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Chapter1

Introduction

One of the most fundamental questions in life is how an organism grows and
develops from a single cell into a fully grown adult. A major step forward in
solving this question was the discovery of the molecule that contains all the
information needed by an organism: DNA. It was further found that every cell
in an organism contains an exact copy of this DNA. This immediately posed
another question: how do cells, while having the exact same DNA, know where
they are located in the organism and what functions they should perform. How
does a cell know whether it is a kidney cell and not a heart or brain cell, and
even more, how does it know where it is located within the kidney?

The work described in this thesis addresses some aspects of this question
by studying a model system, the wing imaginal disc of the fruit fly larva. While
the cells in this disc are very similar, they still are able to determine where they
are located within the wing by detecting the concentration of specific proteins,
called morphogens. These morphogens are produced locally within the tissue
and form a gradient throughout the tissue. Morphogens play a key role in
growth and patterning of the organism. The subcellular processes that govern
the formation, the maintenance and the shape of the morphogen gradient are
the main focus of this thesis. This introductory chapter discusses the subjects
in the current study: morphogen gradients, endosome transport and single-
particle tracking in cells and tissue. It also gives an outline of the scope of this
thesis.
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1.1 The morphogen gradient

1.1.1 Morphogens

Almost 60 years ago Turing proposed that morphogens are providing the po-
sitional information for cells in developing organisms in which they are ex-
pressed in all the cells in the tissue [1]. Wolpert in turn proposed that mor-
phogens are actually produced by spatially localized special cells. By spread-
ing throughout the tissue morphogens form a gradient in the neighboring cells,
the receiving tissue [2]. There the morphogen is detected by receptors on the
cell surface. Depending on the morphogen concentration cells will adapt their
gene expression pattern. Figure 1.1 shows a schematic drawing of a morphogen
gradient.

Most of the models describing morphogen gradients assume, and experi-
ments have proven, that the system is in a steady state. The formation of mor-
phogen gradients occurs in a much shorter period than the time needed for
patterning tissue [3]. In general two models exist that describe a steady mor-
phogen gradient in tissue. When degradation takes place at a discrete loca-
tion a linear gradient forms [3], while if degradation occurs in all the receiving
cells, the morphogen gradient will have an exponential shape [4]. Experimen-
tally the latter was found to be the case in the wing imaginal disc of the fruit
fly Drosophila melanogaster in which the morphogens Decapentaplegic (Dpp)
and Wingless (Wg) play an essential role during development of the wing of
the fly [5].

11.2 Dpp

Decapentaplegic (Dpp) is a morphogen of size 77 kDa which controls the pat-
terning and development of the different imaginal discs in the fruit fly Droso-
phila melanogaster. The name decapentaplegic comes from the observation
that in most dpp mutants at least 15 of the 19 imaginal discs show defects [6]
(fifteen=decapenta in Latin). Among those discs two, the wing imaginal discs,
will develop later into the wings of the fly.
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Figure 1.1: Schematic drawing of a morphogen gradient. Morphogens (small green
circles) are produced in spatially localized cells (green) and form a gradient in the
receiving tissue. Receiving cells express genes (red and blue) depending on the mor-
phogen concentration (C; and C,)
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Dpp is a member of the TGF- superfamily and is homologous to the verte-
brate Bone Morphogenetic Protein (BMP). Dpp takes part in a major develop-
mental signaling pathway. The receptor for Dpp was found to be composed of
Thickveins (Tkv) [7] and Punt [8]. After formation of the Dpp-receptor com-
plex the intracellular protein Mad (Mothers against dpp) is phosphorylated.
Subsequently pMad controls activation of transcription of its target genes opto-
motor-blind (omb) and spalt (sal) in a Dpp concentration-dependent manner
[9]. Optomotor-blind is a requirement for the development of the wing [10],
Spalt plays a role in the formation and positioning of specific veins in the wing
[11]. Besides playing a role in the Dpp signaling pathway, the Dpp receptor is
also required for Dpp-receptor internalization. This process plays a major role
in Dpp spreading and degradation [12-15].

In the wing imaginal disc Dpp is produced at the anterior-posterior com-
partment boundary [16] from which it is secreted to the neighboring receiving
cells. Dpp forms a steady-state single-exponential gradient which can fully be
described by three parameters: the production rate, the diffusion constant and
the degradation rate [4].

1.1.3 Morphogen spreading

The spreading of Dpp in the receiving cells has been a subject of study for
many years. In most of those studies (confocal) microscopy supplemented with
dynamic techniques like fluorescence recovery after photobleaching (FRAP)
were combined with sophisticated genetic technologies in order to describe
the morphogen gradient and its spreading in terms of a coarse-grained con-
centration profile in the tissue. Those experiments suggest that Dpp is spread
by three different mechanisms:

1. Diffusion in the extracellular matrix [17];
2. Receptor-mediated transport [18];

3. Intracellular transport [12], i.e. multiple endocytosis and subsequent re-
cycling events into the extracellular matrix [19].
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The extracellular diffusion and receptor-mediated transport are governing
short-range spreading, while intracellular transport is essential for long-range
spreading [20]. Theoretical calculations have estimated that one cycle of intra-
cellular transport has a duration between 50 and 150 s [19, 21].

In the current thesis we strive to extend the settled coarse-grained mod-
els of intracellular Dpp transport to a more molecular model that involves
endosome-mediated Dpp transport. We studied endosome transport by 3D
fluorescence microscopy. The experimental approach will be outlined in the
next section.

1.2 Particle tracking in cells and tissue!

For long microscopy has been one of the primary techniques in biological in-
vestigation. In particular light microscopy which allows one to directly ob-
serve biological processes in vivo is used on an every-day’s basis in biology
laboratories. One of the characteristics of a system in vivo - or a live system
- is the constant movement of all its components. The mobility of ions, small
molecules like ligands, proteins whether membrane-bound [22-29] or located
in the cytosol [30-32], and larger assemblies like vesicles [33, 34], the nucleus
[35] or viruses [36], is finally determining the way how the system evolves and
self-regulates. Hence, in a strive to understand living systems on a microscopic
mechanistic basis one wants to characterize the mobility of its components and
combine this knowledge to the functional state of the system.

The two main classes of mobility, i.e. unrestrictive diffusion and linear di-
rected motion, are rather the exception in the context of the complex envi-
ronment of the cell and tissue [37, 38]. Proteins, for example, might for some
time diffuse freely through the cytosol. However, due to binding events or
restriction in their diffusional space, their mobility may become slowed on
longer time and length scales. Likewise a vesicle, which is immobile for an

"This section is based on: L. Holtzer and T. Schmidt, Single-Molecule Tracking in Cells
and Tissue in ‘Single Particle Tracking and Single Molecule Energy Transfer: Applications in
the Bio and Nano Sciences, C. Briuchle, ]. Michaelis and D.C. Lamb (eds.), Wiley 2009.
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initial phase of observation, could be actively transported at a later phase due
to molecular motors which follow a microtubular track [39-42]. Recording
and classification of such complex mobility behavior in a statistically signifi-
cant manner asks for a significant and careful effort in technology development
and automated analysis tools to render successful.

In what follows we describe the foundations for the technology developed
by us and others in order to permit tracking of individual molecules and small
molecular assemblies. We will mainly focus on applications in biomembranes,
in cells and in tissue, and illustrate by selected examples how biological infor-
mation is extracted by a detailed analysis of molecular mobility.

1.2.1 Single-molecule and single-particle localization

The use of wide-field fluorescence microscopy allows for parallel, hence fast
data acquisition. It is therefore the most appropriate technology for track-
ing moving molecules and objects. In wide-field fluorescence microscopy an
isotropic emitter smaller than the diffraction limit will appear as a diffraction
limited spot in the image plane [43]. Its image is characterized by a sym-
metrical signal distribution around the center with the maximum intensity
at the center of the spot. The intensity distribution I(x, y) of such an object
on a highly-sensitive CCD camera used in the experiments described, is de-
termined by the point spread function (PSF). A good approximation of the
PSF is given by a two-dimensional Gaussian with full-width-at-half-maximum
(FWHM) equal to w = 1.031/NA, with A the wavelenght of the emitted light
and NA the numerical aperture of the microscope objective [22, 44, 45]:

41n2 (x-w)?  (—w)
I(x,y)=N 7 XP [—4ln2( e R Wzy )] (L1)

where y, and u, are the x and y coordinates of the object, and N the total num-
ber of detected photon-counts. It should be mentioned that the positions are
determined with nanometer precision although the typical size of the gener-
ated image, w, is larger than the object [46]. This fact is called super-resolution
and will be described in detail later.
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Identification of individual molecules is complicated by unavoidable back-
ground signals in living cells due to out-of-focus objects and autofluorescent
particles. Therefore image pre-processing and reliable background removal
is necessary. It turned out that background signals are satisfactorily removed
by applying a spatial low-pass filter to the image with a cut-off frequency of
5/w, frequencies which are far below the frequencies generated by the objects
of interest. Subtraction of the filtered image from the original image reliably
yields an image with a zero background. Likewise static objects are faithfully
removed using a temporal low-pass filter on the movie stack and subsequently
subtracted from the original image. The latter method needs to be applied
carefully in order not to remove slowly moving or static objects of interest.

After appropriate background subtraction automatic object identification
and position analysis is performed. An easy and fast way to determine the
position of the object in the object plane is calculating the center of mass, or
centroid, of its image for each axis

M)’ My M My

x= 2 0 (% 1) ZZLJ (1.2)

i=1 j=1

where I;; is the signal at a pixel (i, j) [47, 48]. It is important that the fluores-
cence intensity of the image has no offset, as this will bias the position of the
particle towards the center. Advantage of this method is that it does not use any
prior knowledge about the shape of the intensity profile and can therefore be
applied to objects even in case of imaging errors or to objects which are larger
than the diffraction limit [49].

The most reliable but computationally more demanding method of deter-
mining the position of an object is by fitting the image to the 2D Gaussian
intensity profile of the PSF as presented in eq. (L1), see fig. 1.2a,b. A fit of
the intensity distribution to eq. (1.1) determines the position of the object with
nanometer precision (fig. 1.2c) [28, 46]. The accuracy is thereby inversely pro-
portional to the signal-to-noise ratio, approximated by w/v/8N In2 [50]. The
approximation assumes that additional noise due to background signals is neg-
ligible. In typical applications using autofluorescent molecules a positional ac-
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Figure 1.2: a) Simulated image of a diffraction limited spot approximated by a 2D Gaus-
sian intensity profile. Poisson noise was added to account for the stochastic nature of
photon emission (w = 2 pixels, N = 1000). b) Intensity of the image along a horizontal
line through the center. In black a 1D Gaussian is shown calculated directly from the
input parameters. A fit to the data is shown in gray. c) A closer look at the part of
(b) indicated by the square. It can be clearly seen that the Gaussian fit determines the
position of the particle with high accuracy (Ax = 0.02 pixels).

curacy of < 30 nm is achieved at video rate (e.g. a frame rate of 25 Hz) [27, 51].

Positional determination as described so far solely allows to extract infor-
mation on the lateral positon of an object. In recent years several methods to
determine also the axial position have been described [52-60]. A straightfor-
ward and cost-effective method to determine the z-position of a single particle
is by introducing a slight astigmatism into the detection beampath [50, 61]. A
schematic drawing of the experimental setup is shown in fig. 1.3. This method
will be extensively described in chapter 2 of this thesis. The axial accuracy
which is obtained by using this method is about 2.5 times that of the lateral
positional accuracy. Typically < 75 nm is achieved in live cell experiments.

The one-plane approach as described above allows one to determine axial
positions within the Rayleigh-range of ~1 um. For larger image volumes simul-
taneous imaging of multiple planes onto one CCD chip must be employed. This
is achieved by inserting a beamsplitter in front of the CCD to create two light
paths with different image distances [62, 63]. Another comparable method was
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Figure 1.3: Schematic drawing of a 3D wide field fluorescence setup. An AOTF
(Acousto-Optic Tunable Filter) is used to select the desired excitation wavelength. The
dichroic mirror separates the emitted light from the excitation beam and the emission
filter selects for the emission wavelength of the fluorescent molecule. A cylindrical
lens (f =10 m) is introduced to obtain accurate information about the z-position. Fi-
nally a dichroic wedge is installed to separate two different fluorescent dyes. The three
images shown at three different z-position are of a particle that is imaged using this
setup and showing the effect of the cylindrical lens.
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developed in which multiple cameras were used each focusing on a different
plane in the sample [64, 65]. While the latter method has the advantage that a
larger volume can be imaged at a faster rate, it is very costly and more complex
software is needed to synchronize all the elements in the setup.

In cases where image rates are less important different planes can be im-
aged consecutively by moving a piezo-mounted objective in axial direction.
The ideal distance between the planes is given by the axial range of the astig-
matism method of ~1 um. Care has to be taken that these stacks of images
are taken faster than the typical movement of the particle of interest to avoid
movement of the particle during imaging. If this is not possible the difference
in time needs to be taken into account in the data analysis. While it is still pos-
sible to fit 2D Gaussian profiles to each image in a stack, a better alternative
is fitting of all images in a stack in a global fitting approach. For this the 2D
Gaussian needs to be extended to 3D. While the total intensity of the Gaus-
sian in each plane is constant, it turned out that one should allow for a varying
offset per image within the stack to cope with possible differences in spurious
background signal. In focal planes far from the position of the particle, the in-
tensity will be rather spread. This effectively increases the background signal
and a variable offset can compensate for this effect.

Experimental conditions in single-molecule fluorescence experiments are
usually chosen such that the concentration of fluorescent molecules is low
and that only a few molecules are visible in an image of typical size (10 x 10
um?). For low densities, the distance between each molecule is large enough
(> 3w) that their intensity profiles are independent. If such low densities are
not achievable a recursive fitting approach needs to be applied: after the first
initial round of fitting, all-but-one fitted molecules are subtracted from the im-
age. The one molecule that is left is subsequently refitted without the influence
of the others. Several of these recursive runs are needed to obtain the correct
position and intensity of all individual molecules. In this way densities of up to
1 molecule/um? are reliably handled. A similar method was published recently
[66].

The methods described above are further developed to allow for simulta-
neous imaging of multiple detection channels, separating for example different
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colors or polarizations. A dichroic-wedge in the emission beam path is used
to generate two separate images on the CCD coding for two colors, and/or a
Wollaston prism is placed in the infinity beam path to generate two images of
perpendicular polarization [67]. Such techniques are able to image two dif-
ferent types of particles at the same time by labeling each of the objects with
different fluorescent dyes whose emission spectra are well separated. It should
be noted that aberrations introduced by placing the dichroic wedge or a Wol-
laston prism are very small compared to the positional accuracy of the system.

1.2.2 Positional accuracy

Emission of photons is a statistical process. Hence the more photons are de-
tected, the more accurate the position of the particle can be determined. The
positional accuracy of an experimental setup depends on many factors, i.e.
the camera noise, the amount of photons emitted per particle, the localiza-
tion method used and the magnification of the setup. A general method to
calculate the error in position measurement applied to single molecule imag-
ing shows that the lateral positional accuracy in typical experiments is equal
to 30 nm [46, 51].

A fundamental approach to specify the achievable position accuracy is cal-
culated from the amount of information which is contained in a given dataset.
This measure is called the Cramer-Rao bound (CRB) specified by the inverse
of the Fisher information matrix I 68, 69]. With X the observed data and 0 the
unknown parameters I(6) = E {[% In f(X; 9)]2 ‘«9} The CRB yields a lower
bound to the variance for any unbiased estimator, i.e. in the case of imaging
the precision by which the position of a single particle is determined.

As discussed before the PSF is approximated by a 2D Gaussian intensity
profile (eq. (1.1)). If we assume that camera-pixelation and camera read-out-
noise is negligible, the lower limit for the positional error for the experimental
setup described in chapter 2 is

o, - w, /€ . . weE

= g = (1.3)
V8N1In2 o /8NIn2
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in lateral direction, and

2
= J5 (s + £ e2p) esi 09

in vertical direction, with z, the Rayleigh-range. Whereas 0, is independent
on the lateral position of the object, o, varies with z and is lowest in focus. For
an experimental setup without cylindrical lens € = 1 and therefore 0, and 0,
are equal and o0,,, is undefined around the focus.

In order to calculate the limit of the positional accuracy in an actual ex-
periment one has to take into account all sources which influence the image
formed on the CCD [68]. This will include camera pixelation, the position of
the object relative to the center of a camera pixel, camera noise, the magnifi-
cation of the setup and any other noise sources present. Furthermore, an Airy
function should be used to describe the image formed by the object of inter-
est in place of the simple Gaussian in eq. (1.1). While such extended analytical
calculations of the CRB have been performed for some cases [68, 69] we have
tested our strategies by means of extensive simulations in which all aspects
mentioned were taken into account. The results showed an excellent overlap
with the simplified approximation given in eqgs. (1.3) and (1.4), see chapter 2.

The high accuracy by which individual molecules are localized has recently
been utilized to greatly increase the resolution of light microscopy. In meth-
ods, now coined PALM [70], FPALM [71], STORM [72, 73] and STED [74] the
positions of individual molecules are determined, to be subsequently used for
generation of an image in which each molecule contributes with a PSF accord-
ing to eq. (1.1) but with a width given by the positional accuracy w/ \/( 8NIn2)
in place of w. In this way the ‘Abbe-limit’ describing the optical resolution of
the microscope has been broken by an order of magnitude. It has been realized
recently that in principal there is no limit to the resolution in a microscope as
the resolution is solely set by the signal which can be obtained from an indi-
vidual object:

A1
R=122——— (1.5)
2NA /N
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1.2.3 Tracking

Obtaining trajectories of sparsely distributed and relatively immobile objects
is straightforward [75, 76]. However, larger particle densities per frame and
higher mobility of the particles renders the connection of particles in consec-
utive images increasingly complex [47]. The computational effort for solving
such connectivity maps is equivalent to the well-known ‘traveling-salesman’
problem in operations research. Our tracking algorithms are based on a nu-
merical approximation developed by Vogel for the field of operations research
[77]. First a translational matrix p;(j, k) is built up that describes the proba-
bilities that particle jin image i (containing L objects) at position 7;; moves to
particle k in image i + 1 (containing M objects) at position 7y ;;; by diffusion
in a d-dimensional system characterized by a diffusion constant D:
(?j,i - ?k,i+1)2}

1.
2dDt (1.6)

pi(j- k) = eXP{ -
The translational matrix further allows particles to disappear from the ob-
served area by diffusion or photobleaching, p(j,k > L) = Pujeach, and par-
ticles are allowed to move into the observed area or get reactivated, p(j >
M, k) = Pactivation- Probabilities to account for particles that are accidentally
not detected in an image are also included. Taken together this leads to a
probability matrix p of size { (L + M) x (L + M) }. Trajectories are constructed
by optimizing the total probability of all connections between two images,
max(log(P) = ¥ ;clog(p(j,k))). Even in the case of a sizable amount of
molecules per image, the Vogel algorithm enhances the number of faithfully
reconstructed trajectories. More elaborate algorithms have been developed for
more complex systems with e.g. high particle density, particle motion hetero-
geneity or particle splitting or merging [78-82].

For a reliable analysis of molecular mobility, unavoidable mechanical drift
must be corrected for. A simple and efficient way of drift correction is the cal-
culation of the center-of-mass of all objects, given that a sufficient number of
continuously tracked objects (n > 10) is available per frame. Such bootstrap-
type correction algorithms are particularly suited in diffusion-governed sys-
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tems since all movements should average to zero and any deviation from zero
directly measures the correction needed. In case that not sufficient continu-
ous trajectories are available, significantly more molecular positions have to
be averaged in order to reduce drift correction below the positional accuracy.
For an image of size X the number of objects in that case must be larger than
(X/0,,,)* In order to achieve a resolution of g, = 10 nm in a full-view image
of X =10 pum, 10 positions must be averaged.

