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8. Striatum-medial prefrontal cortex connectivity 
predicts developmental changes in 
reinforcement learning 

 
 
 

 
Abstract 
During development, children improve in learning from feedback to adapt 
their behavior. However, it is still unclear which neural mechanisms might 
underlie these developmental changes. In the current study we used a 
reinforcement learning model to investigate neurodevelopmental changes in 
the representation and processing of learning signals. Healthy volunteers 
between ages 8 and 22 (children: 8–11 years, adolescents: 13–16 years, and 
adults: 18–22 years) performed a probabilistic learning task while in a MRI 
scanner. The behavioral data demonstrated age differences in learning 
parameters with a stronger impact of negative feedback on expected value in 
children. Model-based analysis of imaging data revealed that the neural 
representation of prediction errors was similar across age groups, but 
prediction error-related functional connectivity between the ventral striatum 
and the medial prefrontal cortex shifted as a function of age, from stronger 
after negative feedback to stronger after positive feedback. Furthermore, the 
connectivity strength predicted the tendency to alter expectations after 
receiving negative feedback. These findings indicate that the underlying 
mechanisms of developmental changes in learning may not be related to 
differences in the computation of learning signals per se, but rather to 
differences in how learning signals are used to guide behavior and 
expectations.  
 
 
 

8.1 Introduction 
The ability to learn contingencies between actions and positive or negative 

outcomes in a dynamic environment forms the foundation of adaptive behavior 
(Rushworth & Behrens, 2008). Learning from feedback in probabilistic 
environments is sensitive to developmental changes, showing developmental 
improvements in learning from positive and negative feedback are observed 
until early adulthood (Crone & van der Molen, 2004; Hooper et al., 2004; 
Huizinga et al., 2006; van den Bos et al., 2009). Intriguingly, prior 
neuroimaging studies have demonstrated developmental differences in neural 
circuits associated with learning from feedback in a fixed, or static learning 
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environment (van Duijvenvoorde et al., 2008, Crone et al., 2008). These studies 
show that dorsolateral prefrontal cortex and parietal cortex are increasingly 
engaged when receiving negative feedback. However, in a probabilistic learning 
environment, learning is adaptive over trials and both positive and negative 
feedback informs future behavior. Therefore, an important question concerns 
the neural mechanisms that underlie developmental differences in adaptive 
probability learning.  

A crucial aspect of adaptive learning is using feedback to estimate the 
expected value of the available options. The first step in estimating the expected 
value is the computation of prediction errors, that is, calculating the difference 
between expected and experienced outcomes. Prediction errors can be positive, 
indicating that outcomes are better than expected, or negative, indicating that 
outcomes are worse than expected (Sutton & Barto, 1998). Next, these 
prediction errors are used to update the expected value associated with the 
chosen option: the expected value increases when the prediction error is positive 
and decreases when the prediction error is negative.  

Prior neuroimaging studies have shown that activity in the ventral striatum, 
a target area of dopaminergic midbrain neurons, correlates with positive and 
negative prediction errors (Knutson et al., 2000; Pagnoni et al., 2002; e.g. 
McClure et al., 2003; O'Doherty et al., 2003; McClure et al., 2004). The relation 
between prediction errors and subsequent learning is confirmed by studies 
demonstrating an association between the representation of prediction errors in 
the striatum and individual differences in performance on probabilistic learning 
tasks (Pessiglione et al., 2006; Schönberg et al., 2007). Recently, a 
developmental study revealed heightened sensitivity in the striatum to positive 
prediction errors in adolescents relative to children and adults (Cohen et al., 
2010). Children (ages 8-12) did not show evidence for a prediction error signal 
in the striatum, whereas adolescents (ages 14-19) and adults (25-30) did. 
Therefore, it is possible that the representation of prediction errors is one 
mechanism contributing to the observed developmental changes in adaptive 
behavior. 

