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Cha p t e r 2

Parallel Transport of

Electrons in Graphene

Parallels Gravity

2.1 Introduction

The miracle of graphene is that non-relativistic electrons scattering against a
lattice potential experience a low energy world in which, in non-trivial regards,
behaves in ways reminiscent of Dirac’s relativistic fermions (see Section 1.3.1). A
natural question to ponder is whether this coarse grained graphene world might
mimic some aspects of gravitational structure?

In Cartan’s generalization of Einstein’s geometrical formulation of gravity,
torsion and curvature can be put in one-to-one relation with the dislocations and
disclinations, the topological defects of the crystal lattice. The question is to
which extent is this analogy applicable to the Dirac-like fermions in graphene.
There is some previous work [107, 108] demonstrating that the holonomy accu-
mulated by electrons in graphene encircling a disclination (cone) coincides with
that associated with a Dirac fermion encircling the conical singularity, the entity
encapsulating curvature in 2+1 dimensional gravity. However, in order to com-
plete the identification these earlier works added an ad-hoc U(1) gauge flux to
the conical singularity, acting with opposite sign on the valley quantum numbers
of the graphene electrons, raising the issue of whether the identification is merely
coincidental. Here we will settle these matters by focussing on the influence of
dislocations, which correspond to torsion in the gravitational analogy.
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In this Chapter we demonstrate that the holonomies associated with graphene
electrons encircling dislocations resemble those of doubled fundamental fermions,
if the Dirac cones of the latter would be displaced away from zero momentum. For
this analogy, the torsion can be implemented in the connection in the most natural
way. It is just the fact that the discreteness of graphene geometry is remembered
by the long wavelength fermion modes exclusively through the large momenta
where the Dirac cones reside, and this is surely different from the way that Planck
scale discreteness (when it exists) affects fundamental fermions. We subsequently
show that the mysterious U(1) flux of the graphene disclination has precisely the
same origin, bringing us to the conclusion that the parallel transport of electrons
in graphene with dislocations and disclinations is in the long wavelength limit
identical to that of Dirac fermions living at large momenta in a 2+1-d Cartan–
Einstein spacetime with torsion and curvature. This identification completes the
understanding of topological defects and parallel transport in graphene and opens
the possibility to search for exotic phases based on the nontrivial geometrical
structure that the graphene electrons experience.

Before we analyze the curved space structure, our first task is to identify the
action of a lattice topological defect on a graphene Dirac electron that encircles
it. This action on the electron wavefunction is represented by a unitary operator,
called a holonomy [109], or a “Berry phase” [110].

2.2 Electron Berry phase and the Burgers vector
of dislocations

As we already discussed in Section 1.2.2, one of the two possible topological crys-
tal defects, the dislocations, are omnipresent in crystals in general. A dislocation
is intuitively obtained by the Volterra construction as follows: a semi–infinite
strip of unit cells is removed from a crystal, and the open edges are glued back
together along the Volterra cut, leaving some imperfections at the original begin-
ning of the strip (the core), see Fig. 2.1. Tracing a closed loop around the defect
core, but drawing it in the perfect lattice, one finds a non–closure, equal to some
lattice vector — the Burgers vector. This persists for loops of arbitrary size, and
so the effect of the defect on electron wavefunctions is global and long–ranged.
This property enables one to model the defect as a nontrivial boundary condition
on the wavefunction at the Volterra cut. This can be imposed by a gauge field,
in a reversal of the usual argumentation for appearance of the Aharonov–Bohm
effect [109]. Under the influence of the translational dislocation [12], the spinor
is translated by the Burgers vector to maintain single–valuedness. In contrast,
for the case of disclinations [107,111,112], the topological crystal defect in which
one cuts out a pie segment of the lattice, the electron spinor is rotated at the
Volterra cut.

The disclinations cause a deficit angle in loops circling the core, which in
graphene can be any of the five multiples of ±π/6, producing a variety of phys-
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ical effects [112]. These are interesting primarily because of their occurrence in
nanocones and fullerenes [111,113].