1.2.4 Trajectory analysis

A multitude of information is extracted from trajectories of individual objects,
ranging from the diffusion constant to the presence of multiple fractions of a
certain type [83, 84]. A straightforward method to obtain information about
the mobility of an object is to calculate its mean squared-displacement (MSD)
versus time between two observations. The MSD is the average movement of
an object in a certain amount of time and is calculated for each object using

ZiT:?(T’i —Tive)’
T-t
in which T is the total length of the trajectory. The type of motion of the object

is subsequently extracted from the MSD versus time plot. For free diffusion
the MSD has a linear dependence on time

MSD = 2d Dty + 2d 0 (1.8)

MSD = ((Ar;)?) = (L7)

in which d is the dimension of the movement and o, the positional accuracy
in d dimensions. When a particle is transported, for example by molecular
motors inside a cell [36], the MSD shows a supralinear dependence on time:

MSD = 2dDtypg + (Vtiag)® + 2d 0] (1.9)

in which v is the velocity of the particle. A particle which is diffusing in a 2D
confined area of side length L will have an associated MSD which levels off for
large t1q:

L2 ~12Dyt;,
MSD = — [1 — exp (%)] +402, (1.10)
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in which D, denotes the initial diffusion constant [29].

Hence the MSD versus time behavior provides a global characterization of
the type of motion. Often however this behavior is of transient nature, espe-
cially for e.g. the transport of particles like vesicles [24, 37, 85] or the motion
of receptors in the cell membrane. A standard MSD-analysis will therefore fail
to detect short periods of a certain type of motion within a trajectory [84]. The
difficulty comes from the fact that the accuracy of a mean value for a complex
motion scales inversely proportional to the square root of number of indepen-
dent observations, in this particular case the number of independent motion
steps within a short part of a trajectory [86]. With a rigorous method, intro-
duced by Huet et al. [87], different types of transient motion can be detected
and distinguished within a single trajectory at a probability level prior set. For
each type of motion a specific parameter is calculated along the trajectory us-
ing a rolling analysis window whose width is variable.

For a stalled particle the diffusion coeflicient D will be close to the detection
limit of the setup. This limit can be experimentally determined using eq. (1.8)
by measuring the diffusion coeflicient D;,, for immobilized beads on a cover-
slip at a signal-to-noise ratio similar to the experiment. Particles which diffuse
with a diffusion constant D which is 10 times D,,;, are classified as mobile with
high confidence. If however D for a particle, calculated from a rolling window
analysis, drops below D,y;, for a prior set period, it is classified as being stalled
during this period. To reliably obtain D it is desired to calculate the MSD from
as many data points as possible, i.e. to use a large rolling window size. A lin-
ear fit to the first Ny points of the MSD plot then gives a reliable D [86, 88].
On the other hand to detect short periods of immobilization the number of
data points needs to be small. As a compromise the minimum number of time
points W32l needed to calculate the MSD is set to 51, while keeping Ny = 5.

To detect confined motion we exploit the fact that the MSD of a confined
particle shows downward curvature in comparison to a particle undergoing
tree diffusion. For small f the MSD for a confined particle is very similar to the
MSD for free diffusion (see eq. (1.10)). Therefore the first Ny points of a rolling
MSD analysis are used to calculate an initial MSD for a particle undergoing
simple diffusion. The deviation between the MSD for longer time lag and the
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initial value is a robust parameter which indicates confined diffusion:

o1 e (r2(nAt)) - (rA(nAt))ag
Conf_m Z; 2B D)) (L11)

For Conf < 0 confined mobility is likely, whereas for Conf > 0 it is unlikely. To
obtain a reliable value for Conf we set Ncons/ Nair = 10. Since the error in the
MSD becomes increasingly large for high values of t,, the number of points
from the MSD curve used for calculating Conf should not exceed the first 2N /3
points of this curve.

While it is possible to detect directed motion directly from an MSD curve,
it is more efficient to look at the shape of a trajectory, as directed motion will
lead to a highly asymmetric trajectory. For this the radius of gyration tensor
of a trajectory, Ry, is calculated:

Ry (i, j) = (rirj) = (ri){r)) (1.12)

where r; and r; are the three axes and the averages are defined over all Ny,
steps of the analyzed rolling window. Typically Nygym = Ngg. The radii of
gyration for each direction are the square roots of the eigenvalues R;. From
those, the asymmetry parameter is calculated:

_ (RE-R})*+ (R{ —R3)* + (RI-R3})?
2(R} + R5 + R3)?

Asym = -log (1 ) (1.13)
For Asym > 1 directed motion is likely, whereas for Asym < 1 directed motion
is unlikely.

To reliably detect different types of motion there is an obvious tradeoff be-
tween statistical significance and window size. These values depend on the
system under study and thus several typical trajectories are used to optimize
the values for a particular sample. In the case of Huet et al. and in our own
studies the minimum window size W = 75 consecutive time points for con-
fined motion, and Wi =11 consecutive time points for directed motion.

When single particle trajectories are too short to calculate the MSD on a
single trajectory with sufficient accuracy (typically one needs 100 consecutive
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time points) the displacements of all particles in adjacent frames are analyzed.
For the 2D case, the cumulative distribution function (cdf) for the squared
displacements 72 is [22]

r2
P(TZ’ tlag) =1- exp (_I\/IST(tI)) (114)
ag

P(r2, t1,g) describes the probability that a particle starting at the origin will be
found in a circle of radius r after a time f1,,. The cdf is very useful for a system
where there are two fractions of a certain particle, which are experimentally
only distinguishable by their different D [27, 89, 90]. For two fractions eq. (1.14)
becomes

2 e Vet o el Vel exof
BT fug) =1 [0‘ eXP( MSDl(flag)) e ew ( MSD;(tiag) ):|
(1.15)

in which « indicates the fraction size, and MSD; (to5) and MSD,(t144) the two
mean squared-displacements at t1,¢, respectively. It should be noted, that such
ensemble-type analysis does not even require a previous, computationally de-
manding, trajectory analysis as outlined in the section 1.2.3. The position data
can be likewise directly analyzed using particle image correlation analysis
(PICS) as developed by Semrau et al. [91].

1.2.5 Applications

The examples in figs. 1.4 to 1.6 show that the previously described techniques
are powerful tools to obtain information about biological systems. Figure 1.4
provides an example coming from an experiment where the diffusional behav-
ior of several membrane anchors (K-Ras, H-Ras and Lck) in live cells is com-
pared to study the occurrence and size of lipid rafts in the cytoplasmic leaflet
[92]. It was speculated that association of particular sets of proteins with lipid
rafts plays an important role in a variety of signal transduction pathways [93].
While there is evidence for lipid rafts in the exoplasmic leaflet, not much was
known for the cytoplasmic leaflet. A link between the lipid rafts in the two
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Figure 1.4: a) Confocal fluorescence image of 3T3-A14 cells expressing eYFP-C14KRas,
2 days after transfection. Clear plasma membrane localization was observed (scale bar,
10 um). b) Trajectories of eY FP-C14KRas molecules diffusing in the apical membrane
of a 3T3-Al4 cell. The time between consecutive points was 20 ms. ¢) Cumulative
probability, P(r?, t1ag ), Versus square displacements, r? with a time lag of 40 ms. Fits to
a one-component model (dashed line) and a two-component model (solid line) clearly
showed that the latter model fits better. d) The mean squared displacements of the fast
fraction plotted versus tj,g. The data were fitted according to a free-diffusion model
and a diffusion constant D = 1.00 +0.04 um?/s was obtained. e) The MSDs of the slow
fraction plotted versus tj,g. A fit according to a confined diffusion model is shown
as a solid line. An average domain size of L = 219 + 71 nm was found. The dotted
line represents the offset due to the limited positional accuracy. The same offset was
present in (d), although there the dotted line is omitted for clarity.
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leaflets is predicted to be of importance in the transduction of cellular signals
from the outside to the inside of the cell. In fig. 3a 3T3-A14 cells are shown ex-
pressing eYFP-C14KRas [92]. K-Ras is generally used as a non-raft marker and
comparison with the raft-marker Lck should give insights into the presence of
lipid rafts.

A large number of trajectories (>2500) for eYFP-cl4Kras was imaged and
used for the analysis. Two of such tracjectories are shown in fig. 1.4b. Note
that trajectories are relatively short because of rapid photobleaching of eYFP.
From these trajectories square displacement distribution were constructed as
described in section 1.2.4. The cumulative probability distribution versus the
square displacement for a time lag of 40 ms is shown in fig. 1.4c. A fit of the
data to eq. (1.14) clearly shows that the data cannot be described by a one-
component model. The fit improves significantly when a two-component
model is used (eq. (1.15)), while a three-component model did not improve the
goodness-of-fit. Fitting the data to eq. (L.15) yielded a fast-diffusing fraction,
a = 0.62+0.13, with MSD; = 0.16+0.04 um? and a slow-diffusing fraction with
MSD, = 0.021 + 0.006 um?. This analysis was subsequently performed for all
time lags from 5 to 60 ms, and the resulting MSDs were plotted versus time lag.
Figures 1.4d,e show the MSD versus time lag for the fast- and slow-diffusing
fraction of the eYFP-C14KRas membrane anchor. A fit to eq. (1.8) yielded a dif-
fusion constant D = 1.00 + 0.04 um?/s for the fast-diffusing fraction (fig. 1.4d).
For the slow-diffusing fraction the MSD-plot (fig. 1.4e) indicates that the move-
ment of this fraction is confined. A fit of the data to eq. (1.10) yielded an average
domain size of 219 + 71 nm. Studying the diffusional behavior of the Lck an-
chor in a similar manner, showed that the Lck anchor was not significantly
slowed down as compared to the K-Ras anchor. This result does not exclude
the presence of rafts in the cytoplasmic leaflet, however the size of these rafts
was estimated to be smaller than 130 nm, the detection limit achieved in those
experiments.

While the previous example focused on the mobility of proteins in the
cell membrane, processes inside of the cell were subsequently studied using
3D wide-field microscopy as described in previous subsections. The use of
quantum dots (QD) as a fluorescent marker of biomolecules in cells enables
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Figure 1.5: a) Trajectory of a QD loaded in to HEK293-cells obtained with a frame rate
of 20 Hz for a total time of 25 s. Only one plane was imaged for each time point. In
two parts of the trajectory directed transport can be clearly seen. b) MSD versus time
for the first part of the trajectory where directed motion is observed. The supralinear
behavior of the MSD confirms that transport takes place. A fit to the data shows that
the QD has a velocity of v = 1.4+0.1 pum/s. ¢) Calculation of the asymmetry parameter
clearly shows the two parts of the trajectory where directed motion takes place. (Asym
>1)
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researchers to follow those molecules for very long time periods, only limited
by the lifespan of cells. Figure 1.5 shows results of an experiment where human
embryonic kidney cells (HEK293) were incubated with a solution containing
0.1 nM QDs [50]. Within two hours the QDs were internalized, after which
the HEK-cells were imaged with a 3D wide-field fluorescence setup using the
astigmatism method. Multiple QDs were followed simultaneously in three di-
mension with high accuracy (30 nm) and at high frame rates (f = 20 Hz)
without producing image stacks. In fig. 1.5a one of these trajectories is shown.
What was suspected by looking at the trajectory, namely two short periods of
directed transport, was confirmed unambiguously. For the first period of di-
rected transport the MSD curve is plotted in fig. 1.5b. The supralinear behavior
of the MSD curve confirmed that transport took place. Fitting the 3D-MSD
yielded a velocity of v = 1.41+0.14 pm/s. Figure 1.5c shows that the asymmetry
parameter reliably identified the two periods of directed transport. Calculating
the MSD for the initial part of the trajectory confirmed that the QD followed
random diffusion during this period (D = 0.015 + 0.001 um?/s).

Figure 1.6 shows that current techniques can also be applied to more com-
plex systems. In this case the wing imaginal disc of a Drosophila melanogaster
larva is imaged, as was introduced in section 1.1.2. After dissection the disc was
placed onto the microscope and the receiving cells were imaged, in this case
at a distance of 20 um from the Dpp source. Dpp is mainly located in endo-
somes with up to 250 Dpp molecules per endosome. This made it possible to
track endosomes for hundreds of frames even though the Dpp is labeled with
a variant of the yellow fluorescent protein. The elongated nature of the cells
required making stacks consisting of 7 image planes, each separated by 1 um.
The trajectory of one endosome containing Dpp is shown in fig. 1.6a. From the
projections onto the 2D planes, the 3D trajectory clearly showed up and the
endosome appeared to be confined in lateral direction. Calculating the MSD
curve for the x y-projection of the first 190 seconds (fig. 1.6b) clearly showed
that the movement of the endosome is confined during this period. Fitting
eq. (1.10) yielded an initial diffusion constant Dy = 1.60 + 0.02 107> um?/s and
a lateral confinement of side length L = 580 + 2 nm. It should be mentioned
that the size of confinement was significantly less than the lateral size of the
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Figure 1.6: a) 3D trajectory of an endosome containing Dpp molecules labeled with
Venus YFP [4]. The endosome was followed for almost 600 s with a frame rate of 1
Hz. Each image stack consists of 7 image planes. b) MSD versus time-plot for the
xy-projection of the first 190 seconds of the trajectory. It can be clearly seen that the
movement of the endosome is confined during this period. Fitting eq. (1.10) yielded
an initial diffusion constant Dy = (1.60 + 0.02) - 107> um?/s and a lateral confinement
of side length L = 508 + 2 nm. ¢) Calculation of the deviation parameter shows that
the endosomes shows confined motion in the first part of the trajectory (Conf < 0).
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cells of ~ 3 um. Calculation of the Conf parameter (fig. 1.6¢c) confirmed the
observed confinement for this endosome in the first part of the trajectory.

1.2.6 Conclusion

The three examples shown clearly demonstrate that single particle tracking
has become an invaluable technique to study processes in life cells and tissue.
In the past two-dimensional wide-field fluorescence microscopy has become
a widely used technique which has been recently complemented by several
methods to provide information about the third dimension with high accu-
racy. By such extension of an established methodology the range of biological
questions which can be addressed is significantly broadened. In combination
with superresolution techniques it will prove highly valuable and might help to
lift ambiguities in present models of inter- and intra-cellular transport. We do
foresee that ultimately single-molecule tracking will permit to follow intricate
signalling pathways in space and time even in such complex environments as
tissue. The results of such studies will by certain yield unexpected results and,
more importantly, will be the solid basis for a quantitative mechanistic under-
standing of cellular processes in vivo.

1.3 Scope of this thesis

This thesis reports experimental work on the Dpp morphogen gradient forma-
tion, especially on the subcellular processes governing intracellular Dpp trans-
port. For this purpose a 3D wide-field fluorescence microscope was developed
and used in the experiments. Each chapter was written as a research article ad-
dressing different aspects of the experimental method as well as specific parts
of intracellular Dpp transport which were studied.

Chapter 2 describes the 3D wide-field fluorescence microscope which was
developed to study three-dimensional processes in living tissue. The positional
accuracy of this microscope is determined theoretically, with simulations and
by experiments involving both immobilized particles and particles which were
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internalized by living cells. Data is presented showing that the microscope
is a valuable addition to existing techniques and allows for new experiments
involving three-dimensional processes in live tissue.

In chapter 3 the role of the different types of endosomes in intracellulr
Dpp transport is investigated. By fluorescently labeling both Dpp and Rab5 (a
marker for early endosomes) the average residence time of Dpp in both early
and recycling endosomes was determined experimentally. This was done by
developing a new method to calculate the cross-correlation between two pop-
ulations of molecules. The method, called Particle Image Cross-Correlation
Spectroscopy (PICCS) has several advantages over existing methods and more
reliably calculates cross-correlations between two populations of particles.
With PICCS we found that early endosomes contained almost twice as much
Dpp on average than other endosomes. Together with a model for intracellular
transport we determined rates which are essential for a complete description
of the intracellular transport of Dpp.

In chapter 4 the role of endosome motility and endosomal cargo dynamics
in intracellular Dpp transport is studied. By using particle tracking algorithms
we found that the motility of endosomes by itself cannot account for intracellu-
lar Dpp transport, but that small vesicles traveling between the endosomes are
responsible for the majority of intracellular Dpp transport. The average Dpp
content of these vesicles was determined by monitoring the concentration of
Dpp in individual endosomes. The process that controls the amount of Dpp
in vesicles was found to be a passive process. Furthermore we confirmed the
existence of an immobile intracellular Dpp fraction.
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Chapter 2

Nanometric three-dimensional tracking of
quantum dots in living cells!

Wide-field single-molecule fluorescence microscopy has become an
established tool for the study of dynamic biological processes which occur in
the plane of a cellular membrane. In the current study we have extended this
technique to the three-dimensional analysis of molecular mobility. Introduc-
tion of a cylindrical lens into the emission path of a microscope produced some
astigmatism which was used to obtain the full three-dimensional position in-
formation. The localization accuracy of fluorescent objects was calculated the-
oretically and subsequently confirmed by simulations and by experiments. For
further validation individual quantum dots were followed when passively dif-
fusing and actively transported within life cells.

"This chapter is based on: L. Holtzer, T. Meckel and T. Schmidt, Nanometric three-
dimensional tracking of quantum dots in living cells. Applied Physics Letters 90 (5), 053902
(2007)
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2.1 Introduction

Wide-field single-molecule fluorescence microscopy has become an
established experimental technique in the biosciences. So far its strength has
mainly been exploited in two-dimensional (2D) systems: for the observation
of individual molecules immobilized to substrates, and for the tracking of indi-
vidual proteins in the cellular membranes [1-4]. The latter is typically carried
out at video-rate allowing for simultaneous tracking of several molecules with
very high lateral accuracy, far below the diffraction limit [5]. An extension of
that technology to a full three-dimensional (3D) single-molecule imaging and
tracking platform is highly desirable given that most biological processes take
place in the 3D environment of the cell. Several methods to acquire informa-
tion on the third dimension have been recently developed, i.e. using image
stacks [6, 7], oft-focus imaging [8] or by orbiting a focused laser beam around
a particle [9]. While all these methods have shown to yield valuable informa-
tion, the main disadvantage is either the imaging speed (only slow molecules
can be followed) or the ability to image only one or a few molecules at a time.

Here we describe a simple one-camera 3D wide-field fluorescence setup
which can image a large area (50 um)? at high frame rates (~25 Hz). The setup
was adapted from a previously described 2D wide-field single-molecule fluo-
rescence setup [10]. By adding a cylindrical lens (f = 10 m) into the detec-
tion path of the setup, unambiguous information on the 3D position of indi-
vidual objects far beyond the diffraction limit was obtained. Our detection
scheme follows an earlier development on tracking fluorescing 100 nm beads
on a time scale of 0.5 s [11] but with higher sensitivity and higher time res-
olution. The setup was used to track endocytosed semiconductor quantum
dots (QDs), yielding information on active transport of vesicular structures
and passive diffusion within them.
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2.2 Positional accuracy in three dimensions

The positional accuracy which can be achieved in lateral (x, y) and in axial
(z) direction in regular imaging was estimated theoretically from the Cramer-
Rao-bound assuming a Gaussian-shaped intensity distribution of a single-
molecule image [12]. The Cramer-Rao bound for the position and width of
the Gaussian is given by s;, = s, = ¢*/(8N1In2) ands2, = ¢*/N in which N
is the total number of photons detected by the camera and ¢ the full-width-
half-maximum (FWHM) of the intensity distribution. By the change of the

Gaussian width with focal distance the z-position was calculated [6],

2=+ /o2 = o} (2.1)
0o

in which z, is the focal depth and ¢ the diffraction-limited FWHM for a point-
source in focus. This dependence holds for |z| < 2z, ~» 1000 nm. Error prop-
agation finally leads to an axial accuracy s2 = (% + %)2 in which the errors
in z, and oy have been neglected. Both values were determined experimen-
tally with high accuracy in independent experiments. Figure 2.1a,b (solid line)
shows both the lateral and the axial accuracies plotted versus the defocus po-
sition. Obviously the error in z around the focus is very large and negative and
positive defocus cannot be distinguished given the symmetric dependence in

Z.