Several neuroimaging studies have shown that activity in the medial 
prefrontal cortex (mPFC) correlates with the expected value of stimuli or 
actions (for review see Rangel et al., 2008). Representations of expected values 
in the mPFC are thought to be updated by means of fronto-striatal connections, 
relating striatal prediction errors to medial prefrontal representations (Houk & 
Wise, 1995; Pasupathy & Miller, 2005; Frank & Claus, 2006; Camara et al., 
2009). In support of this hypothesis, recent studies have shown increased 
functional connectivity between the ventral striatum and mPFC during feedback 
processing (Camara et al., 2008; Munte et al., 2008). Furthermore, group 
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differences in learning may be related to the connectivity strength between the 
striatum and the PFC during feedback processing. For example, substance-
dependent individuals have an intact striatal representation of prediction errors, 
but are impaired in subsequently using these signals for learning (Park et al., 
2010). This study showed that there is a positive relation between learning 
speed and the strength of functional connectivity between the striatum and PFC 
(see also Klein et al., 2007). Therefore, a second possible mechanism that may 
contribute to developmental changes in adaptive behavior is an increase in 
striatal-mPFC connectivity. Indeed, there are also still substantial changes in 
anatomical connectivity between subcortical structures and the prefrontal cortex 
during adolescence (Supekar et al., 2009; Schmithorst & Yuan, 2010).  

To test these two hypotheses, a computational model of reinforcement 
learning model was applied to investigate developmental differences in (a) the 
neural representation of prediction errors, and (b) changes in fronto-striatal 
connectivity. Participants of three age groups (children ages 8-11, adolescents 
ages 13-16 and young adults ages 18-22) performed a probabilistic learning task 
(Frank et al., 2004) in an MRI scanner. We expect that with age, there is an 
improvement in learning from probabilistic feedback (Crone & van der Molen, 
2004; van den Bos et al., 2009). In order to capture age related changes in 
learning from positive and negative feedback separately, we use a reinforcement 
learning model with separate learning rates for positive and negative feedback 
(Kahnt et al., 2009). The individually estimated trial-by-trial prediction errors 
generated by this reinforcement model were subsequently used to test whether 
developmental differences in learning reflect functional differences in the 
representation of prediction errors or developmental changes in the propagation 
of prediction errors as measured by functional fronto-striatal connectivity (Park 
et al., 2010).  
 
8.2 Material and Methods 
 
8.2.1 Participants.  
Sixty-seven healthy right-handed paid volunteers ages 8-22 participated in the 
fMRI experiment. Age groups were based on adolescent development stage, 
resulting in three age groups: children (8- to 11-year-olds, n=18; 9 female), mid-
adolescents (13- to 16-year-olds, n=27; 13 female) and young adults (18- to 22-
year-olds, n=22; 13 female). A chi square analysis indicated that gender 
distribution did not differ between age groups, X2 (2) = .79, p = .67. All 
participants reported normal or corrected-to-normal vision and participants or 
their caregivers indicated an absence of neurological or psychiatric 
impairments. Participants gave informed consent for the study and all 
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procedures were approved by the medical ethical committee of the Leiden 
University Medical Center.  

Participants completed two subscales (similarities and block design) of 
either the Wechsler Adult Intelligence Scale (WAIS) or the Wechsler 
Intelligence Scale for Children (WISC) in order to obtain an estimate of their 
intelligence quotient (Wechsler, 1991, 1997). There were no significant 
differences in estimated IQ scores between the different age groups, F (2, 66) = 
1.63, p = .20 (see Table 7.1, p. 132). 
 
8.2.2 Task Procedure 
The procedure for the probabilistic learning task (PLT, Frank et al., 2004; van 
den Bos et al., 2009) was as follows: The task consisted of two stimulus pairs 
(called AB and CD). The stimulus pairs consisted of pictures of everyday 
objects (e.g., a chair and a clock). Each trial started with the presentation of one 
of the two stimulus pairs and subsequently the participant had to choose one 
(e.g., A or B). Stimuli were presented randomly on the left or the right side of 
the screen. Participants were instructed to choose either the left or the right 
stimulus by pressing a button with the index or middle finger of the right hand. 
Responses had to be given within a 2500 ms window, which was followed by a 
1000ms feedback display (see Figure 8.1 A). If no response was given within 
2500 ms, the text “too slow” was presented on the screen.  

