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CHAPTER 5
Explanatory item response

modeling of children’s change

on a dynamic test of

analogical reasoning

This chapter is based on Stevenson, C. E., Hickendorff, M., Heiser, W. J., Resing, W. C. M. & De Boeck, P.
A. L. (under review). Explanatory item response modeling of children’s change on a dynamic test of
analogical reasoning.
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5. IRT Modeling of children’s change in analogical reasoning

Abstract

Dynamic testing is an assessment method in which training is incorporated

into the testing procedure with the aim of gauging cognitive potential. Large

individual differences are present in children’s ability to profit from training in

analogical reasoning. The aim was to investigate sources of these differences

on a dynamic test of figural analogies. School children (N=252, M=7 years,

SD=11 months, range 5-9 years) were dynamically tested using a pretest-

training-posttest design. The children were randomly allocated to a training

condition: graduated prompts or feedback. All children were presented with

figural analogies without help or feedback during the pretest. The children

then received training on the analogy task. This was followed by the posttest

measure. Explanatory irtmodels were used to investigate sources of individual

differences in initial ability and improvement after training. We found that visual

and verbal working memory and age were related to initial ability. Improvement

after training was influenced by training-type, whereby graduated prompts

trained children improved more than feedback-trained, but also by initial ability,

where children with lower initial scores improved more in both conditions.

Furthermore, degree of improvement was related to math achievement; where

higher achieving children improved more from pretest to posttest. Potential to

learn as measured by dynamic tests is not often included in traditional cognitive

assessment. However, learning potential does appear to be an important

construct to include in psychoeducational testing.
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5.1. Introduction

5.1 Introduction

Dynamic testing can be seen as an assessment form that aims to tap into the test

taker’s potential for learning by assessing what can be learned over a short period of

time in which instruction in problem solving is provided (Elliott, 2003; Sternberg &

Grigorenko, 2002). The main difference between dynamic and traditional assessment

methods is that dynamic testing incorporates feedback into the assessment process

(Elliott et al., 2010; Grigorenko & Sternberg, 1998). Dynamic testing is often

contrasted with traditional “static” testing such as administering an IQ test in

which no feedback or training is given. In some situations, static tests provide a

sound indication of a person’s present capabilities and predict academic success or

failure (e.g., Neisser et al., 1996; Sternberg et al., 2001). Researchers and educational

practitioners agree that an indication of a child’s potential for learning could

contribute to psychoeducational assessment (Elliott et al., 2010; Jeltova et al., 2007).

Dynamic tests can provide information on learning potential through indices such

as gain scores (improvement from pretest to posttest), instructional-needs (e.g.,

Bosma & Resing, 2012; Jeltova et al., 2011) or strategy development (e.g., Resing &

Elliott, 2011; Resing et al., 2009). A major obstacle within the field of dynamic testing

however has been how to obtain and interpret reliable measures of individual

differences in cognitive potential (Embretson, 1991b; Sternberg & Grigorenko, 2002).

Item response theory (e.g., Rasch, 1961), potentially offers ways to solve the inherent

problems of measuring learning and change (e.g., Embretson, 1991b, 1991a). Aim

of the present study was to extend item response modeling of dynamic testing

performance not only to measure individual differences in children’s cognitive

potential but also to explain the differences in training effects in terms of variations

in age, working memory and previous school performance using explanatory item

response theory (irt) (De Boeck & Wilson, 2004).
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5. IRT Modeling of children’s change in analogical reasoning

5.1.1 Individual differences in cognitive potential

The ability to learn can be considered one of the many constructs that falls under

the term intelligence (e.g., Sternberg & Kaufmann, 2011; Neisser et al., 1996), and

individual differences in the ability to learn may form a dynamic component of this

concept. Recent research seems to indicate that fluid reasoning ability may be more

influenced by learning experiences than thought before. For example, there appear

to be considerable individual differences in the effects of retesting and training on

fluid reasoning tasks in both adults (Freund & Holling, 2011a) and school children

(Freund & Holling, 2011b; Mackey, Hill, Stone, & Bunge, 2010). Working memory

training also appears to influence performance in the short-term on tests of fluid

reasoning in adults (Jaeggi et al., 2008) and preschoolers (Thorell, Lindqvist, Nutley,

S Bohlin, & Klingberg, 2009). These findings on the modifiability of cognitive

capacities can be interpreted within the theoretical framework of dynamic testing –

where abilities are considered flexible rather than fixed in a context of developing

expertise (Grigorenko & Sternberg, 1998; Sternberg & Grigorenko, 2002). Similarly,

the results of dynamic testing studies, which often comprise of a pretest-training-

posttest design, coincide with research on retesting and training effects of fluid

intelligence as generally positive training effects are found, interestingly again with

large individual variation in improvement (e.g., Fabio, 2005; Jeltova et al., 2011;

Swanson & Lussier, 2001; Sternberg et al., 2007).

The idea behind dynamic testing is that a traditionally administered standardized

test measures one’s present capacities, whereas dynamic testing may provide

information about one’s potential for learning. This information may be of additional

value to static test results in the prediction of scholastic achievement (e.g., Caffrey

et al., 2008; L. S. Fuchs et al., 2008; Hessels, 2009; Resing, 1997; Stevenson, Heiser,

& Resing, submitted 2012b) and provision of information to help improve school

performance (e.g., Bosma & Resing, 2012; Bosma et al., submitted; Jeltova et al.,
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5.1. Introduction

2007, 2011; Grigorenko, 2009a).