1

Introducing a weak cylindricallens (f = 10 m) into the emission beam path
results in an axial astigmatism, y, and hence provides an easy way to increase
resolution in z [11]. The intensity distribution for a point emitter including
astigmatism is described by

xX— 2 - 2
41n2 —41n2[<”;;:2 L ]
o2 ¢

:

I(x,y)=N

(2.2)

in which the ellipticity € = \/0,/0, and a generalized width ¢? = | /0202 was

x %y
introduced. o, and o, are the FWHM of the intensity distribution in x and y

direction, respectively. Note that o, is not equal to g, except for one position
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Figure 2.1: Positional accuracy a) in lateral (x,y) and b) in axial (z) direction for the
detection of a fluorescing point object calculated according to the Cramer-Rao bound
(lines), and compared to computer simulations (symbols). In the simulation each
point object emitted an average of 4000 photons/frame. Each data point is an average
0f 1000 simulations. ¢) o, and € for QDs immobilized onto a glass substrate. 10 images
containing 9 QDs on average were taken per point. For z<0 the data deviate from the
fit because the focal plane lies inside the coverslip. d) MSD-plots of diffusing QDs in
a 15% dextran mixture (10 °C, frame rate = 35 Hz).
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inbetween the two foci, which we define as z = 0 nm. By substituting z with
z+yand z-yineq. (2.1) to get o, and o0y, and using the definitions for o, and
€ the axial position is given by

Zr 03 2

Z\/% g2y e<]

z(or,e)Z{ " i (2.3)
—Z\Joler—o5+y €>1

Analogous to the earlier treatment the Cramer-Rao bound leads to the accu-
racy in each direction (see section 2.A.1 for a more detailed derivation):

52 _ iaifz/ez 52 — iﬁ (243)
#x N 8In2 “ N 8In2

2 _ /522 2

$= (755 + S zey) est (2.4b)

As shown in fig. 2.1a,b the accuracy in z is largely increased compared to the
case without cylinder lens while the accuracy in x and y is only slightly re-
duced.

The theoretical strategy described above was validated by simulations. In-
tensity profiles for fluorescing molecules were calculated as 2D Gaussians.
Camera readout noise (0,=23 counts/pixel) and photon-counting statistics of
the detector were fully taken into account. Together with pixelation [12] this
resulted in a scaling factor between simulations and theory. Additional back-
ground noise was neglected. The simulations, in which the signal-to-noise
ratio (SNR) was varied from 20 to 1200, confirmed that the positional accu-
racy scaled with v/N [12]. The positional accuracy obtained at a signal of
4000 photons/frame was 6 nm in lateral (x,y) and 30 nm in axial (z) direc-
tion (fig. 2.1a,b).

2.3 Validation of the method

For calibration of the setup streptavidin-coated 705 nm QDs were spin coated
onto a glass coverslip. QDs were excited for 20 ms at a laser intensity of 0.9
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kW/cm? to obtain a SNR of 17 (275 photons/frame). o, and € were measured
while scanning the focal plane through the sample (fig. 2.1c). From these data
the focal depth z, = 474 + 4 nm and the spot size 0y = 443 + 1 nm (z = 0 nm)
were determined from a fit to the given equations for o, and €. The amount of
astigmatism y = 184 nm equals that predicted. Compared to the simulations
the experimental results have an increased positional accuracy. We attribute
this to an overestimation of z, in the simulations leading to an underestimated
increase of the width with defocus in the simulations. Typically 40 nm for the
lateral directions (o, 0,) and 90 nm for the axial direction (o, ~ 2.50,) were
achieved, confirming that the lateral accuracy is almost unchanged while axial
accuracy is largely improved.

Subsequently to the calibration experiments, QDs were dissolved to a final
concentration of 0.16 nM in 15% dextran T500. The viscosity of the solution
(7 ~ 300 cP at 10°C) allowed us to follow the diffusional paths of the QDs for
up to several minutes. From image sequences taken at a frequency of 35 Hz the
3D-path was reconstructed. Each trajectory was analyzed in terms of the vari-
ation of the mean square displacement (MSD) with time-delay between im-
ages. MSD analysis was performed for the full 3D positional information, for
the projection of the trajectory onto the image plane (xy), and for the projec-
tion onto each of the three spatial directions x, y, and z (fig. 2.1d), respectively.
As predicted for free diffusion the MSD increases linearly with time accord-
ing to MSD = 2nDt + . 202, characterized by the diffusion constant D of an
n-dimensional process. The offset at zero time accounts for the positional ac-
curacy in all three directions, 0, , = 47 nm and o, = 90 nm. Fit of the data to
this model yielded D = 0.058 + 0.003 um?/s, which is in excellent agreement
with the free diffusion of a 22 nm-diameter particle in a solution of viscosity
1 = 320 cP following the Stokes-Einstein relation.

The methodology as characterized above was subsequently used to study
intracellular transport processes. Human embryonic kidney cells (HEK293,
see fig. 2.2a) were incubated with a solution containing 0.1 nM QDs. The QDs
were internalized within two hours by endocytosis. A corresponding fluores-
cence image (fig. 2.2b) showed several bright QDs that were easily identified
in the low autofluorescence background of the cell. Trajectories for individ-
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Figure 2.2: HEK293 cell loaded with QDs by endocytosis. a) Transmission image of
the cell (image: 48x42 um). b) Fluorescence image of the same cell (exposure time
= 6 ms, signal = 670 photons/frame). ¢) 5 consecutive images of a QD inside the cell
(indicated by the arrowin (a) and (b)) taken at a delay of 50 ms (images: (4 pm)z). The
change in ellipticity can be clearly seen. d,e) 3D-trajectories of different QDs tracked
during 500 image frames. f,g) 3D-MSD of different parts of the data in (d).
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ual QDs were analyzed (fig. 2.2d,e). From the projections onto the 2D planes,
the 3D trajectory clearly showed up. The QD in fig. 2.2e shows several types
of movement which can be identified by analyzing the MSDs of parts of the
trajectory (fig. 2.2f,g). In the first part (fig. 2.2f) the QD was showing random
diffusion (D = 0.015+0.001 pum?/s) in all dimensions. In the next part (fig. 2.2g)
the QD shows directed motion, which was confirmed by a detailed analysis of
the mobility of the QD motion in all directions. MSD analysis showed a supra-
linear lag-time dependence along the x- and z-dimension for the QD. Fitting
the 3D-MSD [13] yielded a velocity of v=1.41+0.14 um/s. Analysis of movement
perpendicular to the transport did not reveal any confinement, probably be-
cause the trajectory was too short (24 frames). However analysis of QDs being
transported with lower velocity (example shown in fig. 2.2e) showed that the
MSD perpendicular to the transport approached a constant value for #,, > 3 s.
Analysis showed that the QD in fig. 2.2e was confined [13] to a lateral confine-
ment of side length L = 161 + 3 nm. The size of the confinement found for this
QD is consistent with the size of endocytic vesicles. From this we interpret that
QDs were transported inside a vesicle along a cytoskeletal fiber. The velocity
mentioned earlier falls within the range of speeds for a vesicle transported by
molecular motors inside cells [14].

In order to verify the contribution of active intracellular transport to the
observed movements, cells already containing QDs were depleted from ATP
by an incubation with 20 mM NaNj and 12mM 2-Deoxy-D-glucose for 1 hour.
After incubation only directed movement (fig. 2.2d,e) was abolished while ran-
dom diffusion was still observed (data not shown). Hence, the supralinear de-
pendence of MSD with time can clearly be attributed to ATP dependent intra-
cellular processes.

2.4 Conclusion
In conclusion, the introduction of a slight astigmatism into the optical system

of a microscope allowed us to extend the positional detection of individual
QDs in life-cell imaging to the full 3D-volume. For QDs the positional accu-
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racy achieved approached the theoretical limit set by the Cramer-Rao bound
and was 43 nm in lateral and 130 nm in axial direction inside cells at a frame rate
of 167 Hz. The power of the methodology was demonstrated by detailed anal-
ysis of the motion of individual QDs endocytosed by cells. The additional abil-
ities of the 3D-approach was most obviously demonstrated in fig. 2.2. While a
conventional 2D-approach would only have shown free diffusion and transport
in a plane, the 3D-trajectory shows that the QD was transported along a tubu-
lar structure that extended into the third dimension. Hence, a 2D-approach
would have resulted in an incomplete interpretation of the observations.

In extrapolation of the results the fast 3D-tracking of individual fluorescent
fusion proteins like the green fluorescent protein, however seems exceedingly
difficult. Typically in those experiments 150 photons/frame are detected from
a single molecule which would lead to an axial accuracy of 0, = 120 nm at
optimal background conditions. Better results will be achieved for multiple-
labeled (5-10x) objects. This will yield longer trajectories and signals of 4000
photons/frame and higher, in particular when additionally the excitation in-
tensity is increased. In this way dynamic localization of e.g. vesicles inside cells
at a resolution of 6 nm in lateral and 30 nm in axial direction can be easily ob-
tained. Hence, the application of this fast life-cell imaging methodology to the
study of e.g. vesicle trafficking or virus entry [15, 16] will prove highly valuable
and might help to lift ambiguities in present models of cellular transport.
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2.A Appendix

2.A.1 Derivations

In this appendix we will show how egs. (2.4a) and (2.4b) were derived.

The Cramer-Rao bound states that the inverse of the Fisher information
matrix is the lower limit to the variance of an unbiased estimator for a statistical
process. For a statistical process described by

41ln2 -4n2((x-px )2+()/—!4y)2)
. 2 (2.5)

f(x,y) =

the estimators for y, and u, are the mean values of the distribution in either
the x or y-direction and are therefore unbiased. To calculate z the FWHM o
is needed and to calculate the accuracy in o we use the unbiased estimator for
the variance s

> (xi —x)?

E(s*)=E [T] = o* (2.6)

10?2

For large samples n ~ n —1and therefore we assume that ¢2 is also an unbiased
estimator. The Fisher information matrix is defined as
I-_E ( aU)
- 00
in which U is the score function defined as the gradient of the log-likelihood
function:

(2.7)

4l 4In2((x- )+ (- w)?)

U(9)=V1nf(x,y)=V1 7_[0_2 0_2

(2.8)

Taking the derivative of the log-likelihood function with respect to each unbi-
ased parameter of interest yields

8In2

Uy, = = (x — ty) (2.9a)
8In2

Uy, = (y—uy) (2.9b)
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410 2((x =ty )2 + (3 — py)?
oL A=) (- ) 050
o o

The Fisher information matrix is then calculated using eq. (2.7) in which

8ln2 8In2
- 0 X x
_3[0] _ 0 SILE *““Ey Z ;
n X—Ux 2
81n2(x i) 81n2(y #y) % _ 8In2(( HU)6+(J/ #y)?)

Since E(x — p, ) = 0 this results in

a 8122 0

U o

£(36)-| o % o
0 0 -%

According to the Cramer-Rao bound the theoretical lower bound for the error
(and therefore also the maximum attainable positional accuracy) in the pa-
rameters 4., (4, and o? is calculated by taking the square root of the inverse

matrix:
o

Sy, = (2.10a)

“ V/8In2

o

Sy, = (2.10b)

Y V/8In2
Sp2 = 07 (2.10¢)

Using error propagation sgwywm is calculated:

o
SEWHM = 5 (2.11)

For a process in which N photons are detected egs. (2.10) and (2.11) should
be divided by a factor v/N. Previously we showed how to calculate z from
eq. (2.1) and hence error propagation is used to estimate the theoretical limit
to the accuracy in z:

0z \* 0z 0z
2o (=) <2 2 2 2.12
5z (80) S“+(8z,) 52 +(800) Sao 212)
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If we assume that z, and o, can be determined with high accuracy they can be
neglected in eq. (2.12) leading to

sy (Z+ 5)2 2.13)

In section 2.2 it was shown that the introduction of a cylindrical lens adds the
parameters y and € to eqgs. (2.1) and (2.5) and substitutes ¢ with o,. For our
method to work we need a small value for y (< 300 nm). We have defined
y as half the distance between the original position of an in-focus molecule
without cylindrical lens (i.e. the focal length f, of the microscope objective,
since our microscope uses infinity-corrected optics) and the position of an in-
focus molecule with cylindrical lens in the perturbed axis (s, ):

fo - So,y
2

Y = Sce = (2.14)
in which s is the so-called circle of least confusion where the image is circular
(z = 0). With paraxial optics the position of the image (s;,) of a molecule at

So,y is approximated:

1
Si,y = T N T_ 1 (215)
ft fc d- i_l T
fo Soy
with f; the focal length of the tube lens, f. the focal length of the cylindrical
lens, f, the focal length of the objective and d the distance between objective

and cylindrical lens. Rewriting it for an in-focus molecule:

o £,(25f.f.d - 4f.d - 4f,d + 4£.f.)
Y -25fifed + 25fiffo + Afed - Affo + Afid - 4 fo - Afife

Combining egs. (2.14) and (2.16) allows to estimate the focal length of the cylin-
drical lens needed.

Using the same methodology as in the case without cylindrical lens the
maximum achievable positional accuracy in x, y and z is calculated using
egs. (2.2) and (2.3) resulting in egs. (2.4a) and (2.4b).

(2.16)




2.A Appendix 45

2.A.2 Extension to image stacks

The methodology as outlined in this chapter is mainly focused on experiments
in which all the particles are confined to a layer of 1.5 — 2 pm. When needed,
for example in the experiments presented in chapters 3 and 4, the method is
easily extended to a larger volume.

Recently several solutions have been proposed to image larger volumes in
which for example multiple CCD cameras are used to image different planes
simultaneously [17], or in which a beam splitter cube and an extra lens were
used to generate a second image on the CCD camera focusing on a different
plane [18].

In our experiments however we have used a different method. We placed
the objective onto a piezo positioner (Physik Instrumente, Karlsruhe, Ger-
many) which enabled us to move the objective in steps of 0.7-1.0 um and hence
image different focal planes in a consecutive manner, hereby generating image
stacks. The advantage of this method over the two other methods is that the
volume which can be imaged is in principal only limited by the working dis-
tance of the objective. In the other methods the volume is limited by either the
number of CCD cameras or the amount of simultaneous images that fit on the
CCD chip. A clear disadvantage of our method is the imaging speed. Moving
the objective from one position to the next takes around 15-20 ms and there-
fore imaging of larger volumes (e.g. 7 planes) can take up to 200 ms, which
includes the exposure time necessary to image each plane. In our experiments
the movement of the objects of interest was low enough (see chapter 4) to as-
sume that the movement of an object in a timespan of 50 ms (needed to image
two planes) is smaller than the positional accuracy of our system.

As a result of using image stacks objects will appear in multiple planes in
one image stack. In principle the 2D fitting method as presented in this chapter
could be used to determine the 3D position of the object relative to each plane
in which it appears. A better approach however is to globally fit each image
stack. For this purpose the 2D Gaussian profile were extended to 3D volumes,
taking into account that the width of the Gaussian varies with axial position z,
see eq. (2.3). In the fitting procedure it was taken into account that the total
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signal of the Gaussian is constant in each plane. The global fit approach was
superior to other approaches in terms of stability and reliability of the results.
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Chapter 3

Intracellular Dpp morphogen transport studied
with Particle Image Cross Correlation
Spectroscopy (PICCS)!

Morphogens control pattern formation by forming concentration gradients.
Gradients are formed by a combination of diffusion and degradation. Re-
cently the effective diffusion and degradation rates of Dpp have been mea-
sured. Diffusion and degradation are determined by intracellular trafficking
of morphogens: i.e. endocytosis, recycling, and degradation in the lysosomal
pathway. However, these trafficking rates have not yet been measured. We fol-
lowed the transport of the morphogen Decapentaplegic (Dpp) in wing imag-
inal discs of fruit fly larvae. These experiments required the development of
a new analysis method for two-color, single-object data: Particle Image Cross
Correlation Spectroscopy (PICCS). With this method we were able to quan-
tify the fraction of Dpp that is correlated with early endosomes. We found that
early endosomes contain almost twice as much Dpp as compared to other en-
dosomes. Further we determined the rates underlying Dpp transport among
different endosomal compartments. These rates are essential for a complete
description of the intracellular transport of Dpp. This novel method is gen-
erally applicable to a multitude of biological processes that involve multiple
interaction partners and makes use of the superior positional accuracy that is
obtained in single-object microscopy.

"This chapter is based on: L. Holtzer*, S. Semrau*, M. Gonzalez-Gaitén, T. Schmidt, In-
tracellular Dpp morphogen transport studied with Particle Image Cross Correlation Spec-
troscopy (PICCS), in preparation (*equal contribution).
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3.1 Introduction

The morphogen Decapentaplegic (Dpp) forms a gradient in the developing
wing imaginal disc of the fruit fly Drosophila melanogaster, ultimately con-
trolling patterning and growth of the tissue. Dpp originates from a stripe of
Dpp-producing cells at the anterior-posterior compartment boundary [1] and
is secreted to neighboring cells. A recent study [2] showed that a steady state
monoexponential gradient in Dpp is formed. While the latter study success-
fully and quantitatively describes the gradient on the level of the whole tissue,
it provides insufficient insight into the (sub)cellular mechanisms that under-
lies Dpp transport. Other experiments further suggest that Dpp is spread by
three different mechanisms: diffusion in the extracellular matrix [3], receptor-
mediated diffusion [4] and by intracellular transport [5], i.e. multiple endo-
cytosis and subsequent recycling events into the extracellular matrix [6]. The
extracellular diffusion and receptor-mediated transport are governing short-
range spreading, while intracellular transport is essential for long-range
spreading of Dpp in tissue [7]. In the study described here we further eluci-
date the subcellular mechanisms of intracellular Dpp transport. Three types of
endosomes are involved in Dpp gradient formation by intracellular transport:
early, late and recycling endosomes. By using fluorescent endosomal markers
and a fluorescent Dpp fusion protein we measured the fraction of Dpp in early
endosomes and thereby determined the intracellular trafficking rates of Dpp.
To accomplish this we developed a new analysis technique which quantifies
the amount of correlation between two fluorescent species. In the past several
techniques have been applied to this problem. In particular single-molecule
fluorescence assays have been used successfully to quantify colocalization of
interaction partners [8-10]. Single-molecule fluorescence techniques require
only small amounts of fluorescent labels and contain information about po-
sitional correlations on sub-diffraction length scales [11]. However, the direct
mapping between single-molecule signals from two different channels is prone
to a systematic error: colocalization is typically defined by a distance threshold
below which two signals are considered colocalized. Therefore a priori knowl-
edge about the distribution of distances, about the positional error, and about
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the experimentally unavoidable alignment mismatch between two channels
is needed to find a proper threshold. Even without any real correlation this
method will always yield a colocalization event due to accidental proximity of
signals. This problem aggravates with increasing signal density. Hence, even
with the highest spatial resolution, proximity is not the optimal readout for
correlation.

Fluorescence Cross-Correlation Spectroscopy (FCCS) and Image Cross-
Correlation Spectroscopy (ICCS) directly determine the cross-correlation be-
tween the two different color channels [12, 13] without the need for a threshold.
However, both have restrictions in accessible time scales, and proper treatment
of sometimes heterogeneous background signals is not straightforward.

