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Cha p t e r 3

Valley Conserving Decoherence

in Graphene and Dislocations

3.1 Introduction

In this Chapter we will look at the possibility of interferometric detection of the
dislocation Berry phase identified in Chapter 2. This search will lead us in a
surprising direction.

Since electrical conductance is even under time reversal, it has to be that mag-
netoconductance is an even function of the applied magnetic field that breaks time
reversal invariance. This elementary Casimir–Onsager relation requires equilib-
rium conditions such that the transport is in the linear response regime [128–131].

We will present an example suggesting that in the case of finite temperature
quantum transport, linear response might run into a singular limit: although the
external conditions are perfectly within linear response, the parts of the current
that are governed by quantum mechanics cannot equilibrate in a true sense be-
cause some quantum number is effectively conserved, with the net effect that
these coherent currents feel an “arrow of time” negating the Onsager relations
associated with true equilibrium. This might be a more general truth, but we
will limit ourselves here to the specific case of graphene where we have to employ
a whole array of properties specific to graphene, to come up with a design that
might exhibit the aforementioned effect.

We start by envisaging a typical AB experiment where the dislocation is put in
the middle of a ring (Fig. 3.1). The AB oscillations are influenced by the presence
of the dislocation holonomy, and we will discuss this in Section 3.3. It turns out
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that the dislocation topological phase could in principle be measured, after it is
disentangled from the elastic scattering of impurities by disorder averaging. Its
effect is connected to the AB oscillation amplitudes, which are in practice less
reliable due to the standard mesoscopic clutter of the oscillations.

bb

Figure 3.1: The modified graphene Aharonov–Bohm device. This is the usual ring
pierced by an external magnetic flux Φ, but now with a dislocation with Burgers
vector b in the center acting as a pseudoflux on the electrons with a definite valley
number. Both leads are equipped with a valley polarizer: ideally these transmit
fully, say, electrons in the K+ mode (solid lines) moving from left to right, while
K− electrons (dashed lines) propagating in the same direction are reflected to K+

mode moving in the opposite direction, as required by time reversal invariance.
In Sec. 3.4.1 it is argued that at temperatures such that the device size is of
order of the phase coherence length, only Feynman paths traversing the device
once contribute to the magneto–oscillations: K+ modes moving from left to
right (solid lines) sense the direction of the Burgers vector in a way that is
opposite to the K− modes moving from right to left (dashed lines), and this
implies that the dislocation pseudoflux offsets the magneto–oscillations. At low
temperatures the long Feynman paths explore the “backside” of the polarizers
and Büttiker’s law is restored.

Further, if the current was carried exclusively by electrons in one valley [132]
the situation would be quite different, since these sense the dislocation Berry
phase as indistinguishable from a real magnetic flux. (The details of the dislo-
cation Berry phase form are presented in Section 2.2.) Abstractly, it seems the
dislocation Berry phase could thus cause the offset of the magneto–oscillations,
which would violate the Onsager relation. We therefore consider the concrete
possibility of valley filters installed at the input and output terminals of our dis-
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located AB ring (Fig. 3.1). The time reversal invariance puts a constraint on the
general workings of the valley filter: when it is perfectly transparent for electrons
in valley K+ coming from the left (thus completely reflecting the K− valley),
a K+ electron impinging on it from the right will be unitarily backscattered to
the K− valley. Deep in the quantum regime where the phase coherence length
is large compared to the size of the ring L, long Feynman paths encircle the ring
many times, having ample opportunity to explore the “backside” of the valley
filters, with the effect that the quantum current equilibrates over the two valleys,
restoring the evenness of the magnetoconductance. When temperature rises, the
phase coherence length shrinks and becomes of order of L. The coherent part
of the current that is sensitive to the topological phases can still be detected
but now it is dominated by Feynman paths that traverse the ring only once.
These can no longer explore the backside of the valley polarizers, and so can
no longer sense that time reversal is unbroken, with the consequence that the
magnetoconductance becomes uneven. We will address this more quantitatively
in Section 3.4.1.

The simple essence of the argument is the observation that even in a linear
response measurement, the quantum coherent part of the current cannot reach
a true equilibrium. The underlying assumption is that the electrical currents
are conserved separately for the two valleys everywhere in the device, except
at the valley polarizers. Since these are separated in space by a length L, this
current can be regarded as effectively conserved when the phase coherence length
becomes of the order of L for the purposes of quantum coherent phenomena that
depend on the conservation of valley current. This quantum conserved current
acts in analogy with the role of conservation laws in conventional hydrodynamics
to prohibit the system from reaching equilibrium.

The argument as presented implicitly rests on the language of Feynman paths
and there are precedents known where qualitative arguments of that kind can
be quite misleading with regard to quantum transport. [133] A superb theory
describing transport deep in the quantum regime is the Landauer–Büttiker scat-
tering matrix formalism and we will address the workings of our device in this
language in Section 3.4.2. It seems that the formalism is inherently static, revolv-
ing around elastic scattering which is sufficient at zero temperature, but at finite
temperature the role of imaginary time becomes central in properly accounting
for the effects of inelastic scattering. Among the various attempts [134, 135],
the voltage probe approach to incorporating dephasing [136, 137] suggested by
Büttiker is particularly prominent. It amounts to attaching an extra termi-
nal to the coherent quantum device, with the effect of scrambling the phase of
the waves entering this phantom reservoir. This has a respectable track record
with regard to correctly modeling the effects of decoherence on quantum trans-
port (e.g., Ref. [133, 137–140]). We straightforwardly extend this method to the
present device by requiring that the dephasing reservoirs do not affect the valley
quantum number, assuming the intervalley inelastic time to be infinitely long. As
long as time reversal and unitarity of scattering are present, it follows generally
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from this formalism that magnetoconductance is even [131], a fact in this context
referred to as Büttiker’s theorem. We prove that this holds even when different
dephasing times are allowed for the two valleys, which are connected by time
reversal. Furthermore, we explicate how the dislocation phase signature in the
AB oscillations remains the same as in the zero temperature calculation.

We hope that this story will motivate experimentalists to realize our device
in the laboratory. It appears to us that the matters at stake cannot be decided
by theoretical means alone, as we will substantiate in the rest of this Chapter.