Feedback was probabilistic; choosing stimulus A led to positive feedback 
on 80% of AB trials, whereas choosing stimulus B led to positive feedback on 
20% of these trials. The CD pair procedure was similar, but probability for 
reward was different; choosing stimulus C led to positive feedback on 70% of 
CD trials, whereas choosing stimulus D led to positive feedback on 30% in 
these trials. 

Participants were instructed to earn as many points as possible (as indicated 
by receiving a positive feedback signal), but were also informed that it was not 
possible to receive positive feedback on every trial. After the instructions and 
before the scanning session, the participants played 40 practice rounds on a 
computer in a quiet laboratory to ensure they understood the task. 
In total, the task in the scanner consisted of two blocks of 100 trials each: 50 
AB trials and 50 CD trials per block. The first and the second block consisted of 
different sets of pictures and therefore, participants had to learn a new mapping 
in both task blocks. The data from the last 60 trials of each block were also 
reported in another study using a rule-based analysis (van den Bos et al., 2009). 
The duration of each block was approximately 8.5 minutes. The stimuli were 
presented in pseudo-random order with a jittered interstimulus interval 
(min=1000 ms, max=6000 ms) optimized with OptSeq2 (Dale, 1999). 
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Figure 8.1: A) Participants chose one stimulus by pressing the left or right button and 
received positive and negative feedback according to probabilistic rules. Two pairs of 
stimuli were presented to the participants: (1) the AB pair with 80% positive feedback 
for A and 20% for B, (2) the CD pair with 70% positive feedback for A and 30% for B 
where A 80%-20%. B) Estimated learning rates for positive and negative feedback per 
age group. C) Estimated model fits per age group. Error bars represent standard error in 
all graphs.  
 

 
8.2.3 Reinforcement Learning Model 
A standard reinforcement learning model (Sutton & Barto, 1998) was used to 
analyze behavioral and neural data (McClure et al., 2003; Cohen & Ranganath, 
2005; Haruno & Kawato, 2006; Frank & Kong, 2008; Kahnt et al., 2008). The 
standard reinforcement learning model uses the prediction error (δ) to update 
the decisions weights (w) associated with each stimulus (in this case A, B, C or 
D) (Schultz et al., 1997; Holroyd & Coles, 2002). Thus, whenever feedback is 
better than expected, the model will generate a positive prediction error which is 
used to increase the decision weight of the chosen stimulus (e.g. stimulus A). 
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However, when feedback is worse than expected, the model will generate a 
negative prediction error, which is used to decrease the decision weight of the 
chosen stimulus (e.g. stimulus B). The impact of the prediction error is usually 
scaled by the learning rate (α). We extended the standard reinforcement learning 
model by using separate learning rates for positive feedback (αpos) and negative 
feedback (αneg) (e.g. Kahnt et al., 2008). Thus, positive and negative feedback 
might have a different impact of the decisions weights. To model trial-by-trial 
choices, we used the soft-max mechanism to compute the probability (p) of 
choosing a high probability target (A or C) on trial t as the logit transform of the 
difference in the decision weights in each trial (wt) associated with each 
stimulus, passed through a biasing sigmoid function (Montague et al., 2004; 
Kahnt et al., 2008). For example, when stimulus pair AB is presented the 
probability of choosing A is determined by: 
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After each decision the prediction error (δ) is calculated as the difference 
between the outcome received (r = 1 for positive feedback and 0 for negative 
feedback) and the decision weight (wt) for the chosen stimulus: 
 

(2) δt = rt −w chosen_ stimulus( )t  
 
Subsequently, the decision weights are updated according to: 
 

(3) ( ) tttt outcomeww δαπ ××+=+1  
 
Where π is 1 for the chosen and 0 for the unchosen stimulus, α(outcome) is a set 
of learning rates for positive (αpos) and negative feedback (αneg), which scale the 
effect of the prediction error on the future decision weights, and thus subsequent 
decisions. For example, a high learning rate for positive feedback but a low 
learning rate for negative feedback indicates that positive feedback has a high 
impact on future behavior, whereas negative feedback will hardly change future 
behavior. These two learning rates were individually estimated by fitting the 
model predictions (p(high probability stimulus)) to participants' actual 
decisions. We used the multivariate constrained minimization function 
(fmincon) of the optimization toolbox implemented in MATLAB 6.5 for this 
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fitting procedure. Initial values for learning rates were αpos = αneg = 0.5 and for 
action values, w(left) = w(right) = 0. 
 