Here we show how the advantages of ICCS and single-particle tracking
can be combined in one analysis technique: Particle Image Cross-Correlation
Spectroscopy (PICCS). This technique is largely based on Particle Image Cor-
relation Spectroscopy (PICS) developed by us before [11]. PICCS uses high
accuracy single-molecule / single-object position data, but instead of correlat-
ing the positions of the same molecular species at several points in time (as is
done in PICS), PICCS correlates the positions of two molecular species at the
same point in time in two separate channels. Those channels can be two colors,
as discussed below, or any other molecular parameter that allows distinction of
two species like fluorescence signal level, fluorescence lifetime or polarization.
By PICCS a correlation fraction and a correlation length are retrieved on time
scales down to 1 ms. Since the input data consists of the positions of individ-
ual molecules / particles the autofluorescent background or additional noise
sources do not influence the measurement. For the same reason the method is
not limited to the diffraction of light and the correlation length can therefore be
determined with nanometer accuracy. Finally, PICCS permits for the analysis
of subpopulations. As demonstrated below, it is possible, for instance, to de-
termine the correlation fractions for subpopulations which differ in intensity
and obtain additional information in this way.

In the following we will present a detailed analysis of intracellular Dpp
transport, based on 1) a mathematical description of intracellular Dpp traf-
ficking and 2) the analysis of experimental data with PICCS. This combination
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allows us to determine the intracellular trafficking rates of Dpp.

3.2 Intracellular transport of Dpp

Figure 3.1 illustrates intracellular Dpp transport. After endocytosis, a Dpp-
containing vesicle fuses with an early endosome. From the early endosome,
Dpp is either transferred to a late endosome for degradation, or to a recycling
endosome, where it will be exocytosed into the extracellular matrix. While we
regularly observed more than one endosome of each type per cell, in the fol-
lowing we treat each type of endosome as a single entity without loss of gen-
erality in modeling the intracellular trafhicking of Dpp. This simplification is
reasonable since we assume that the in- and outflow of Dpp only depends on
the Dpp concentration (i.e. it is a first order reaction). This assumption is
later confirmed by the data. The wing imaginal disc consists of a 2D-array of
cells. Since the gradient is one-dimensional, perpendicular to the line of Dpp-
producing cells, we model the disc as a 1D-array of cells. Inflow and outflow of
Dpp is described by first order rate equations for each type of endosome. This
approach details the theoretical description of Dpp spreading as described be-
fore [14], focusing solely on the intracellular trafficking.

Early endosomes receive an inflow of Dpp by endocytosis, depending only
on the extracellular Dpp concentration C. with an inflow rate k. If the out-
flow of Dpp from early endosomes occurs with the rate k.,, the change in Dpp
concentration in the early endosomes of cell n (C%,) is given by

dcCr 1 1
@ = ko O+ —kex C1 = keu C1, (3.1)
dt 2 2

assuming that the transport of Dpp is non-directional [5]. Since in fig. 3.1 we
have defined CZ, to be on the left of cell n, the endocytosis term consists of a
contribution from both C” and C%/!, taking into account non-directionality.

For the recycling endosome a similar equation is derived, in which a parame-
ter ¢ is introduced to describe the fraction of Dpp in early endosomes that is
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Figure 3.1: Intracellular transport of Dpp. After endocytosis Dpp is transported — via
early endosomes - to either late or recycling endosomes. While Dpp in late endosomes
is destined to be degraded, Dpp in recycling endosomes is eventually exocytosed into

the extracellular matrix.
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transferred to recycling endosomes.

dcr
dt

= ke, Cly — k,C} (3.2)
where C, is the concentration of Dpp in recycling endosomes and k, is the rate

of Dpp outflow from recycling endosomes. For late endosomes we obtain:

dcy
dt

= (1- €)kaaCly — ki C/' (3.3)

where C; is the concentration of Dpp in late endosomes and k; is the degra-
dation rate. Finally the concentration of Dpp in the extracellular matrix Ce
depends only on the recycling rate k, and the endocytosis rate k., taking into
account the non-directionality of intracellular Dpp transport.

dcCr 1 1
& - ' 4 2k, CT — ko O (3.4)
dt 2 2

Solving egs. (3.1) to (3.4) in a steady state [5, 15] gives the average Dpp concen-
tration in each type of endosome in each cell. From the solution we derive the
fraction f of endosomal Dpp that is contained in early endosomes:

Cea 1

= = (3.5)
Ctot,endo 1+ % + (1 - E)kkLla

f

From the known decay length of the Dpp-gradient (A = 7.7 + 2.1 cells) ¢ =
0.996 +0.002, is derived [2]. A more detailed theoretical derivation of eq. (3.5)
and the determination of ¢ is found in section 3.A.1. For the recycling endo-
some outflow rate k, we further derive:

i efkeaki
(A= ki=f(1-¢) ke

In previous experiments the degradation rate k4 for Dpp has been determined
[2]. Before a Dpp molecule is being degraded in a lysosome [5] it has been

k. (3.6)
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endocytosed, transported to an early endosome and consecutively to a late en-
dosome, after which it final goes to the lysosome. Hence the degradation rate
k4 can be expressed in terms of the other rates:

LIS + ! + 1 (3.7)
kd - kex (1 - S)kea k] '
Combining egs. (3.6) and (3.7) gives for k,:
_ 8fkeakexkd
- kexkd - fkea(1 - 8)(kex - kd)

which also gives an upper limit to the outflow rate for the early endosome k,:

kexkd
Kea <
f(1-¢) (kex — ka)

kr

(3.8)

(3.9)

3.3 Particle image cross-correlation spectroscopy

Particle image cross-correlation spectroscopy (PICCS) is a method to quantita-
tively determine the correlation between arbitrary, fluorescently labeled mol-
ecules. Here we present the basic idea behind the PICCS methodology and
algorithm. The theoretical background is detailed in section 3.A.2 and the
scaling of the errors of the method is discussed in section 3.A.4. We assume
that two interaction partners are labeled with two spectrally distinguishable
fluorophores. The interaction partners can be single molecules or extended
objects. We further assume that their density is so low that they can be re-
solved individually and their position determined with a high positional ac-
curacy [16-18]. For simplicity we will denote the signals coming from the two
fluorophores by “YFP” and ‘CFP’ without loss of generality. The task is to deter-
mine the correlation fraction of the interaction partners, i.e. to determine the
fraction of CFP that colocalizes with YFP (or vice-versa). In what follow we
will calculate the fraction of YFP signals which are correlated to a CFP signal.

The first step in the PICCS analysis is identical to existing single-molecule
tracking methods [9, 10]: the position of YFP and CFP signals is determined
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Figure 3.2: PICCS algorithm. For all YFP signals (solid circles) the number of CFP
signals (open circles) are counted which fall into a circle of radius ! from a YFP signal.
The total number is subsequently divided by the number of YFP signals. By increas-
ing ! from 0 to .y the correlation function Ceym (1) is constructed. The dashed line
encloses the area in which the YFP signals are used for analysis. This area is sepa-
rated from the edges of the image by Iiax (Imax = 2 pm is taken). The signal positions
were simulated with the following parameters: density of YFP signals cygp = 1 um ™2,
correlation fraction a = 0.5 (results in a density of CFP signals of ccpp = 0.5 pum™2),

correlation length o =150 nm.

with sub-diffraction positional accuracy by fitting two-dimensional Gaussians
to the fluorescence signals. Subsequently a cross correlation function Cyp, (1)
between the two channels is calculated with an ensemble approach. C.ym (1)
is equal to the average number of CFP signals at time ¢ + At which have a
distance smaller than [ to a certain YFP signal at time ¢ (fig. 3.2). When both
fluorophores are imaged at the same time At = 0's.

To avoid edge effects, only those YFP signals are used which lie farther

away from the edges of the image than a predefined maximal distance I
(0 < I < Ijpax, dashed line in fig. 3.2).
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As detailed in [11] and Sec. 3.A.2, this procedure results in a correlation
function of the form

Ccum(l) = Oépcum (Z) + Ccrp 7'[Z2 (310)

if the uncorrelated CFP signals are distributed randomly with a uniform den-
sity ccgp. Peum (1) is the cumulative probability to find a distance smaller than /
between a YFP and a CFP signal which are correlated. « is the correlation frac-
tion, i.e. the fraction of YFP signals which are correlated to a CFP signal. a =1
if there is a corresponding CFP signal for any YFP signal and « = 0 if CFP
and YFP signals are completely uncorrelated. In the form presented so far,
the algorithm requires a random, homogeneous distribution of CFP signals,
which results in the term ccpp - 71? in eq. (3.10). To correct for a non-random
distribution of CFP signals we can calculate the spatial correlation among CFP
signals by regular Particle Image Correlation Spectroscopy (PICS), see [11] and
section 3.A.2.

Figure 3.3 shows an example for an experimentally determined correlation
function. A wing imaginal disc of a fruit fly larva expressing Dpp-YFP and
Rab5-CFP was imaged. Rab5 is a marker for early endosomes [19]. In total
28 z-stacks in both channels were taken. The endosome positions for each
image in a z-stack were projected into one plane resulting in 28 YFP-CFP image
pairs. Figure 3.3a,b show the first image stack for the YFP and CFP channel.
The correlation function is shown in fig. 3.3c and the cumulative probability
function Py, (1) (eq. (3.12)) is shown in fig. 3.3d.

The density of CFP signals ccgp and the correlation fraction o were deter-
mined by fitting a straight line to the linear part of C.,n, (1) plotted against 2
(fig. 3.3¢c). The slope of this line gives 7 ccpp while the offset is equal to «. After
subtraction of the linear contribution and division by «, Peyy (1) remains.

If correlated signals were perfectly colocalized (both fluorescent molecules
are at the same position in space), P, (1) would be given by

2
Pum () =1-exp (—2—0_2) (3.11)

with the correlation length o. In any real experiment however, the positions of
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Figure 3.3: Correlation fraction, signal density and correlation length from experi-
mental data. A wing imaginal disc was imaged for 300 s using an alternating excita-
tion method (described in section 3.4). Each image stack consists of 5 image planes
(10 x 10um) separated by 0.7 um in axial direction. Low frequency background was
eliminated by applying a high-pass filter. a) Raw image stack from the Dpp-YFP chan-
nel (scale bar = 2 um). b) Raw image stack from the Rab5-CFP channel. ¢) Correlation
function Ceym () obtained by PICCS. Fitting to the linear part yielded a Dpp-YFP
density of ¢ = 0.12 + 0.02 endosomes -um™2 (solid line) and a correlation fraction of
Aeppp = 0.46 = 0.04 (offset of the fitted line). d) Peum () which resulted from sub-
traction of the linear contribution from Ceym (1) and division by a. ppp. The correla-
tion lengths 0y, 03 and the fraction 3 were determined by fitting eq. (3.12) which gave
01 =71+17 nm, 0, = 161 + 34 nm and f3 = 0.44 + 0.17, respectively. All errors were
determined from simulations, see section 3.A.4.
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particles cannot be exactly determined. This introduces an (apparent) corre-
lation length, given by the finite positional accuracy o = \/28, where § is the
one-dimensional positional accuracy for a fluorescent signal, see section 3.A.2.
Any real correlation originating from the interaction between the studied ob-
jects adds to the correlation length given above.

In the experiments presented here, the signal intensity varies between sig-
nals and since the positional accuracy depends on the signal intensity, there
is no well-defined overall positional accuracy. Therefore a modified version of
eq. (3.11) including two effective correlation lengths (o and 03) is needed to
describe the observed data.

)

+(1-p) (l—exp (—%)) (3.12)

where f is the fraction of data that has a correlation length 0;. Adding more
effective correlation lengths does not significantly improve the fit.

The method developed so far disregards signal intensities. We can therefore
only determine the fractional amount of Dpp-containing early endosomes and
not the fraction of Dpp molecules contained in early endosomes. Since there is
no reason to assume that Dpp is homogenously distributed among the differ-
ent types of endosomes, it is essential to include the intensity (which is a direct
measure for the amount of Dpp molecules in an endosome) into the PICCS
algorithm. We did this by weighting the occurrence of a YFP signal (Dpp-
containing endosome) by its intensity. The average intensity of the correlated
fraction was subsequently calculated by the offset of the correlation function
and dividing the obtained value by that from the original unmodified correla-
tion data (fig. 3.4).
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3.4 Materials and Methods

The UAS-YFP-Dpp line was generated by using the existing UAS-GFP-Dpp vec-
tor [5] where GFP was replaced by YFP (Venus) [20]. dpp®3/dpp®?; dpp-Gal4/
UAS-YFP-Dpp flies have an identical wing phenotype to the dpp?®/dpp®'?; dpp-
Gal4/UAS-GFP-Dpp flies [5]: they survive to adulthood and have normally
patterned wings, although smaller in size (data not shown). For determina-
tion of early, recycling and late endosome distributions in wing imaginal discs
we used the following genotypes: tub-CFP-Rab5, tub-YFP-Rab7 and tub-YFP-
Rabll [21].

To obtain wing imaginal discs, third instar larvae (tubulin-CFP-Rab; dpp-
Gal4/UAS-YFP-Dpp) were dissected in Clone8 medium (Shields & Sang M3
Medium containing 2% Fetal Calf Serum, 2.5 % Fly Extract, 12.5 IU Insulin/100
ml medium and 1X Penicillin/Streptomycin), after which the wing imaginal
discs were mounted in a custom-made sample holder. Nail polish was used for
sealing of the sample holder. The wing imaginal discs were imaged approxi-
mately 10 min after dissection. Samples were discarded 1 hour after dissection.

Imaging was done on a 3D wide-field fluorescence microscope as described
previously [22]. To image a z-range of ~ 4 um, image stacks were generated
using a piezo-driven objective holder (Physik Instrumente, Karlsruhe, Ger-
many) to move the objective in axial direction. Each image stack contained 5
image planes with Az = 0.7 um between each image plane. The time between
image planes was 40 ms, during which the movement of the endosomes was
negligable. Therefore each image stack was assumed to be acquired at one time
point. Wing imaginal disc samples were excited by an Argon-ion laser (Coher-
ent, Santa Clara CA, USA) at either 458 nm to excite Rab5-CFP or 514 nm to
excite Dpp-YFP. An alternating excitation pattern was used to distinguish be-
tween the two fluorophores. The pattern consisted of 1 image stack which was
excited at 458 nm and consecutively 10 image stacks were excited at 514 nm
with a stack rate of 1 Hz. The fast switching between laser lines was done using
an Acousto-Optic Tunable Filter (AA Opto-Electronic, Orsay, France). This
pattern was chosen to minimize photobleaching of the CFP, since the amount
of Rab5-CFP per endosome was lower than the amount of Dpp-YFP. Imaging
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Figure 3.4: a) Correlation function for the correlation between Rab5-CFP and Dpp-
YFP. Fitting a line to the linear part resulted in an offset at I? = 0 of 59+5%. Correction
of the data using spatial correlations gives apppe = 66 + 5%. b) Correlation function
for the same data after weighting of the Dpp-YFP endosomes with their respective
intensities. Fitting the linear part resulted in appp,el = (5.2 + 0.4) - 10° counts, which
gives an average Dpp-YFP signal of I = (8.9 +1.0) - 10’ counts for early endosomes
that contain Dpp-YFP.

was done in the apical region of the cells since most of the endosomes are lo-
cated there [2]. Dpp-producing cells (the source) were located by eye using
a Mercury lamp (Zeiss, Oberkochen, Germany) for excitation. Using a mo-
torized stage the center of the image was typically 20 pm displaced from the
source, with an image area of 100 pum? showing approximately 17 cells in each

experiment.

3.5 Results and discussion

In fig. 3.3 we showed for one wing imaginal disc that the correlated fraction
of early Rab5-CFP labeled endosomes in the pool of all endosomes that con-
tain Dpp-YFP in a wing imaginal disc is aepp, = 46 + 4%. Correction for
a non-random distribution of CFP signals, see section 3.A.2, did not change
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this result. Conversely the correlated fraction of Dpp-YFP containing endo-
somes in the pool of all Rab5-CFP labeled early endosomes was 59 + 5% (see
fig. 3.4a). After correction for the non-random distribution of CFP signals (see
section 3.A.2) the latter value was finally increased to apyp. = 66 + 5%. Hence,
two-thirds of the early endosomes contained Dpp, and about half of the Dpp-
YFP containing endosomes were early endosomes.

To determine further whether Dpp molecules were homogeneously dis-
tributed over the different types of endosomes we used the ‘weighted” PICCS
method. Figure 3.4b shows the cross-correlation between Rab5-CFP labeled
early endosomes and Dpp-YFP-containing endosomes weighted by the Dpp-
YFP intensity. Fitting a straight line to the linear part gave a coefficient of
apppel = (5.2 + 0.4) - 10° counts. From the latter and our earlier result on
&pppe (fig. 3.4a) we obtained the average intensity of Dpp in early endosomes
to be I = (8.9 +1.0) - 10° counts per endosome. The latter value, together with
the knowledge of the total number of measured intensities of Dpp-YFP con-
taining endosomes in the wing disc (N = 735 endosomes in 28 image stacks,
data not shown) and the total fluorescence signal of Dpp-YFP in the wing disc
(Iiot = (4.9 £ 0.8) - 10° counts in all image stacks, data not shown), the frac-
tion of all Dpp-YFP molecules that was contained in early endosomes was

NT
f = D(Df;f—(’; = 60 + 2%. Hence, we found that early endosomes contained
on average fipyp. = 1.8 times as much Dpp-YFP as compared to late and/or
recycling endosomes.

Segmentation with respect to the Dpp concentration in each endosome,
as determined by the detected fluorescence signal, confirmed the latter find-
ing. Analysis performed on the more intense half of the Dpp-YFP containing
endosomes resulted in & pp, = 55 + 7%, and aepp, = 35 + 6% for the less in-
tense half of the endosomes (fig. 3.5a). Together our results showed that Dpp
was not homogenously distributed among the different types of endosomes.
All results were independent on spatial data segmentation with respect to the
cell’s distance to the Dpp-source.

As reported previously [23] the amount of Rab5 associated to endosomes
fluctuates on the time scales of our experiments. To study the effect of Rab5
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Figure 3.5: Correlation fraction calculation « of early endosomes for segmented data
sets. a) Correlation fraction for Dpp-YFP-containing endosomes segmented accord-
ing to Dpp concentration. For each image stack the Dpp-containing endosomes were
divided in two halfs, high intensity and low intensity. Applying PICCS on each sub-
set shows that aeppp = 55 + 7% of the high-intensity Dpp-containing endosomes
were early endosomes, in comparison to & ppp = 35 + 6% of the low-intensity Dpp-
containing endosomes. b) a. ppp calculated at different time points, using only 2 YFP-
CFP image stacks for each data point. a.ppp fluctuates around 47 + 14%, indicated
by the dashed line. The large error bars are caused by the low amount of data in each
point (i.e. only 2 CFP-YFP image stack pairs).

fluctuation on our measurements we analyzed the changes in correlation frac-
tion over time. Instead of using the whole data set (28 YFP-CFP image stack
pairs), we calculated the correlation fraction for data subsets containing 2 adja-
cent YFP-CFP image stacks (i.e. stack 1-2, stack 3-4, stack 5-6, etc.). In fig. 3.5b
&eppp is plotted versus the time. a.pp, fluctuates around 47% with o = 14%,
however no systematic trend on longer timescales was observed as has been
reported for Rab5 fluctuations in early endosomes [23].