The theoretical study of dislocations, however, has so far been scarce. Ran-
dom distributions of dislocations have been discussed from the perspective of
their statistical influence on coherence and electron propagation [114, 115]. In
this Chapter we want to study phenomena associated with their topology. We
now show that they act as a simple Aharonov–Bohm flux located at the defect
core, of opposite signs in two valleys. Further, although the topological charge
of a dislocation could be any lattice vector, they fall into three possible classes
— a trivial one (zero flux), and two of opposite sign (± 1

3 flux).
Let us start by reviewing the standard low–energy, continuum description

of the graphene electron states coming from the pz carbon orbitals [116–119].
The two “valley” Dirac points are labeled by K± = ±K (Fig. 2.1), and the
unit cell contains two atoms (labeled A and B), yielding a total of four massless
states. In this basis the wavefunctions are described by a slowly–varying four
component spinor. Operators acting on the A and B states without mixing
the K± valleys are written as Pauli matrices σa, a ∈ {1, 2, 3}; while the valley
degeneracy is tracked by a second set of τ Pauli matrices. The isotropic massless
Dirac spectrum emerges after the expansion of the energy bands near the Dirac
points K± at the corners of the hexagonal Brillouin zone. The bands can be
obtained from e.g. the simple homogeneous tight-binding Hamiltonian:

Htb = −t
∑
<ij>

(c†i cj +H.c.), (2.1)

but the Dirac cones are protected by the lattice point group symmetries [116].
To lowest order this yields the usual Dirac Hamiltonian,

H = −i [(K · ∂)τ3 ⊗ σ1 + (∆ · ∂)1⊗ σ2] , (2.2)

where the energy is measured in units of �vF , K is the normalized K vector and
∆ the normalized vector connecting the A and B sites (see Fig. 2.1).

We now consider the influence of dislocations on such Dirac fermions, as-
sociated with the translation by a Burgers vector �b at the modified boundary
arising from the Volterra cut. The components of Ψ are coefficients multiplying
the Fermi states, K±A/B, being Bloch eigenstates of the crystal lattice. The
translation by a lattice vector is therefore equivalent to a multiplication by the
corresponding phase factor exp(iK± · b). This yields the U(1) holonomy

U(b) = ei(K·b)τ3 = ei 2π
3 (b1−b2)τ3 , (2.3)

where b1 and b2 are the integer components of the Burgers vector b in the lattice
basis (see Fig. 2.1). The dislocations thus separate into three equivalence classes,
labeled by d ∈ {0, 1

3 ,−
1
3}, with 3d ≡ (b1−b2) mod 3, where the period of 3 follows

from the periodicity of the Fermi states (see Fig. 2.1). Different from the case of
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Figure 2.1: The electronic structure and dislocations in graphene. By removing
rows of unit cells a dislocation with Burgers vector �b is created. The ellipses
indicate which unit cells can be removed to obtain a “trivial” dislocation not
carrying a net topological charge, as can be seen for instance by counting the
phases of the Bloch waves. An arbitrary Burgers vector starts from the central
square and reaches the center of some hexagon, and this labels the dislocation’s
class: bold hexagon sides represent trivial dislocations (d = 0), grey shade the
d = 1

3 class, and white fill the d = −1
3 class. Graphene’s Dirac electrons carry

unit cell (A/B) and “valley” K± indices. The phases of the Bloch waves of the
K+ states on the rows of the defect–free lattice are indicated at the right in terms
of z = exp[i2π/3]. By creating the Volterra cut associated with the dislocations
it follows that the Dirac electrons experience topological phase jumps of 2π

3 and
− 2π

3 for dislocation class 1/3 and −1/3, respectively. The K− states experience
the opposite phase jump. Note that the phase jumps are independent of the
A/B quantum numbers, because the dislocation does not affect the intra unit–
cell structure.

disclinations [111, 113], this is independent from the A/B sublatitce pseudospin
quantum number, since translations carry no information on the structure inside
the unit cell. Instead, this phase does depend on the valley quantum number
in a simple way: the absolute magnitude is the same and the phases in the two
valleys just differ in sign, a necessity by time reversal symmetry.