Before we move on to the interferometer setup, let us discuss the role of
time reversal invariance in more detail, being an important issue in this Chap-
ter. Real magnetic fields break time reversal, expressed through an antiunitary
operator (T ) which involves complex conjugation (operator C). Time reversal
applied to the graphene Dirac electrons exchanges the Fermi points and the cor-
responding modes in the leads. The time reversal operator can be chosen as
simply T ≡ τ1C. With regard to the defect, Eq. (2.3), one has [T , U(�b)] = 0. Ac-
cording to Eq. (2.2), also [T ,H] = 0. In total, time reversal amounts to flipping
the external magnetic field, reversing the direction of motion of electrons, and
switching them to the opposite valley, while keeping �b unchanged. After all, the
lattice defect is just a complicated rearrangement in the lattice potential, and
cannot break time reversal symmetry. As noted after Eq. (2.3), the time reversal
symmetry also dictates that the dislocation pseudoflux has to be of opposite sign
for the two valleys.

3.2 General properties of a dislocated AB ring

The standard way to measure fluxes is by measuring the conductance of an
Aharonov–Bohm ring device, as indicated in Fig. 3.1. Besides the usual magnetic
flux that can be pierced through the ring, we consider one or more dislocations
located inside the ring. The electrons do not explore the dislocation cores and
only communicate with the “lines of missing atoms” attached to the dislocation
cores that cross the ring “somewhere”.

With regard to the feasibility of realizing this device in the laboratory, be-
side the experimental mastery of graphene mantioned in Section 1.3.1, we want
to mention the observation of AB oscillations in particular [141]. The elusive
important ingredient are the valley polarizers — so far a simple experimental
implementation is lacking [64,132], but we will discuss systems analogous to the
present graphene setup at the end of this Chapter.

At this point one may ask how realistic is it to assume that valley currents
are conserved at the mentioned length scales. The first issue is that the intraval-
ley inelastic scattering time should be, at a given temperature, much smaller
than the intervalley inelastic scattering time, to satisfy the requirement that the
intravalley phase coherence length becomes quite small while the valley polar-
ization is not destroyed at this temperature. The origin of these inelastic times
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is of course not mysterious: it is rooted in Fermi–liquid electron–electron and
electron–phonon scattering. Although we are not aware of unambiguous experi-
mental information, [142–147] it is widely believed that the intervalley inelastic
time is indeed much longer, because of the kinematical bottleneck that is ac-
tive both for electron–electron and electron–phonon scattering in the form of the
large momentum that has to be absorbed when the on–shell electrons are scat-
tered between valleys. In fact, the elastic intervalley scattering is more worrisome
since valley quantum number is quite fragile, being rooted eventually in lattice
potentials, and one expects it to be very sensitive to the imperfections of real life
devices.

The boundaries do not seem to play a critical role [148, 149], and there is
numerical evidence for valley conservation in the ring geometry [150]. Eventually,
one can contemplate even smooth terminations using mass confinement due to
potentials [151], which could automatically preserve the valley.

3.3 Dislocated Aharonov–Bohm ring at zero
temperature

The focus of this section will be on the fully coherent quantum transport at
zero temperature and in this regime the valley filters do not have a decisive
influence on the conductance. The conclusion of this section will be that when
the valley currents are conserved the dislocation Berry phase is observable in
principle, but harder in practice: after inserting a dislocation in the ring, keeping
it the same otherwise, especially with regard to point disorder, its presence can
be deduced in principle from changes in the amplitude of magnetoconductance
oscillations. When the intervalley scattering length becomes smaller than L (ring
arm length), the electron transport carries no information any longer pertaining
to the presence or absence of the dislocation(s).

Let us focus on an ideal device which has ballistic transport in the arms, the
magnetic field, and the dislocation. The total topological phase contribution to
the wavefunction on traversing the ring is just the sum of the electromagnetic (Φ,
in units of h/e) and defect, Eq.(2.3), pseudofluxes, since both electromagnetism
and dislocations are governed by Abelian symmetries (U(1) and translations,
respectively). Starting with the case when intervalley scattering is assumed to
be absent, while the valley filters of Fig. 3.1 are switched off, the current is
due equally to carriers from both valleys. We learn from Eq. (2.3) that for the
nontrivial dislocations the magnetoconductance curve G(Φ) is shifted by 2π

3 for
carriers at one Dirac point, and by −2π

3 at the other, while the signs reverse on
switching the dislocation class. Adding the two currents, each with the associated
phase shift, results in the magnetoconductance G(Φ + 2π

3 ) +G(Φ− 2π
3 ). Fourier

expanding this as G(Φ) = G(0) + G(1) cos(Φ) + . . . shows that the harmonics of
order 3n, for n ∈ Z, do not change, and all others are multiplied by a factor −1

2 .
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In particular, the fundamental frequency oscillation (with period h
e ) is halved

in amplitude. This means that the influence of the dislocation Berry phase is
quantitative, affecting only the amplitudes of the Fourier components of the AB
oscillations. But these are also affected by point disorder, which gives rise to the
standard sample–to–sample mesoscopic fluctuation.

Let us address these matters quantitatively using the Landauer–Buttiker scat-
tering matrix formalism. [131] We employ a model where the polarizers and two
arms of the ring are described by a single scatterer each, completely analogously
to the normal metal ring case in Ref. [ [152, 153]]. The modes are labeled by
transversal momentum and valley, while the electrons can propagate in both di-
rections, inside both the left and right lead. [154] The amplitudes of outgoing
modes, O ≡

(
OL

OR

)
, and incoming modes, I ≡

(
IL

IR

)
, are connected by a scat-

tering matrix S, with O = SI. The important submatrices of S are t and t′,
given by OR = tIL and OL = t′IR, where IL/IR are columns of amplitudes of
incoming (into a scatterer) modes from the left/right, and OL/OR are columns
of amplitudes of outgoing modes from the left/right, see Fig. 3.5(b); thus t and
t′ are M ×M matrices, where M is the number of modes in one lead. We em-
ploy the usual simplification of using only a single transversal mode (M = 2)

for simplicity, with IL =
(

I+
L

I−
L

)
, etc. In the remainder the ±K modes are la-

belled by σ ∈ {+,−}, and we follow the convention that the scattering matrices
are defined by organizing the amplitudes in columns as described above. Notice
that since K− = −K+, time reversal exchanges the two valleys, connecting e.g.
incoming (left moving) electron amplitude in one valley, to the outgoing (right
moving) amplitude in the opposite valley, on the same side of the scatterer.

