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Chapter 1

Introduction

One of the most fundamental questions in life is how an organism grows and

develops from a single cell into a fully grown adult. A major step forward in
solving this question was the discovery of the molecule that contains all the

information needed by an organism: DNA. It was further found that every cell
in an organism contains an exact copy of this DNA. �is immediately posed
another question: how do cells, while having the exact sameDNA, knowwhere

they are located in the organism andwhat functions they should perform. How
does a cell know whether it is a kidney cell and not a heart or brain cell, and
even more, how does it know where it is located within the kidney?

�e work described in this thesis addresses some aspects of this question

by studying amodel system, the wing imaginal disc of the fruit �y larva. While
the cells in this disc are very similar, they still are able to determine where they

are located within the wing by detecting the concentration of speci�c proteins,
called morphogens. �ese morphogens are produced locally within the tissue
and form a gradient throughout the tissue. Morphogens play a key role in

growth and patterning of the organism. �e subcellular processes that govern
the formation, the maintenance and the shape of the morphogen gradient are
the main focus of this thesis. �is introductory chapter discusses the subjects

in the current study: morphogen gradients, endosome transport and single-
particle tracking in cells and tissue. It also gives an outline of the scope of this

thesis.



2 Introduction

1.1 �emorphogen gradient

1.1.1 Morphogens

Almost 60 years ago Turing proposed that morphogens are providing the po-
sitional information for cells in developing organisms in which they are ex-

pressed in all the cells in the tissue [1]. Wolpert in turn proposed that mor-
phogens are actually produced by spatially localized special cells. By spread-
ing throughout the tissuemorphogens form a gradient in the neighboring cells,

the receiving tissue [2]. �ere the morphogen is detected by receptors on the
cell surface. Depending on the morphogen concentration cells will adapt their
gene expression pattern. Figure 1.1 shows a schematic drawing of amorphogen

gradient.

Most of the models describing morphogen gradients assume, and experi-
ments have proven, that the system is in a steady state. �e formation of mor-

phogen gradients occurs in a much shorter period than the time needed for
patterning tissue [3]. In general two models exist that describe a steady mor-

phogen gradient in tissue. When degradation takes place at a discrete loca-
tion a linear gradient forms [3], while if degradation occurs in all the receiving
cells, the morphogen gradient will have an exponential shape [4]. Experimen-

tally the latter was found to be the case in the wing imaginal disc of the fruit
�y Drosophila melanogaster in which the morphogens Decapentaplegic (Dpp)

and Wingless (Wg) play an essential role during development of the wing of
the �y [5].

1.1.2 Dpp

Decapentaplegic (Dpp) is a morphogen of size 77 kDa which controls the pat-
terning and development of the di�erent imaginal discs in the fruit �y Droso-
phila melanogaster. �e name decapentaplegic comes from the observation

that in most dpp mutants at least 15 of the 19 imaginal discs show defects [6]
(��een=decapenta in Latin). Among those discs two, the wing imaginal discs,

will develop later into the wings of the �y.
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Figure 1.1: Schematic drawing of a morphogen gradient. Morphogens (small green

circles) are produced in spatially localized cells (green) and form a gradient in the

receiving tissue. Receiving cells express genes (red and blue) depending on the mor-

phogen concentration (C1 and C2)
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Dpp is amember of theTGF-β superfamily and is homologous to the verte-
brate BoneMorphogenetic Protein (BMP). Dpp takes part in a major develop-
mental signaling pathway. �e receptor for Dpp was found to be composed of

�ickveins (Tkv) [7] and Punt [8]. A�er formation of the Dpp-receptor com-
plex the intracellular protein Mad (Mothers against dpp) is phosphorylated.

Subsequently pMad controls activation of transcription of its target genes opto-
motor-blind (omb) and spalt (sal) in a Dpp concentration-dependent manner
[9]. Optomotor-blind is a requirement for the development of the wing [10],

Spalt plays a role in the formation and positioning of speci�c veins in the wing
[11]. Besides playing a role in the Dpp signaling pathway, the Dpp receptor is

also required for Dpp-receptor internalization. �is process plays a major role
in Dpp spreading and degradation [12–15].

In the wing imaginal disc Dpp is produced at the anterior-posterior com-
partment boundary [16] fromwhich it is secreted to the neighboring receiving

cells. Dpp forms a steady-state single-exponential gradient which can fully be
described by three parameters: the production rate, the di�usion constant and
the degradation rate [4].

1.1.3 Morphogen spreading

�e spreading of Dpp in the receiving cells has been a subject of study for
many years. Inmost of those studies (confocal)microscopy supplementedwith

dynamic techniques like �uorescence recovery a�er photobleaching (FRAP)
were combined with sophisticated genetic technologies in order to describe
the morphogen gradient and its spreading in terms of a coarse-grained con-

centration pro�le in the tissue. �ose experiments suggest that Dpp is spread
by three di�erent mechanisms:

1. Di�usion in the extracellular matrix [17];

2. Receptor-mediated transport [18];

3. Intracellular transport [12], i.e. multiple endocytosis and subsequent re-

cycling events into the extracellular matrix [19].
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�e extracellular di�usion and receptor-mediated transport are governing
short-range spreading, while intracellular transport is essential for long-range
spreading [20]. �eoretical calculations have estimated that one cycle of intra-

cellular transport has a duration between 50 and 150 s [19, 21].

In the current thesis we strive to extend the settled coarse-grained mod-
els of intracellular Dpp transport to a more molecular model that involves

endosome-mediated Dpp transport. We studied endosome transport by 3D
�uorescence microscopy. �e experimental approach will be outlined in the

next section.

1.2 Particle tracking in cells and tissue1

For long microscopy has been one of the primary techniques in biological in-

vestigation. In particular light microscopy which allows one to directly ob-
serve biological processes in vivo is used on an every-day’s basis in biology

laboratories. One of the characteristics of a system in vivo - or a live system
- is the constant movement of all its components. �e mobility of ions, small
molecules like ligands, proteins whether membrane-bound [22–29] or located

in the cytosol [30–32], and larger assemblies like vesicles [33, 34], the nucleus
[35] or viruses [36], is �nally determining the way how the system evolves and

self-regulates. Hence, in a strive to understand living systems on amicroscopic
mechanistic basis onewants to characterize themobility of its components and
combine this knowledge to the functional state of the system.