Avoiding the dislocation core (which shrinks to a point in the continuum
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limit), its influence can be encoded by adding a U(1) gauge coupling to the Dirac
Hamiltonian in Eq. (2.2),

Hdisl = H − i
σ · eϕ

2πr
(K · b)τ3, (2.4)

where r and ϕ are the standard polar coordinates, taking the dislocation core
as origin. The induced gauge field is in in precise correspondence with the one
of an Aharonov–Bohm solenoid with flux ∓d in units of e/�, for the ±K val-
ley electrons. Numerical simulations have already hinted that dislocations be-
have as pseudo–magnetic fluxes, in that they create vortex currents around their
core [120].

2.3 Torsion in elasticity and its coupling to
fermions

Within a geometric formulation of elasticity theory, dislocations become sources
of torsion (see [12, 17, 121], stemming from their translational character. As
we have shown in the introduction Section 1.1.1, torsion T assigns a vector to
an infinitesimal area element at each point in space, measuring the non-closure
of a loop obtained by parallel transport of the two infinitesimals forming the
“edges” of the given surface element along each other. The definition makes this
vector completely analogous to the Burgers vector in a crystal lattice. This grav-
ity/geometry analogy has been verified in familiar electron systems, producing
results compatible with the tight-binding approach [22–25].

Formally, torsion is defined as a vector valued 2-form on space-time, T a =
T a

µνdx
µ ∧ dxν , with µ, ν ∈ {0, 1, 2}, and ∧ the wedge product of differential

forms. In this work the relevant example is of one dislocation at the origin
of two dimensional space, with Burgers vector �b, with a corresponding torsion
(see [12,17] and references therein)

T a = ba δ(�x) dx ∧ dy . (2.5)

The flux of this form through any area containing the origin is given by the
Burgers vector

∫∫
T a = ba.

The rules of parallel transport in the space are contained in the connection
Γ = Γλ

µνdx
µ, written as a matrix valued 1-form, which in spaces with torsion

is more than just the Christoffel symbol. Namely, the metric gµν of space de-
termines the symmetric part (in the lower indices) of the connection, i.e. the
Christoffel piece. The torsion adds additional information about parallel trans-
port in space, as it is related to the antisymmetric part of the connection [12,13],
Tλ

µν = 1
2 (Γλ

µν − Γλ
µν). The geometry is consistently defined only if the Einstein-
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Cartan (EC) structure equations are satisfied:

R = dΓ +
1
2
[Γ,Γ] , (2.6a)

T = dβ + Γ ∧ β , (2.6b)

where the curvature R is a matrix valued 2-form, and β is an arbitrary frame
(i.e. βa(x) are the dual basis vectors of the tangent space at x).

Let us now define the 2+1 dimensional structure of the Dirac equation that
mimics the one of graphene, by identifying the Dirac matrices as γ0 = τ3 ⊗ σ3,
γ1 = iτ3 ⊗ σ2, and γ2 = −iτ3 ⊗ σ1; these satisfy the Dirac algebra {γa, γb} =
2ηab. The four component Dirac spinor Ψ therefore contains two two-dimensional
irreducible representations, labeled by the valley index.