The scattering matrices used to calculate the total S, are as follows:
(a) the splitter (circle in Fig. 3.5(a)) has a perfect transmission and divides

the amplitude equally between the two ring arms, corresponding to the leads
strongly coupled to the ring, i.e. ε = 1

2 in Ref. [153];
(b) the scattering in ring arms (squares in Fig. 3.5(a)) provides the necessary

total flux phase upon encircling the ring, i.e. traversing both arms. We present
the case of no backscattering for the upper arm:

S
 = eiφ




0 0 teiπ(Φ+d) aeiπΦ

0 0 aeiπΦ teiπ(Φ−d)

te−iπ(Φ+d) ae−iπΦ 0 0
ae−iπΦ te−iπ(Φ−d) 0 0


 , (3.1)

with t ≡
√

1 − γ2, a ≡ iγ with γ ∈ [0, 1], and φ is an effective phase encoding for
the point disorder. The probability of transmission in the same valley, |t|2, and
the probability of transmission with scattering to the opposite valley, |a|2 = γ2

are parametrized by γ, whose value 0 corresponds to infinite intervalley scattering
time for propagating through the arms. For the lower arm we then take S� =
S
(Φ → −Φ, d → −d), as traveling from left to right must give opposite phase



3.3 Dislocated Aharonov–Bohm ring at zero temperature 45

contributions in the two arms. The magnetoconductance curve is then calculated
by the Landauer–Büttiker formula [131]:

G(Φ) = Tr(t(Φ)t†(Φ)), (3.2)

where t belongs to the total scattering matrix of the device, obtained by combin-
ing the ingredients we listed above. Let us finally explicate some symmetry con-
straints on the scattering matrices. The unitarity of scattering implies S†S = 1,
expressing that particle current is conserved. Time reversal plays an important
role in what follows, and it implies that for any matrix S (for a certain choice of
phase relation between incoming and outgoing modes)

S(Φ) = X ST (−Φ) X, X =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , (3.3)

where the matrix X exchanges the valleys. Valleys act in a similar way as spins,
with the spin up and down modes behaving similarly under time reversal. We
will come back to this issue in the concluding section.

Let us now discuss the characteristic features of the experimentally observ-
able conductance G(Φ). The intervalley scattering γ is the important parameter
and we first analyze the case when it vanishes. This corresponds to the case
of Eq. (3.1) after setting γ = 0. It is obvious that the dislocation pseudoflux
just adds to the magnetic flux. Furthermore, the two valleys are decoupled in
the whole device, implying that the two currents can just be added. We can
then repeat the simple argument from the beginning of this section to obtain the
“halving of amplitudes” rule. In Figure 3.2(a) we show the magnetoconductance
without– (thick solid line) and with (red dashed line) a non–trivial dislocation
present in the ring, with one fixed disorder phase φ = 2.3, where one immedi-
ately discerns the main effect of the dislocation: the fundamental harmonic is
multiplied by a factor −1

2 .
This example however hides a problem. Namely, a ring in the absence of

dislocations, with a fixed disorder realization (φ ≡ φ1), and a dislocated ring
with a different disorder realization (φ ≡ φ2) (black solid and blue dot–dashed
lines, respectively, in Fig. 3.2(b)), produce different outcomes, and it becomes
impossible to recognize a relationship between the two. The problem is that
point disorder by itself can change the harmonic content of the AB oscillations
in arbitrary ways. This has the effect that the specific information associated
with the presence of the dislocation becomes completely hidden for the exper-
imentalist, who has to produce a new sample to compare a dislocated– with a
non–dislocated AB ring, thereby changing the disorder configuration.

However, the simple rule of halving the amplitude, described above, is rooted
in topology, and it does survive when the point disorder is averaged over, which
is a procedure that can be implemented in practice. This fact is demonstrated in
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Fig. 3.3, where we show the results for the amplitudes of conductance harmon-
ics, obtained after an averaging over the disorder phase φ; the first and second
harmonic amplitude of the dislocated ring (red star) have half the value (and
opposite sign) compared to the ones of the ideal ring (black square).

The effect of intervalley scattering can be studied by switching on the a pa-
rameter in Eq. (3.1). As an illustration we show by thin gray lines in Fig. 3.2(a)
the change in magnetoconductance as we gradually decrease the intervalley scat-
tering length; it interpolates between the outcomes of the ring with– and without–
the dislocation. In Fig. 3.3 we show the evolution of the disorder phase averaged
Fourier components, and these examples make it immediately clear that as the
intervalley scattering length becomes smaller than the ring size, information re-
garding the presence of the dislocation is wiped out completely. The physical
reason is simple. Consider again the Feynman paths; the quantum conductance
is governed by paths that encircle the ring many times, and such a long path
will cross the dislocation “Volterra line” many times. But when the intervalley
scattering length is short it will randomly carry a K+ or K− valley identity when
it crosses the Dirac string, thereby picking up randomly the plus and minus dis-
location Berry phase, with the obvious outcome that the net phase will average
away, and this means in turn that the current will lose all information regarding
the presence of the dislocation.

Finally, what is the specific effect of adding valley filters at the leads in the
quantum regime? The scattering matrix describing the filter (half black rectangle
in Fig. 3.5(a)) perfectly transmits σ = + modes from left to right, and so time
reversal symmetry fixes the form

Spol =




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


 ;

We already emphasized in the introduction that time reversal symmetry implies
that the backside of a perfect valley polarizer acts like a perfect intervalley scat-
terer, as is further illustrated in the inset of Fig. 3.1.This implies that valley
currents are no longer conserved, since the long Feynman paths will necessar-
ily explore the backsides of the valley filters. The dislocation Berry phase gets
scrambled, as in the case of random intervalley scattering. At the same time,
G(Φ) will be even under all circumstances, since there is an infinity of long paths
in both valleys, and Büttiker’s theorem is obviously applicable to this case.