8.2.4 Behavioral Analyses  
To examine the correspondence between model predictions and participants' 
behavior, model predictions were compared with the actual behavior on a trial-
by-trial basis. Model predictions based on estimated learning rates were 
regressed against the vector of participants' actual choices and individual 
regression coefficients were used to compare group differences in model fits. 
Differences in model fit between groups would indicate that other processes, for 
example a larger tendency to switch regardless of feedback, may play a 
relatively larger role in choice behavior in one group compared to the other. 
Only when there are no differences in model fit between groups one can 
confidently compare model parameters. 

 
8.2.5 Data Acquisition 
Participants were familiarized with the scanner environment on the day of the 
fMRI session through the use of a mock scanner, which simulated the sounds 
and environment of a real MRI scanner. Data were acquired using a 3.0T Philips 
Achieva scanner at the Leiden University Medical Center. Stimuli were 
projected onto a screen located at the head of the scanner bore and viewed by 
participants by means of a mirror mounted to the head coil assembly. First, a 
localizer scan was obtained for each participant. Subsequently, T2*-weighted 
Echo-Planar Images (EPI) (TR= 2.2 sec, TE= 30ms, 80 x 80 matrix, FOV = 
220, 35 2.75mm transverse slices with 0.28mm gap) were obtained during 2 
functional runs of 232 volumes each. A high-resolution T1-weighted anatomical 
scan and a high-resolution T2-weighted matched-bandwidth anatomical scan, 
with the same slice prescription as the EPIs, were obtained from each 
participant after the functional runs. Stimulus presentation and the timing of all 
stimuli and response events were acquired using E-Prime software. Head 
motion was restricted by using a pillow and foam inserts that surrounded the 
head. 

 
8.2.6 fMRI Data Analysis 
Data were preprocessed using SPM5 (Wellcome Department of Cognitive 
Neurology, London). The functional time series were realigned to compensate 
for small head movements. Translational movement parameters never exceeded 
1 voxel (< 3 mm) in any direction for any subject or scan. There were no 
significant differences in movement parameters between age groups F (2, 65) = 
.15, p = .85. Functional volumes were spatially normalized to EPI templates. 
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The normalization algorithm used a 12 parameter affine transformation together 
with a nonlinear transformation involving cosine basis functions and resampled 
the volumes to 3 mm cubic voxels. Functional volumes were spatially smoothed 
using a 8 mm full-width half-maximum Gaussian kernel. The MNI305 template 
was used for visualization and all results are reported in the MNI305 stereotaxic 
space (Cosoco, Kollokian, Kwan, & Evans, 1997)  

Statistical analyses were performed on individual participants’ data using 
the general linear model in SPM5. The fMRI time series data were modeled by 
a series of events convolved with a canonical haemodynamic response function 
(HRF). The presentation of the feedback screen was modeled as 0-duration 
events. The stimuli and responses were not modeled separately as these 
occurred in one prior or overlapping EPI images as feedback presentation. To 
investigate the neural responses to feedback valence, independent of learning 
conditions, we set up a general linear model (GLM) with the onsets of each 
feedback type (positive and negative) as regressors.  

To examine the neural correlates of reward prediction errors, we set up a 
second GLM with a parametric design. In this model, the stimulus functions for 
feedback were parametrically modulated by the trial-wise prediction errors 
derived from the reinforcement learning model. The modulated stick functions 
were again convolved with the canonical HRF. These regressors were then 
orthogonalized with respect to the onset regressors of positive and negative 
feedback trials and regressed against the BOLD signal.  

Finally, to investigate age linear and quadratic age trends we applied 
polynomial expansion analysis (Büchel et al., 1996) with age as continuous 
variable, using the forward model selection as described by Büchel and 
colleagues (1998). Thresholds were set to p < .001 uncorrected for the whole 
group analyses, with an extend threshold of 15 continuous voxels (cf. Kahnt et 
al., 2008). We used the Marsbar toolbox for use with SPM5 
(http://marsbar.sourceforge.net, Brett et al. 2002) to perform Region of Interest 
(ROI) analyses to further characterize patterns of activation and estimate 
individual differences in connectivity measures. 
 