Since spin is defined with respect to rotations acting in a tangent frame,
to study the equation of motion of a spinning particle we must introduce [13]
an orthonormal set of basis vectors Ea, connected to the holonomic frame dxµ

through the vielbein (here dreibein) dxµ = eµ
aE

a (and the inverse (eµ
a)−1 ≡ ea

µ).
The components of the metric written in these two bases satisfy:

ηab = ea
µ g

µν eb
ν , (2.7)

which shows formally that the dreibein intertwine the representations of the or-
thogonal rotation group and its covering spin group. Intuitively, the vielbeins
provide the square root of the metric, which is needed since spinors are square
roots of vectors. Then the relevant (zero mass) Dirac equation in a curved tor-
sionful background is

i γa eµ
a Dµ Ψ = 0 , (2.8)

with the covariant derivative given via

Dµ =
(
∂µ − 1

4
ωµabγ

aγb

)
. (2.9)

In EC theory the metric and torsion are independent, and we must include
the effect of dislocation in both according to the elasticity/gravity analogue prin-
ciples. The displacement field ui in the crystal changes local distances, while in
curved spaces metric defines the distance ds2 = gµνdx

µdxν , so they are related
by the mapping:

gij = ηij + ∂iuj + ∂jui . (2.10)

Time is essentially decoupled from space in this condensed matter system (gi0 =
0). We use the well-known displacement field ui corresponding to a dislocation
situated at the origin in two spatial dimensions [122], and via Eq. (2.10) determine
the metric [123]. The �b is to be regarded as infinitesimal in the continuum theory,
so that we retain only linear terms throughout. For simplicity we take the Poisson
ratio σ = 0, and fix �b to point along the x axis.
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For simplicity we take the Poisson ratio σ = 0, and fix �b to point along the
x axis. The strategy is then to find an orthonormal basis Ea on this space, and
then the spin connection from Eq. (2.6b) by using the physical input about the
defect in (2.5). For the basis we get(

E1

E2

)
=

(
1 − b

2πr sinφ b
2πr cosφ

b
2πr cosφ 1 − b

2πr sinφ

) (
dr
rdφ

)
, (2.11)

and ω2
1 = −ω1

2 = d
(
φ+ b

πr cosφ
)
. It is noteworthy that the matrix of 1-forms

ωµ is always antisymmetric as it represents the rotation of the orthogonal basis
during parallel transport. The first term dφ appears due to the use of polar
coordinates, and is responsible for a term −γ1/2r [113] in (2.8). One can check
that the curvature obtained through (2.6a) is zero by using d(dφ) = 0 since this
term does not contribute in Cartesian coordinates.

The spin connection produces a trivial holonomy for the Dirac spinor, but
a non-trivial topological action is present in the Ea basis (there is in fact some
freedom in the EC formalism to move torsion effects between the basis one-forms
and the spin-connection, obvious in Eq. (2.6b)). The connection encodes for the
integrable elastic deformation around the dislocation, and the vector field corre-
sponding to the ω “potential” in (2.9) follows the deformation of the crystal due
to the missing row of atoms. More quantitavely, the singularity in displacement
encoding the topological defect is fully contained in �̂u0 = − b

2π ln (x+ iy), due
to

∮
�̂u0 = −bx̂ [124]. In this case ω = 0. Another example is the elastically

unrelaxed displacement field in [12], corresponding to E1 = dx+ b
2πdφ, E2 = dy,

and ω = 0.
The above examples are instructive in emphasizing the relation∫ ∫

T a =
∫ ∫

dEa =
∮
Ea = ba. (2.12)

Obviously, the topologically non-trivial part of E will always be in the form of
a b

2πdφ correction to the basis vector Ea along the Burgers direction, �b · x̂a = b.
This can easily be checked explicitly for our setup in Eq. (2.11), if the Ea basis is
rotated to {Ex, Ey}, with our previous choice of Burgers vector. The topological
action of the dislocation on the Dirac electron should then be viewed as a Berry
phase arising from the term

iγaeµ
a∂µΨ = iγa(δµ

a + fµ
a )∂µΨ

= iγµ∂µ exp
(∫

dxνfµ
ν ∂µ

)
Ψ = 0 , (2.13)

where fµ
a (b) = fa

µ(−b) is the perturbation proportional to the Burgers vector.
The non-trivial holonomy (Berry phase) is responsible for the salient feature of
long range influence of the crystal defect [107,112], taking the value