3.4 Modeling the decoherence at finite tempera-
ture

We can now turn to the puzzle announced in the Introduction: what happens
in our device at finite temperatures? It appears that our device might represent
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Figure 3.2: Intervalley and disorder scattering dependent magnetoconductance
at zero temperature. (a) Consider a fixed disorder configuration (φ = 2.3): at
infinite intervalley scattering time (a = 0 in Eq. (3.1)), we obtain the thick black
line in the absence of a dislocation, and the thick dashed red line in presence
of a d = 1/3 dislocation. Notice the amplitude relation described in Sec. 3.3.
The thin gray lines show the evolution of the dislocated case with shortening
intervalley scattering time. In the limit of maximal scattering (a → 1), the
thick black line is reached, as if no dislocation is present. (b) Illustration of the
influence of point disorder, with no intervalley scattering. The solid black line
(absence of dislocation) and the dashed red line (in presence of dislocation), at
a fixed disorder configuration φ = 2.3, are identical to the ones in part (a). The
dot–dashed blue line is obtained in the presence of a dislocation, but with the
disorder configuration changed to φ = 0.1. In contrast to the case of the red line,
the blue line has no “halving the first harmonic amplitude” relationship (see text)
to the black line, as different disorder configurations can produce dramatically
different AB oscillations.

a particular challenge to the incomplete understanding of the relation between
the coherent quantum transport at short scales and classical transport at macro-
scopic scales that is characteristic for any system at a finite temperature. The
sharpest way to express these matters is by realizing that at sufficiently large
length– and time–scales any electron system will be governed by the same hy-
drodynamical principles as the classical electron plasma of the high temperature
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Figure 3.3: The distributions of the disorder averaged amplitude of the harmon-
ics of the magneto–oscillations for the ring device of Fig. 3.1 at zero temperature,
with the valley polarizers switched off. The black squares indicate the response in
the absence of a dislocation, and the red stars show what occurs in the presence
of a d = 1

3 dislocation and no intervalley scattering: the amplitudes of the fun-
damental and first harmonic are halved and their signs reversed (see main text).
The triangles indicate the evolution when the amount of intervalley scattering
(parametrized by the value of |γ|2 = a2, the probability of scattering between
valleys on a ring arm traversal, expressed in percents) in the arms is increased.

limit. In contrast to the zero temperature quantum case, this classical transport
is dissipative and for a Fermi–liquid the dissipation mechanisms seem well un-
derstood. The problem is that such a computation becomes unmanageable for a
device problem such as ours.

The argument presented in the introduction for the unevenness of the magne-
toconductance at finite temperature rests implicitly on the Feynman path [154]
intuition. In the first subsection we will analyze this in more detail, discovering
that the argument actually rests on an uncontrolled assumption: to find out what
happens with the quantum interferences at finite temperature one just sums over
worldlines up to a maximal length equal to the phase coherence length, assum-
ing that the remainder merely contributes to the incoherent current. In this way,
when worldlines become “too long”, they are assumed to just disappear. In reality
these of course do not disappear but they turn into the self–energy graphs coming
from the quasiparticle interactions – the “Kubo brick wall”. With this assump-
tion, we obtain the finite temperature uneven magnetoconductance (Fig. 3.4),
which becomes even at zero temperature as it should (Section 3.4.1).

Although it is far from obvious why the cutting of world lines approach to
dephasing can lead to faulty conclusions regarding the “quantum arrow of time”,
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precedents exist where the intuition based on Feynman paths turned out to be
misleading [133]. It is a standard practice in mesoscopic physics to use the scat-
tering matrix approach also at finite temperatures, and to account for the effects
of dephasing using the voltage probe method invented by Büttiker [136](Sec-
tion 3.4.2). Despite its simplicity and track record (e.g., Refs. [133, 137–140]),
and the fact that by construction it respects the basic symmetries of quantum
scattering, it is surely not a divine solution. A problem of principle is of course
that this language, describing interfering quantum mechanical waves, is not quite
the preferred way to describe finite temperature dissipative flows of classical hy-
drodynamics, where the quantum unitarity condition is replaced by the weaker
current conservation demand. In fact, the Büttiker dephasing reservoirs model
the effects of inelastic scattering by an effective elastic scattering [155].

For relaxational, classical hydrodynamics, time is at the heart of matter.
Dealing with a problem like ours, where there are subtle complications asso-
ciated with time, can the standard approach be trustworthy in the cross–over
regime? We favor experimental advances in this regime. As we will show in Sec-
tion 3.4.2, the Büttiker construction insists that the magnetoconductance should
stay even in all circumstances, even when imposing different decoherence rates
for the two valleys, as is generally expected of this formalism. On the other hand,
in the high temperature regime the transport turns completely classical, and the
expectation of evenness, observed in the large body of existing experiments, is
theoretically supported if given that microscopic reversibility can be viewed as
certain assumptions on the classical fluctuation correlations. [128–130]

3.4.1 The Feynman path approach

We describe here the Feynman path approach explicitly [154]. We ignore inter-
valley scattering of any kind (γ ≡ 0 after Eq. (3.1)), except at the polarizers, and
focus on the regime where the phase coherence length Lϕ is of order of the de-
vice dimension L. The conductance is proportional to the electron transmission
probability Σ, expressed in terms of Feynman amplitudes Aa as

Σ = |A1 + A2 + . . .+ AN(Lϕ)|2 +B, (3.4)

where we assume that in the coherent part only paths with a length not exceeding
Lϕ are to be included. The longer paths contribute incoherently to the current
through the term B, i.e. they do not produce interference terms responsible for
the Aharonov–Bohm oscillations. This is the core of the dephasing model of this
subsection. Let us first discuss the qualitative picture. As already explained,
the perfect valley polarizer acts by being fully transparent to, say, a K+ mode
propagating from left to right, and a K− mode propagating in the opposite
direction. But microscopic time reversal invariance in combination with charge
conservation implies that an incoming K− mode moving to the right is fully
reflected into a K+ mode moving to the left, and vice versa (inset Fig. 3.1).
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Figure 3.4: The magnetoconductance oscillations G(Φ) as a function of applied
flux Φ, calculated using the “truncated Feynman path method” discussed in
Section 3.4.1, for the device of Fig. 3.1 with a dislocation of class d = 1

3 . We
show the results for phase coherence lengths Lϕ = 3, 7,∞ in units of the ring arm
length, finding that the extremum shifts from ≈ 1

3 the flux quantum value at high
temperatures, to the origin at zero temperature. The thin dot–dashed line shows
the result without a dislocation. The inset shows the range of “disorder” (phase
φ of Section 3.3) dependent phase shifts of the fundamental (h

e period) harmonic
of G(Φ) as a function of Lϕ. Symbols show the average over the “disorder” phase.