5.1.2 Measuring Learning Potential with Dynamic Testing

Whereas in static tests, provision of feedback is often viewed as a source of error, in

dynamic testing the ability to profit from training is considered a way of uncovering

potential cognitive capacity (Embretson, 1991b; Embretson & Prenovorst, 2000;

Sternberg & Grigorenko, 2002). In the typical dynamic testing pretest-training-

posttest design, structured feedback is provided during one or more training

sessions. Presently, posttest scores are most often used as an indication of children’s

potential ability because gain scores (posttest minus pretest score) may be unreliable

in the context of classical test theory (Resing, Elliott, & Grigorenko, 2012). Using

raw gain scores to measure change leads to various problems (e.g., De Bock, 1976;

Embretson, 1991b), such as the unreliability of the gain score, the fact that the scale

units for change do not have a constant meaning for test takers with different pretest

scores and the regression effect of repeated administration (Lord, 1963). These

problems are potentially solved when irt is employed because the ability scores for

pretest and posttest are no longer ordinal measures, but are put on a joint interval

measurement scale using logistic models (Embretson & Reise, 2000). In the simplest

irtmodel, the Rasch model, the chance that an item is solved correctly depends

on the difference between the latent ability of the examinee and the difficulty of

the item. Here the irt Rasch-based change score has the same meaning across the

whole range of the measurement scale in terms of log odds (i.e. the logarithm of

probability of correct vs. incorrect). Thus irt is appropriate for measuring change

as it provides a good basis for the latent scaling of gain scores and problems with

unreliability are dealt with as reliability is separated from other parts of the model

(Embretson & Reise, 2000).

In the dynamic assessment literature, classical test measures tend to dominate
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5. IRT Modeling of children’s change in analogical reasoning

(e.g., Calero et al., 2011; Resing, Steijn, Xenidou-Dervou, Stevenson, & Elliott, 2011;

Tzuriel & Egozi, 2010). Earlier findings based on classical test theory may still

hold if pretest-posttest control group designs are used, provided there are few

pretest-differences between the groups and there are no floor or ceiling effects for

either of the groups. However, the focus of dynamic testing is not only on the

measurement of the average gain from training, but rather on identifying how

and why some children profit more from training than others – i.e. individual

differences in learning and change (e.g., Resing & Elliott, 2011; Resing et al., 2009) –

so that timely intervention can be provided (Caffrey et al., 2008; Elliott, 2003). In

an educational setting the assumption is that there are individual differences both

in initial ability and ability to profit from instruction. It is therefore imperative to

have good gain estimates when investigating the sources of these differences in

individual change. irtmodels seem appropriate for this purpose.

irt measurement models for dynamic tests have gained some ground. For

example in the Hessel’s Analogical Reasoning Test (HART) with a train-test format

used Rasch scaling of the test session (Hessels & Bosson, 2003). De Beer also used

Rasch item calibration for her computer adaptive test of Learning Potential (De

Beer, 2005). Embretson (1991b) developed the Multidimensional Rasch Model

for Learning and Change (mrmlc) to measure ability and modifiability (i.e.

performance change) from one testing occasion to the next and applied this to

a dynamic test of visuospatial reasoning (Embretson, 1987, 1992). In research

with AnimaLogica, the dynamic test of figural analogical reasoning employed in

the present study, we have also applied mrmlc to measure pretest ability and

performance change after training 3. These are examples of irt being used purely

for measurement purposes. However, irt can also be used as a research tool –

for example to investigate cognitive processes (e.g., De Boeck, Wilson, & Acton,

2005) or explain learning in developmental psychology (e.g., Janssen, De Boeck,
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5.1. Introduction

Viane, & Vallaeys, 1999) and educational psychology (e.g., Hickendorff, Van Putten,

Verhelst, & Heiser, 2010). With irt it is possible to combine both measurement and

explanation of individual differences and item effects in one and the same analysis –

a method De Boeck and Wilson (2004) coined as explanatory irt– which we applied

in the present study to measure and explain children’s ability and potential on an

dynamically administered analogical reasoning task.

5.1.3 Dynamic testing of analogical reasoning

This article focuses on explaining individual differences in children’s performance on

a dynamic test of analogical reasoning by investigating combinations of explanatory

variables using irt models to estimate the change in ability. We examined the

combined contribution of variables previously implicated as related to children’s

progression in analogy solving: (1) training-type, (2) age, (3) working memory

capacity, (4) initial ability and (5) school performance.

In the current study we used figural matrix analogies (see Figure 5.1), which are a

classical form of analogies (A:B::C:?) often utilized in psychoeducational assessment

to measure fluid reasoning capacity, such as the Raven Standard Progressive Matrices

(Raven, Raven, & Court, 2004). Performance on matrix analogies has been found

to be related to school performance (Balboni et al., 2010; Ferrer & McArdle, 2004;

Hessels, 2009) – especially math achievement (Primi, Eugénia Ferrao, & Almeida,

2010; Taub, Floyd, Keith, & McGrew, 2008) – and is considered an important ability

required in school learning (Goswami, 1992).