�e two main classes of mobility, i.e. unrestrictive di�usion and linear di-

rected motion, are rather the exception in the context of the complex envi-
ronment of the cell and tissue [37, 38]. Proteins, for example, might for some

time di�use freely through the cytosol. However, due to binding events or
restriction in their di�usional space, their mobility may become slowed on
longer time and length scales. Likewise a vesicle, which is immobile for an

1�is section is based on: L. Holtzer and T. Schmidt, Single-Molecule Tracking in Cells
and Tissue in ‘Single Particle Tracking and Single Molecule Energy Transfer: Applications in
the Bio and Nano Sciences’, C. Bräuchle, J. Michaelis and D.C. Lamb (eds.), Wiley 2009.
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initial phase of observation, could be actively transported at a later phase due
to molecular motors which follow a microtubular track [39–42]. Recording
and classi�cation of such complex mobility behavior in a statistically signi�-

cantmanner asks for a signi�cant and careful e�ort in technology development
and automated analysis tools to render successful.

In what follows we describe the foundations for the technology developed
by us and others in order to permit tracking of individual molecules and small
molecular assemblies. We will mainly focus on applications in biomembranes,

in cells and in tissue, and illustrate by selected examples how biological infor-
mation is extracted by a detailed analysis of molecular mobility.

1.2.1 Single-molecule and single-particle localization

�e use of wide-�eld �uorescence microscopy allows for parallel, hence fast
data acquisition. It is therefore the most appropriate technology for track-

ing moving molecules and objects. In wide-�eld �uorescence microscopy an
isotropic emitter smaller than the di�raction limit will appear as a di�raction
limited spot in the image plane [43]. Its image is characterized by a sym-

metrical signal distribution around the center with the maximum intensity
at the center of the spot. �e intensity distribution I(x , y) of such an object
on a highly-sensitive CCD camera used in the experiments described, is de-

termined by the point spread function (PSF). A good approximation of the
PSF is given by a two-dimensional Gaussianwith full-width-at-half-maximum

(FWHM) equal to w = 1.03λ/NA, with λ the wavelenght of the emitted light
and NA the numerical aperture of the microscope objective [22, 44, 45]:

I(x , y) = N 4 ln 2

πw2
exp [−4 ln 2((x − µx)2

w2
+ (y − µy)2

w2
)] (1.1)

where µx and µy are the x and y coordinates of the object, andN the total num-
ber of detected photon-counts. It should be mentioned that the positions are

determined with nanometer precision although the typical size of the gener-
ated image,w, is larger than the object [46]. �is fact is called super-resolution

and will be described in detail later.
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Identi�cation of individual molecules is complicated by unavoidable back-
ground signals in living cells due to out-of-focus objects and auto�uorescent
particles. �erefore image pre-processing and reliable background removal

is necessary. It turned out that background signals are satisfactorily removed
by applying a spatial low-pass �lter to the image with a cut-o� frequency of

5/w, frequencies which are far below the frequencies generated by the objects
of interest. Subtraction of the �ltered image from the original image reliably
yields an image with a zero background. Likewise static objects are faithfully

removed using a temporal low-pass �lter on the movie stack and subsequently
subtracted from the original image. �e latter method needs to be applied

carefully in order not to remove slowly moving or static objects of interest.

A�er appropriate background subtraction automatic object identi�cation
and position analysis is performed. An easy and fast way to determine the

position of the object in the object plane is calculating the center of mass, or
centroid, of its image for each axis

µx = My∑
i=1

Mx∑
j=1
(xi ⋅ Ii j)/ My∑

i=1
Mx∑
j=1

Ii j (1.2)

where Ii j is the signal at a pixel (i, j) [47, 48]. It is important that the �uores-
cence intensity of the image has no o�set, as this will bias the position of the

particle towards the center. Advantage of thismethod is that it does not use any
prior knowledge about the shape of the intensity pro�le and can therefore be
applied to objects even in case of imaging errors or to objects which are larger

than the di�raction limit [49].

�e most reliable but computationally more demanding method of deter-
mining the position of an object is by �tting the image to the 2D Gaussian

intensity pro�le of the PSF as presented in eq. (1.1), see �g. 1.2a,b. A �t of
the intensity distribution to eq. (1.1) determines the position of the object with
nanometer precision (�g. 1.2c) [28, 46]. �e accuracy is thereby inversely pro-

portional to the signal-to-noise ratio, approximated by w/√8N ln 2 [50]. �e
approximation assumes that additional noise due to background signals is neg-

ligible. In typical applications using auto�uorescent molecules a positional ac-
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Figure 1.2: a) Simulated image of a di�raction limited spot approximated by a 2DGaus-

sian intensity pro�le. Poisson noise was added to account for the stochastic nature of

photon emission (w = 2 pixels, N = 1000). b) Intensity of the image along a horizontal

line through the center. In black a 1D Gaussian is shown calculated directly from the

input parameters. A �t to the data is shown in gray. c) A closer look at the part of

(b) indicated by the square. It can be clearly seen that the Gaussian �t determines the

position of the particle with high accuracy (∆x = 0.02 pixels).

curacy of < 30 nm is achieved at video rate (e.g. a frame rate of 25 Hz) [27, 51].

Positional determination as described so far solely allows to extract infor-
mation on the lateral positon of an object. In recent years several methods to

determine also the axial position have been described [52–60]. A straightfor-
ward and cost-e�ective method to determine the z-position of a single particle
is by introducing a slight astigmatism into the detection beampath [50, 61]. A

schematic drawing of the experimental setup is shown in �g. 1.3. �is method
will be extensively described in chapter 2 of this thesis. �e axial accuracy
which is obtained by using this method is about 2.5 times that of the lateral

positional accuracy. Typically < 75 nm is achieved in live cell experiments.

�e one-plane approach as described above allows one to determine axial
positions within the Rayleigh-range of ∼1 µm. For larger image volumes simul-

taneous imaging ofmultiple planes onto oneCCDchipmust be employed. �is
is achieved by inserting a beamsplitter in front of the CCD to create two light

paths with di�erent imagedistances [62, 63]. Another comparablemethodwas
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Objective (NA=1.4)

on piezo positioner
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Tube lens
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y
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Figure 1.3: Schematic drawing of a 3D wide �eld �uorescence setup. An AOTF

(Acousto-Optic Tunable Filter) is used to select the desired excitation wavelength. �e

dichroic mirror separates the emitted light from the excitation beam and the emission

�lter selects for the emission wavelength of the �uorescent molecule. A cylindrical

lens ( f = 10 m) is introduced to obtain accurate information about the z-position. Fi-

nally a dichroic wedge is installed to separate two di�erent �uorescent dyes. �e three

images shown at three di�erent z-position are of a particle that is imaged using this

setup and showing the e�ect of the cylindrical lens.
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developed in which multiple cameras were used each focusing on a di�erent
plane in the sample [64, 65]. While the latter method has the advantage that a
larger volume can be imaged at a faster rate, it is very costly andmore complex

so�ware is needed to synchronize all the elements in the setup.