Let us now consider the shortest possible paths that can give rise to interference
in the presence of a dislocation. For a current flowing from left to right, the
valley polarizers ensure that it is entirely carried by K+ modes. The current
in the “lower” arm has to traverse the Volterra cut acquiring the phase jump
while in the “upper” arm it is unaffected (see Fig. 3.1), with the net result that
the transmission amplitude picks up the dislocation pseudoflux of 1

3 , which can
in turn be compensated by an external field. Repeating the argument for a
current from right to left (dashed lines in Fig. 3.1), one ends up with a shift of
−1

3 of a flux quantum. The conclusion is that the extremum of the magneto–
oscillations shifts away from its position at zero external flux, thus violating
Büttiker’s theorem. The effect is due to the finite temperature and the implicitly
dissipative measurement setup, and it is present even though we consider the
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system very close to equilibrium.
To find out what exactly happens in this model as a function of decreasing

temperature (and in non–ideal devices), we computed the magnetoconductance
by summing all Feynman paths with a length bounded by Lϕ, i.e. the part of Σ
without B in Eq. (3.4). The results are shown in Fig. 3.4, as a function of the
two parameters, the dephasing length Lϕ, and the disorder phase φ of Eq. (3.1).
Unsurprisingly, we find a smooth evolution where the extremum shifts from a
flux ≈ 1

3 at “high” temperature, back to the origin as the phase coherence length
increases. Only at precisely zero temperature is Büttiker’s law recovered, since
at any finite temperature the sum is always “dominated” by the short paths, and
for this reason the effect seems quite robust.

The details of the computation go as follows: given the finite coherence length
Lϕ measured in ring arm lengths, the sum over Feynman paths limited by Lϕ

is performed elegantly by a simple trick. We weight the scattering matrices of
the (single transversal mode) ring arms with an auxiliary variable α, essentially
scaling t → αt in Eq. (3.1). Then the total coherent transmission amplitude
A(α,Φ) is calculated exactly in the way described in Section 3.3, by consider-
ing the scattering matrices of ring arms and polarizers that connect the various
in and outgoing amplitudes in both valleys, and solving for the outgoing am-
plitudes. [152] The advantage of doing things this way comes from the fact that
every Feynman path amplitude is exactly a product of scattering matrix elements
of ring arms, polarizers, and the terminals, which are accumulated as the path
is followed from start to end. [154] Crucially, this implies that the amplitudes of
the paths having length of n ring arms (traversing an arm n times) will pick up
the factor αn, since a single factor α is associated with every pass through an
arm. The sum of Feynman amplitudes A(n)(Φ), corresponding to paths of length
up to n ring arms, represents the part of the total amplitude A(α,Φ), where α
appears multiplied by itself not more than n times. This can be obtained by
using a truncated Taylor expansion in the variable α, because it is an expansion
in terms of powers of α, exactly what is needed. It follows that

A(n)(Φ) ≡ A0(Φ) + αA1(Φ) + . . .+ αnAn(Φ)


α=1
, (3.5)

where we used the definition

Am(Φ) =
1
m!

∂m

∂αm
A(α,Φ). (3.6)

This transmission amplitude then gives the conductance associated with paths
traversing the arms not more than n times through the standard relationship

G
(n)
coh(Φ) ∼ |A(n)(Φ)|2. (3.7)



52 Valley Conserving Decoherence in Graphene and Dislocations

3.4.2 The valley dependent Büttiker dephasing probe

Let us now turn to the scattering matrix theory at finite temperature for our
device by employing the “Büttiker phantoms” to model the effects of dephasing
(see Fig. 3.5).

We define
T σσ′

pq ≡ |Sσσ′
pq |2, (3.8)

the modulus squared of the device scattering matrix elements, where p, q refer to
the leads (terminals), and σ, σ′ ∈ {+,−} to the propagating modes in the leads,
such that they represent the probability of scattering from mode σ′ in lead q to
mode σ in p. It follows that the total current in lead p carried by σ electrons is

Iσ
p =

e

h

∑
q,σ′

T σσ′
pq (µσ

p − µσ′
q ), (3.9)

where we use the most general option of having a different chemical potential
µσ

p for each type σ of electrons, in the reservoir connected to the p lead. Such
a possibility is clearly applicable when we interpret the mathematical model
as describing a spin system (with two valleys being the spin up and down),
while for graphene it could be less clear what different chemical potentials µ+,
µ− actually signify. In particular, one could argue that although the voltage
probe is in a sense a mathematical construction that enables us to incorporate
decoherence in the elastic model, it is also an actual component regularly used
in the laboratory, therefore having a physical meaning. In the case of graphene,
the special voltage probe would amount to having different chemical potentials
at the two points in the Brillouin zone, which is conceptually conceivable. As
will be elaborated below, the physical demand for equal dephasing lengths for
the two valleys leads to µ+ = µ−, and removes the problem for that situation. In
any case, we regard that, conceptually, the literal interpretation of the dephasing
reservoir as a physical entity is not necessary. [155]

The Büttiker voltage probe method [136] is based on the idea that electrons
lose their phase in reservoirs, thus one extends the system by introducing N − 2
additional, auxiliary (“phantom”) reservoirs (labeled by f̃ ∈ {3̃, Ñ}), where every
one of them is coupled to the device through two familiar leads (labeled f and
f ′ at reservoir f̃), each carrying the two (“±”) modes, but with the constraint
that the total current towards a reservoir If̃ ≡ 0, i.e. the reservoirs will not drain
current, but will provide dephasing. The choice of two leads (instead of, e.g. one)
is just to make possible total decoherence. [156] Effectively, one solves these N−2
current constraints (linear equations) for the a priori unknown N − 2 auxiliary
phantom chemical potentials µf̃ , and then eliminates these µf̃ in the expressions
for the currents in the physical leads. Performing this elimination in the phys-
ical current equations leads to new, effective transmission coefficients between
the physical leads which figure in these equations. These effective transmission
coefficients are then functions of the extended system’s transmission coefficients
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between the physical leads, as well as the transmission coefficients to the phantom
leads.