On the whole, older children generally solve analogy problems better than

younger children (e.g., Csapó, 1997; Hosenfeld & Resing, 1997; Sternberg & Rifkin,

1979). In Siegler & Svetina’s (2002) microgenetic and cross-sectional study of

children’s analogical reasoning initially six year-olds solve significantly fewer

analogies than the older children included in the study. However, after repeated
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5. IRT Modeling of children’s change in analogical reasoning

practice the six year-olds on average perform at a similar level as seven and eight

year-olds. Yet, children’s ability to solve figural analogies appears to develop with

great variability throughout childhood evidenced by large differences within each

age group both in initial ability as well as performance change (e.g., Cheshire et al.,

2005; Siegler & Svetina, 2002; Stevenson et al., 2011, under review; Tunteler et al.,

2008).

Working memory efficiency also shows developmental increases with age, and is

a well-researched source of individual differences in fluid reasoning in children (e.g.,

Alloway et al., 2004; Engel de Abreu et al., 2010; Tillman et al., 2008). Improvement

in working memory (wm) seems to correspond with improvement in reasoning

and problem solving in children (Fry & Hale, 1996; Kail, 2007; Swanson, 2008).

Children’s ability to solve figural analogies appears to be related to their working

memory efficiency (e.g., Richland et al., 2006; Tunteler & Resing, 2010). For example,

both verbal and visuospatial components were found to coincide with children’s

performance on tests with figural matrices (Hornung et al., 2011; Stevenson et al.,

submitted 2011a). Therefore measures of both visuospatial and verbal working

memory were included as possible sources of individual differences in initial ability

and performance change in the present study.

The type of training provided in a test-train-test design can be a source of

individual differences in change (Ball, Hoyle, & Towse, 2010; Harpaz-Itay et al.,

2006; Stevenson et al., under review; Tunteler et al., 2008). For example, Resing et

al., (2009) found that the graduated prompts method, a specific form of training

providing increasingly elaborate instructions of metacognitive skills, cognitive

processing components and task-specific scaffolds on solution strategies, led to

different paths of strategy-change in Dutch and ethnic minority children. Luwel,

Foustana, Papadatos & Verschaffel (2010) demonstrated that strategy feedback

training improved low IQ children’s numerosity judgment task performance more

94
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so than outcome feedback, but high IQ children’s improvement was not moderated

by training-type. The literature generally seems to indicate that children with

lower initial ability tend to improve more during dynamic testing (Swanson &

Lussier, 2001). Although, in some cases it is possible that this is due to ceiling

effects (Sternberg & Grigorenko, 2002). We chose to use moderately difficult items

in our dynamic test and irt to model performance change in order to avoid this

problem. In the present study we investigated whether graduated prompts training

versus outcome feedback training led to differential changes in figural analogy

solving and whether this interacts with age, working memory, initial ability or

school performance to explain individual differences in change.

5.1.4 Current Study

The present study aimed to explain children’s differences in change in analogical

reasoning skills using the explanatory irt framework. Our first research question

concerned whether children’s performance, as a consequence of training would (1a)

progress from pretest to posttest, and (1b) show individual differences in degree

of improvement (e.g., Embretson, 1987; Freund & Holling, 2011a, 2011b). Our

second research question focused on the effect of type of training. We expected

(2a) the children in the graduated prompts condition would progress more on

average in analogy solving than children who received outcome feedback (e.g.,

Luwel et al., 2010). Furthermore, we hypothesized (2b) that children with lower

initial ability would generally improve more than those with higher initial ability

(e.g., Luwel et al., 2010; Swanson & Lussier, 2001). Our third research question

concerned whether the children’s performance and progress was best explained by

age, working memory or by a combination of these variables. We expected (3a) that

older children would perform better on the analogies than younger, less experienced

peers (e.g., Siegler & Svetina, 2002) and (3b) that children with greaterwm efficiency
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5. IRT Modeling of children’s change in analogical reasoning

would on average display greater proficiency in analogical reasoning (e.g., Richland

et al., 2006; Stevenson et al., submitted 2011a). Next, we examined whether (3c)

wm capacity or (3d) age interacted with the children’s ability to profit from training.

Finally given the relationship of matrix analogy solving with mathematics (e.g.,

Primi et al., 2010), we investigated (4) if school performance was also related to the

children’s performance change from pretest to posttest.

5.2 Method

5.2.1 Sample

255 children from three age-groups (kindergarten, first and second grade) were

recruited from five intercity public elementary schools of similar middle class SES

in the south-west of the Netherlands. The sample consisted of 119 boys and 136

girls, with a mean age of 7 years, 11 months (range 4;11-9;3 years). The schools

were selected based on their willingness to participate. Written informed consent

for children’s participation was obtained from the parents.