8.2.7 Functional Connectivity Analyses 
To explore the interplay between the ventral striatum and other brain regions 
during reinforcement-guided decision-making, functional connectivity was 
assessed using psychophysiological interaction (PPI) analysis (Friston, 1994; 
Cohen et al., 2005; Cohen et al., 2008). The functional whole brain mask, in 
which activity correlated significantly with prediction errors for the whole 
group, was masked with an anatomical striatum ROI of the Marsbar toolbox 
that included the bilateral caudate, putamen and nucleus accumbens, to create 
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the seed region of interest (ROI). The method used here relies on correlations in 
the observed BOLD time-series data and makes no assumptions about the 
nature of the neural event that contributed to the BOLD signal (Cohen et al., 
2008). For each model, the entire time series over the experiment was extracted 
from each subject in the clusters of the (left and right) ventral striatum. 
Regressors were then created by multiplying the normalized time series of each 
ROI with condition vectors that contained ones for four TRs after positive or 
negative prediction errors and zeros otherwise (see also Cohen & Ranganath, 
2005; Kahnt et al., 2008; Park et al., 2010). Thus, the two condition vectors of 
positive and negative prediction errors (containing ones and zeros) were each 
multiplied with the time course of each ROI. These regressors were then used as 
covariates in subsequent analyses.  

The time series between the left and right hemispheres for the ventral 
striatum were highly correlated (averages across runs and participants were r = 
.84). Therefore, parameter estimates of left- and right structures were collapsed, 
and thus, represent the extent to which feedback-related activity in each voxel 
correlates with feedback-related activity in the bilateral ventral striatum. 

Individual contrast images for positive vs. negative prediction errors were 
computed and entered into second-level one-sample t-tests. In order to find age 
related differences in the whole-brain analyses of functional connectivity with 
the ventral striatum, we performed a regression analyses with an additional 
regressor for age. Thresholds for the connectivity analyses were also set to p < 
.001 uncorrected, with an extend threshold of 15 continuous voxels. 
 
8.3 Results 
 
8.3.1 Behavioral data 
 
Reinforcement learning. First, we assessed how the model parameters differed 
between age groups. First of all, there was a good fit of the model to 
participants' behavior; the average regression coefficient was significantly 
above zero for all age groups (all p’s < .001. Figure 8.1 B). Importantly, the 
model fit did not differ significantly between groups (F(2,64) =  .96, p = .38), 
reassuring that parameters estimations could be compared between groups.  

Next, a two (learning parameters) x three (age groups) ANOVA tested for 
age differences in learning from positive and negative feedback. This analysis 
showed a significant group by parameter interaction (F(2,64) = 12.34, p < .001, 
see Figure 8.1 C), post-hoc tests revealed that there was an age related decrease 
in αneg, F(2,67) = 9.87, p < .001, and a marginal age related increase in αpos, F(2,67) 
= 2.96, p = .06. This result indicates that the relative influence of positive 
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feedback on expected values decreased with age and the relative influence of 
negative feedback on expected values increased with age.  

 
8.3.2 fMRI results  
 
Model-based fMRI. Across all participants, individually generated trial-wise 
prediction errors (positive and negative combined) correlated with BOLD signal 
in bilateral ventral striatum, MPFC, posterior anterior cingulate cortex (pCC) 
and the bilateral amygdala extending into the parahippocampal gyrus (Figure 
8.2 A, and Table 8.1). Activity in the ventral striatum was localized at an area 
comprising the ventral intersection between the putamen and the head of the 
caudate. Tests for positive and negative prediction errors separately revealed 
comparable results.  

Whole brain regression analyses for age differences revealed no linear or 
non-linear age group differences (Figure 8.2 B). This analysis was repeated for 
positive and negative prediction errors separately and these analyses also 
revealed no linear or non-linear age effects. This finding shows that the 
prediction error (positive or negative) is not represented differently between the 
three age groups. 