In cases where image rates are less important di�erent planes can be im-
aged consecutively by moving a piezo-mounted objective in axial direction.

�e ideal distance between the planes is given by the axial range of the astig-
matism method of ∼1 µm. Care has to be taken that these stacks of images
are taken faster than the typical movement of the particle of interest to avoid

movement of the particle during imaging. If this is not possible the di�erence
in time needs to be taken into account in the data analysis. While it is still pos-
sible to �t 2D Gaussian pro�les to each image in a stack, a better alternative

is �tting of all images in a stack in a global �tting approach. For this the 2D
Gaussian needs to be extended to 3D. While the total intensity of the Gaus-

sian in each plane is constant, it turned out that one should allow for a varying
o�set per image within the stack to cope with possible di�erences in spurious
background signal. In focal planes far from the position of the particle, the in-

tensity will be rather spread. �is e�ectively increases the background signal
and a variable o�set can compensate for this e�ect.

Experimental conditions in single-molecule �uorescence experiments are
usually chosen such that the concentration of �uorescent molecules is low

and that only a few molecules are visible in an image of typical size (10 × 10
µm2). For low densities, the distance between each molecule is large enough

(> 3w) that their intensity pro�les are independent. If such low densities are
not achievable a recursive �tting approach needs to be applied: a�er the �rst
initial round of �tting, all-but-one �tted molecules are subtracted from the im-

age. �e one molecule that is le� is subsequently re�tted without the in�uence
of the others. Several of these recursive runs are needed to obtain the correct
position and intensity of all individual molecules. In this way densities of up to

1 molecule/µm2 are reliably handled. A similar methodwas published recently
[66].

�e methods described above are further developed to allow for simulta-

neous imaging ofmultiple detection channels, separating for example di�erent
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colors or polarizations. A dichroic-wedge in the emission beam path is used
to generate two separate images on the CCD coding for two colors, and/or a
Wollaston prism is placed in the in�nity beam path to generate two images of

perpendicular polarization [67]. Such techniques are able to image two dif-
ferent types of particles at the same time by labeling each of the objects with

di�erent �uorescent dyes whose emission spectra are well separated. It should
be noted that aberrations introduced by placing the dichroic wedge or a Wol-
laston prism are very small compared to the positional accuracy of the system.

1.2.2 Positional accuracy

Emission of photons is a statistical process. Hence the more photons are de-
tected, the more accurate the position of the particle can be determined. �e

positional accuracy of an experimental setup depends on many factors, i.e.
the camera noise, the amount of photons emitted per particle, the localiza-
tion method used and the magni�cation of the setup. A general method to

calculate the error in position measurement applied to single molecule imag-
ing shows that the lateral positional accuracy in typical experiments is equal
to 30 nm [46, 51].

A fundamental approach to specify the achievable position accuracy is cal-
culated from the amount of information which is contained in a given dataset.
�is measure is called the Cramer-Rao bound (CRB) speci�ed by the inverse

of the Fisher informationmatrix I [68, 69]. With X the observed data and θ the

unknown parameters I(θ) = E{[ ∂
∂θ ln f (X; θ)]2 ∣θ}. �e CRB yields a lower

bound to the variance for any unbiased estimator, i.e. in the case of imaging

the precision by which the position of a single particle is determined.

As discussed before the PSF is approximated by a 2D Gaussian intensity
pro�le (eq. (1.1)). If we assume that camera-pixelation and camera read-out-

noise is negligible, the lower limit for the positional error for the experimental
setup described in chapter 2 is

σµx = wr/є√
8N ln 2

; σµy = wrє√
8N ln 2

(1.3)
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in lateral direction, and

σµz = 1√
N
( √5z2r
4(z±γ) +

√
5
4
(z ± γ)) є ≶ 1 (1.4)

in vertical direction, with zr the Rayleigh-range. Whereas σµx y is independent
on the lateral position of the object, σµz varies with z and is lowest in focus. For

an experimental setup without cylindrical lens є = 1 and therefore σµx and σµy

are equal and σµz is unde�ned around the focus.

In order to calculate the limit of the positional accuracy in an actual ex-
periment one has to take into account all sources which in�uence the image

formed on the CCD [68]. �is will include camera pixelation, the position of
the object relative to the center of a camera pixel, camera noise, the magni�-
cation of the setup and any other noise sources present. Furthermore, an Airy

function should be used to describe the image formed by the object of inter-
est in place of the simple Gaussian in eq. (1.1). While such extended analytical
calculations of the CRB have been performed for some cases [68, 69] we have

tested our strategies by means of extensive simulations in which all aspects
mentioned were taken into account. �e results showed an excellent overlap

with the simpli�ed approximation given in eqs. (1.3) and (1.4), see chapter 2.

�e high accuracy by which individualmolecules are localized has recently

been utilized to greatly increase the resolution of light microscopy. In meth-
ods, now coined PALM [70], FPALM [71], STORM [72, 73] and STED [74] the

positions of individual molecules are determined, to be subsequently used for
generation of an image in which each molecule contributes with a PSF accord-

ing to eq. (1.1) but with a width given by the positional accuracyw/√(8N ln 2)
in place of w. In this way the ‘Abbe-limit’ describing the optical resolution of
themicroscope has been broken by an order ofmagnitude. It has been realized
recently that in principal there is no limit to the resolution in a microscope as

the resolution is solely set by the signal which can be obtained from an indi-
vidual object:

R = 1.22 λ

2NA

1√
N

(1.5)
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1.2.3 Tracking

Obtaining trajectories of sparsely distributed and relatively immobile objects
is straightforward [75, 76]. However, larger particle densities per frame and
higher mobility of the particles renders the connection of particles in consec-

utive images increasingly complex [47]. �e computational e�ort for solving
such connectivity maps is equivalent to the well-known ‘traveling-salesman’
problem in operations research. Our tracking algorithms are based on a nu-

merical approximation developed by Vogel for the �eld of operations research
[77]. First a translational matrix pi( j, k) is built up that describes the proba-

bilities that particle j in image i (containing L objects) at position r⃗ j,i moves to
particle k in image i + 1 (containing M objects) at position r⃗k,i+1 by di�usion
in a d-dimensional system characterized by a di�usion constant D:

pi( j, k) = exp{ − (r⃗ j,i − r⃗k,i+1)2
2dDt

} (1.6)