To recall the familiar results of Ref. [136], let us briefly specialize to the
simplest, single mode, two terminal case, dropping thereby the σ index, as well
as having the simple expression for the conductance G = T12 implied by Eq. (3.9).
Then for example in the case of one phantom lead (f̃ = 3), the above elimination
procedure yields,

Figure 3.5: (a) The network of scatterers modeling the Aharonov–Bohm device,
with dephasing included. Wavy lines represent reservoirs and smooth lines repre-
sent wires carrying the (±) modes. The triangle element and its reservoir belong
to the Büttiker dephasing probe construction, and are used only in Sec. 3.4.2;
the currents I3 and I3′ of Eq. (3.12) are flowing in the two leads connecting the
triangle to its reservoir. Note that we use different chemical potentials (µ±

3 ’s) for
the two valleys in this reservoir. (b) Labeling of incoming/outgoing modes for a
generic scatterer, with IL representing the column (I+

L , I
−
L ), etc.; the full/dashed

lines depict the +/− modes.

T12,eff = T12 +
T13̃T3̃2

1 − T3̃3̃

, (3.10)

where T3̃p is to be understood as the total transmission coefficient from lead p to
the dephasing reservoir 3̃, e.g. T3̃1 = T31+T3′1, etc. The form of the conductance
Geff = T12,eff obtained in this way tells us that the current divides into a co-
herent (T12), and an incoherent piece, where the second term is quite suggestive:
electrons starting from lead 2 leave the device to 3̃ and come back to lead 1,
while we have to multiply the probabilities to obtain the answer — the classical,
incoherent way of propagation. The amount of decoherence is determined by the
probability of scattering into the dephasing leads. For instance, when electrons
leave into the dephaser with unit probability, the coherent contribution to the
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net conductance vanishes completely, since unitarity of scattering requires that
Tp3̃ = 1, p ∈ {1, 2} implies T12 = 0 in Eq. (3.10). The bottomline is that the
effects of inelastic scattering are mimicked by a model system of elastic scatter-
ers with extra leads added, while the current constraints become nonlinear in
the amplitudes (linear in their moduli squared), thereby scrambling the phase
information.

An appealing feature of this method is that the effective system including
the decoherence automatically respects the symmetries of the original scattering
problem, [157] in so far as it is encoded in the T matrices. One can explicitly
check by using formulas of the variety (3.10) (see Ref. [157]), that unitarity (sum
of elements of any row or column of T equals 1), and time reversal symmetry
(Tpq(Φ) = Tqp(−Φ)), of the starting extended T matrix imply precisely the same
symmetries for the Teff matrix. These two symmetries are sufficient to derive
Büttiker’s theorem on the evenness of the magnetoconductance for a two terminal
device. [131]

We are now ready to address our graphene device. The essential ingredient is
the demand that valley currents be conserved, such that the Berry phase of the
dislocation becomes active. The implication is that the phantom reservoirs have
to respect valley conservation. This is at odds with the notion of an equilibrium
reservoir that would back inject valley currents with equal probability regardless
the nature of the current it swallows. The standard dephasing reservoirs of the
Büttiker theory are obviously of this equilibrium kind and we have to modify the
construction to do justice to the conservation law associated with the “internal”
valley quantum number. We first emphasize again that in the standard treatment
of the single mode case [136] with one dephasing probe (labeled 3̃), one imposes
the hydrodynamical conservation of the total current by setting If̃=3 = 0, which
then leads to Eq. (3.10) after elimination of the chemical potential µ3̃. In order
to allow a maximal current flow in and out of the dephasing reservoir, one equips
it with two leads labeled by f = 3, 3′ as we already discussed. Thereby the
hydrodynamical current conservation turns into the constraint

I3 + I3′ = 0, (3.11)

requiring that the dephasing reservoir drains no net current. The scattering
matrix connecting the two physical leads and the two phantom leads can be
symbolically represented by a triangle as in Fig. 3.5.

In order to impose the crucial valley current conservation as well, we now
generalize this construction by setting

I+
3 + I+

3′ = 0,

I−3 + I−3′ = 0.
(3.12)

In this way we enforce that the decoherence happens independently for the two
valley currents.
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It is obvious that we have to introduce two chemical potentials, µ+
3 and µ−

3 ,
and use them to enforce the two constraints in Eq. (3.12). Since µ+

3 and µ−
3 can

be used as independent parameters, one may conclude that the intrinsic non–
equilibration of the conserved valley currents is expressed as a non–equilibrium
state of the phantom reservoir, keeping in mind that in principle this reservoir has
no physical existence — it is just a trick to encode that electrons moving through
the ring at finite temperature will dissipate their energy by exciting phonons
and electron–hole pairs. In summary, the constraints in Eq. (3.12) are coding
for the non–standard ingredient that an “internal” (valley) quantum number is
conserved. Finally, we emphasize that there is an additional freedom in the choice
of the scattering matrix (Sd) associated with the way the dephaser is connected
to the ring: the scattering indicated by the triangle element of Fig. 3.5. This
contains the transmission coefficients into the dephaser, and thereby controls the
degree of decoherence caused by the dephaser. The Sd does not mix the valleys, so
it determines the intravalley dephasing time. Obviously in the physical system
the decoherence in the two valleys should be the same, leading to constraints
on the matrix elements discussed in detail below. Given these ingredients, the
calculations are straightforward and are summarized in the Appendix.

The outcome for magnetoconductance computed from the results in the Ap-
pendix is as follows. According to expectations, we analytically prove that the
magnetoconductance G(Φ) is even in the flux Φ, assuming the symmetries (time
reversal and unitarity) of the T matrix are present. The evenness is thus inde-
pendent of the values of all physical parameters, and persists even when different
dephasing lengths are assigned to the two valleys by tuning the Sd matrix. Such
a situation corresponds to a non-equilibrated reservoir, with µ+

3 �= µ−
3 . Invari-

ably, these chemical potentials scale with the physical voltage µ1 − µ2 (no ±
dependence in physical reservoirs), consistent with the linear response regime.