 
Figure 8.2: A) Regions in the medial prefrontal cortext (mPFC), ventral striatum and 
amygdala in which BOLD signal was significantly correlated with reward prediction 
errors. B) Parameter estimates of the prediction errors per age group in the functionally 
defined ROIs for the mPFC, ventral striatum and amygdala.  
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Table 8.1 : Brain Regions revealed by whole brain contrasts. 
Anatomical region L/R BA Z MNI coordinates 
    x y z 
Positive > Negative Feedback       
       
Ventral Striatum L/R  7.49 -6 12 -3 
Dorsolateral prefrontal cortex L 8 4.61 -27 24 51 
Superior parietal cortex L 7 4.23 -30 -75 48 
Precuneus L/R 31 4.07 -3 -36 33 
Medial PFC L/R 10/11 4.03 3 54 -12 
Visual Cortex L/R 17 4.50 27 -93 -9 
       
Negative > Positive Feedback       
       
Dorsal Anterior Cingulate Cortex L/R 32 4.43 9 21 36 
       
Prediction Error       
       
Ventral Striatum (caudate & putamen) L/R  6.29 -6 9 3 
Left Amygdala  L/R  5.50 -12 3 -18 
Right Amygdala R  5.05 18 6 -18 
Medial PFC L/R 10/11 5.84 0 54 3 
Posterior Cingulate Cortex L/R 32 4.83 0 -33 41 
Visual Cortex L/R 17 6.63 -18 -93 -18 
       
PPI (positive > negative)       
       
Medial Prefrontal Cortex L/R 10 5.47 -4 40 6 
Pre-SMA R 6 4.98 9 30 57 
Right Anterior Insula / IFG R  4.46 41 23 -9 
Left Anterior Insula / IFG L  4.67 -44 21 -3 
Ventral Striatum (caudate & putamen) L/R  7.50 9 9 3 
       
PPI (positive > negative) x Age       
       
Medial PFC L 10 4.02 -8 45 10 
       

MNI coordinators for main effects, peak voxels reported at p < .001, at least 20 
contiguous voxels.  
 
 
Functional Connectivity. Functional connectivity between the striatum and 
other brain regions was assessed during processing of negative and positive 
feedback using PPI. The contrast used for testing functional connectivity was 
positive > negative feedback. Note that the vectors for positive feedback events 
contain all positive prediction error events, and the vectors for negative 
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feedback events contain all negative prediction error events. Enhanced 
functional connectivity was found during positive > negative feedback between 
the bilateral ventral striatum seed and the mPFC (Figure 8.3 A), dACC, pre-
SMA, and bilateral anterior Insula extending into the inferior frontal gyrus. The 
opposite contrast (negative > positive feedback) did not reveal any significant 
changes in functional connectivity. 

Next, we examined age differences in ventral striatum connectivity by 
adding age as a regressor to the whole-brain PPI analysis. These analyses 
revealed age related increases in functional connectivity of the ventral striatum 
seed with the mPFC (BA10) for positive > negative feedback (Figure 8.3 B). No 
other areas were found when testing for non-linear age effects in functional 
connectivity.  

To further illustrate the age related changes in fronto-striatal connectivity we 
extracted the strength of functional connectivity between ventral striatum and 
mPFC for each participant and plotted it against age as a continuous variable 
(Figure 8.3 C). This plot reveals that the connectivity pattern shifts from a 
stronger connection after negative feedback for the youngest participants 
towards a stronger connection after positive prediction errors for the oldest 
participants.  

Finally, we performed ROI analyses to investigate whether striatum-mPFC 
connectivity was related to the individual learning parameters. The differential 
connectivity strength (positive > negative) between the ventral striatum and 
mPFC ROI was used to predict the individual differences in learning rates for 
positive and negative feedback. The relative connectivity measure correlated 
negatively with the learning rate for negative feedback (r = -.39, p < .001, 
Figure 8.3 D), and moderately positively with the learning rate for positive 
feedback (r = .23, p = .07). Thus, there was stronger striatum-mPFC coupling 
during negative > positive feedback in participants for whom negative feedback 
had a relatively large impact on future expected value, whereas the reverse was 
true (i.e., stronger coupling during positive > negative feedback) in participants 
for whom positive feedback had a relatively large impact on future expected 
value.  