�e translational matrix further allows particles to disappear from the ob-

served area by di�usion or photobleaching, p( j, k > L) = pbleach, and par-
ticles are allowed to move into the observed area or get reactivated, p( j >
M, k) = pactivation. Probabilities to account for particles that are accidentally
not detected in an image are also included. Taken together this leads to a
probabilitymatrix p of size {(L +M) × (L +M)}. Trajectories are constructed
by optimizing the total probability of all connections between two images,
max(log(P) = ∑ j,k log(p( j, k))). Even in the case of a sizable amount of

molecules per image, the Vogel algorithm enhances the number of faithfully
reconstructed trajectories. More elaborate algorithms have been developed for
more complex systems with e.g. high particle density, particle motion hetero-

geneity or particle splitting or merging [78–82].
For a reliable analysis of molecular mobility, unavoidable mechanical dri�

must be corrected for. A simple and e�cient way of dri� correction is the cal-

culation of the center-of-mass of all objects, given that a su�cient number of
continuously tracked objects (n > 10) is available per frame. Such bootstrap-

type correction algorithms are particularly suited in di�usion-governed sys-
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tems since all movements should average to zero and any deviation from zero
directly measures the correction needed. In case that not su�cient continu-
ous trajectories are available, signi�cantly more molecular positions have to

be averaged in order to reduce dri� correction below the positional accuracy.
For an image of size X the number of objects in that case must be larger than(X/σµx y)2. In order to achieve a resolution of σµx y = 10 nm in a full-view image
of X = 10 µm, 106 positions must be averaged.

1.2.4 Trajectory analysis

Amultitude of information is extracted from trajectories of individual objects,

ranging from the di�usion constant to the presence of multiple fractions of a
certain type [83, 84]. A straightforward method to obtain information about
the mobility of an object is to calculate its mean squared-displacement (MSD)

versus time between two observations. �e MSD is the average movement of
an object in a certain amount of time and is calculated for each object using

MSD = ⟨(∆rt)2⟩ = ∑T−t
i=1 (ri − ri+t)2

T − t
(1.7)

in which T is the total length of the trajectory. �e type of motion of the object

is subsequently extracted from the MSD versus time plot. For free di�usion
the MSD has a linear dependence on time

MSD = 2dDtlag + 2dσ
2
d (1.8)

in which d is the dimension of the movement and σd the positional accuracy
in d dimensions. When a particle is transported, for example by molecular

motors inside a cell [36], the MSD shows a supralinear dependence on time:

MSD = 2dDtlag + (vtlag)2 + 2dσ2
d (1.9)

in which v is the velocity of the particle. A particle which is di�using in a 2D
con�ned area of side length L will have an associatedMSD which levels o� for
large tlag:

MSD = L2

3
⋅ [1 − exp(−12D0tlag

L2
)] + 4σ2

xy (1.10)
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in which D0 denotes the initial di�usion constant [29].

Hence the MSD versus time behavior provides a global characterization of
the type of motion. O�en however this behavior is of transient nature, espe-
cially for e.g. the transport of particles like vesicles [24, 37, 85] or the motion

of receptors in the cell membrane. A standardMSD-analysis will therefore fail
to detect short periods of a certain type of motionwithin a trajectory [84]. �e

di�culty comes from the fact that the accuracy of a mean value for a complex
motion scales inversely proportional to the square root of number of indepen-
dent observations, in this particular case the number of independent motion

steps within a short part of a trajectory [86]. With a rigorous method, intro-
duced by Huet et al. [87], di�erent types of transient motion can be detected
and distinguished within a single trajectory at a probability level prior set. For

each type of motion a speci�c parameter is calculated along the trajectory us-
ing a rolling analysis window whose width is variable.

For a stalled particle the di�usion coe�cientDwill be close to the detection

limit of the setup. �is limit can be experimentally determined using eq. (1.8)
by measuring the di�usion coe�cient Dim for immobilized beads on a cover-
slip at a signal-to-noise ratio similar to the experiment. Particles which di�use

with a di�usion constant D which is 10 times Dmin are classi�ed as mobile with
high con�dence. If however D for a particle, calculated from a rolling window
analysis, drops below Dmin for a prior set period, it is classi�ed as being stalled

during this period. To reliably obtainD it is desired to calculate theMSD from
as many data points as possible, i.e. to use a large rolling window size. A lin-

ear �t to the �rst Ndi� points of the MSD plot then gives a reliable D [86, 88].
On the other hand to detect short periods of immobilization the number of
data points needs to be small. As a compromise the minimumnumber of time

pointsW stall
min needed to calculate the MSD is set to 51, while keeping Ndi� = 5.

To detect con�ned motion we exploit the fact that the MSD of a con�ned
particle shows downward curvature in comparison to a particle undergoing
free di�usion. For small t theMSD for a con�ned particle is very similar to the

MSD for free di�usion (see eq. (1.10)). �erefore the �rstNdi� points of a rolling
MSD analysis are used to calculate an initial MSD for a particle undergoing

simple di�usion. �e deviation between the MSD for longer time lag and the
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initial value is a robust parameter which indicates con�ned di�usion:

Con f = 1

NConf

n=NConf∑
n=1
⟨r2(n∆t)⟩ − ⟨r2(n∆t)⟩di�⟨r2(n∆t)⟩di� (1.11)

For Conf < 0 con�ned mobility is likely, whereas for Conf > 0 it is unlikely. To
obtain a reliable value for Conf we set NConf/Ndi� = 10. Since the error in the
MSD becomes increasingly large for high values of tlag the number of points

from theMSDcurve used for calculatingConf should not exceed the �rst 2N/3
points of this curve.