5.2.2 Design & Procedure

A pretest-training-posttest control-group design with randomized blocking was

employed. Children were randomly assigned to a training-type condition: (1)

graduated prompts or (2) outcome feedback, based on school, classroom, gender

and age. Sessions took place weekly and all participants were tested individually

in a quiet room at the child’s school by educational psychology students trained

in the procedure. Each session lasted approximately 20 minutes and total testing

time comprised less than 1.5 hours. During the first session, all participants

were administered the working memory tasks, a computer mouse task, and the

AnimaLogica analogies-introduction task. The computer mouse task (Stevenson et
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5.2. Method

al., 2011) was administered prior to testing to ensure that the children were able to

perform the necessary clicking and drag & drop actions required for the dynamic

analogy test. An analogies-introduction task (see Stevenson et al., 2009), based on

the objects and transformations used in the analogy task, was also administered to

ensure that the children were familiar with the content prior to testing.

The AnimaLogica pretest was administered during the second session. The

two following sessions comprised of training in analogy solving. Half of the

children were trained according to the graduated prompts method and the other

half received outcome feedback training (described in section 2.3). The posttest was

administered during the final session. All instructions were provided according to

standardized protocols (see 3).

5.2.3 Measures

AnimaLogica: a dynamic test of figural analogical reasoning

AnimaLogica is a computerized dynamic test of analogical reasoning for children.

The figural analogies (A:B::C:?) comprised of 2x2 matrices with familiar animals as

objects (see Figure 5.1). The animals changed horizontally or vertically by color,

orientation, size, position, quantity or animal type. The number of transformations –

or object changes – were used to gauge item difficulty (e.g., Hosenfeld & Resing, 1997;

Mulholland et al., 1980). The items difficulties ranged from two transformations to

eight transformations. The children had to construct the solution using a computer

mouse to drag & drop animal figures representing the six transformations into the

empty box in the lower left or right quadrant of the matrix. A maximum of two

animals were present in each analogy. These were available in three colors (red,

yellow, blue) and two sizes (large, small). The orientation (facing left or right) could

be changed by clicking the figure. Quantity was specified by the number of figures

placed in the empty box. Position was specified by location of the figure placed in
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the box.

Pretest and Posttest. The test booklets consisted of 20 items of varied difficulty.

The pretest and posttest items were isomorphs (e.g., Freund & Holling, 2011a)

in which the items only differed in color and type of animal, but the exact same

transformations were used. Given the young sample, items with 2-4 transformations

were emphasized in test construction. More specifically, the difficulty level (based

on number of transformations) of the pretest and posttest items was as follows:

four items of difficulty levels 2 to 4, three items of difficulty levels 5 and 6 and one

item each for difficulty levels 7 & 8. The items were then randomly selected from a

pool of possible items using constraints that allowed for a balanced representation

of each of the animals, colors and transformations in the test.

Training. The training consisted of the same figural analogy matrices. The 10 training

items did not occur in the tests. Two training methods were applied: graduated

prompts or outcome feedback. The graduated prompts method (e.g., Campione &

Brown, 1987; Resing, 1997; Resing & Elliott, 2011; Resing et al., 2009; Stevenson et al.,

under review, submitted 2011a) consisted of stepwise instructions and began with

general, metacognitive prompts, such as focusing attention, followed by cognitive

hints, emphasizing the transformations and solution procedure, and ended with

step-by-step scaffolds to solve the problem. A maximum of five prompts were

administered. Once the child answered an item correctly the child was asked

to explain his/her answer; no further prompts were provided and the examiner

proceeded with the next item. Outcome feedback training also allowed for 4

attempts to correctly solve each item. However, the children were only told if their

solution was correct or incorrect and received motivational comments. After a

correct solution or 4 attempts no further feedback was given and the examiner

proceeded with the next item.
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5.2. Method

Figure 5.1 Examples of figural matrix analogies used in AnimaLogica. Top figure contains
two transformations (horizontal: position; vertical: orientation). Bottom figure contains
six transformations (horizontal: color, quantity and size; vertical: animal, orientation and
position).
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Automated Working Memory Assessment (awma, Alloway, 2007)

Listening Recall. This verbal working memory subtest consists of spoken sentences,

of which the child is asked to repeat the first word and say whether the sentence is

true or false (e.g., bicycles can walk).

Spatial Span. In this visuospatial working memory subtest a sequence of two figures

are presented and the child is asked to say whether these are the same or different.

In some cases one of the figures is rotated (i.e. same) and others mirrored and

rotated (i.e. different). The child must also recall in sequence whether the red dots

were located above, left or right of the figure on the right.

Math achievement

The children each took part in biannual scholastic achievement assessments

administered in the classroom by the child’s teacher in January and June of

each school year (cito , 2010a, 2010b, 2010c). These multiple-choice tests are widely

used at primary schools in the Netherlands for the purpose of tracking children’s

performance on school subjects. The math test items are similar for the included

age-groups and involve pictorial or number problems mostly concerning number

relations, addition and subtraction, but for the second graders also a few geometry

or multiplication/division problems (cito , 2010a, 2010b, 2010c). The scores are

based on national norms per age-group and range from A to E; ’A’ is categorized as

a very good, indicating a performance falling within the top 25 percent. ’B’ scores

(good) are between 26th and 50th percentile whereas ’C’ scores (sufficient) indicate

51st to 75th percentile performance. ’D’ (weak) and ’E’ (very weak) scores fall within

the lowest 25% – ’D’ scores indicate performance with the 11th to 25th percentile

range and ’E’ scores fall in the lowest 10%.
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5.3. Results

