] (5.9)

thh
low = exp [ild(E − 2πφd + 2πφ)], (5.10)

where lu is the length of the lower arm;
(b) In the upper arm segments Sup = ST

low, with ld replaced by lu1, and lu2

in the two segments, respectively;
(c) Without loss of generality we take the point contact scattering matrix

SPC to be real and satisfying the TRS and PHS symmetries (edge segments are
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ordered as (1, 4) on the left and (2, 3) on right, cf. Fig. 5.1):

SPC =




0 a b b′

a 0 −b′ b
b b′ 0 −a

−b′ b −a 0


 ⊗ β0, (5.11)

with β0 = 1, and a2 + b2 + b′2 = 1. Parameter a describes the coupling of the
ring-shaped middle of the interferometer to the leads (a = 0 corresponds to an
isolated ring with G = 0). The ratio ε ≡ b/b′ measures the asymmetry of current
injected into the lower and upper ring arms (ε = 0 corresponds to all particles
from lead 1 being injected into the lower arm, and all from lead 4 into the upper
arm). Following Refs. [224,225], in the present single particle scattering we attain
the conductance of the charge-conductor/spin-insulator (CI) state, by choosing
a = 1/

√
3, ε = 1, being in the regime of Luttinger liquid coupling gc > 2. In the

realistic case of intermediate 0 < a < 1, the dependence on a and ε is weak, so
in the following we present results for CI point contacts.

The conductance is given by

G = e2/h
∑
i=1,4
j=2,3

(
|See

ij |2 − |She
ij |2

)
, (5.12)

where i, j label the leads, and holes contribute opposite charge current from
electrons. The zero temperature conductance at zero voltage corresponds to
taking E = 0 in G, while at low enough temperature and voltage difference,
E is given by the external voltage (E = eV1). We consider EF = 0, and fix
lu1 = lu2 = ld/2 = L/2, while the results are insensitive to the asymmetry in lu1

and lu2. The point contact parameters a, ε are set to be the same in the left and
right contact, since results are insensitive to this asymmetry too.

The symmetry expressed in Eq. 5.2 is most revealing since it controls the
behavior of the conductance G(φ,E), given the changes in the net Burgers vector
d. It represents the invariance of the edge states to switching the spin orientation
of left and right moving carriers (This spin orientation is set by the sign of the
spin-orbit coupling term in the bulk.) For the scattering on the edge, this switch
is represented by conjugation C, i.e. the combined time-reversal and spin-flip
operation. In this case, it follows that:

Sscatt(E) = Sscatt(−E)∗, (5.13)

and non-trivially for the case of SMBS , this property holds because

H∗
M = −HM . (5.14)

The two-level Hamiltonian HM fundamentally obeys the relation because the
Majorana fields are real, i.e. γ†a = γa. We expect the spin-flip symmetry to be
robust in absence of Zeeman type coupling to out-of-plane magnetic fields.
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5.3.2 Detecting Majoranas with dislocations

We first consider the effect of dislocations on a trivial interferometer, one without
a STIM interface. The presence of φd �= 0 introduces a deviation from evenness
in G(E), as the symmetry G(E, φd) = G(−E,−φd) suggests. The magneto-
conductance G(φ) = G(−φ) stays even, protected by TRS in a two terminal
measurement. However, the nature of the G(φ) oscillations switches from domi-
nantly universal conductance fluctuations (UCF), i.e. period φ0, to a dominantly
period φ0/2 nature, when dislocation is introduced.

Secondly, we introduce the STIM interface into the upper arm of the inter-
ferometer (cf. Fig. 5.1). If there are no MBS forming, the STIM is a segment
of gapped edge states with a TRS violation. The absence of MBS is modeled
by setting Γ = 0 (decoupling from the edges). In this case, the magnetoconduc-
tance oscillations δG(φ) vanish. The dislocations influence the oscillations, and
G(E, φd) = f(E − φd), with

f(x) = b′2(1 − a4)
(1 + a2)(1 + ε2) + 4aε cos (x/2)

1 + a8 + 2a4 cos (2x)
, (5.15)

which shows clearly that the asymmetry of G(E) is controlled by the dislocations.
The effect persists in the limit where the central ring is decoupled from the leads,
i.e. when a = 0, and also then G = 0: the spectrum of the isolated ring is given
by the solutions of cos (2E) = cos (πφd), and shows the spectrum (a)symmetries

{En(φd)} �= −{En(φd)} (5.16)
{En(φd)} = −{En(−φd)}. (5.17)

Note that in this geometry of the isolated ring it becomes obvious that the dis-
location effect, just as the AB magnetic flux effect, can be literally assigned to
a boundary condition at the point where the periodicity of the one-dimensional
system (the ring “cut open”) is imposed, with the important distinction that
dislocations do not break TRS. In this spirit we introduced the dislocation gauge
field in Eq. (5.4).