To summarize, increased functional connectivity between the ventral 
striatum and mPFC was observed during processing of positive feedback 
compared to negative feedback. Furthermore, this analysis revealed that the 
relative strength in striatum-mPFC connectivity correlated positively with age, 
but negatively with the learning rate for negative feedback. 
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Figure 8.3: A) Regions which showed increased functional connectivity with the 
striatal seed region after positive compared to negative feedback. (B) Region in the 
mPFC that revealed age related changes in functional connectivity with the striatal seed 
region. Both statistical maps are all thresholded at p < .001, uncorrected, k = 15. (C) 
Scatterplot depicting the relationship between the functional connectivity measure of the 
striatum-mPFC (positive > negative feedback) and age. (D) Scatterplot depicting the 
relationship between the functional connectivity measure of the striatum-mPFC 
(positive > negative feedback) and learning rate (αneg). 
 
 
8.4 Discussion 
The goal of this study was to examine developmental changes in the neural 
mechanisms of probabilistic learning. The reinforcement model showed that 
with increasing age, negative feedback had decreasing effects on future 
expected values. Imaging analyses revealed that ventral striatum activation 
following prediction errors did not differ between age groups; however, age 
differences in the learning parameters were associated with an age related 
increase in functional connectivity between ventral striatum and the mPFC. 
These behavioral data and their neural correlates allow a deeper understanding 
of how children, adolescents and adults learn in a changing environment. The 
discussion will be organized according to these themes. 
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Developmental changes in learning parameters 
Using a reinforcement learning model we were able to disentangle differences 
in sensitivity to positive and negative feedback by estimating learning rates for 
positive and negative feedback separately. These estimated learning rates reflect 
the degree to which the future expected value of a stimulus will be changed 
after positive or negative prediction errors. As expected, the model-based 
analyses of learning behavior showed that with age there is a decrease in the 
learning rate fore negative prediction errors (αneg). This finding indicates that 
with increasing age, the impact of negative prediction errors on the future 
expected value decreases. These results are consistent with developmental 
studies that have shown that adults are less influenced by irrelevant negative 
feedback (Crone et al., 2004). Furthermore, compared to younger adults, older 
adults have been shown to report less negative arousal to anticipated losses 
(Samanez-Larkin et al., 2007). Taken together, these results show that the 
current reinforcement model can capture the subtle age related changes in 
adaptive learning, and thus provides a solid basis for exploring the underlying 
neurodevelopment changes in representing and the processing of learning 
signals. 
 
Neural Representation of prediction errors 
Consistent with previous studies, trial-by-trial prediction errors generated by the 
reinforcement learning model correlated with activity of a network of areas 
including the ventral striatum, mPFC and the amygdala (Pagnoni et al., 2002; 
McClure et al., 2003; O'Doherty et al., 2003; Cohen & Ranganath, 2005). This 
result indicates that these areas are sensitive to differences in expected vs. 
received feedback; showing increased activation when feedback is better than 
expected and decreased activation when the feedback is worse than expected. 
Our analyses did not reveal any (linear or non-linear) age related differences in 
prediction errors (positive or negative). These findings are consistent with prior 
studies using cognitive learning tasks, which have also reported early 
maturation of subcortical regions and protracted development of cortical brain 
areas (Casey et al., 2004; van Duijvenvoorde et al., 2008; Velanova et al., 
2008). However, a recent developmental study of reward-based learning using a 
comparable reinforcement model, with a single learning rate (for both negative 
and positive feedback), has shown heightened sensitivity to positive prediction 
errors in adolescents compared to children and adults (Cohen et al., 2010). It 
should be noted however, that Cohen and colleagues compared different age 
groups, as adolescence in this study was defined as the age range 14-19 years, 
and adulthood as 25-30 years. In this respect, the findings of the current study 
and the findings of Cohen et al. are not directly comparable. In future studies, it 
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will be important to test for changes in predictions errors across a wider age 
range and differentiating between different phases of adolescence.  