While it is possible to detect directed motion directly from anMSD curve,

it is more e�cient to look at the shape of a trajectory, as directed motion will
lead to a highly asymmetric trajectory. For this the radius of gyration tensor
of a trajectory, Rg, is calculated:

Rg(i, j) = ⟨rir j⟩ − ⟨ri⟩⟨r j⟩ (1.12)

where ri and r j are the three axes and the averages are de�ned over all NAsym

steps of the analyzed rolling window. Typically NAsym = Ndi�. �e radii of
gyration for each direction are the square roots of the eigenvalues Rg. From

those, the asymmetry parameter is calculated:

Asym = −log(1 − (R2
1 − R

2
2)2 + (R2

1 − R
2
3)2 + (R2

2 − R
2
3)2

2(R2
1 + R

2
2 + R

2
3)2 ) (1.13)

For Asym > 1 directed motion is likely, whereas for Asym < 1 directed motion

is unlikely.
To reliably detect di�erent types of motion there is an obvious tradeo� be-

tween statistical signi�cance and window size. �ese values depend on the

system under study and thus several typical trajectories are used to optimize
the values for a particular sample. In the case of Huet et al. and in our own
studies theminimumwindow sizeW conf

min = 75 consecutive time points for con-

�ned motion, andWdir
min = 11 consecutive time points for directed motion.

When single particle trajectories are too short to calculate the MSD on a

single trajectory with su�cient accuracy (typically one needs 100 consecutive
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time points) the displacements of all particles in adjacent frames are analyzed.
For the 2D case, the cumulative distribution function (cdf ) for the squared
displacements r2 is [22]

P(r2, tlag) = 1 − exp(− r2

MSD(tlag)) (1.14)

P(r2 , tlag) describes the probability that a particle starting at the origin will be

found in a circle of radius r a�er a time tlag. �e cdf is very useful for a system
where there are two fractions of a certain particle, which are experimentally

only distinguishable by their di�erentD [27, 89, 90]. For two fractions eq. (1.14)
becomes

P(r2 , tlag) = 1 − [α ⋅ exp(− r2

MSD1(tlag)) + (1 − α) ⋅ exp(− r2

MSD2(tlag))]
(1.15)

in which α indicates the fraction size, and MSD1(tlag) and MSD2(tlag) the two
mean squared-displacements at tlag, respectively. It should be noted, that such
ensemble-type analysis does not even require a previous, computationally de-
manding, trajectory analysis as outlined in the section 1.2.3. �e position data
can be likewise directly analyzed using particle image correlation analysis

(PICS) as developed by Semrau et al. [91].

1.2.5 Applications

�e examples in �gs. 1.4 to 1.6 show that the previously described techniques
are powerful tools to obtain information about biological systems. Figure 1.4
provides an example coming from an experiment where the di�usional behav-

ior of several membrane anchors (K-Ras, H-Ras and Lck) in live cells is com-
pared to study the occurrence and size of lipid ra�s in the cytoplasmic lea�et
[92]. It was speculated that association of particular sets of proteins with lipid

ra�s plays an important role in a variety of signal transduction pathways [93].
While there is evidence for lipid ra�s in the exoplasmic lea�et, not much was

known for the cytoplasmic lea�et. A link between the lipid ra�s in the two
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Figure 1.4: a)Confocal �uorescence image of 3T3-A14 cells expressing eYFP-C14KRas,

2 days a�er transfection. Clear plasmamembrane localization was observed (scale bar,

10 µm). b) Trajectories of eYFP-C14KRas molecules di�using in the apical membrane

of a 3T3-A14 cell. �e time between consecutive points was 20 ms. c) Cumulative

probability, P(r2 , tlag), versus square displacements, r2 with a time lag of 40ms. Fits to

a one-component model (dashed line) and a two-component model (solid line) clearly

showed that the latter model �ts better. d)�emean squared displacements of the fast

fraction plotted versus tlag. �e data were �tted according to a free-di�usion model

and a di�usion constant D = 1.00±0.04 µm2/s was obtained. e)�eMSDs of the slow

fraction plotted versus tlag. A �t according to a con�ned di�usion model is shown

as a solid line. An average domain size of L = 219 ± 71 nm was found. �e dotted

line represents the o�set due to the limited positional accuracy. �e same o�set was

present in (d), although there the dotted line is omitted for clarity.
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lea�ets is predicted to be of importance in the transduction of cellular signals
from the outside to the inside of the cell. In �g. 3a 3T3-A14 cells are shown ex-
pressing eYFP-C14KRas [92]. K-Ras is generally used as a non-ra�marker and

comparison with the ra�-marker Lck should give insights into the presence of
lipid ra�s.

A large number of trajectories (>2500) for eYFP-c14Kras was imaged and
used for the analysis. Two of such tracjectories are shown in �g. 1.4b. Note

that trajectories are relatively short because of rapid photobleaching of eYFP.
From these trajectories square displacement distribution were constructed as
described in section 1.2.4. �e cumulative probability distribution versus the

square displacement for a time lag of 40 ms is shown in �g. 1.4c. A �t of the
data to eq. (1.14) clearly shows that the data cannot be described by a one-

component model. �e �t improves signi�cantly when a two-component
model is used (eq. (1.15)), while a three-component model did not improve the
goodness-of-�t. Fitting the data to eq. (1.15) yielded a fast-di�using fraction,

α = 0.62±0.13, withMSD1 = 0.16±0.04 µm2 and a slow-di�using fraction with
MSD2 = 0.021 ± 0.006 µm2. �is analysis was subsequently performed for all

time lags from 5 to 60ms, and the resultingMSDswere plotted versus time lag.
Figures 1.4d,e show the MSD versus time lag for the fast- and slow-di�using
fraction of the eYFP-C14KRasmembrane anchor. A �t to eq. (1.8) yielded a dif-

fusion constant D = 1.00±0.04 µm2/s for the fast-di�using fraction (�g. 1.4d).
For the slow-di�using fraction theMSD-plot (�g. 1.4e) indicates that themove-
ment of this fraction is con�ned. A �t of the data to eq. (1.10) yielded an average

domain size of 219 ± 71 nm. Studying the di�usional behavior of the Lck an-
chor in a similar manner, showed that the Lck anchor was not signi�cantly

slowed down as compared to the K-Ras anchor. �is result does not exclude
the presence of ra�s in the cytoplasmic lea�et, however the size of these ra�s
was estimated to be smaller than 130 nm, the detection limit achieved in those

experiments.