The general asymmetry features in G(E) due to dislocations persist when
MBS are added, and new signature effects appear in the magnetoconductance as
dislocations are manipulated. The dependence G(E) shows oscillatory behavior,
with resonances at ±EM , shown in Fig. 5.2(a). In Fig. 5.2(b), we provide a
summary of the dislocation effect on the behavior of G(E). Introduction of non-
zero dislocation phase causes a large asymmetry and the effect persists for all
values of EM . If the flux φ is present, G(E) becomes asymmetric at any value of
φd, and more strongly as EM increases (note that when MBS are absent, there is
no dependence on φ). The last observation was made also for a more complicated
hypothetical interferometer in Ref. [217].

Fig. 5.3 presents the characteristic influence of dislocations and Majorana
states on the magnetoconductance at zero energy (i.e. zero voltage at low tem-
peratures). As announced, even though TRS is broken by the MBS scattering, a
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Figure 5.2: The properties of energy (external voltage) dependent conductance,
as function of dislocation, with EM = 1. (a) Example curves: no dislocation
(dashed thin black line); dislocation phase φd = 0.1 (thick black); and φd = −0.1
(thick light grey (blue)). Note the resonances at ±EM = ±1, and the asymmetry
induced by the dislocation. (b) The asymmetry of the G(E) curves (full black
line), calculated as MaxE [G(E) −G(−E)] on the interval E ∈ [0, 3], as function
of dislocation phase φd. (The asymmetry reaches 2 for purely odd G ∼ sin (E)).
The dashed grey (blue) line shows the amplitude of oscillations in G(E) around
the mean value. The curves are robust to changes in EM .

resulting non-even G(φ) is observed only in the presence of dislocations. Namely,
δG(φ) has two prominent Fourier components, and both have definite parity: the
UCF in the form of sin (φ) (period φ0), and the harmonic cos (2φ) (period φ0/2).
When EM = 0 (MBS decoupled from each other), the UCF vanish. However,
when EM �= 0, dislocations show a clear signature: in their presence, as EM/Γ
increases, the harmonic is suppressed in favor of the UCF, and therefore simul-
taneously the transformation from even to odd G(φ) is observed! If EM > Γ, a
small value of φd (e.g. 0.05) already causes a linear G(φ) up to |φ| � 1/4 (cf.
Fig. 5.3).

In the last paragraph of this subsection, we present the intuitive way of de-
scribing how the UCF, period φ0, oscillations arise (these are normal Aharonov-
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Figure 5.3: Magnetoconductance G(φ) at zero energy (voltage) as function of
dislocations and Majorana couplings. In absence of MBS, G(φ) vanishes (dotted
black line). The dash-dotted (red), dashed (blue) and full (black) curves corre-
spond to three regimes of MBS coupling EM = 0, 0.1, 0.3, respectively, with re-
spect to MBS-edge coupling Γ = 0.1 (units �vF /L). The case of absence (φd = 0)
or presence (φd = 0.3) of dislocations is distinguished by thin and thick lines,
respectively, for each EM value. Without dislocations, the result δG ∼ cos (2φ) is
robust to interferometer parameter changes. The presence of dislocations affects
only the cases of coupled MBS, EM �= 0, by suppressing the φ0/2 harmonic in
G(φ) in favor of the φ0, which is always odd, i.e. sin (φ).

Bohm oscillations). Starting from the limit of decoupled interferometer (a = 0),
one can treat the coupling to the leads a as a perturbation. Consider the Feyn-
man path interpretation of the electron amplitude: When the incoming electron
is in lead 1, and it leaves through leads 2 or 3, there is a path represented by
dashed green line in Fig. 5.1. Its amplitude A0 is independent of value of a,
because the electron does not switch between ring arms. A second electron path
exists, represented by the white full line in Fig. 5.1, whose amplitude A1 is linear
in a, because it switches ring arms only once, after backscattering in the upper.
The interference of these two paths gives a non-vanishing oscillatory contribution
to G(φ, φd), which is linear in a. The two Feynman paths in Fig. 5.1 have to be
subtracted, because they contribute through GA = A∗

0A1+A∗
1A0, which results in

precisely one traversal around the ring of the interferometer. Upon one traversal
the accumulated magnetic topological phase is φ0, a fact that is encoded explic-
itly in Eq. (5.10). In a similar fashion, one can see that considering two longer
paths, which have an additional full traversal with respect to the “white” and
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“green” paths, their interference contributes to the φ0/2 oscillations.

5.4 Conclusions

We demonstrated the usefulness of topological lattice defects in observing and
manipulating neutral Majorana fermions in TIs. In particular, we showed that
the oscillatory features of the magnetoconductance at zero energy, carry clear
signatures of the interplay between MBS and dislocations. Such signatures are
due to spin currents that are induced on the TI edges because of the very presence
of dislocations in the system. In addition, we showed that in the presence of
dislocations, the conductance satisfies the enhanced symmetry of Eq. 5.2, a direct
consequence of the topological symmetry of the parent insulator.