The results presented so far were obtained from one wing imaginal disc
(17 cells in the field of view). We repeated the described experiments for two
other wing imaginal discs (total number of cells=51, image centered at 20 um
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from the source), and found that a.p,, = 38 + 2% of Dpp-containing endo-
somes were early endosomes, and that early endosomes contain f = 52 +1% of
the endosomal Dpp with on average npy. = 1.9 times as much Dpp in early
endosomes compared to late and recycling endosomes.

All experiments were done in the apical 4.5 pm region of the cells. In order
to draw conclusions about the kinetic parameters of intracellular Dpp trafick-
ing, the complete apicobasal distribution of the different types of endosomes
has to be considered. Both early and recycling endosomes are known to be
located mainly in the apical region of epithelial cells [24, 25]. We confirmed
this distribution for wing imaginal discs by measuring the apicobasal distribu-
tion of early, recycling and late endosomes over an axial range of 20 um with
Rab5-CFP, Rabll-YFP or Rab7-YFP, respectively. We found that 65% of the
early endosomes, 41% of the recycling endosomes, and 62% of late endosomes
are located in the most apical 4.5 um of the disc, i.e. 51% of non-early endo-
somes were in the volume measured in our experiments, compared to 65 % of
the early endosomes. We corrected our results for this difference by calculating
the real Dpp fraction f using

Xe,Dpp nDpp,eM non-early

f= (3.13)
Xe,Dpp nDpp,eMnon—early + (1 - ‘xe,Dpp)Mearly

in which M,y and Myon-carly are the fractions of the total pool of early and
non-early endosomes, respectively, which were in the measured volume. Tak-
ing into account that early endosomes contained 1.9 times as much Dpp as
other endosomes we found a Dpp fraction of f = 48 + 5% contained in early
endosomes.

From previous FRAP experiments the Dpp degradation rate was deter-
mined [2] to be kg = (2.52 £ 1.29) - 10~* s7! [2]. The contribution of k., was
estimated from the Dpp production rate, which was found to be 2.69 + 1.58
molecules per cell per second [2]. Since the system is in a steady state, the pro-
duced Dpp needs to be endocytosed at the same rate as it is produced and we
set key = 2.69 = 1.58 s7L. This value is much faster than the typical endocy-
tosis time, which typically is on the order of tens of seconds to a few minutes
[26, 27]. The value reported here however is the average rate per Dpp molecule
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if they would be endocytosed one by one. It therefore does not say anything
about the amount of Dpp molecules that are endocytosed at the same time.

0.06 1

0.04 +

Figure 3.6: Possible values for the recycling endosome outflow rate k, for different
values of the early endosome outflow rate ke,, using f = 0.48 and € = 0.996 (solid
line). The dotted lines show k; and k., for values of £=0.994 (1), €=0.995 (2), €=0.997
(3) and €=0.998 (4). The dashed lines indicate the allowed values for k, and k., if
transport across a single cell takes 150 s as lower limit and 50 s as upper limit as esti-
mated and measured before [2, 6, 28, 29]. The intersection of the solid and the dashed
lines indicate range of solutions for the values of 1.0 - 1072 < k; < 3.5-107% 5! and
19107 < kea < 471072571,

Using eq. (3.9) we further determined an upper limit value for the early
endosomes outflow rate to be key max = 0.13 s7!, which translates to a minimum
Dpp residence time in early endosomes of ¢, = é > 7.6 s. Values for the
early endosome outflow rate k., and the recycling endosome outflow rate k,
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are further limited by eq. (3.6). By realizing that both rates must be ultimately
limited by the total rate estimated for Dpp transport across a single cell [6, 28,
29] which was 1/(50 s) and 1/(150 s), repectively, we find the constraint

50 ! ! ! 150 3.14
<kex+€kea+kr< (3.14)
as indicated as dashed lines in fig. 3.6. We already determined that k. is much
faster compared to k., and k,. Hence, the contribution of k. in eq. (3.14) is
negligable. From the graph in fig. 3.6 we find that 1.9-1072 < k,, < 4.7-1072 s7!
and 1.0 - 1072 < k, < 3.5-1072 s7L. For the average residence times ¢, of Dpp in
the early and recycling endosomes we found 21 < t,, < 53 s and 29 < ¢, <100
s, respectively. Uncertainty in ¢, estimated to be 0.002, did not significantly
influence this result (see dotted lines in fig. 3.6 for € =0.994 (1), 0.995 (2), 0.997
(3), and 0.998 (4)).

3.6 Conclusion

ek 1.0-10%s7< k <3.5.107s™
ea
o} @8>
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Figure 3.7: Summary of the obtained results.
Our data show that PICCS is a quantitative tool for addressing spatial and

temporal correlations between interacting particles or proteins. The method
alleviates restrictions which hampered previously developed methods. PICCS
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reliably allowed us to measure the cross-correlation between two populations
by which we arrived at quantitative insights into the subcellular mechanisms
underlying intracellular Dpp transport. The results are summarized in fig. 3.7,
where the estimations for the different rates are shown for the slow limit of
intracellular transport. From the rates we found that the average residence
time of Dpp in early endosomes is slightly shorter compared to recycling en-
dosomes. Compared to the total life time of a Dpp molecule of 46 min [2] the
average residence time in early and recycling endosomes is about 1 min for the
slow limit and about 25 s for the fast limit. Furthermore we found that early
endosomes contain on average almost twice as much Dpp compared to other
endosomes. The results obtained are the first steps in a quantitative description
of the transcytosis pathway in morphogen gradient formation.
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3.A Appendix

3.A.1 Theory - Intracellular trafficking

The steady-state concentration of Dpp in each type of endosome in given cell
n is calculated from egs. (3.1) to (3.4)

kex (Cr + Cifl)
C = ex e 3.15
e 2k (3.15a)
k., C"
cr = Leata (3.15b)

r kr
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1-
o - Qo kaCl (3.15¢)
ki

k. (Cr1+Cr)
ct=——"=7 3.15d
ex Zkex ( )

Combining egs. (3.15a), (3.15b) and (3.15d) gives

n 1 n— n n+

Co= 172 (c t-acn + Ct) (3.16)

If the Dpp gradient varies on length scales which are large compared to the size
of a cell, we can approximately write the right side of the above equation as a
second derivative, which results in

1 ¢ d°C.
Cx=——" 3.17
41-¢ dn? (3.17)
with solution
Cex(n) = Cex(0)e™ 1 (3.18)

with the decay length A in number of cells. Equation (3.16) and eq. (3.18) relate
e to A, with

=——F=0.996 3.19
1+ cosh (A7) (3.19)
using the experimentally determined value for A (A = 7.7 cells, [2]).
The total concentration of Dpp in endosomes C! in cell n is given by
the sum of egs. (3.15a) to (3.15¢)

tot,endo

Cl’l

totendo
kexk ki + ekeakikex + (1 — €) keakexk:
2keak K
X (1 + e‘(%)) CZ. = const. x CL (3.20)

Thus the gradient of the intracellular Dpp concentration follows the extracel-
lular gradient linearly.
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3.A.2 Theory-Particle image cross-correlation spectroscopy

We consider 2 interaction partners whose fluorescence signals are labeled
‘YFP” and ‘CFP’” without loss of generality. The goal is to find the correlation
fraction and length from the spatial positions of the signals.

If P(x, y) is the probability to find two correlated signals separated by a
vector (x, y), then the cumulative probability Pe,y, (1) is found by integration
of P(x, y) in polar coordinates

P (1) = 270 / L drp(r) (3.21)
0

with r = \/x2 + y2.

The shape of the function P, (1) depends on the nature of the interaction
between the interaction partners and the positional accuracy for determina-
tion of the YFP and CFP signals. The experimentally observed P(x, y) is found
from the convolution of the real correlation P, (x, y), which is characteristic
for a specific interaction, and the probability density Pyos acc. (X, y) describing
the (apparent) correlation due to the finite positional accuracy [30].

P(x,y) = / /dx’ dy' P (x —x", y — y")
X Ppos. acc.(x,) y,)

x2+ 2
exp(— 2azy ) (3.22)

P os. acc. \ X =
pos. ( y) 27102
where ¢ = /28 and 04 is the one-dimensional positional accuracy.

In the simplest case, if the YFP and CFP signal are at the same position,
P.ym (1) is determined by the positional accuracy alone:

lZ
Pom (1) =1—exp (—27‘2) (3.23)

A fit of Eq. 3.23 to Py (1) with o as the free fit parameter results in a value
for the one-dimensional positional accuracy Opos. ace. = 0/ /2. More generally
o can be regarded as a typical correlation length.
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To accurately describe the experimentally determined P, (!) we found
that we had to assume two correlation lengths (07 and 03)

)

+(1-p) (l—exp (—217‘22)) (3.24)

2

where f3 is the fraction of data that has a correlation length 0;. We suppose that
a broad distribution of positional accuracies explains this functional form of
Pcum (l)

Now we derive step-by-step the form of the correlation function Ceyy (1)
given above in Eq. 3.10. If, per image, there is only one pair of correlated signals
(for clarity they will be called ‘YFP signal’ and ‘CFP signal’) the correlation
function Ceyp, (1) equals Py (1): Ceum (1) = Peum (1). If only for a fraction
a of all YFP signals there is a correlated CFP signal, we observe C.yp (1) =
& Peym (1). Typically there is more than one YFP signal per image and therefore
also more than one CFP signal. If | gets bigger, neighboring CFP signals in
close proximity are counted by the PICCS algorithm although they are not
correlated with the YFP signal. Additionally there might be CFP signals which
are not correlated with any YFP signal. These CFP signals, in close proximity
or not correlated with any YFP signal, lead to an additional contribution ccpp -
712 t0 Ceym (). Here we assume that the positions of the CFP signals follow a
uniform random distribution with density ccgp. In total Coym (1) = aPeum (1) +
CCFP * ml2.

If there are no CFP signals in addition to the ones correlated with a YFP
one, ccrp can be calculated from the density of YFP signals cygp, the correlation
fraction « and the image area A by

CCFP = (X(CYFPA - 1)/A = ‘X(CYFP - I/A) = CéFP (325)

If /A << cygp, ccrp ~ acypp. In general ccpp = CYpp+CCEP uncorr.» Where Ccep uncorr.
is the density of CFP signals which are not correlated with any YFP signal.
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Non-random distribution of signals In any real life situation, the assump-
tion that all CFP signals are distributed randomly with a uniform density is of-
ten violated. One reason is the diffraction limit: if two molecules are too close
to each other (< 200 nm) their fluorescence signals will merge and only one
signal is observed. Consequently, close to a given CFP signal the probability to
find another signal is decreased. Additionally, there might be biological rea-
sons for correlations between the CFP signals. For example, receptors might
be distributed evenly (and non-randomly) to achieve a very homogeneous sur-
face coverage. Any correlation between the positions of CFP signals will cause
a deviation from the simple quadratic contribution ccpp - 7/ we assumed. The
influence of this correlation on the cumulative correlation C.,, () between
the two color channels depends on the distribution of distances between YFP
and CFP signals P, (1). We define the function s(r, I) as the number of CFP
signals in a circle with radius [ if the distance between the YFP signal and a
correlated CFP signal is r. For YFP signals which have a correlated CFP signal,
the contribution of uncorrelated signals can be written as

« /Ooodr s(r,l)agc:m(r) (3.26)

where 0Py, (r)/0r gives the probability for a distance r between a pair of cor-
related signals. For YFP signals without correlated CFP signals, and assuming
the simple quadratic dependence, we derive

Ceaam (1) = Py (1) + (1- a)c - 7l? (3.27)
aPcum

+o¢/0°°drs(r,l) P (r)

s(r,1) is determined empirically from the experimental data by correlation of
a ‘virtual’ YFP channel image with the measured images from the CFP chan-
nel. The virtual YFP image is constructed from the CFP image by placing YFP
signals at a distance r from a CFP signal. The C.,, (/) determined for a given
r with the standard algorithm is equal to s(r, ). Typically the results from 20
virtual images (where the YFP signals are moved around on circles with radius
r around the CFP signals) are averaged to obtain s(r, ).




72 Intracellular Dpp transport studied with PICCS

Subsequent to the calculation of s(r,1) the correction is determined nu-
merically by the following self-consistent algorithm:

1. asan initial guess for the correction term determine the slope of the lin-
ear part of C.,, and use the original correction term from eq. (3.10).

2. subtract the correction.

3. determine « as the average over the flat part of the resulting curve
4. normalize to 1 and fit the model eq. (3.11).

5. calculate the new correction according to eq. (3.27), go to step 2.

Steps 2 to 5 are repeated until the fit parameters change less than a predefined
threshold.

3.A.3 Bleaching

Bleaching of the fluorescent label can influence the results. If one of the two
fluorescent labels bleaches more quickly than the other, signals are lost and
the correlation fraction will decrease over acquisition time. To confirm that
the number of early endosomes (CFP signal) and Dpp-containing endosomes
(YFP signal) stayed constant we measured the total number of detected endo-
somes per image stack (fig. 3.8). On average we detected 17 early endosomes
in a field of view (1 early endosome per cell on average) and the number of
observed endosomes was constant around this value. The average number of
Dpp-containing endosomes found was 1.5 per cell. Since Dpp is also in the
other endosomes we expected to find more Dpp-containing endosomes on
average. Fluctuations in the number of detected endosomes were caused by
movement of endosomes in and out of the image volume or by endosomes that
were moving too close together to be detected individually. The latter effect is
corrected for in the PICCS-algorithm.
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Figure 3.8: Number of detected endosomes per image stack for a) early endosomes and
b) Dpp-containing endosomes. The number of endosomes (signals) in both channels
stayed approximately constant. The average number of endosomes and the standard
deviation are indicated for both cases.

3.A.4 Error scaling in PICCS

To design a successful experiment it is crucial to know how the error of the
measured observables («, ccpp, 0) scales with the experimental and fitting pa-
rameters (fig. 3.9). We determined the error by application of the PICCS al-
gorithm described above to simulated data, assuming that the signals are dis-
tributed randomly and uniformly in space and the correlations are governed
by eq. (3.11). First, we assume that all CFP signals are correlated with a YFP
signal, so ccep = a(cypp — 1/A), where A is the area of the image. Then we
add additional CFP signals, which are not correlated with any YFP signal. For
every set of parameters the simulations are repeated 100 times and the errors
Aa, §ccpp, Ao are determined as the standard deviation.

Experimental parameters The experimental parameters are the correlation
fraction «, the density of YFP and CFP signals cypp and ccpp, the correlation
length ¢ and the number of images M. As evident from fig. 3.10a all errors
scale approximately like 1/v/M where M is the number of acquired images.
This behavior assures that any error can be made small just by acquisition of



74 Intracellular Dpp transport studied with PICCS

2.
2]
©
| / .
2
w |
g 19
S e
s 1 e =
q.) ........... ;--u;;--
D g
— o.'
20-570(}.
© 0;.
]
e
0

0 10 20 30 40 50 60 70 80 |9‘02 100
1* [um?’]

Figure 3.9: Experimental and fit parameters. The open circles correspond to Ceym (1)
calculated from simulated data. The closed circles give Ceym () after subtraction of
the linear contribution given by the dotted line. To determine the slope 7 - ccpp of
the linear contribution the Ceyp (1) is fitted to a straight line between Iy and Iax.
The offset of this straight line is equal to the correlation fraction a. o is equal to the
distance I where the function Ceum (1) — 77 - ccppl? has the value « (1 - \/E)

more images. The same scaling behavior is found for «, see fig. 3.10b. As to
be expected, the relative errors become large if the correlation fraction is small
or, equivalently, more images have to be acquired to achieve a certain accuracy.
The dependence of the error on the density of YFP signals cyp is different for
the various observables (fig. 3.10c). While the error for ccpp scales like the in-
verse square root (1//cyrp), the errors of « and o are fitted with the empirical
model A - (cypp/pm=2)=% + B - (cypp/um=2)%2. This model has a minimum
at (2A/B)*/3, which implies that there is an optimal density cyrp, where the er-
rors are minimal. As will become clear below, the value of this optimal density
depends on the fitting parameters. The errors of « and o initially decrease with
increasing cygp because of the higher number of YFP signals, which increases
statistical significance. At the same time, ccpp increases and therefore the con-
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tribution ccep - 712 increases relative to «. Consequently, the errors of « and o
increase for big densities cygp.

So far, all CFP signals had a corresponding (i.e. correlated) YFP signal.
Now we add additional, non-correlated CFP signals. If the density of YFP sig-
nals cypp and the interaction fraction « are kept constant, & and ¢ scale approx-
imately like \/ccrp while the error of ccpp scales like 1/ /ccrp (fig. 3.10d). As to
be expected, the presence of extra CFP signals makes the determination of «
and o increasingly difficult. A change in the correlation length ¢ has signifi-
cant influence only on the error for o which scales like 1/1/0. For increasing o
there are more data points in a region which is important for the determina-
tion of o, namely where P_,,,(]) is significantly smaller than 1. The errors of «
and ccpp are approximately constant (fig. 3.10e).

Fitting parameters The fitting parameters are the length of the interval for
the linear fit [y, — Liin, its center leener = (Imax — Imin)/2 and the distance be-
tween two data points A/ (fig. 3.9). Figures 3.11a-c show that the general scaling
behavior is independent on the position of the fit interval I .,,. However, the
position of the minimum error of « and ¢ depends on lcenee;: The bigger lcenter,
the smaller the optimal density cygp. Therefore, lener should be as small as the
data allows - of course, the fit interval must be in the region where Cqyy (1)
is linear when plotted versus [2. Figures 3.11d,e show the dependence on the
errors on the length of the fit interval and the distance between data points re-
spectively. The errors asymptotically become constant for big fit intervals and
small distances between data points. Note that increasing /., at constant [,
enlarges the fit interval but also moves its center I ey, which is disadvanta-
geous, see above.
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Figure 3.10: a) Dependence of the relative errors on the number of images M. The
relative errors of & (circles), o (triangles) and ccpp (squares) all scale approximately
like 1/\/M (solid line). M = 10, & = 0.5, cypp = 0.5 um~2,0 = 0.15 um b) Depen-
dence of the relative errors on the interaction fraction a. The legend is the same as
in fig. 3.10a, where cypp = 1 um™2 (closed symbols), cypp = 10 um ~2 (open sym-
bols), M = 10, ¢ = 0.15 um in both cases. The errors of all determined parame-
ters approximately scale like 1/y/a (solid line), independent of the density cygp. )
Dependence of the relative errors on the density cypp. The legend is the same as in
fig. 3.10a. The relative error of a (circles) and o (triangles) are fitted with the model
A - (cypp/um™2)7%% + B (cypp/um™2)%? (black solid and dashed line respectively).
For a A = 0.04, B = 0.12, which results in a minimum at 0.6 pm‘z and for ¢ A = 0.07,
B = 0.14, which gives a minimum at 0.5 pm_z. The relative error of ccpp (squares)
scales approximately like c;éf (The gray solid line is a linear fit in the logarithmic plot
given by y = —0.66(cypp/um™2) - 2.9). M =10, a = 0.5, ¢ = 0.15 um. d) Dependence
of the relative errors on the density ccpp. The legend is the same as in fig. 3.10a. The
relative error of & and o scale approximately like /ccpp (solid line), the relative error
of ccpp scales like 1/ /ccrp (dashed line). M =10, cypp = 1 pm‘z, a=0.50=0.15um.
e) Dependence of the relative errors on o. The legend is the same as in fig. 3.10a. The
relative error of & and ccpp do not change significantly with o. The relative error of
o scales approximately like 1/v/o (The solid line is a linear fit in the logarithmic plot
given by y = —0.52(cypp/um2) - 2.8)) M =50, cypp = 1 pm™2, & = 0.5.
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Figure 3.11: a) Dependence of the relative error of « on the center of the fit interval
lcenter = (Imax — Imin)/2- The legend is the same as in fig. 3.10a, where lcener = 0.925
(solid symbols), leenter = 1.175 (gray symbols) and lcenter = 1.375 (open symbols). The
relative error of « is fitted with the model A - (cypp/um=2)"%> + B - (cypp/um2)%%.
A =0.04, B = 0.05 (black solid line), A = 0.04, B = 0.09 (gray solid line) and A = 0.04,
B = 0.13 (dashed line). That results in minima at 1.9 um~2,0.9 um~2 and 0.5 pm ™2
respectively. M = 10, « = 0.5, 0 = 0.05 um. b) Dependence of the relative error
of o on the center of the fit interval leenter = (Imax — Imin)/2- The legend is the same
as in fig. 3.10a, where lcepter = 0.925 (solid symbols), lcenter = 1.175 (gray symbols)
and lcenter = 1.375 (open symbols). The relative error of o is fitted with the model
A - (cypp/um™2)7% + B - (cypp/um2)%%. A = 0.07, B = 0.15 (black solid line),
A = 0.08, B = 0.25 (gray solid line) and A = 0.09, B = 0.34 (dashed line). That
results in minima at 0.9 um™2, 0.6 um™2 and 0.4 um™2 respectively. M = 10, & = 0.5,
o = 0.05 pm. ¢) Dependence of the relative error of ccpp on the center of the fit interval
lcenter = (Imax — Imin)/2- The legend is the same as in fig. 3.10a, where lcener = 0.925
(solid symbols), leenter = 1.175 (gray symbols) and lcenter = 1.375 (open symbols). The
relative error of o is fitted with the straight line (in the logarithmic plot). The slope
is —0.77 (black solid line) —0.67 (gray solid line) and —0.62 (dashed line). M = 10,
a = 0.5, 0 = 0.05 pm. d) Dependence of the relative errors on the length of the fit
interval (Imay — Imin ). The legend is the same as in fig. 3.10a. M =50, « = 0.5, 0 = 0.15
pm, cypp = 1 pm_z. e) Dependence of the relative errors on the step size Al (fig. 3.9).
The legend is the same as in fig. 3.10a. M = 50, & = 0.5, ¢ = 0.15 um, ¢ = 1 pum ™.
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Chapter 4

Endosome motility and endosomal cargo dynamics
mediate morphogen gradient formation

In the wing imaginal disc of Drosophila melanogaster positional information is pro-
vided by a concentration gradient of the morphogens Decapentaplegic (Dpp) and
Wingless. Three transport mechanism govern formation and maintenance of the gra-
dient. Here we focus on intracellular transport of Dpp. Using a 3D wide-field fluores-
cence microscope and particle tracking algorithms we were able to quantify the role
of endosome mobility and endosomal cargo dynamics in intracellular Dpp transport.