While the previous example focused on the mobility of proteins in the

cell membrane, processes inside of the cell were subsequently studied using
3D wide-�eld microscopy as described in previous subsections. �e use of

quantum dots (QD) as a �uorescent marker of biomolecules in cells enables
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Figure 1.5: a) Trajectory of a QD loaded in to HEK293-cells obtained with a frame rate

of 20 Hz for a total time of 25 s. Only one plane was imaged for each time point. In

two parts of the trajectory directed transport can be clearly seen. b)MSD versus time

for the �rst part of the trajectory where directed motion is observed. �e supralinear

behavior of the MSD con�rms that transport takes place. A �t to the data shows that

the QD has a velocity of v = 1.4±0.1 µm/s. c) Calculation of the asymmetry parameter

clearly shows the two parts of the trajectory where directedmotion takes place. (Asym

> 1)
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researchers to follow those molecules for very long time periods, only limited
by the lifespan of cells. Figure 1.5 shows results of an experiment where human
embryonic kidney cells (HEK293) were incubated with a solution containing

0.1 nM QDs [50]. Within two hours the QDs were internalized, a�er which
the HEK-cells were imaged with a 3D wide-�eld �uorescence setup using the

astigmatismmethod. Multiple QDs were followed simultaneously in three di-
mension with high accuracy (30 nm) and at high frame rates ( f = 20 Hz)
without producing image stacks. In �g. 1.5a one of these trajectories is shown.

What was suspected by looking at the trajectory, namely two short periods of
directed transport, was con�rmed unambiguously. For the �rst period of di-

rected transport theMSD curve is plotted in �g. 1.5b. �e supralinear behavior
of the MSD curve con�rmed that transport took place. Fitting the 3D-MSD
yielded a velocity of v = 1.41±0.14 µm/s. Figure 1.5c shows that the asymmetry

parameter reliably identi�ed the two periods of directed transport. Calculating
the MSD for the initial part of the trajectory con�rmed that the QD followed
random di�usion during this period (D = 0.015 ± 0.001 µm2/s).

Figure 1.6 shows that current techniques can also be applied to more com-

plex systems. In this case the wing imaginal disc of a Drosophila melanogaster
larva is imaged, as was introduced in section 1.1.2. A�er dissection the discwas

placed onto the microscope and the receiving cells were imaged, in this case
at a distance of 20 µm from the Dpp source. Dpp is mainly located in endo-
somes with up to 250 Dpp molecules per endosome. �is made it possible to

track endosomes for hundreds of frames even though the Dpp is labeled with
a variant of the yellow �uorescent protein. �e elongated nature of the cells

required making stacks consisting of 7 image planes, each separated by 1 µm.
�e trajectory of one endosome containing Dpp is shown in �g. 1.6a. From the
projections onto the 2D planes, the 3D trajectory clearly showed up and the

endosome appeared to be con�ned in lateral direction. Calculating the MSD
curve for the xy-projection of the �rst 190 seconds (�g. 1.6b) clearly showed
that the movement of the endosome is con�ned during this period. Fitting

eq. (1.10) yielded an initial di�usion constant D0 = 1.60± 0.02 ⋅ 10−3 µm2/s and
a lateral con�nement of side length L = 580 ± 2 nm. It should be mentioned

that the size of con�nement was signi�cantly less than the lateral size of the
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Figure 1.6: a) 3D trajectory of an endosome containing Dpp molecules labeled with

Venus YFP [4]. �e endosome was followed for almost 600 s with a frame rate of 1

Hz. Each image stack consists of 7 image planes. b) MSD versus time-plot for the

xy-projection of the �rst 190 seconds of the trajectory. It can be clearly seen that the

movement of the endosome is con�ned during this period. Fitting eq. (1.10) yielded

an initial di�usion constant D0 = (1.60± 0.02) ⋅ 10−3 µm2/s and a lateral con�nement

of side length L = 508 ± 2 nm. c) Calculation of the deviation parameter shows that

the endosomes shows con�ned motion in the �rst part of the trajectory (Conf < 0).
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cells of ∼ 3 µm. Calculation of the Conf parameter (�g. 1.6c) con�rmed the
observed con�nement for this endosome in the �rst part of the trajectory.

1.2.6 Conclusion

�e three examples shown clearly demonstrate that single particle tracking
has become an invaluable technique to study processes in life cells and tissue.
In the past two-dimensional wide-�eld �uorescence microscopy has become

a widely used technique which has been recently complemented by several
methods to provide information about the third dimension with high accu-

racy. By such extension of an established methodology the range of biological
questions which can be addressed is signi�cantly broadened. In combination
with superresolution techniques it will prove highly valuable andmight help to

li� ambiguities in present models of inter- and intra-cellular transport. We do
foresee that ultimately single-molecule tracking will permit to follow intricate

signalling pathways in space and time even in such complex environments as
tissue. �e results of such studies will by certain yield unexpected results and,
more importantly, will be the solid basis for a quantitative mechanistic under-

standing of cellular processes in vivo.

1.3 Scope of this thesis

�is thesis reports experimental work on theDppmorphogen gradient forma-

tion, especially on the subcellular processes governing intracellular Dpp trans-
port. For this purpose a 3Dwide-�eld �uorescencemicroscopewas developed
and used in the experiments. Each chapter was written as a research article ad-

dressing di�erent aspects of the experimental method as well as speci�c parts
of intracellular Dpp transport which were studied.

Chapter 2 describes the 3D wide-�eld �uorescence microscope which was

developed to study three-dimensional processes in living tissue. �epositional
accuracy of this microscope is determined theoretically, with simulations and

by experiments involving both immobilized particles and particles which were
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internalized by living cells. Data is presented showing that the microscope
is a valuable addition to existing techniques and allows for new experiments
involving three-dimensional processes in live tissue.

In chapter 3 the role of the di�erent types of endosomes in intracellulr
Dpp transport is investigated. By �uorescently labeling both Dpp and Rab5 (a

marker for early endosomes) the average residence time of Dpp in both early
and recycling endosomes was determined experimentally. �is was done by
developing a new method to calculate the cross-correlation between two pop-

ulations of molecules. �e method, called Particle Image Cross-Correlation
Spectroscopy (PICCS) has several advantages over existing methods andmore

reliably calculates cross-correlations between two populations of particles.
With PICCS we found that early endosomes contained almost twice as much
Dpp on average than other endosomes. Together with amodel for intracellular

transport we determined rates which are essential for a complete description
of the intracellular transport of Dpp.