H(�b) = e(
H

dxνfµ
ν )∂µ = ei�b·(−i∇) , (2.14)
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where we recognize the Volterra operation of translating the wavefunction by the
Burgers vector to describe the topology of a dislocation. However, the correct
holonomy we found in Section 2.2, which follows from the effect of translation by
�b (which is of order of a lattice constant) on the true Bloch wavefunction [113],
is

Hlattice(�b) = ei�b·Kτ3 . (2.15)

The connection is striking and pleasing, because the continuum translation gen-
erator −i∇ is replaced by a translation generator Kτ3 of the underlying lattice
wavefunction, which is a finite momentum (K±) state.

It is interesting to note that Eq. (2.14) encapsulates the essence of arguments
relating the vielbein and the gauge field of Poincaré (here Euclidean) group trans-
lations in gauge theories of gravity.

2.4 Curvature and disclinations

In the case of disclinations, the associated curvature exists in 2+1-d as conical
singularities, and has been considered in the graphene lattice [107,108,111]. How-
ever, special care has to be taken to include the exchange of Fermi points, i.e. the
internal degree of freedom, that occurs for specific opening angles, by using an
additional gauge field with only τ operator structure. Therefore an additional
gauge field is introduced, alongside the curvature. Following the discussion in the
previous section it becomes clear that it is more consistent to view the additional
Fermi point effect as a change in the generator of rotations for the graphene Dirac
spinor.

The correct holonomies in the presence of a disclination with the funda-
mental opening angles at the origin, obtained by the Volterra construction, are
H(2π/3) = exp (−i 2π

3
σ3
2 ) and H(π/3) = −iτ1 exp (−iπ

3
σ3
2 ). Note that rotating

by π/3 maps the Fermi points into each other, hence the τ1 matrix. We rewrite
this in an illuminating way (θ is the angle of disclination):

H(θ ≡ n
π

3
) = e−iθ(σ3+3τ1)/2, (2.16)

where we see the spinor rotation (half-angle) generator σ3/2 replaced by (σ3 +
3τ1)/2, in order to accommodate the finite lattice constant effect due to the exis-
tence of two electron species, at finite momenta K±. This is a generalization to
the spinor case of the observation that the disclination holonomy is the represen-
tation of the rotation operator by the defect opening angle [125]. It stems from
the fact that the spin connection term, which produces the non-trivial holonomy
in this case, is actually given by the rotation generator

1
8
ωµab[γa, γb] = ωµ12

σ3

2
=

θ

2π
dφµ

σ3

2
, (2.17)
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and fixes the curvature 2–form through:

R1
2 = −R2

1 = dω = θδ(�x)dx ∧ dy. (2.18)

Note that the ωµ matrix is again antisymmetric.
We can summarize the found gravity/elasticity correspondence as seen by

Dirac particles:

−i∇ −→ −i∇ + Kτ3 (2.19)
σ3

2
−→ σ3

2
+

3τ1
2
. (2.20)

It reflects the finite lattice constant effect that causes the change of the underlying
Euclid group in the present of defects.

2.5 General torsion couplings

In this Section, we identify additional possible couplings of torsion to the specific
electronic degrees of freedom in graphene, based on general considerations (see
[24] for a similar analysis in a different condensed matter system).

The Riemann–Cartan curved space with torsion is defined by Eq. (2.6), and
fixed through the choice of the connection (once a tangent basis is specified),
which itself provides the covariant derivative to be used in the Dirac equation,
Eq. (2.8). This coupling of geometry to the spinor can in principle be extended
by additional scalar terms containing torsion, which might follow from the choice
of an action for the full gravity+matter theory [19,121,123,126], or in some cases
only by an ad-hoc choice. These terms are linear in torsion at the least, and so
effectively behave as a delta function potential in space (Eq. (2.5)). Obviously this
makes no contribution to a holonomy, but is interesting from a general viewpoint.