We found that the lateral motility of endosomes by itself cannot account for ef-
fective intracellular transport. In the apicobasal direction however directed transport
was observed during 6% of the time, with velocities that agreed with previously found
values for molecular motors. The function of this endosomal transport remained un-
clear, but we speculate that it might play a role in Dpp degradation. We characterized
the spatio-temporal endosomal Dpp distribution in the wing disc in all three dimen-
sions in vivo and found it to be single-exponential, identical to the distribution of the
complete Dpp population. The number of endosomes however remained constant
throughout the disc. Endosomes contained up to 250 Dpp molecules allowing us to
follow endosomes for hundreds of frames with high accuracy. Sudden changes in Dpp
content of up to 25 Dpp molecules were observed, indicating that vesicles traveling
between endosomes contain multiple Dpp molecules both before fusion with an en-
dosome, and after fission from an endosome. The time between Dpp in- and outflow
events was found to be about one minute. Dpp outflow was found to be a passive,
probabilistic process. Combining these results suggested the presence of an immobile
Dpp fraction, similar to what was observed with FRAP experiments before.

Our study is the first study to quantify intracellular Dpp transport on the level of
individual endosomes. The results on the role of endosomal motility and endosomal
cargo dynamics will have to be integrated in the future into a more detailed model
describing intracellular Dpp transport.
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4.1 Introduction

Almost 60 years ago Turing proposed that morphogens are providing the po-
sitional information in morphogenesis [1]. Wolpert in turn further developed
a model in which morphogens are produced only by spatially localized cells.
This then leads to the formation of a morphogen gradient in the surrounding
‘receiving’ tissue [2]. The position of a cell is hence coded into its position in
a morphogen gradient. In the receiving tissue, the morphogen is detected by
receptors on the cell surface. Depending on the morphogen concentration,
cells will change their gene expression pattern accordingly. While the concept
of morphogen gradients is now accepted for decades, the mechanism underly-
ing the formation of these gradients on the cellular, sub-cellular and molecular
level has only started to become understood in recent years. The formation of
a stable gradient requires three mechanisms: production of the morphogen,
spreading to neighboring cells and finally degradation of the morphogen.

In what follows we focus on morphogen spreading in tissue. For this pro-
cess three mechanisms have been proposed: (i) diffusion in the extracellular
matrix [3], (ii) receptor-mediated transport along the cell membrane [4] and
(iii) intracellular transport [5], a sequential sequence of endocytosis of the
morphogen-receptor complex followed by recycling and release of the mor-
phogen into the extracellular matrix [6].

We studied the spreading of the morphogen Decapentaplegic (Dpp), a
member of the TGF-f superfamily, which plays a major role in the develop-
ment of the fruit fly Drosophila melanogaster. Dpp is expressed in a stripe of
cells (the ‘source’) at the anterior-posterior compartment boundary (fig. 4.1a)
of the wing imaginal disc [8]. The wing imaginal disc is a precursor of the later
wing (fig. 4.1b). Figure 4.1c shows a schematic xz projection (a cross-section
perpendicular to the dorso-ventral axis) of the wing imaginal disc consisting
of two layers of distinct cells. The peripodial layer on top and the columnar
cells beneath in which the Dpp gradient is present. The producing cells are
indicated with a green bar in fig. 4.1c. From these producing cells Dpp is se-
creted to neighboring cells where it forms an exponential gradient in the wing
epithelium [5, 9, 10]. In a recent experimental study of the Dpp gradient it was
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Figure 4.1: The wing imaginal disc. The x, y and/or z-axes are indicated in each sub-
figure. a) Top view of the wing imaginal disc showing the anterior (A) and posterior
(P) compartment. The Dpp source (green) is located at the A-P compartment bound-
ary. The dorsal (D) and ventral (V) sides are also indicated. b) Wing of a mature fly
with the anterior and posterior compartment indicated. ¢) Schematic cross-section of
a wing imaginal disc perpendicular to the D/V-axis. The Dpp source is indicated by
the green color. (images from [5, 7])

shown that the formation of the gradient is a combination of Dpp production,
Dpp spreading throughout the tissue and Dpp degradation within the cells as
described by

9,C(x,t) = DegV*C — kC + 2jy6(x) (4.1)

in which C(x, t) is the Dpp concentration at time ¢ and distance to the source
x. With confocal fluorescence microscopy quantitative values for the effec-
tive diffusion coeflicient D.g, the degradation rate k and the production rate
jo have been obtained [10]. While in the latter study the actual Dpp trans-
port mechanisms were modeled with one effective diffusion coefficient D.g,
here we report on experimental findings that describe morphogen spreading
by subcellular processes which finally lead to the effective coefficients and rates
reported. Our experimental work is in line with ongoing theoretical efforts to
describe Dpp spreading on the cellular and subcellular level (7, 11, 12].

4.1.1 Intracellular Dpp transport

Here we experimentally study the intracellular transport of Dpp in wing ep-
ithelia on the cellular and sub-cellular level by analyzing endosome motility
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Figure 4.2: Schematic drawing of intracellular Dpp transport. Numbers indicate the
different events that occur: 1) Dpp endocytosis into a vesicle and concurrent fusion
with an early endosome. 2) Fission of a vesicle containing Dpp from an early endo-
some. 3) The vesicle from (2) going to a recycling endosome. 4) The vesicle from
(2) going to a late endosome. 5) Fission of a vesicle from a recycling endosome and
concurrent exocytosis. 6) Fission of a vesicle from a late endosome to a lysosome. In-
tracellular Dpp transport is non-directional. Any directionality of Dpp transport as
suggested in this figure is for clarity purposes only.
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and monitoring the concentration of Dpp in endosomes. Intracellular Dpp
transport plays a major role in gradient formation. This idea is supported by ex-
periments in which intracellular Dpp transport was selectively blocked within
part of the tissue by locally defined genetic shut down of endocytsosis [5]. The
intracellular transport of Dpp is schematically shown in fig. 4.2. In this model
we distinguish different events

1. Endocytosis of Dpp into a vesicle with concurrent fusion of this vesicle
with an early endosome (+).

2. Fission of a vesicle containing Dpp from an early endosome (-)
3. after which it can go either to a recycling endosome (+)
4. or into a late endosome (+).

5. Fission of a vesicle containing Dpp from a recycling endosome and con-
current recycling of the Dpp into the extracellular matrix (-).

6. Fission of a Dpp-containing vesicle from a late endosome to a lysosome
for degradation (-).

Such sequential processes are best described in terms of a system of rate
equations in which a change in endosomal Dpp concentration dC is related to
a rate k; and the Dpp concentration ¢; in the vesicle that is involved in process
i. The change in concentration for each endosome is described by:

atCearly = ciky — 62k, (4.2a)
atclrecycle = C3k3 - CSkS (42b)
0t Clate = Caks — coks (4.2c)

IFor each event it is indicated in parenthesis if the Dpp concentration in the specified
type of endosome increases (+) or decreases (-). For each event the corresponding number is
indicated in fig. 4.2.
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Further we identify from fig. 4.2 that a vesicle that originates from an early
endosome (event 2) will transfer either to a recycling endosome (event 3) or
a late endosome (event 4). As the Dpp concentration in this vesicle will not
change during these events (2—3 or 2—+4) ¢, = ¢; + c¢4. Knowledge of the pa-
rameters involved in the coupled differential equations will provide us with the
full description of intracellular Dpp transport.

Theoretical calculations have estimated that one cycle of intracellular trans-
port has a duration between 50 and 150 s [6, 13]. In a companion study to the
current one we determined rates k, and ks of the events described above using
Particle Image Cross-Correlation Spectroscopy (PICCS, chapter 3). By label-
ing both Dpp and early endosomes we estimated the off rates for the ‘fission’
events by determining the cross-correlation between both populations using
the PICCS algorithm.

Much of the previous work on Dpp gradients has been done with conven-
tional fluorescence microscopy. Here we build on our expertise in the field
of single-molecule wide-field fluorescence microscopy [14, 15] which has dis-
tinct advantages over confocal microscopy in imaging speed and sensitivity
and allows for straightforward determination of the Dpp concentration in en-
dosomes. While in the companion study we focused on the kinetic parameters
for Dpp transport, here we study how intracellular transport is actually facili-
tated. In particular we investigated:

1. Do endosomes or the vesicles travelling between endosomes control
Dpp transport?

2. What are the other roles of endosomes we see?

3. Do Dpp molecules travel individually or in clusters during intracellular
transport?

4. Is there evidence for directionality in intracellular transport?

By employing single particle tracking methods we studied all those questions
and developed a quantitative description of intracellular Dpp transport on the
level of individual endosomes.
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4.2 Materials and methods

4.2.1 Sample preparation

The UAS-Venus-Dpp line was generated by using the existing UAS-GFP-Dpp
vector [5] where GFP was replaced by Venus [16]. dpp®/dpp®2; dppGal4/UAS-
Venus-Dpp flies have an identical wing phenotype to the dpp®® /dpp®?; dppGald/
UAS-GFP-Dpp flies [5]: they survive to adulthood and have normally patterned
wings, although smaller in size (data not shown). To obtain wing imaginal
discs third instar larvae (dpp-Gal4/UAS-Venus-Dpp) were dissected in Clone8
medium (Schields & Sang M3 Medium containing 2% Fetal Calf Serum, 2.5 %
Fly Extract, 12.5 IU Insulin/100 ml medium and 1X Penicillin/Streptomycin)
after which the wing imaginal discs were mounted in a custom-made sample
holder. Nail polish was used for sealing of the sample holder. The wing imag-
inal discs were imaged approximately 10 min after dissection. Samples were
discarded 1 hour after dissection.

4.2.2 Data acquisition

A transmission image of a wing imaginal disc is shown in fig. 4.3a. When the
sample is excited by a mercury lamp (excitation in the 500-520 nm range) the
fluorescence from the DppVenus is clearly seen (fig. 4.3b). Magnification of
the source area shows endosomes containing Dpp (fig. 4.3c). After addition
of low concentrations of the membrane marker FM4-64 (Invitrogen, Leiden,
The Netherlands) to wing disc during preparation, both the Dpp-Venus flu-
orescence (fig. 4.3c, A < 600 nm) and the cell membranes (fig. 4.3d, A > 600
nm) become visible. Overlaying both images (fig. 4.3e) allows us to assign each
endosome to a specific cell.

Experiments were carried out on a wide-field fluorescence microscope ca-
pable of three dimensional particle-tracking through astigmatism [17]. The
setup was additionally combined with a piezo-driven objective holder (Physik
Instrumente, Karlsruhe, Germany) to move the objective in axial direction at
10 nm-precision. A motorized sample stage (Marzhauser, Wetzlar, Germany)
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Figure 4.3: a) Transmission image of a wing imaginal disc directly after dissection. b)
The same wing imaginal disc, now excited by a fluorescent lamp (500-520 nm). Dpp-
Venus can be clearly seen, especially in the Dpp producing cells. The location of the
Dpp source is indicated, together with the anterior-posterior compartment boundary
which marks the border between producing and receiving cells. In the receiving cells
a gradient is observed. c) A close-up of the receiving cells, individual Dpp-containing
endosomes can be clearly seen. d) The same area as in (c), but now imaged in the red
channel, showing the fluorescence of membrane-marker FM4-64, clearly outlining
the columnar cells. e) Merge of images (c) and (d). f) Typical data obtained during
an experiment in one image stack. Each image corresponds to a different z-position
going from very apical (left image) to more basal (right image) with a distance of 0.7

pum between the planes. Out-of-focus fluorescence is removed in these images for
clarity.
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was used to move the sample in lateral direction with sub-micrometer accu-
racy. Image stacks with 5 to 8 image planes were generated in order to image
large volumes. The distance between planes was set between 0.7 and 1.0 pm
such that endosomes appeared in at least two planes. The time between planes
was kept as short as possible (typically 40 ms) to prevent large movements of
endosomes between planes, while allowing enough time for the piezo to move
the objective. Imaging was done in the apical region of the wing imaginal disc.
A typical image stack is shown in fig. 4.3f, where 7 planes with Az = 0.7 ym
were imaged. Endosomes containing Dpp-Venus were clearly identified in at
least two images at the same time. The movement of endosomes between two
consecutive planes was negligable. The astigmatism introduced for 3D posi-
tion determination is visible in the images (see the endosome indicated by the
white arrows in fig. 4.3f).

4.2.3 Data analysis

Positional information of endosomes was obtained as described before [17].
The method of fitting elliptical 2D-Gaussian profiles to the image of a single
particle was extended here to incorporate image stacks. A stack of elliptical
2D-Gaussians was simultaneously fitted to the data, effectively producing a 3D-
Gaussian profile. From this fitting procedure we obtained a static characteri-
zation for each experiment. A typical analysis output is shown in fig. 4.4. Each
graph summarizes data from all endosomes detected during one experiment at
all time points. Figure 4.4a shows the distribution of the local background for
each endosome in the first image stack. This is a measure for the out-of-focus
fluorescence. The background has a mean value of 625 + 20 cnts, with a stan-
dard deviation of 117 cnts. This value is much smaller than the average signal
observed from an individual endosome of T = 8.6 + 0.8 - 103 cnts, with a stan-
dard deviation of 4.4-10° cnts, as shown in fig. 4.4b. A wide range of intensities
was observed in this experiment, reflecting the differences and changes in the
Dpp concentration in endosomes and photobleaching of the Dpp-Venus.

The black curve in fig. 4.4b shows the intensity distribution for single YFPs
attached via a membrane anchor to human embryonic kidney cells [18]. The
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Figure 4.4: Typical output of the initial data analysis of a single experiment. a) Dis-
tribution of background values (CCD counts) associated to each detected endosome
in the first image stack of the experiment. b) Distribution of all intensities for every
endosome detected during the whole experiment (bar plot). For this plot each im-
age stack is treated individually and therefore one endosome appearing in multiple
image stacks will contribute multiple data points to this plot. The intensity distribu-
tion of single YFP proteins is plotted (black line) and the intensity is scaled for better
comparison with endosome intensities. ¢) Distribution of the positional error for lo-
calizing an endosome for each dimension (x in black, y in red and z in blue), again
for the whole experiment. d) Location in x (distance to the source), y and z for each
detected Dpp endosome in the first image stack.
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distribution peaked at 281 cnts. This distribution was already corrected for
the different exposure time and excitation intensity used in the Dpp experi-
ments. In doing so we assumed that the fluorescence intensity of YFP scales
linearly with both parameters, since both experiments were performed in the
non-saturating regime for YFP (excitation intensity I, = 0.1 kW/cm? was far
below the saturation intensity [19]). Furthermore we assumed that quenching
of fluorescence does not play a significant role inside the endosome given that
the average distance between Dpp molecules in a 400 nm diameter endosome
containing 100 Dpp molecules is approximately 80 nm.

To be able to calculate the number of Dpp molecules in an endosome it was
necessary to correct the measured endosome signal for photobleaching. This
was done by calculating a photobleaching curve for each experiment from the
average signal per detected endosome and image stack for an entire movie. The
fact that there were a large number of endosomes (> 15) in each image stack
rendered this strategy reliable. We found that DppVenus bleached following a
bi-exponential decay with offset as reported earlier by others [20]. The bleach-
ing curve was subsequently fitted to a bi-exponential decay, the parameters ob-
tained in this way (typical values 7, = 7 images, 7, = 244 images, offset = 2000
counts) were further used to correct the intensity of each individual endosome
in retrospect.

To determine Dpp concentration changes in endosomes we used a step-
fitting algorithm developed by Kerssemakers et al. [21]. We decided for the
latter algorithm as it directly accounts for noise and no pre-filtering of the data
is needed (for a review of other algorithms see [22]). Small steps of a few Dpp,
however, were difficult to observe due to the unavoidable background fluores-
cence present in tissue. Furthermore, since photon shot noise has a bandwidth
of a few Dpp, small changes on short time scales were not detected.

The positional accuracy by which the x, y and z coordinates of each endo-
some were determined is shown in fig. 4.4c. Since the positional accuracy is
inversely proportional to the square root of the number of detected photons,
endosomes with more Dpp were detected more accurately. Photobleaching
slightly reduced positional accuracy. As shown before the positional accuracy
in axial direction Az = 172 nm is approximately 2.5 times that in lateral di-
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rection Ax = Ay = 64 nm [17]. Finally fig. 4.4d shows the positions of the
detected endosomes during the experiment showing that most of the endo-
somes where located in an apical slice of 4 um at about 1 pm inside the tissue.
After locating the endosomes in each image stack, endosome trajectories were
reconstructed by using a particle tracking algorithm that has previously been
described [14, 17]. With this approach the 3D position of each endosome as
well as its Dpp content was followed for a long period (up to 600 time points).