In chapter 4 the role of endosomemotility and endosomal cargo dynamics

in intracellular Dpp transport is studied. By using particle tracking algorithms
we found that themotility of endosomes by itself cannot account for intracellu-

lar Dpp transport, but that small vesicles traveling between the endosomes are
responsible for the majority of intracellular Dpp transport. �e average Dpp
content of these vesicles was determined by monitoring the concentration of

Dpp in individual endosomes. �e process that controls the amount of Dpp
in vesicles was found to be a passive process. Furthermore we con�rmed the
existence of an immobile intracellular Dpp fraction.
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Chapter 2

Nanometric three-dimensional tracking of

quantum dots in living cells1

Wide-�eld single-molecule �uorescence microscopy has become an
established tool for the study of dynamic biological processes which occur in

the plane of a cellular membrane. In the current study we have extended this
technique to the three-dimensional analysis of molecular mobility. Introduc-
tion of a cylindrical lens into the emission path of amicroscope produced some

astigmatism which was used to obtain the full three-dimensional position in-
formation. �e localization accuracy of �uorescent objects was calculated the-

oretically and subsequently con�rmed by simulations and by experiments. For
further validation individual quantum dots were followed when passively dif-
fusing and actively transported within life cells.

1�is chapter is based on: L. Holtzer, T. Meckel and T. Schmidt, Nanometric three-
dimensional tracking of quantum dots in living cells. Applied Physics Letters 90 (5), 053902
(2007)
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2.1 Introduction

Wide-�eld single-molecule �uorescence microscopy has become an

established experimental technique in the biosciences. So far its strength has
mainly been exploited in two-dimensional (2D) systems: for the observation
of individualmolecules immobilized to substrates, and for the tracking of indi-

vidual proteins in the cellular membranes [1–4]. �e latter is typically carried
out at video-rate allowing for simultaneous tracking of several molecules with
very high lateral accuracy, far below the di�raction limit [5]. An extension of

that technology to a full three-dimensional (3D) single-molecule imaging and
tracking platform is highly desirable given that most biological processes take

place in the 3D environment of the cell. Several methods to acquire informa-
tion on the third dimension have been recently developed, i.e. using image
stacks [6, 7], o�-focus imaging [8] or by orbiting a focused laser beam around

a particle [9]. While all these methods have shown to yield valuable informa-
tion, the main disadvantage is either the imaging speed (only slow molecules

can be followed) or the ability to image only one or a few molecules at a time.

Here we describe a simple one-camera 3D wide-�eld �uorescence setup
which can image a large area (50 µm)2 at high frame rates (∼25 Hz). �e setup

was adapted from a previously described 2D wide-�eld single-molecule �uo-
rescence setup [10]. By adding a cylindrical lens ( f = 10 m) into the detec-
tion path of the setup, unambiguous information on the 3D position of indi-

vidual objects far beyond the di�raction limit was obtained. Our detection
scheme follows an earlier development on tracking �uorescing 100 nm beads
on a time scale of 0.5 s [11] but with higher sensitivity and higher time res-

olution. �e setup was used to track endocytosed semiconductor quantum
dots (QDs), yielding information on active transport of vesicular structures

and passive di�usion within them.
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2.2 Positional accuracy in three dimensions

�e positional accuracy which can be achieved in lateral (x, y) and in axial
(z) direction in regular imaging was estimated theoretically from the Cramer-

Rao-bound assuming a Gaussian-shaped intensity distribution of a single-
molecule image [12]. �e Cramer-Rao bound for the position and width of
the Gaussian is given by s2µx = s2µy

= σ2/ (8N ln 2) and s2
σ 2
= σ4/N in which N

is the total number of photons detected by the camera and σ the full-width-
half-maximum (FWHM) of the intensity distribution. By the change of the
Gaussian width with focal distance the z-position was calculated [6],

z = ± zr
σ0

√
σ2 − σ2

0 (2.1)

inwhich zr is the focal depth and σ0 the di�raction-limited FWHMfor a point-
source in focus. �is dependence holds for ∣z∣ < 2zr ≈ 1000 nm. Error prop-

agation �nally leads to an axial accuracy s2z = 1
N
( z2r
2z
+

z
2
)2 in which the errors

in zr and σ0 have been neglected. Both values were determined experimen-
tally with high accuracy in independent experiments. Figure 2.1a,b (solid line)

shows both the lateral and the axial accuracies plotted versus the defocus po-
sition. Obviously the error in z around the focus is very large and negative and
positive defocus cannot be distinguished given the symmetric dependence in

z.
Introducing a weak cylindrical lens ( f = 10m) into the emissionbeampath

results in an axial astigmatism, γ, and hence provides an easy way to increase

resolution in z [11]. �e intensity distribution for a point emitter including
astigmatism is described by

I(x , y) = N 4 ln 2

πσ2
r

e
−4 ln 2[ (x−µx )2

σ2r /є
2 + (y−µy )

2

σ2r є
2 ]

(2.2)

in which the ellipticity є = √σy/σx and a generalized width σ2
r = √σ2

x σ
2
y was

introduced. σx and σy are the FWHM of the intensity distribution in x and y
direction, respectively. Note that σx is not equal to σy except for one position
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Figure 2.1: Positional accuracy a) in lateral (x,y) and b) in axial (z) direction for the

detection of a �uorescing point object calculated according to the Cramer-Rao bound

(lines), and compared to computer simulations (symbols). In the simulation each

point object emitted an average of 4000 photons/frame. Each data point is an average

of 1000 simulations. c) σr and є for QDs immobilized onto a glass substrate. 10 images

containing 9 QDs on average were taken per point. For z<0 the data deviate from the

�t because the focal plane lies inside the coverslip. d)MSD-plots of di�using QDs in

a 15% dextran mixture (10 ○C, frame rate = 35 Hz).
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inbetween the two foci, which we de�ne as z = 0 nm. By substituting z with
z + γ and z − γ in eq. (2.1) to get σx and σy, and using the de�nitions for σr and
є the axial position is given by

z(σr , є) = ⎧⎪⎪⎨⎪⎪⎩
zr
σ0

√
σ 2r
є2
− σ2

0 − γ є < 1
−

zr
σ0

√
σ2
r є

2 − σ2
0 + γ є > 1 (2.3)

Analogous to the earlier treatment the Cramer-Rao bound leads to the accu-
racy in each direction (see section 2.A.1 for a more detailed derivation):

s2µx = 1

N

σ2
r /є2
8 ln 2

s2µy
= 1

N

σ2
r є

2

8 ln 2
(2.4a)

s2z = 1
N
( √5z2r
4(z±γ) +

√
5
4
(z ± γ))2 є ≶ 1 (2.4b)

As shown in �g. 2.1a,b the accuracy in z is largely increased compared to the
case without cylinder lens while the accuracy in x and y is only slightly re-

duced.