5.3 Results

5.3.1 Initial Group Comparisons

The substantive aims of this paper focused on the role training-type, age, working

memory and prior school performance (math achievement scores) play in children’s

analogical reasoning progression in a dynamic testing context. It is therefore

important to investigate whether group differences were present prior to dynamic

testing. The children in the two training conditions did not differ in age (t(250) =

−.46, p = .65) or working memory capacity (listening recall: t(250) = 1.63, p = .11

or spatial span: t(250) = .66, p = .51) and they were equally divided per school

year (χ2(3) = .30, p = .96) and gender (χ2(1) = .05, p = .82). Age and working

memory correlated moderately (listening recall: r = .44, p < .001 and spatial span:

r = .48, p < .001). The children in the three different school years naturally differed

in age (F(3, 248) = 218.92, p < .001) and working memory scores (listening recall:

F(3, 248) = 36.24, p < .001 and spatial span: F(3, 248) = 41.62, p < .001). The

children’s median scores on the math achievement test were near the national mean

and a Kruskal-Wallis test showed that the distribution of the math achievement

scores was similar across the three grades, χ2(2) = 1.50, p = .47, and two conditions:

χ2(1) = 2.69, p = .30. See Table 5.1 for descriptive statistics.

5.3.2 Psychometric Properties

Cronbach’s alpha coefficient of internal consistency was α = .904 for the pretest

and α = .906 for the posttest. The reliabilities of the test on both sessions are

considered very satisfactory. The pretest proportion correct responses per item

ranged from .02 to .60 and for the posttest from .12 to .84. The rank correlation

between the proportion incorrect and the predicted difficulty level based on the

number of transformations was ρ = .86, p < .001 for the pretest and ρ = .86, p < .001
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for the posttest. The correlation of the pretest and posttest proportion correct across

individuals was r = .65, p < .001.

5.3.3 irt analyses per testing session

The independent Rasch (1 PL) model parameters were estimated for the pretest

and posttest using the Marginal Maximum Likelihood (mml) estimation procedure

(θ ∼ N(0, 1)) from the ltm package for R (Rizopoulos, 2006). A parametric Bootstrap

goodness-of-fit test using the Pearson’s χ2 statistic was used to investigate model

fit, using the same ltm package. Based on 50 generated datasets the Rasch model

fit of the pretest and posttest are acceptable (p = .18 and p = .08 respectively). The

correlation between the item difficulty parameters for the item isomorphs of the

pretest and posttest was strong: r = .95.

5.3.4 Explanatory irt analyses

Each of the hypotheses about the children’s performance and change on the 20 test

items of the pretest and posttest sessions were investigated using model comparison.

We first started with a simple irtmodel. Predictors were then added successively

and the fit of the new model was compared to the previous one. Because the

previous restrictive model was nested in the new one, a likelihood ratio (LR) test

could be used to test the improvement in goodness of fit. Each of these models was

estimated using the lmer4 package for R (Bates & Maechler, 2010) as described by

De Boeck, et al. (2011). Table 5.2 presents an overview of comparisons between the

estimated models; these are discussed in detail below.

Null model

The initial reference model (M0a) is a simple irt model with random intercepts

for both persons and items (pretest and posttest) where the probability of a correct
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5.3. Results

response of person p on item i is expressed as follows.

P(ypi = 1|θp, βi) =
exp(θp − βi)

1 + exp(θp − βi)
(5.1)

where θp ∼ N(0, σ2
θ) and βi ∼ N(0, σ2

β)

It is common practice in the psychological literature to consider persons a

random variable, based on the assumption that the participant was randomly

selected from the population (θp ∼ N(0, σ2
θ). A similar argument can be applied to

items when these are drawn from a population of possible items as it is common

practice in statistical models to use a normal distribution for residuals (De Boeck,

2008). In the present test the items can be considered a random sample selected

from a pool of items that test figural analogical reasoning (βi ∼ N(0, σ2
β), rather than

a definitive representation, which is important in the explanatory context when

including factors that account for item difficulty (e.g., Baayen, Davidson, & Bates,

2008; De Boeck, 2008). We also conducted the same analyses with fixed item effects

and reached the same substantive conclusions.

Model of learning and change

Our first research question focused on the effect of repeated testing. The first

addition we tested against the null model was the inclusion of a session parameter

to model average change from pretest to posttest. This resulted in M1a, which,

as can be seen in Table 5.2, led to a significant improvement in model fit thereby

confirming hypothesis 1a. M1a results showed that a child with average ability

improved from having a probability of .06 to .33 in correctly solving an item of

average difficulty from pretest to posttest (B = 2.06,SE = .07, p < .001).

Model M1a assumes the effect of retesting to be equal for all children (Fischer,

1976). In order to allow for individual differences in improvement from pretest
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5. IRT Modeling of children’s change in analogical reasoning

to posttest, we applied Embretson’s Multidimensional Rasch Model for Learning

and Change (mrmlc) by including random parameters that allow for the session

effect to vary over persons (e.g., Embretson, 1991b; Von Davier et al., 2010). As

with the Rasch model, here the chance that an item is solved correctly (Pip) also

depends on the difference between the examinee’s latent ability (θp) and the item

difficulty (βi). Yet, the ability is built up through the testing occasions m up to k in a

summation term, which indicates which abilities (θpm) must be included for person

p on occasion k.