The results of the current study provide different findings in comparison to 
affective paradigms. These studies have reported increased sensitivity of the 
striatum in adolescence after receiving monetary rewards or highly emotional 
stimuli (Galvan et al., 2006; McClure-Tone et al., 2008; Van Leijenhorst et al., 
2009), which may trigger the peak in adolescent reward processing. 
Interestingly, Cohen et al. (2010) observed adolescent-specific increases in 
reaction times for 25 cents relative to 5 cents rewards. In future studies, it will 
be important to examine whether the prediction error representation can be 
modulated by the use of affective tasks or reward manipulations, and whether 
these effects are dependent on the development of the dopaminergic system 
during adolescence (for a review see Galvan, 2010).  
 
Developmental changes in striatum-mPFC connectivity 
Connectivity analyses revealed that during feedback processing the seed region 
in the ventral striatum sensitive to prediction errors showed increased functional 
connectivity with the mPFC, pre-SMA, and bilateral anterior insula/IFG during 
positive compared to negative feedback. This pattern of connectivity is 
consistent with several studies that have shown feedback-related changes in 
functional connectivity of the striatum (for a review see Camara et al., 2009).  

Subsequent analyses revealed age related changes in striatum–mPFC 
functional connectivity. The pattern shifted from stronger connectivity after 
negative feedback for the youngest participants towards stronger connectivity 
after positive feedback for the oldest participants. This suggests that shifts in 
feedback-dependent striatum-mPFC connectivity may underlie developmental 
changes in learning behavior. This interpretation is in line with an adult study 
which has shown that the strength of ventral striatum-mPFC connectivity 
following feedback is related to the adjustment of behavior on subsequent trials 
(Camara et al., 2008). This hypothesis is further supported by the correlation 
between striatum-mPFC connectivity and estimated learning rate parameter for 
negative prediction errors in the current study.  

Given that during adolescent development there are still substantial changes 
in structural connectivity within the prefrontal cortex (Schmithorst & Yuan, 
2010) it could be hypothesized that the developmental differences in striatum-
mPFC functional connectivity are related to changes in structural connectivity 
between these two structures (Cohen et al., 2008). In future developmental 
studies, it will be of interest to combine measures of structural and functional 
connectivity in order to further explore this hypothesis.  
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Additionally, it should be noted that the functional connectivity measure is 
uninformative about the directionality of the influence between different brain 
regions (Friston, 1994). Applying methods such as structural equation modeling 
and dynamic causal modeling (Friston et al., 1997), which take directionality 
into account, could further increase our knowledge of the underlying 
mechanisms of developmental changes in adaptive learning. 

 
A final question concerns how these results relate to previous 

developmental studies of feedback processing in static environments (van 
Duijvenvoorde et al., 2008; Crone et al., 2008). Learning theories have 
suggested two separate systems that operate in parallel during feedback learning 
(Dickinson & Balleine, 2002); one system that operates on task explicit 
representations, such as rules, and another system that operates on statistical 
contingencies of the environment, such as feedback probabilities. Recently, a 
study showed that updating task representations relies on the DLPFC-parietal 
network, whereas updating feedback probabilities was associated with the 
striatum (Gläscher et al., 2010). Thus, it is likely that developmental changes in 
the DLPFC-parietal network represent differences in the learning system that 
operates on rule-based task representations, whereas the current study shows 
developmental differences in the system tracking statistical contingencies (see 
also Galvan et al., 2006; Cohen et al., 2010). The challenge for future 
developmental studies will be to disentangle the relative contributions of these 
networks, and to understand how these two systems contribute to developmental 
changes in feedback learning.  
 
Conclusion 
Previous studies have shown that either changes in the representation of the 
prediction errors in the striatum (Schönberg et al., 2007) or the connectivity of 
the ventral striatum with the prefrontal cortex (Klein et al., 2007; Park et al., 
2010) are related to individual differences in feedback learning. In the current 
study we provide evidence that developmental differences in feedback learning 
may not be due to differences in the representation of the prediction errors per 
se, but rather to developmental changes in the functional connectivity between 
the striatum and the mPFC. This finding suggests that children do not differ in 
their ability to track the statistical contingencies in the task, but rather process 
the learning signals differently. These findings advance our understanding of 
the neurodevelopmental underpinnings of probabilistic learning and highlight 
the importance of studying neural circuits in addition to specific brain regions 
(Camara et al., 2009).  