Let us now analyze the oscillations themselves. At zero temperature, when
the scattering into the phantom reservoirs vanishes, the model reduces to the
matters discussed in Section 3.3. The corresponding results for the disorder
phase averaged amplitude of the fundamental, h

e harmonic, seen as the first en-
try of Fig. 3.3, are shown as the infinite dephasing length (Lϕ = ∞) entry in
Fig. 3.6 (black square — in absence of dislocation, red star — in presence of dis-
location, triangles — with dislocation and varying intervalley scattering length).
The effect of finite temperature is modeled by switching on the scattering into
the dephasing reservoir, and amounts to a gradual decrease of the magnetocon-
ductance oscillations that eventually vanish when the dephasing length becomes
small compared to the device dimensions: the green dashed line and green circles
of Fig. 3.6 show the overall oscillation amplitude dependence on the dephasing
length Lϕ. The next issue is how the ratio between the disorder phase averaged
Fourier amplitudes of the dislocated and ideal ring evolve with temperature. The
Fig. 3.6 shows that this ratio is virtually independent of the temperature, and
retains the value of − 1

2 identified at zero temperature (Section 3.3).
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Figure 3.6: The temperature, parametrized through the dephasing length Lϕ,
dependence of the disorder phase averaged h

e harmonic amplitude, within the
Büttiker dephasing model. The symbols are taken from Fig. 3.3 — black square
denoting the ideal ring, red star the dislocated ring with no intervalley scattering,
and triangles the dislocated ring with varying intervalley scattering lengths. The
first, Lϕ = ∞ entry reproduces the zero temperature result of Fig. 3.3. At
each separate finite dephasing length value, amplitudes are normalized by the
ideal ring amplitude (black square). The figure then shows how the ratio of the
dislocated ring harmonic (red star) to the ideal ring harmonic varies negligibly
from the zero temperature value of −1/2. The green dots represent the values
of the ideal ring un–normalized amplitudes at each dephasing length, and show
how the oscillations disappear with rising temperature.

3.5 Conclusions

Can Casimir–Onsager relations be invalidated because leftovers of quantum co-
herent currents at intermediate temperatures cannot equilibrate in a true sense
due to a conservation law applying to an internal symmetry? The special fea-
tures of the device introduced in this Chapter make this provocative question
germain. We do not claim to have a definitive answer. Within the realm of finite
temperature quantum transport the issue appears to be unresolved and we chal-
lenge the readership to devise a more complete theoretical treatment that has the
capacity to settle these matters. We hope that the considerations in this Chapter
will motivate the experimentalists to focus in on the physics of dislocations in
graphene. It seems there are no fundamental obstructions to the realization of
our proposed device, with the possible exception that it might appear challeng-
ing to keep valley currents conserved on reasonable length scales. On the other
hand, such an experiment still represents a considerable technical challenge, but
the reward is potentiality of probing the reach of validity of a familiar law in a
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novel context.
We do invoke specialties of graphene, but the theme is more general. Are

there other conserved internal quantum numbers that can be utilized for similar
purposes? The transport of spin comes immediately to mind, with spin polariza-
tion taking the role of valley polarization, spin currents [158, 159] as valley cur-
rents, and spin–orbit coupling being like intervalley scattering. One needs more
equipment. It appears that in principle the Aharonov-Casher Berry phase [160]
associated with an electrical monopole in the middle of the ring has the potential
to take the role of the dislocation (see, e.g., Ref. [161]), but a literal analogue of
valley polarizers is less obvious.

This brings us back to an important byproduct of this pursuit: the graphene
dislocation with its Berry phase that communicates with valley currents in a
unique way. More speculatively, if “valleytronics” ever gets off the ground, and
the Casimir–Onsager relations are shown to fail in the intermediate regime (how-
ever unlikely the prospect), the dislocations would have their use as unique val-
leytronic circuit elements measuring in a topologically robust ways the valley
polarized currents. The equipment based on valley filters, that were at the fo-
cus of this Chapter, might not be the best way to go, and the same objection
holds for other possible microscopic mechanisms of producing valley polarized
states. [162] An analogy with the quantum spin Hall effect [75, 81, 83, 163] sug-
gests another alley to explore. Topological band insulation rooted in spin–orbit
coupling goes hand in hand with chiral spin currents at the surface, and it is
imaginable [164] that these can be exploited to construct a spin battery. It was
recently argued that similar topologically protected currents exist at the interface
between graphene bilayers, where the gap associated with AB sublattice breaking
changes sign. [165] These chiral interface states are associated with valley cur-
rents and one can contemplate to exploit these for the purpose of constructing a
valley battery.

3.6 Appendix

We discuss here the details of the scattering matrix calculations which include
the valley preserving dephasing reservoirs, as discussed in Section 3.4.2. We
follow in detail the method and interpretation introduced in Refs. [ [131, 157]].
We eliminate the dephaser, keeping everything else in the system arbitrary. At
this point we need only the information that there are two time reversed modes
in the system, while the dephaser takes the form (3.12), and the full T matrix
respects the basic symmetry requirements, i.e. unitarity and time reversal. We
label the eliminated dephaser by f̃ = 3̃, keeping the label p for all the other leads
of the device, some of which might refer to other dephasers. By applying the
expression for the current in an arbitrary lead (3.9) to the dephaser (i.e. putting
p = 3, 3′), we determine the phantom potentials µ+

3 , µ−
3 , which are present in

the constraint equations (3.12), in terms of the other potentials. Once these
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phantom potentials are determined, we eliminate them in the expressions for the
currents in all the other terminals of the device (i.e. p �= 3, 3′ in Eq. (3.9)).
These expressions then describe the currents in all the remaining terminals, as a
function of their associated chemical potentials in the form of an effective matrix
Teff with elements T σσ′

eff,pq. The general expressions for the elements of Teff , and
the chemical potentials of the eliminated dephasing reservoir are