P(yipk = 1|θpk, βi) =
exp(

∑k
m θpm − βi)

1 + exp(
∑k

m θpm − βi)
(5.2)

where θpm ∼ N(0, σ2
θ) and βi ∼ N(0, σ2

β)

The initial ability factor, θp1, refers to the first measurement occasion (i.e. pretest)

and the so-called modifiabilities (θpm with m > 1) represent gains from the previous

test occasions. In the present model k = 2 and the modifiability θp2 refers to

performance change from pretest to posttest.

Including random modifiabilities in model M1b led to further improvement in

model fit evidenced by lower aic and bic values and a highly significant LR-test.

We could therefore statistically infer that individual differences in change from

pretest to posttest were present, supporting hypothesis 1b. The variation of the

children’s improvement from pretest to posttest was rather large, σ2 = 2.25. The

children’s modifiability scores showed a moderate negative correlation with their

ability scores (r = −.53) indicating that children with lower pretest scores tended to

improve more (see Figure 5.2).

However, note that the item difficulties (βi ) in Equation 2 are considered constant

over occasions. This indicates that measurement invariance (cf. Meredith, 1993;
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Figure 5.2 Structural equation model of the relationship between ability and modifiability
frommrmlc (Embretson, 1991a) applied in Model M1b.

107
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Millsap, 2010) is assumed within this model. In order to be sure that the effect of

session was a global effect and not due to the items functioning differentially on the

pretest and posttest (i.e. measurement invariance), we tested a model in which the

session effect was allowed to vary over items. This model, M1c, improved model

fit. However, the random item effects of the two sessions, βpretest and βposttest, were

highly correlated (r = .97). Hence we concluded that the session effect was global

and we have therefore continued with M1b.

Modeling item difficulty

We tested whether our model could be improved by restricting the item difficulties

to a linear combination of item variables (e.g., Janssen, Schepers, & Peres, 2004).

As can be seen in Table 5.2 model M2, adding the number of transformations per

item as a predictor improved model fit. The results show that for each additional

transformation the children’s chances of solving an item correctly decreases by .44

odds (B = −.83,SE = .11, p < .001).

Sources of individual differences in learning and change

Our model could be extended with more explanatory factors (De Boeck & Wilson,

2004; Hickendorff, Heiser, Van Putten, & Verhelst, 2008) by including other predictor

variables and evaluating their effects on the latent scale. M2 includes person

predictors for ability and modifiability (i.e. performance change from pretest to

posttest) from mrmlc as well as a predictor of item difficulty. In the following

analyses other person predictors (i.e. training-type, age-group, wmc, school

performance) are included in order to explain the children’s performance and change

on the figural analogies scale. Person predictors are denoted as Zpj( j = 1, ..., J) and

have regression parameters ζ j. The item predictor (i.e. number of transformations)

is denoted as Xi(k = 1) and has the regression parameter δ. These explanatory parts
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are entered into the null model (see formula 1) as follows, with indices i for items,

p for persons, j for the person covariate used as a predictor variable and k for the

item covariate used a predictor variable.

P(ypi = 1|Zp1 . . .ZpJ, βi) =
exp(

∑J
j=1 ζ jZpj + εp + δXik + εi)

1 + exp(
∑J

j=1 ζ jZpj + εp + δXik + εi)
(5.3)

Note that the person-by-session and item specific error parameters, εp and εi

respectively, are assumed to stem from the normal distribution, i.e. εp ∼ N(0, σ2
εp)

and εi ∼ N(0, σ2
εi). The results of which are presented in the following sections.

Figure 5.3 Plot of person logits on an average item (four transformations) for both training
conditions from pretest to posttest (M2b).

Training effects. Our second research question was whether training with graduated

prompts led to greater improvement on the analogical reasoning scale than training

with feedback only and whether this was moderated by initial ability. To test

this training-type x session was added as a predictor (M3). As a consequence,
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5. IRT Modeling of children’s change in analogical reasoning

model fit improved, indicating that differences in performance between the two

conditions were present. The main effect of session was B = 2.64,SE = .17, p <

.001 (reference=pretest). The modifiability x training-type interaction effect was

B = −.61,SE = .24, p = .011 (reference=graduated prompts). Simple contrasts

showed that the effect was B = 2.66,SE = .17, p < .001 for the graduated prompts

condition and B = 2.00,SE = .17, p < .001 for the feedback condition. A main effect

for condition was not present (B = −.05,SE = .32, p = .883). As can be seen in

Figure 5.3, children trained with graduated prompts (GP) showed greater gains

than those in the feedback (FB) condition. The odds of solving an item with an

average difficulty correctly increased by a factor of .52 for a child with an average

ability in the graduated prompts condition, whereas this was .27 for an average

ability child in the feedback condition. Here we also found that the children’s

modifiability scores in both conditions showed a moderate negative correlation

with their pretest scores (rGP = −.51 and rFB = −.46), indicating that children with

lower pretest scores tended to improve more, confirming hypothesis 3b.

Effects of age and working memory. The third research question aimed to investigate

whether age or working memory or a combination best moderates children’s

performance on the dynamic test in question. We tested two models in which

age-group (M4a) and working memory (M4b), were added as separate predictors.