If we choose to start from a covariantized Dirac Lagrangian in 2+1 dimensions
(see [19] for the treatment of 3+1-d), we get an additional term in the Dirac
equation iγa

(
∇a + T b

ab

)
Ψ = 0 (written in anholonomic coordinates, with the

covariant derivative becoming ∇a = ∂a− 1
4ωabcγ

bγc). At this point we can extract
all similar torsion content from the covariant derivative ∇a, by separating the
antisymmetric part of the connection. Again in 2+1-d we get ∇a = ∇̃a − 1

2T
b

ab −
1
4Tabcγ

bγc, where ∇̃a contains only the Christoffel symbol part of the connection.
The Dirac equation reads

iγa

(
∇̃a +

1
4
T b

ab +
1
12
γaγ

5
t ε

bcdTbcd

)
Ψ = 0 , (2.21)

with the formally defined “traditional” γ5
t ≡ iγ0γ1γ2 = τ3 ⊗ 1. It seems that

since the topological effect of the dislocation is present strictly in the Ea basis,
which stems from the singular displacement field through the metric (Eqs. (2.10)
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and (2.7)), it is enough to retain the Christoffel connection part of ∇̃a, as if there
was no torsion (the additional terms in Eq. (2.21) do not contribute). One must
note, however, that torsion cannot be simply disregarded, as it is present in the
space due to Eq. (2.6b).

Our form of T (Eq. (2.5)) constrains the polar vector T b
ab = (ẑ×�b)aδ(�x) to be

orthogonal to the Burgers vector, and this is the only possible polar term. Con-
sidering axial vector couplings generally, in the relevant 2+1 dimensional case,
there is no traditional γ5 matrix which is independent of the γa algebra, and
which could be used to reduce the spinors to Weyl components, because it com-
mutes, instead of anticommutes, with the γa. However, in the case of graphene
we are dealing with a reducible representation of the Clifford algebra, built out
of two irreducible ones (one at each K± Fermi point). For this case, there exists
a γ5

new matrix, which can be defined for the present odd dimensional situation
and having all the properties of γ5

t acting in even dimensions [127]. The γ5
new

represents the parity transformation which mixes the two irreducible represen-
tations, i.e. in our case it must map between K+ and K− spinor components
(note that they are connected through parity, as K+ = −K−), while in contrast
the dislocation gauge coupling, which it should reproduce, acts via phase shifts
without coupling the two K points, i.e. it is of the τ3 form. The above obser-
vations do not prevent the appearance of terms containing γ5

t , and the last term
in Eq. (2.21) is of such a form, but it happens to be identically zero due to the
contraction εabcTabc = 0.

To further connect with the lattice dislocation coupling Eq. (2.15), one could
consider the generalization of forming scalars making use also of the K vec-
tor. The allowed combinations are εabcT d

bc Kdγ
5
t and εabcT d

bd Kcγ
5
t , but neither is

usable. The first one has the free index timelike a = 0 (contributing a time depen-
dent Berry phase constant in space), due to non-zero T d

bc having purely spacelike
indices. The second term has the same feature (K also has no time component),
although it has the correct matrix form εabcT d

bd Kcγ
5
t = −�b · Kτ3δ(�x).

2.6 Conclusions

We have shown how electrons in defected graphene can be viewed as moving in
a geometry with curvature and torsion, with all the topological lattice effects
included in an appropriate adjustment of the underlying space symmetry gen-
erators. This is a fresh view on the subject in graphene, treating both types
of defects equally, while matching them clearly with their governing symmetry
sectors.

We anticipate that this perspective will aid in understanding the electron
transport in graphene when many topological defects are present. The modi-
fied version of the Euclidean group Eqs. (2.15),(2.16) shows that a non-trivial
extension of the symmetry of the Dirac particles is realized due to the defects.
The fact that the holonomies are non-Abelian renders this to be a highly non-
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trivial problem, and further research should shed light on the intricacies of such
a system.