T σσ′
eff,pq = T σσ′

pq + T σ+
p3̃
M+σ′

q + T σ−
p3̃

M−σ′
q ,

µ±
3 =

∑
q �∈3̃

∑
σ

M±σ
q µσ

q ,

Mρσ
q ≡ 1

∆

[
(2 − T ρ̄ρ̄

3̃3̃
)T ρσ

3̃q
+ T ρρ̄

3̃3̃
T ρ̄σ

3̃q

]
,

∆ ≡ (2 − T++
3̃3̃

)(2 − T−−
3̃3̃

) − T+−
3̃3̃

T−+
3̃3̃

,

(3.13)

where σ̄ denotes the valley opposite to σ (σ̄ = ∓ for σ = ±), and we used
the obvious abbreviations for summing over the leads (3, 3′∈ 3̃), e.g. T σσ′

p3̃
≡

T σσ′
p3 + T σσ′

p3′ , T σσ′
3̃3̃

≡ T σσ′
33 + T σσ′

33′ + T σσ′
3′3 + T σσ′

3′3′ , etc.
One can in principle now proceed to eliminate the next dephasing circuit

element, using the same procedure outlined above, of course now applied to the
effective matrix Teff defined in Eq. (3.13), which describes the system at this
stage. If this is repeated iteratively for all phantoms, the final effective Tphys,
which describes scattering between the physical leads, is obtained. The general
implication of this dephasing model, proven in the following, is that the two basic
symmetries (unitarity and time reversal) hold for Teff in Eq. (3.13), which in
turn implies that they will hold also for each T matrix obtained by successive
eliminations of dephasing reservoirs, including the sought Tphys at the final stage.
If Tphys describes a two terminal device, we conclude that the assumptions of
Büttiker’s theorem hold, and the magnetoconductance is even. The unitarity of
scattering described by Teff , expressed as

∑
q,σ′ T σσ′

eff,pq = 1, can be translated
into the equality

∑
q/∈3̃,σ M

ρσ
q = 1, and this equality is proved correct directly by

using the unitarity of the starting T matrix, i.e.
∑

q,σ′ T σσ′
pq = 1. Time reversal

symmetry of the original matrix is expressed through T σσ′
pq (Φ) = T σ̄′σ̄

qp (−Φ),
as is implied by the time reversal property of the matrix S, Eq. (3.3). It is
straightforward to show that this property also holds for Teff of Eq. (3.13), by
checking it for explicit values of σ and σ′, with use of the property for T ; a
simplification comes from noting that ∆(Φ) = ∆(−Φ). This finishes our analysis
of the general case. For the particular case of our two terminal device model
with one dephasing element in the ring arm, Fig. 3.5, we also evaluated the
conductance Gphys =

∑
σσ′ T σσ′

phys,12 numerically, and the results are discussed in
Section 3.4.2. We crudely estimate the dephasing length Lϕ, used qualitatively in
Fig. 3.6, by the simple formula exp (−1/Lϕ) ≡ 1− |ε|2, where ε is the element of
the Sd matrix which describes the scattering from the ring arm into the dephasing
reservoir. The value of 1 − |ε|2 is then the probability for the electron not to
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dephase while traversing the arm. By considering each ring arm traversal (path
of length 1) as an independent statistical measurement of this probability, the
characteristic dephasing length Lϕ follows. This is analogous to writing the
formula for the half life of an unstable particle having the probability |ε|2 to
decay.

To clarify the structure of the quantities calculated above, Eq. (3.13), and
compare them to the one mode case of Ref. [131], we now specialize to the
relevant two terminal (labeled interchangeably by L, R for “left” and “right”,
and 1, 2, respectively) device with one additional dephasing reservoir 3̃. It will
then be useful to introduce quantities which group T matrix elements according
to their meaning, so we define: the total probability of scattering the electron
from the physical lead p into a σ electron exiting into the dephasing reservoir by
Spσ

i ≡ T−+
3p + T−−

3p + T−+
3′p + T−−

3′p , the probability of scattering an incoming σ
electron from the dephasing reservoir into the p physical lead by Spσ

o ≡ T+σ
p3 +

T−σ
p3 + T+σ

p3′ + T−σ
p3′ , as well as the obvious quantities Sp

i/o = Sp+
i/o + Sp−

i/o, S
σ
i/o =

S1σ
i/o+S2σ

i/o, and Si/o = S1
i/o+S2

i/o. A physical quantity of relevance is the amount
of energy dissipated by the dephaser, which acts as an inelastic scatterer, [131]
by the σ current. This describes the amount of dephasing of the σ current,
and we express it through a dimensionless function ησ as W± = 1

hη
±(µL −

µR)2. It reflects the fact that the electrons exchanged between the physical
and dephasing reservoir are injected at different chemical potentials. If one also
defines dimensionless functions χσ to describe the phantom chemical potentials
by µ±

3 = µR + χ±(µL − µR), and introduce one more auxiliary combination of
matrix elements by Cpσ ≡ Sσ̄

o S
pσ
i + T σσ̄

3̃3̃
Sp

i , then for the two terminal device it
can be written that

χσ =
C1σ

∆
,

∆ = C1+ + C2+ = C1− + C2−,

ησ = S1σ̄
i + T σσ̄

3̃3̃
(χσ̄)2 − (2 − T σσ

3̃3̃
)(χσ)2,

Teff,21 = T21 + S2−
o χ− + S2+

o χ+ = Teff,12.

(3.14)

Physically, one expects the degree of decoherence to be the same for the two val-
leys, but we emphasize again that this is not needed for the evenness of magneto-
conductance, since no such assumption was made in its proof at the beginning of
the Appendix. This demand reads W+ = W−, and in general puts constraints on
the matrix elements. Although it is not trivial to extract the simplest condition
equivalent to this demand, we note that in the case when S1+

i = S1−
i = 1

2S
1
i ≡ S1

i ,
and S2+

i = S2−
i = 1

2S
2
i ≡ S2

i (the use of underline S symbols here should of course
not confuse with the same symbol for scattering matrices), which corresponds to
saying that the probability of the electron coming from the first lead to scatter
into the dephasing reservoir as + or − electron is the same, and this statement
holds also for the second lead, significant simplifications occur.Namely, if we put
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S+
i/o = S−

i/o = 1
2Si/o ≡ Si/o, the quantities in Eq. (3.14) become,

χ+ = χ− =
S1

i

Si

,

η+ = η− =
S1

iS
2
i

Si

=
S1

iS
2
i

S1
i + S2

i

,

Teff,21 = T21 + 2
S2

oS
1
i

Si

.

(3.15)

The two valleys contribute equally to the incoherent part of the transmission in
the last equality. Finally, we note that if additionally to the above assumption,
which leads to W+ = W−, we assume a vanishing magnetic field, the time re-
versal condition S2

i (Φ) = S2
o(−Φ) becomes S2

i = S2
o , and we see from (3.15) that

the dimensionless dissipated energy becomes equal to the incoherent transmis-
sion, i.e. 2η = Teff,21 − T21. The factor 2 accounts for two modes; this recovers
the result of Ref. [136], which considered a single mode and zero magnetic field
situation.