Of these two, M4a had the better fit (see aic/bic values in Table 5.2). Next

we investigated whether wmc was an additional predictor by adding this to

M4a; this improved model fit. In M4c both age-group and wmc had significant

main effects. A positive relation between age and test performance was found

(B = .92,SE = .12, p < .001), indicating that older children tended to have higher

scores. Furthermore, verbal and visuo-spatial wm were significant predictors

of analogy solving: B = .36,SE = .12, p = .004 and B = .37,SE = .12, p = .002

respectively. A positive relation between wm scores and performance on the
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figural analogies was present; the greater thewm scores the higher the performance

estimates.

We tested whether age-group or wmc could explain individual differences

in performance change from pretest to posttest by evaluating the interaction

of the modifiability with each of these variables. Age did not interact with

modifiability in a significant way: B = −.05,SE = .17, p = .75. The interaction effect

of wmc and modifiability was also not significant: B = .07,SE = .14, p = .61 and

B = −.10,SE = .14, p = .50 for verbal or visuospatial wmc respectively. In both

cases model fit did not improve with explanatory factors for modifiability (see Table

5.3 models M4d and M4e). This means that the children’s degree of improvement

from pretest to posttest was not related to their age orwm scores.

Modifiability and math achievement. Finally we investigated whether modifiability was

related to prior school performance in the form of achievement rating on a national

standardized math assessment. Both the main effect of prior math achievement (Z-

scores) and its interaction with modifiability was significant:B = .45,SE = .13, p = .01

and B = .25,SE = .12, p = .04 respectively (see Table 5.3 model M5). This means that

the odds of solving an average item correctly by an average ability child increased

by 1.57 odds per achievement level (1-5) increase if we assume that achievement is a

continuous variable. We could conclude that the children’s degree of improvement

from pretest to posttest was significantly related to math achievement scores.

Final model

The best fitting irt Rasch-scaled model (M5) shows significant fixed effects for

session, wmc, age-group and prior math achievement as well as a significant

interaction between session and training-type and also between session and math

achievement (see Table 5.3). Random intercepts were present for persons per session

(SDability = 1.77,SDmodi f iability = 1.44; r = −.72) and items (SD = .79).
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Table 5.3 Estimates of fixed effects in model M5b.

B SE p

Intercept 40 50 .431
Session (reference = graduated prompts) 2.60 .17 <.001
Condition (reference = pretest) .05 .26 .853
Session x Condition -.60 .24 .011
Nr Transformations -.83 .11 < .001
Age .92 .11 <.001
Verbalwmc .18 .11 .073
Visuospatialwmc .28 .11 .009
Math .45 .13 <.001
Session x Math .25 .12 .038

In sum, these results indicate the following. Children generally improved

from pretest to posttest, and individual differences in modifiability were present,

confirming hypothesis 1. In accordance with hypothesis 2, the graduated prompts

training led to a larger improvement in analogy solving compared to the feedback

condition, although children with lower ability generally had greater modifiabilities.

Investigations concerning research question 3 showed that age is related to

performance, where older children solved the analogies better than younger

children. Performance was also related to verbal and visuospatial wmc, where

children with greaterwmc obtained higher scores. Modifiability however was not

related to age orwmc. Math achievement was related to analogy solving ability

and modifiability, where children with higher math scores also performed better on

the pretest and improved more from pretest to posttest.

5.4 Discussion

In the present study, the aim was to investigate children’s differences in learning

during a dynamic test of figural analogical reasoning using explanatory irtmodels

(De Boeck & Wilson, 2004). As with previous research on children’s analogy solving
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progression, performance generally improved over repeated testing occasions, but

the degree of improvement varied greatly (e.g., Freund & Holling, 2011b; Mackey

et al., 2010; Siegler & Svetina, 2002; Tunteler & Resing, 2007c, 2007b). The large

individual differences in learning and change after a short intervention coincides

with findings in other cognitive tasks such as visuospatial reasoning (Embretson,

1987), series completion (Resing, Xenidou-Dervou, et al., 2012) and numerical

estimation (Siegler, 2006; Luwel et al., 2010). The type of intervention, i.e. practice

or training-type, appears to be one of the factors that influences these individual

differences. We found that training with graduated prompts techniques, which

includes metacognitive and strategy-based instructions, was significantly more

effective in improving the children’s analogy solving than feedback-training. This

corresponds with the findings of Luwel et al. (2010) where strategy-feedback led to

greater improvement in children’s numerosity judgment than outcome-feedback.