Trajectories were further analyzed [23] in order to detect different types
of motional behavior for each endosome. Free diffusion was classified against
confined diffusion and against directed transport. For parts of trajectories were
free diffusion was detected, a mean squared displacement (MSD) versus time
plot was generated from which the diffusion coefficient D was calculated

MSD =2nDt + ) 20, (4.3)

in which 7 is the dimensionality of the data and o, the positional accuracy in
the nth dimension. To locate parts of a trajectory where directed motion is oc-
curring an ‘asymmetry’ parameter was calculated following the methodoogy
described by [23]. The trajectory of a transported object will be highly asym-
metric, showing up as an asymmetry parameter larger than 1. As argued by
[23] this value is indicative of a probability > 99% that the object undergoes
directed motion. After analysis of the asymmetry parameter, in the case of di-
rected transport, the MSD versus time plot was calculated on the part of the
trajectory where asymmetry > 1 and fitted to

MSD =2nDt + (vt)* + ) 20, (4.4)

from which the average velocity v of the endosome during the transport period
was obtained [24].
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Figure 4.5: a) Trajectory (total length = 600 s) of an endosome undergoing transport
in the lateral direction during a short period (15 s). The distance to the Dpp source
is indicated on the x-axis. b) Three-dimensional asymmetry parameter of the trajec-
tory versus time. Values above 1 indicate a high probability that directed motion is
occurring. ¢) Mean squared displacement versus time lag for the part of the trajec-
tory indicated with the arrow. From a fit to eq. (4.4) we found that the endosome was
transported with an average velocity v = 78 + 20 nm/s.
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4.3 Results-Endosome mobility

4.3.1 Intracellular transport by endosomes

The simplest form of intracellular transport would be endocytosis of Dpp, fol-
lowed by a short period of transport or diffusion through the cytosol and sub-
sequent exocytosis. During a typical experiment with a duration of 600 s we
expected these events to be frequently observable given that the estimated time
of intracellular transport lies between 50 s and 150 s [6, 13, 25]. In particular,
our experiments were intended to unravel whether intracellular transport was
mainly diffusion-driven or whether it was directional.

Previous experiments suggested that on macroscopic length scales intra-
cellular transport was non-directional [5]. Indeed, on the (sub)cellular level
we did not observe any significant long-range endosome transport over the
whole width of a single cell (typical cell diameter 2.6 um). In total 48 wing-disc
preparations were analyzed, of which 15 preparations contained trajectories of
a satisfactory quality (no significant sample drift and endosomes were visible
during the whole experiment). Each experiment provided between 5 - 10° and
10* endosome positions of which typically around 200 endosome trajectories
were obtained with average length of 25 steps (exponentially distributed). Of
those, trajectories of lengths > 30 steps (At > 30 s) were further analyzed (typ-
ically 10 < N < 60 for one experiment). One wing imaginal disc (on average
17 cells were visible in our experiments) was analyzed more thoroughly for en-
dosome motility and we found that only 14% of long trajectories covered the
whole diameter of a cell, and that this movement took significantly longer than
150 s.

As an example of this movement, fig. 4.5a shows an endosome trajectory
of length 600 s showing clear directed transport in the x y-plane on a length
scale that matched the typical cell size. From the three-dimensional asym-
metry parameter (fig. 4.5b) it became clear that the endosome underwent di-
rected transport in parts of its trajectory. For one of those stretches lasting for
At = 15 s the two-dimensional (xy) MSD was calculated (fig. 4.5c.) From a
fit to eq. (4.4) the average lateral velocity by which this endosome was trans-
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Figure 4.6: a) Distribution of two-dimensional (x y) diffusion coeflicients D for Dpp-
containing endosomes. b) Distribution of the range in which each endosome moves.
For each dimension (x (along the gradient), y (perpendicular to the gradient), z (api-
cobasal)) the range is plotted. Endosomes clearly were more mobile in axial as com-
pared to lateral direction.

ported was v = 78 + 20 nm/s. This value is lower than what is typically found
in comparable systems [26, 27]. Hence, although we found trajectories which
could account for directed transport, the fact that we observed only few of
these events and that the observed velocities were low, rules out that they are
the main mediators of intracellular Dpp transport. In general we therefore
rule out that the motion of endosomes is facilitating intracellular transport or
is causing directionality herein.

For non-directional intracellular transport, endosomes do not need to
cover the whole diameter of a cell. They could travel from one position, close
to the cell membrane, to a random other one, either by diffusion or directed
transport and carry Dpp along with them. Here we analyzed whether diffu-
sion of endosomes was sufficient to play a role in intracellular Dpp transport.
Therefore we calculated the two-dimensional MSD versus time lag for each
endosome. We estimated the two-dimensional (x y) diffusion coefficient D by
fitting eq. (4.3) to the data for 1s < f,, < 25 s for each individual endosome.
The measured distribution of diffusion coefficients is shown in fig. 4.6a. The
mean diffusion constant which characterizes endosome transport was (D) =
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8.9+1.5-10~* um?/s. If we however do not take into account the endosome pop-
ulation which covered the range of a whole cell during the experiment (14%)
we obtain (D) = 6.9 £ 1.0 -10~* um?/s. For the upper limit (150 s) for intracel-
lular Dpp transport an endosome would cover on average an area of 0.4 um?
or a typical distance of 0.6 pm. For effective intracellular transport this value
is on the low side when compared to the cell diameter, also since most of the
endosomes were usually not close to the cell membrane. Therefore we rule out
here that mobility of whole endosomes will govern or facilitate intracellular
Dpp transport.

4.3.2 Axial endosomal movement

So far we addressed lateral (xy) motion of endosomes. In what follows the
axial (z, along the apicobasal axis) movement will be further evaluated. Since
the observed lateral diffusion coefficients were small and lateral movement was
small compared to the cell diameter, we did not expect to see a difference be-
tween lateral and axial movement. Lateral movement was even so small that
during the timeframe of our experiments (t=600 s) we did not observe any in-
fluence of the cell membrane and we did not find lateral confinement with the
size of the cell diameter. In fig. 4.6b a histogram is plotted showing the distri-
bution of ranges each endosome covered during the experiment. The average
covered range in x and y is 0.76+0.09 pm and 1.1+0.2 um, respectively. In z the
average range covered by an endosome equals 2.5 + 0.3 pm, more than twice
the range for lateral movement. Hence we found a clear difference between
lateral movement and movement along the apicobasal axis.

In fig. 4.7a a trajectory from an endosome showing preliminar apicobasal
directed motion is plotted. From the yz and xz projections it was clear that the
range of movement of the endosome in z was larger than in lateral directions.
From the asymmetry parameter (fig. 4.7b) several periods of directed transport
were detected. For one of these periods, indicated with an arrow in fig. 4.7a the
MSD versus time plot is shown in fig. 4.7c. During that period the endosome
was transported at an average velocity v = 283 + 32 nm/s. This value is well in
the range of velocities observed for intracellular transport by molecular motors
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Figure 4.7: a) 3D trajectory of a Dpp-containing endosome showing movement in x, y
and z. b) Asymmetry parameter of the trajectory shown in a). ¢) MSD versus time plot
of the part of the trajectory indicated with the arrow. Directed transport was observed
for 12 s and the endosome had an average velocity v = 283 + 32 nm/s.
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[26, 27]. Therefore we assume that this particular endosome was transported
by molecular motors during a period of 12 s thereby traveling a distance of 3.4
um. We excluded the possibility that the tissue as a whole was moving in axial
direction, since the axial movement of the other observed endosomes was not
correlated to the axial movement of the endosome shown in fig. 4.7.

We analyzed all long trajectories in this wing imaginal disc (N=27 trajecto-
ries) according to the methodology delineated in fig. 4.7. Figure 4.8a shows the
distribution of axial velocities for directed transport events, characterized by
an average of v, = 212+13 nm/s. Thereby axial transport lasted between 3 s and
15 s with average duration of 7.6 + 0.4 s (fig. 4.8b). It should be noted that short
(< 3's) periods of transport were not detected due to the temporal threshold
that had to be introduced into the trajectory analysis algorithm. Likewise slow
movements (< 50 nm/s) were not reliably detected if they occurred over short
periods of time. Averaged over periods of transport, during single transport
events endosomes travelled in axial direction by 1.4 + 0.1 um (fig. 4.8c). When
we summed the duration of all the periods of directed transport, we found that
in 6% of the time endosomes were clearly transported in the z-direction.

If all directed transport events were independent of each other, the distri-
bution of the time between events is expected to peak around 124 s (i.e. equal
to the total time without directed motion divided by the number of detected
directed motion events). Our data however showed a completely different dis-
tribution, as shown in fig. 4.8d. In 56% of the cases transport in the z direc-
tion (either apical or basal) was followed by transport in the opposite direction
within 17 s. In 32% of the cases reversal of transport is almost instantaneous.
Such a large fraction of trajectories showing fast reversal of the direction of
transport cannot be a result of random events. These events were most likely
actively driven and therefore correlated.



4.4 Results-Dpp content of endosomes 101

a) 15- b)
2 10+
104 %
>
>
2 \ o
g 5
(on [
o i O 54
o ° N 'g
N 5
z
0 NN\ 0
0 200 400 600 0 5 10 15
Velocity (nm/s) Duration of transport (s)
A d) 20
25_ 10
20- @215
c 5
> 1 o
>
% 151 - 10
L
8‘ S 00 25 50
@ 10- 2
L 1S
S 5
51 z
0 NS 0
0 1000 2000 3000 0 50 100 150 200
Length of transport (nm) Time between events (s)

Figure 4.8: Directed transport statistics for multiple endosomes showing data from all
the parts of the endosome trajectories where directed transport in the axial direction
(along the apicobasal axis) was observed. a) Distribution of velocities. b) Distribution
of duration of the detected directed motion, with an average p = 7.6 s and standard
deviation ¢ = 3.0 s. ¢) Distribution of total distance covered by each transport event.
d) Distribution of the time between transport events. The inset shows a zoom of the
histogram for the data where time between events < 50 s.
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Figure 4.9: a) Amount of Dpp molecules per endosome plotted versus the distance
to the source. Different colors indicate different wing imaginal discs. Fit of a single
exponential to the data gives a decay length A = 22 + 9 pm. b) Total number of Dpp
molecules (black squares) and number of Dpp endosomes (red triangles) in a volume
of 10x10x5 um? versus source distance for one wing imaginal disc (A = 20.8 + 3.4 um).
c) Apicobasal distribution of Dpp endosomes in the wing imaginal disc. All positions
of the detected endosomes in each image stack from an experiment are binned to-
gether. The apical edge of the columnar cells is defined as z = 0 um. d) Apicobasal
distribution of Dpp molecules (black squares) and number of Dpp endosomes (red
triangles) for the same disc as in b).
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4.4 Results-Dpp content of endosomes

4.4.1 Static characterization

The Dpp gradient was measured in wing imaginal discs (N=28) by locating
Dpp-containing endosomes relative to the source and determining their Dpp
content (fig. 4.9a). Each sample is indicated with a different color, showing the
large heterogeneity between different discs. On top of large inter-sample het-
erogeneity, the number of Dpp molecules per endosome varied enormously
within one disc. In one imaginal disc Dpp content was found to be ranging
from 21 to 244 Dpp per endosome, a variation of one order of magnitude.
Despite this heterogeneity the single-exponential nature of the gradient was
visible.

Fitting a single exponential decay to all data in fig. 4.9a (number of endo-
somes > 500) gave a gradient of decay length A = 22+ 9 um, agreeing well with
previous experiments where A = 20.2 + 5.7 um was found [10]. The average
amount of Dpp per endosome at the source (C,) was determined to be 110 + 10
Dpp molecules.

To remove the effect of inter-sample heterogeneity the amount of Dpp in
only one imaginal disc was measured as a function of the distance to the source
(fig. 4.9b, black squares). Images were taken at intervals of 10 um and all de-
tected Dpp was summed. The data was fitted to a single-exponential (omitting
the data point at x = 0 um, since the image at that point contained both the
Dpp-producing cells as well as the Dpp-receiving cells). The gradient has a
decay length A = 20.8 + 3.4 um, which again agrees nicely with previously
obtained results.

In the following we analyzed the data in more detail to unravel which un-
derlying property was the source of the Dpp gradient. The observed single-
exponential gradient can arise in three different ways:

1. The concentration of Dpp per endosome is constant and the number of
endosomes per cell decreases further away from the source;

2. The opposite, i.e. a constant number of endosomes per cell and a de-
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creasing amount of Dpp per endosome versus distance to the source;

3. A combination of 1 and 2.

From a biological point of view (1) seems to be unlikely, since the function
of endosomes is not limited to collecting and transporting Dpp. A decrease
of number of endosomes further away from the Dpp source would therefore
also affect other cellular processes which involve endosomes. The same rea-
soning qualifies option (3) also as less likely. Furthermore a combination of
changing the Dpp concentration and the number of endosomes seems to be a
complex way to establish a single-exponential gradient. We therefore predicted
that mechanism 2 will be the most likely mecahnism of gradient formation.

We confirmed this experimentally by measuring the average number of de-
tected Dpp-containing endosomes versus distance to the source for the same
wing disc as was used before (fig. 4.9b, black squares). The result is plotted in
fig. 4.9b (red triangles). Our data show that over a large range (Ax = 19 cells)
the number of detected Dpp endosomes stays constant (44 +2 Dpp endosomes
per 500 um?). While previous experiments have shown the presence of a gra-
dient for the whole Dpp population, our results demonstrated that also the
endosomal Dpp subpopulation (85% of total Dpp population [10]) faithfully
reflects the morphogen gradient, while the number of endosomes that contain
Dpp does not change with distance to the source.

Besides the lateral distribution of Dpp we further studied the apicobasal
distribution of Dpp endosomes and of Dpp itself. Previously it has been found
that most of Dpp is located in the most apical 5 pm of the wing epithelium
(5, 10]. We confirmed this by imaging the most apical 25 pm of the wing ep-
ithelium (data not shown). For one experiment (600 image stacks, lateral size
= 10x10 pm?, axial size = 5 um.) the distribution of the z-positions of all de-
tected endosomes during the movie were plotted in fig. 4.9c. In this experi-
ment the majority of the endosomes were clearly confined to a layer of 3 um
within the tissue. In fig. 4.9d the apicobasl distribution of Dpp (black squares)
and the apicobasal distribution of Dpp endosomes (red triangles) is shown for
the most apical layer of 5 um of the wing disc (distance to the source ranges
from 0 um till 50 pm). We again observed that the amount of Dpp is largest
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at the most apical side of the cell and decreases basally. Interestingly, also the
amount of Dpp endosomes was largest in the most apical part of the cell. The
relative decrease of the number of Dpp endosomes however is smaller than the
relative decrease of the amount of Dpp. Therefore the average amount of Dpp
per endosome is also the highest close to the apical membrane and decreases
basally.

4.4.2 Dynamic characterization

As was shown before (fig. 4.5a & fig. 4.7a) Dpp-containing endosomes were
followed for up to 600 frames for endosomes with high (>100 Dpp molecules)
Dpp content. Such trajetories allowed us to study the fluctuations in the flu-
orescence signal of individual endosomes. The signal is taken as direct mea-
sure for changes in the Dpp concentration in the endosome. However, due
to photobleaching, the fluorescence intensity of each endosome will decrease
over time which in turn would translate into an apparent reduction of Dpp
molecules in the endosome. Hence, to correct for photobleaching we mea-
sured for each experiment the average intensity per endosome for every time
point, as shown in fig. 4.10a. A bi-exponential decay was subsequently fitted to
the data and the curve obtained was in turn used to correct the intensity profile
for each individual endosome in retrospect.

Figure 4.10b shows the Dpp content of the endosome versus time in a living
wing disc (blue curve) and in a fixed wing disc (red curve) in which supposedly
no dynamics took place. For the fixed sample the 20 confidence interval level
for the noise is shown (dashed area) which arises from both photon shot noise
(50 % of total noise) as from sources in the sample itself (out-of-focus fluores-
cence). For the experiment in the live wing disc, data were treated accordingly.
In contrast to the data on the fixed wing disc the observed fluctuations clearly
fall outside of the 20 interval and cannot be purely explained by noise. Fig-
ure 4.10c and fig. 4.10d show the distribution of the measured intensities for
the fixed and the living wing disc endosome, respectively. As predicted, the
intensity distribution for the fixed wing disc endosome was fully described by
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Figure 4.10: a) Average intensity per endosome for each image stack. A bi-exponential
is fitted to the data and this curve is used to correct the intensity profile of individual
endosomes in this experiment. b) The intensity of two endosomes plotted versus time
and corrected for photobleaching. The red curve shows data from an endosome from
a wing disc in which all material was fixed. The blue curve shows the intensity of an
endosome from a live wing disc (not fixed). The expected noise in the intensity is indi-
cated by the dashed area. c) Histogram of the intensity values of the data from the fixed
endosome in (b). As expected the shape of the histogram is Gaussian, and thus the in-
tensity fluctuations are fully explained by noise. d) Histogram of the intensity values
of the data from the not-fixed endosome in (b). The shape of the histogram is clearly
non-Gaussian, indicating that the intensity fluctuations cannot only be explained by
noise.
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a Gaussian with p = 17392 + 25 counts and ¢ = 827 + 25 counts.? The intensity
distribution for the non-fixed endosome however, could not be described by a
simple Gaussian distribution, supporting the conclusion that the fluctuations
are not purely caused by noise, but by Dpp dynamics. Since the noise level in
all experiments was on the order of a few Dpp molecules (depending on the
total intensity) we conclude that our experimental setup was sensitive enough
to directly observe in- and outflow of Dpp from endosomes in small packages
of Dpp.

As explained before (section 4.1.1) changes in Dpp concentration in an en-
dosome occur when a vesicle containing Dpp fuses with an endosome (up
steps) or when Dpp is removed from an endosome (down steps), see fig. 4.2. By
collecting many trajectories of endosomes and their Dpp-concentration pro-
files we obtained distributions of C.h4o, k; and ¢;. These distributions were
subsequently used to make a detailed quantitative description of events in in-
tracellular Dpp transport. It should be noted that in this analysis we could not
segment the endosomes according to their type (i.e. early, recycling or late) and
the obtained distributions will therefore represent multiple underlying events.

To determine if the events in intracellular transport as described in sec-
tion 4.1.1are involving individual Dpp molecules or clusters of Dpp we studied
the size of the changes in Dpp concentration for each endosome. For this pur-
pose we obtained Dpp concentration profiles for each individual endosome (an
example is shown in fig. 4.11a) and subsequently used a step-fitting algorithm
[21] to determine the step size of each event. This has been done for many dif-
ferent endosomes, resulting in 179 ‘step’-events, the distribution of step sizes is
shown in fig. 4.11b. From the result it became clear that both in- and outflow
events usually involve clusters of Dpp, with 97% of the events having a Dpp
cluster size of 25 or less.

To determine if there was a difference between the Dpp cluster size for Dpp
in- or outflow we calculated the average cluster size for both groups. For up-
steps we found (Ac;,) = 8.5 + 1.1 Dpp and for down-steps (Acyy) = 6.6 + 0.6

% Although shot noise is Poissonian distributed, it can be approximated by a Gaussian dis-
tribution for large values
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Figure 4.11: a) Intensity of a Dpp endosome versus time (black line). The green line
shows the result of the applied step-fitting algorithm [21]. b) Distribution of step sizes
independent of distance to the Dpp source. The size of Dpp steps seems to be expo-
nentially distributed with an average of (Acy,) = 8.5 + 1.1 Dpp for Dpp inflow and
(Acout) = 6.6 = 0.6 Dpp for Dpp outflow. Small steps (< 2 Dpp) are within the noise
and explain the dip in the data at Aceng, = 0. ¢) Time between fusion events (Dpp in-
flow). Fitting with a single exponential gives ko = 0.75+0.20 min~'. d) Time between

off-events (Dpp outflow). Fitting with a single exponential (first order rate reaction)

gives kog = 1.1+ 0.2 min".
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Dpp. Hence, inflow is characterized by smaller clusters as compared to Dpp
outflow. It should be noted that further conclusions based on the shape of the
step-size distribution should be drawn with care. The data was taken at differ-
ent distances to the Dpp source and therefore the distance distribution of the
experiments influences the distribution of observed step sizes (more experi-
ments close to the Dpp source will contain more endosomes with high Dpp
content and could result in larger step sizes and vice versa). Furthermore, the
distribution is slightly biased to larger step sizes. First, small steps (up to a
tew Dpp) could not be observed because of noise. Secondly, small steps will
be more difficult to detect when the endosome fluorescence has significantly
bleached. At that moment only a certain fraction of the Dpp in a ‘step-event’
will be still fluorescent and therefore become more difficult to detect. The
bleach-correction algorithm cannot correct for this since it not only increases
the fluorescence to original levels, it also increases the noise associated to it.