In the case of Luwel et al. (2010) especially children with lower intelligence test

scores improved more with strategy-feedback. Also, Jaeggi et al. (2008) found that

low ability children tended to improve more on figural matrices after training on a

working memory task. Similarly, we found that children with lower pretest scores

generally improved more, which given the moderate difficulty of the test items and

the use of irt estimations could not be due to ceiling effects. We therefore concur

with the findings of Swanson and Lussier (2001) who concluded that children with

initially lower cognitive ability scores tend to improve more during short dynamic

testing training-phases. This indicates that children with untapped potential for

learning are more often present in groups of low functioning children, but would

perhaps be overlooked if they were judged based on a conventional, static reasoning

test. Identifying these low functioning children with high potential for learning

would be a necessary first step in helping them more fully realize their cognitive

potential at school.
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We investigated whether age or working memory affected performance on the

dynamic test and found that older children generally performed better than the

younger children (e.g., Siegler & Svetina, 2002; Sternberg & Rifkin, 1979; Tunteler

& Resing, 2010), but that this was partly confounded by their working memory

capacity. The combination of age and working memory capacity (wmc) was the

best predictor of analogical reasoning pretest scores. Research has linked children’s

performance on fluid reasoning tasks, such as figural matrices, to their memory

span and working memory capacity (e.g., Hornung et al., 2011; Kail, 2007; Tillman

et al., 2008); therefore the contribution ofwmc was not surprising. Yet as with two

previous dynamic testing studieswmcwas related to initial ability but unrelated

to children’s differences in improvement from pretest to posttest (Resing, Xenidou-

Dervou, et al., 2012; Stevenson et al., submitted 2011a). Training fluid reasoning

may improve working memory (Mackey et al., 2010). Therefore, we hypothesize

that the short but adaptive training forms provided in these dynamic tests offers

practice or problem solving strategies that aides in the more efficient use of the

available working memory capacity. Including wmc measures both before and

after training may help determine whether working memory efficiency is affected

by the graduated prompts intervention, which is a task for future research.

Another related variable we investigated was whether school performance in

math coincided with analogy solving and improvement during dynamic testing.

Both initial ability and change scores were significantly related to math achievement.

Previous research has demonstrated the relationship between fluid reasoning and

math achievement (Primi et al., 2010; Taub et al., 2008). Support for the relationship

between performance change and math achievement can be found in studies

on the additional predictive value of dynamic outcomes for school performance

(Beckmann, 2006; Caffrey et al., 2008; L. S. Fuchs et al., 2008). Perhaps dynamic

testing outcomes are particularly suited in explaining individual differences in
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learning and achievement, i.e. developing expertise, over time (e.g., Swanson,

2011a; Stevenson et al., submitted 2012b). This should be addressed in conjunction

with the role of working memory (e.g., De Smedt et al., 2009; Swanson, 2011b) in

subsequent studies.

5.4.1 Methodological implications

In this paper we have argued that irt is a helpful tool in the measurement of

learning and change as it can provide gain scores without the statistical pitfalls

classical test theory analyses suffer from (e.g., De Bock, 1976; Embretson, 1991b).

In this study we extended Embretson’s (1991b) Multidimensional Rasch Model

for Learning and Change with an explanatory component and demonstrated the

usefulness of De Boeck & Wilson’s (2004) explanatory irt approach in a dynamic

testing context. This can easily be applied to other educational or developmental

psychology research. This method holds great promise for dynamic testing and

other intervention-based research, not only in reliably measuring differences in

individuals’ ability to learn, but also in explaining the sources of these differences.

The explanatory irt context enables not only investigation of sources of variance

in persons but also in sources of item difficulty (De Boeck & Wilson, 2004). We

demonstrated that including the number of transformations in an analogy item

improves the prediction of performance on an item. By including random item

effects we treated the test items as being randomly drawn from a population of

figural analogy matrices and also accounted for the item properties not perfectly

explaining item difficulty (De Boeck, 2008). Modeling with fixed item effects led to

the same substantive conclusions. However, including random item effects had

the advantage of a more parsimonious model. In the present instrument design

it was not possible to test the difficulty of each transformation separately as the

transformation types were not counter-balanced per difficulty level. However,
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differences are expected, such as color being easier for children to identify and

apply than orientation (e.g., Rijmen & De Boeck, 2001; Siegler & Svetina, 2002;

Stevenson et al., 2011), and should be investigated in future studies.

We assessed whether measurement invariance was present as the psychometric

properties of the test scores should not change per testing occasion when analyzing

learning and change (Millsap, 2010). We found that the item parameters of the

pretest and posttest were sufficiently related to directly compare the testing sessions

in one irt model. However, this is not always the case (e.g., Freund & Holling,

2011a; Lievens, Reeve, & Heggestad, 2007) and dynamic testing and intervention

studies should address this issue when evaluating performance change over time.

5.4.2 Conclusion

Dynamic testing can be said to provide insight into an individual’s learning

potential through measures such as performance change from pretest to posttest

(e.g., Embretson, 1987, 1992; Resing, 1997; Stevenson et al., submitted 2011a),

instructional needs and strategy progression (e.g., Bosma & Resing, 2012; Bosma et

al., submitted; Resing, 1997; Resing & Elliott, 2011; Stevenson et al., under review)

and transfer (e.g., Campione et al., 1985; Stevenson et al., submitted 2011a). In

the present study we analyzed sources of children’s differences in performance

change from pretest to posttest on a dynamic test of analogical reasoning. We

found large variations in children’s performance change and these were only partly

related to initial ability, unrelated towmc, but coincided with math achievement.

This may indicate that performance change, measured with item response models,

is an important construct in the assessment of learning and cognitive potential.

Further research should focus on the relevance of dynamic testing outcomes

in psychoeducational assessment – whether this indeed helps us measure and

understand individual differences in cognitive capacity and potential.
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