The difference between the cluster size for Dpp in- and outflow should be
reflected in the frequency of these events, provided that both processes are in
equilibrium. Therefore, we measured the time between events of the same type
(i.e. inflow-inflow and outflow-outflow) using the output of the step-fitting
algorithm. The result is plotted for Dpp inflow (fig. 4.11c) and Dpp outflow
(fig. 4.11d). Fitting a single exponential yielded k,, = 0.75 + 0.20 min™! and
kog = 1.1+0.2 min~!. The average outflow rate ( Acou ) koff = 7.3 Dpp/min hence
equals (within the margin of error) the average inflow rate (Aci,)ko, = 6.4
Dpp/min, showing that the system is in a steady state indeed. It should be
noted that the distributions in figs. 4.11c,d are probably biased towards longer
times, since rapid events involving small changes in Dpp content could not be
observed during our experiments.

The obtained values for the in- and outflow rates for individual Dpp are
larger than those obtained previously in chapter 3. For the slow limit of intra-
cellular transport (150 s for the whole process) there we found ¢, ., = 53 s and
t.r = 100 s for early and recycling endosomes, respectively (with an average
t. = 77 s), while here we find ¢, = 8.2 s. These numbers however do not rep-
resent the same parameter of the model. Here we analyzed the time between
events, which in itself does not allow us to conclude on the residence time



110 Endosome motility and endosomal cargo dynamics

of Dpp in endosomes, which was calculated in chapter 3. The time between
events also depends on the number of Dpp in the endosome. The more Dpp in
an endosome, the shorter the time between events for the same residence time.
Hence, from the difference between the values we can predict that there should
be 77/8.2 = 9 Dpp molecules on average per endosome in our experiments.

We found however that the endosomes in which we observed Dpp-concen-
tration changes, had an average Dpp content of 77+7 Dpp molecules. From this
we concluded that 88% of the Dpp in endosomes appeared to be immobile on
the timescale of our experiments. This immobile fraction of Dpp has been de-
tected before by FRAP experiments, where it was determined to be 62+8% [10].
We suggest that the rest of the difference between the FRAP experiments and
our experiments is explained by experimental limitations, which prevented us
from seeing small changes in Dpp concentration.

The model presented before (fig. 4.2) contains six events which all could re-
sult in the Dpp concentration changes observed. At the same time the model
reveals three redundant parameters (—c, = c; + ¢4) which involve vesicle trans-
port between endosomes. Therefore they will appear both as up-steps and as
down-steps in fig. 4.11b, assuming there is no change in vesicle composition
during the transport between endosomes. As a result we rule out events 2, 3
& 4 (i.e. fission of a vesicle containing Dpp from an early endosome which is
transported either to a recyling endosome or a late endosome) as possible con-
tributors to the difference between up- and down-steps. The observed differ-
ence can therefore only arise from a difference in the number of Dpp molecules
that are endocytosed in one step on one hand, and that are recycled and/or de-
graded on the other hand.

In fig. 4.11d we analyzed the time between fission events. As predicted for a
first-order reaction the distribution followed a single-exponential decay. Such
first-order reaction (i.e. fission from an early, recycling or late endosome) is
summarized in:

Endosome — Endosome + Dpp-vesicle (4.5)

As was shown in chapter 3 the fraction € of Dpp transferred from an early
endosome to a recycling endosome determines the decay length A of the gra-
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dient. Hence, for a well defined gradient it is necessary to keep ¢ stable. This
could be achieved by an active process in the early endosome in which vesicles
are predestined to be transferred to a recycling endosome or a late endosome.
Since 99.6% of Dpp is transferred to a recycling endosome, in this hypothet-
ical active process, a controlled threshold in Dpp concentration needs to be
reached before a vesicle with Dpp leaves the endosome. In a passive process
on the other hand the amount of Dpp in the vesicle would be proportional to
the Dpp content of the endosome and ¢ (and hence the gradient) would be
statistical.

To distinguish between the two possible processes we calculated the relative
step size of all the down-steps. Figure 4.12a shows the distribution of the Dpp
concentration in endosomes (Cepgo) just before an outflow-event took place.
The distribution is clearly peaked around 30 Dpp molecules. The distribution
of step sizes of the down-steps (dCengo) is shown in fig. 4.12b which shows a
resemblance to fig. 4.12a. The latter observation can be best seen in the relative
step size (]IC%TZ? distribution (fig. 4.12c). The distribution is sharply peaked at
0.11, hence in each event 11% of the Dpp content is exchanged. At first sight we
concluded from this that the off-events are passive events. However, since the
data was slightly biased towards larger step sizes, a fraction of the small relative
changes will automatically not appear in fig. 4.12c. Hence, from this data alone
we could not rule out that there is still an active process that decides how many
Dpp is transferred to a vesicle during a fission event.

Therefore we also analyzed the step sizes versus distance to the Dpp-source.
Asa consequence of the single exponential distribution of Ce,q, (fig. 4.9a) and a
constant relative step size, the absolute step size d Cepgo should become smaller
turther away from the source in a passive model. Figure 4.12d shows d C¢pq, as
a function of the distance to the source. Fitting a straight line to the data indeed
confirmed that dC,,q, became smaller further away from the source. Fitting
a single exponential decay did not significantly improve the fit. Averaging the
data (fig. 4.12e) showed that both oft-steps and on-steps are smaller further
away from the source.
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Figure 4.12: a) Distribution of Dpp concentration (Cepgo) in endosomes that undergo
an off event. b) Distribution of step sizes (d Cendo) in off events. ¢) Histogram showing
the distribution of relative step sizes (dcce—“d") The distribution is peaked around 0.11.
d) Step size plotted as a function of distance to the source. The red line shows a fit
to the data. e) Average step size plotted versus distance to the source for both up and
down steps.
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4.5 Conclusion

In conclusion we found that the motility of endosomes by itself cannot account
for intracellular transport, the observed diffusion constants are too low and
almost no lateral active transport occurs. Our observation of regular active
transport along the apicobasal axis seems to suggest that endosomal transport
takes part in Dpp breakdown.

Static characterization of endosomal Dpp content showed that the num-
ber of Dpp-containing endosomes does not vary along the Dpp gradient. The
Dpp concentration in those endosomes however becomes smaller further away
from the source. From the apicobasal distribution of Dpp endosomes we found
that both the number of endosomes and the Dpp content in endosomes is
smaller more basally in the tissue.

Intracellular transport of Dpp is governed by small vesicles, which travel
between endosomes. Those vesicles contained up to 25 Dpp molecules. Dpp
inflow happened in larger cluster sizes than Dpp outflow. From this we con-
cluded that the number of Dpp molecules endocytosed in one step is larger
compared to the number of Dpp molecules that is recycled or degraded in one
step.

The time between fusion of vesicles with an endosome was about 1 minute
on average. A similar value was found for time between fission of vesicles
from an endosome. In combination with the results from chapter 3 we found
that 88% of Dpp appears to be immobile on the timescale of our experiments,
hereby supporting previous FRAP experiments. Control of the vesicle concen-
tration is a result of a passive, probabilistic process.

The quantitative information we obtained on vesicular transport here will
have to be integrated in the future into more detailed models to describe the
intracellular transport that controls morphogen spreading in tissue and animal
development.
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Samenvatting

Groei en ontwikkeling. Elk organisme, of het nu een mens, een plant of een
bacterie is, heeft ermee te maken. Het is zelfs zo belangrijk dat leven simpel-
weg niet zou kunnen bestaan zonder groei en ontwikkeling. Ze zijn zo van-
zelfsprekend dat niemand er raar van opkijkt wanneer een pasgeboren baby
enkele weken later al centimeters is gegroeid en diezelfde baby na een paar
jaar al behoorlijk kan praten. Als we echter wat verder kijken blijken de pro-
cessen die groei en ontwikkeling mogelijk maken uiterst complex. Er zijn dui-
zenden verschillende processen die er uiteindelijk voor zorgen dat een enkele
bevruchte eicel uitgroeit tot een volwassen mens. Door deze grote hoeveel-
heid aan processen lijkt het een onbegonnen werk om groei en ontwikkeling
te doorgronden.

De ontwikkelingsbiologie is de tak van wetenschap die de groei en ont-
wikkeling van organismen bestudeert en deze probeert te begrijpen. De ont-
wikkelingsbiologie is al erg oud; Leonardo da Vinci was in de 16e eeuw al
geinteresseerd in de groei van de menselijke foetus en maakte er tekeningen
van. Tegenwoordig bestuderen we groei en ontwikkeling steeds vaker door
naar processen te kijken die zich op cellulair en subcellulair niveau afspelen.
De ontwikkelingsbiologie is hierbij in drie hoofdgebieden in te delen. Die hou-
den zich bezig met:

+ de groei van cellen;
« de differentiatie van cellen;

« devorm en structuur van weefsel, organen en volledige organismen, ook
wel morfogenese genoemd.

In dit proefschrift houden we ons met dit laatste gebied bezig. Eén van de
belangrijke vragen in de morfogenese is hoe een cel weet waar hij zich bevindt.
Een niercel heeft immers een andere functie dan een hersencel, terwijl alle cel-
len in een organisme toch hetzelfde genetische programma (DNA) hebben. En
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Figuur 5.1: De ‘imaginal disc’ van de vleugel van de fruitvlieg. a) Bovenaanzicht van
de imaginal disc. De disc is ongeveer een halve millimeter lang. Dpp is met groen
aangegeven, de producerende cellen zijn duidelijk zichtbaar. b) De vleugel van een
volwassen fruitvlieg. ¢) Een dwarsdoorsnede van de imaginal disc over de lijn van A
(anterior) naar P (posterior) in figuur (a). De twee lagen cellen zijn duidelijk zichtbaar.
De Dpp-producerende cellen zijn met groen aangegeven.

wanneer zon cel eenmaal weet in welk orgaan hij zich bevindst, is het ook nog
van belang of hij zich in het midden of aan de rand van het orgaan bevindt.
Dit laatste is precies wat we in dit proefschrift hebben bestudeerd.

We hebben hiervoor een modelsysteem gebruikt: de ‘imaginal disc’ van
de vleugel van de fruitvlieg (Drosophila melanogaster). Deze ‘imaginal disc’ is
een schijf (fig. 5.1a) in de larve van de fruitvlieg en wordt na de verpopping
een vleugel (fig. 5.1b) van de volwassen vlieg. De schijf bestaat uit twee lagen
cellen. De bovenste laag bevat grote, platte cellen en de onderste laag bestaat
uit langgerekte, kolomvormige cellen. Figuur 5.1c toont een dwarsdoorsnede
van de ‘imaginal disc, waarin de twee lagen cellen duidelijk te zien zijn.

Voor de kolomvormige cellen is het van belang om te weten waar ze zich
in de ‘imaginal disc’ bevinden. De aderen die zich in de volwassen vleugel be-
vinden (zoals te zien in figuur 5.1b) moeten bijvoorbeeld op specifieke locaties
worden aangelegd. Het eiwit Dpp (Decapentaplegic) speelt een belangrijke rol
in de positiebepaling van de kolomvormige cellen in de ‘imaginal disc’ Dpp
is een morfogeen, een molecuul dat aan cellen informatie geeft over hun po-
sitie. In het midden van de schijf bevindt zich een band van kolomvormige
cellen waarin productie van Dpp plaatsvindt. In figuur 5.1a en 5.1c zijn deze
producerende cellen met groen aangegeven.
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Figuur 5.2: De Dpp-gradient. De concentratie van Dpp (kleine groene cirkels) neemt
af naarmate de afstand tot de producerende cellen (aangegeven met groen) groter
wordt. Athankelijk van de Dpp-concentratie worden bepaalde genen wel of niet tot
expressie gebracht. Dit leidt vervolgens tot wel of geen productie van bepaalde eiwit-
ten.
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Alle kolomvormige cellen die geen Dpp produceren, noemen we de ont-
vangende cellen. Door de producerende cellen wordt Dpp uitgezonden naar
de ontvangende cellen. Het Dpp verspreidt zich vervolgens over de hele schijf
en vormt zo een concentratie-gradiént, zoals te zien in figuur 5.2. Hoe ver-
der cellen zich van de Dpp-bron bevinden, hoe lager de Dpp-concentratie op
hun positie. De ontvangende cellen kunnen deze Dpp-concentratie meten en
athankelijk van de concentratie produceren ze bepaalde eiwitten wel of niet.

In dit proefschrift hebben we bestudeerd hoe Dpp van de producerende
cellen naar de ontvangende cellen wordt getransporteerd. Er zijn drie ver-
schillende transportmechanismen bekend, waarvan wij er één onderzochten:
het intracellulaire Dpp-transport. Figuur 5.3 toont een schematische weergave
van intracellulair Dpp-transport voor één cel. Via een proces dat we endocytose
noemen, neemt de cel Dpp op. Vervolgens wordt het Dpp door verschillende
endosomen geleid. Endosomen zijn de verdeelstations van de cel. Na opname
van Dpp door de cel transporteren vesicles (een kleinere variant van endoso-
men) het Dpp naar een ‘vroeg’ endosoom. Vervolgens zijn er twee mogelijkhe-
den: (i) Dpp gaat weer de cel uit via een ‘recycling’-endosoom en aansluitend
vindt exocytose plaats, waarna de hele cyclus weer opnieuw kan beginnen, 6f
(ii) Dpp gaat naar een ‘laat’ endosome, waarna het gedegradeerd wordt in een
lysosoom.

Om te begrijpen hoe dit intracellulaire Dpp werkt volgden we individuele
Dpp-moleculen met een fluorescentiemicroscoop. Daarvoor hebben we een
geel fluorescent eiwit met het Dpp gefuseerd. Wanneer we er dan met een
groene laser op schijnen, zendt het Dpp een gele kleur uit. Op die manier
kunnen we, zonder het weefsel te beschadigen, elke seconde een foto maken
van de Dpp-moleculen in de schijf. Uiteindelijk hebben we op deze manier
filmpjes gemaakt van zo'n 10 minuten per stuk.

Tot nu toe was over de verschillende stappen van intracellulair Dpp-trans-
port vooral kwalitatieve informatie beschikbaar. Met behulp van onze filmpjes
hebben we vervolgens deze processen kwantitatief beschreven. Voorbeelden
van deze processen zijn hoe lang een Dpp-molecuul zich in een bepaald en-
dosoom bevindt, met welke snelheden de endosomen zich bewegen, hoe groot
de groepjes zijn waarin Dpp in vesicles getransporteerd wordt en of dit athangt
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Figuur 5.3: Schematische weergave van intracellulair Dpp-transport in een ontvan-
gende cel. Via endocytose wordt Dpp opgenomen door de cel. Kleine vesicles trans-
porteren het vervolgens naar een ‘vroeg’ endosoom. Vanuit dit vroeg endosoom gaat
het Dpp vervolgens naar een recycling’-endosoom of een ‘laat’ endosoom. In het eer-
ste geval gaat Dpp uiteindelijk weer de cel uit via exocytose, waarna de hele cyclus
weer opnieuw kan beginnen. In het tweede geval (het laat endosoom) betekent dit het
einde van het Dpp-molecuul: degradatie vindt plaats in een lysosoom.
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van de hoeveelheid Dpp in een endosoom.

Omdat fluorescentiemicroscopen nog niet erg geschikt waren om snel ei-
witten in drie dimensies te volgen bedachten we eerst een methode om dit wel
mogelijk te maken. Hoofdstuk 2 beschrijft deze techniek. Ook bepaalden we
op verschillende manieren wat de eigenschappen van deze nieuwe techniek
zijn. De nauwkeurigheid van de positiebepaling van individuele moleculen
hebben we zowel theoretisch, met simulaties als met experimenten vastgesteld.
Met fluorescente deeltjes in levende cellen toonden we vervolgens aan dat de
microscoop geschikt is om biologische vraagstukken aan te pakken. Deze 3D-
microscoop was dus ook erg geschikt om op een kwantitatieve manier het in-
tracellulaire transport van Dpp te bestuderen.

In hoofdstuk 3 bekeken we hoe lang Dpp zich in de ‘vroege’ en in de ‘recy-
cling’-endosomen bevindt. Daarvoor hebben we de vroege endosomen ook
fluorescent gemaakt, maar met een andere kleur dan het Dpp. Met een nieuw
experimenteel algoritme, Particle Image Cross-Correlation Spectroscopy, be-
paalden we vervolgens nauwkeurig hoeveel procent van de Dpp-moleculen
zich in de vroege endosomen bevond. Met behulp van een model vonden we
dat een Dpp-molecuul gemiddeld korter in een vroeg endosoom zit dan in
een recycling-endosoom. Ook ontdekten we dat vroege endosomen gemid-
deld twee keer zoveel Dpp bevatten als andere endosomen.

Hoofdstuk 4 behandelt twee andere aspecten van intracellulair Dpp-trans-
port. Eerst keken we naar de mobiliteit van endosomen en welke rol deze speelt
in Dpp-transport. Hiervoor volgden we de 3D-positie van endosomen met
Dpp gedurende een lange tijd. Hieruit bleek dat endosomen veel te langzaam
bewegen om een effectief transportmiddel te zijn voor Dpp. Blijkbaar is dus
het transport dat tussen de verschillende endosomen plaatsvindt hiervoor be-
langrijker. Dit transport tussen de endosomen wordt gefaciliteerd door de eer-
dergenoemde ‘vesicles. In onze experimenten konden we deze vesicles helaas
niet zien.

Om toch meer te weten te komen over dit aspect van Dpp-transport, keken
we naar de hoeveelheid Dpp-moleculen in endosomen en hoe dit verandert in
de tijd. Hieruit bleek dat de hoeveelheid Dpp in endosomen stapsgewijs veran-
dert en dat deze stappen vaak meerdere Dpp-moleculen groot zijn. Dpp wordt
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dus blijkbaar in clusters opgenomen door cellen en dus ook in clusters getrans-
porteerd tussen de endosomen. Verder vonden we ook dat uitstroom van Dpp
uit endosomen een passief proces is en lineair athankelijk is van de hoeveelheid
Dpp in het endosoom. Er is dus geen bepaalde drempelwaarde nodig voordat
Dpp uitstroom plaatsvindt. Met de kennis uit hoofdstuk 3 bepaalden we ver-
volgens dat een deel van het Dpp niet mobiel is en dus niet getransporteerd
wordt op korte tijdschalen.

Samenvattend heeft dit onderzoek geleid tot een nieuwe experimentele
techniek waarmee biologische processen bestudeerd kunnen worden. Met be-
hulp van deze techniek verkregen we meer inzicht in de subcellulaire proces-
sen die een rol spelen in het intracellulaire transport van Dpp. Hiermee is dit
werk een van de eerste onderzoeken die deze processen kwantitatief beschrijft.
Ook heeft het bijgedragen aan een verbeterd inzicht in de processen die een
rol spelen bij de groei en ontwikkeling van organismen.
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