�e theoretical strategy described above was validated by simulations. In-

tensity pro�les for �uorescing molecules were calculated as 2D Gaussians.
Camera readout noise (σr=23 counts/pixel) and photon-counting statistics of

the detector were fully taken into account. Together with pixelation [12] this
resulted in a scaling factor between simulations and theory. Additional back-
ground noise was neglected. �e simulations, in which the signal-to-noise

ratio (SNR) was varied from 20 to 1200, con�rmed that the positional accu-
racy scaled with

√
N [12]. �e positional accuracy obtained at a signal of

4000 photons/frame was 6 nm in lateral (x,y) and 30 nm in axial (z) direc-
tion (�g. 2.1a,b).

2.3 Validation of the method

For calibration of the setup streptavidin-coated 705 nm QDs were spin coated

onto a glass coverslip. QDs were excited for 20 ms at a laser intensity of 0.9
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kW/cm2 to obtain a SNR of 17 (275 photons/frame). σr and є were measured
while scanning the focal plane through the sample (�g. 2.1c). From these data
the focal depth zr = 474 ± 4 nm and the spot size σ0 = 443 ± 1 nm (z = 0 nm)

were determined from a �t to the given equations for σr and є. �e amount of
astigmatism γ = 184 nm equals that predicted. Compared to the simulations

the experimental results have an increased positional accuracy. We attribute
this to an overestimation of zr in the simulations leading to an underestimated
increase of the width with defocus in the simulations. Typically 40 nm for the

lateral directions (σx , σy) and 90 nm for the axial direction (σz ≈ 2.5σx) were
achieved, con�rming that the lateral accuracy is almost unchanged while axial

accuracy is largely improved.

Subsequently to the calibration experiments, QDs were dissolved to a �nal

concentration of 0.16 nM in 15% dextran T500. �e viscosity of the solution
(η ≈ 300 cP at 10 ○C) allowed us to follow the di�usional paths of the QDs for
up to several minutes. From image sequences taken at a frequency of 35Hz the

3D-path was reconstructed. Each trajectory was analyzed in terms of the vari-
ation of the mean square displacement (MSD) with time-delay between im-

ages. MSD analysis was performed for the full 3D positional information, for
the projection of the trajectory onto the image plane (xy), and for the projec-
tion onto each of the three spatial directions x, y, and z (�g. 2.1d), respectively.
As predicted for free di�usion the MSD increases linearly with time accord-
ing to MSD = 2nDt +∑ 2σ2

n , characterized by the di�usion constant D of an
n-dimensional process. �e o�set at zero time accounts for the positional ac-

curacy in all three directions, σx ,y = 47 nm and σz = 90 nm. Fit of the data to
this model yielded D = 0.058 ± 0.003 µm2/s, which is in excellent agreement

with the free di�usion of a 22 nm-diameter particle in a solution of viscosity
η = 320 cP following the Stokes-Einstein relation.

�e methodology as characterized above was subsequently used to study
intracellular transport processes. Human embryonic kidney cells (HEK293,
see �g. 2.2a) were incubated with a solution containing 0.1 nM QDs. �e QDs

were internalized within two hours by endocytosis. A corresponding �uores-
cence image (�g. 2.2b) showed several bright QDs that were easily identi�ed

in the low auto�uorescence background of the cell. Trajectories for individ-
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Figure 2.2: HEK293 cell loaded with QDs by endocytosis. a) Transmission image of

the cell (image: 48x42 µm). b) Fluorescence image of the same cell (exposure time

= 6 ms, signal = 670 photons/frame). c) 5 consecutive images of a QD inside the cell

(indicated by the arrow in (a) and (b)) taken at a delay of 50ms (images: (4 µm)2). �e

change in ellipticity can be clearly seen. d,e) 3D-trajectories of di�erent QDs tracked

during 500 image frames. f,g) 3D-MSD of di�erent parts of the data in (d).



40 3D Tracking of Quantum Dots in cells

ual QDs were analyzed (�g. 2.2d,e). From the projections onto the 2D planes,
the 3D trajectory clearly showed up. �e QD in �g. 2.2e shows several types
of movement which can be identi�ed by analyzing the MSDs of parts of the

trajectory (�g. 2.2f,g). In the �rst part (�g. 2.2f) the QD was showing random
di�usion (D = 0.015±0.001 µm2/s) in all dimensions. In the next part (�g. 2.2g)

the QD shows directed motion, which was con�rmed by a detailed analysis of
the mobility of the QDmotion in all directions. MSD analysis showed a supra-
linear lag-time dependence along the x- and z-dimension for the QD. Fitting

the 3D-MSD [13] yielded a velocity of v=1.41±0.14 µm/s. Analysis ofmovement
perpendicular to the transport did not reveal any con�nement, probably be-

cause the trajectory was too short (24 frames). However analysis of QDs being
transported with lower velocity (example shown in �g. 2.2e) showed that the
MSD perpendicular to the transport approached a constant value for tlag > 3 s.
Analysis showed that the QD in �g. 2.2e was con�ned [13] to a lateral con�ne-
ment of side length L = 161 ± 3 nm. �e size of the con�nement found for this
QD is consistent with the size of endocytic vesicles. From this we interpret that

QDs were transported inside a vesicle along a cytoskeletal �ber. �e velocity
mentioned earlier falls within the range of speeds for a vesicle transported by

molecular motors inside cells [14].

In order to verify the contribution of active intracellular transport to the
observed movements, cells already containing QDs were depleted from ATP
by an incubation with 20 mMNaN3 and 12mM 2-Deoxy-D-glucose for 1 hour.

A�er incubation only directedmovement (�g. 2.2d,e) was abolishedwhile ran-
dom di�usion was still observed (data not shown). Hence, the supralinear de-

pendence of MSDwith time can clearly be attributed to ATP dependent intra-
cellular processes.

2.4 Conclusion

In conclusion, the introduction of a slight astigmatism into the optical system
of a microscope allowed us to extend the positional detection of individual

QDs in life-cell imaging to the full 3D-volume. For QDs the positional accu-
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racy achieved approached the theoretical limit set by the Cramer-Rao bound
andwas 43nm in lateral and 130nm in axial direction inside cells at a frame rate
of 167 Hz. �e power of the methodology was demonstrated by detailed anal-

ysis of the motion of individual QDs endocytosed by cells. �e additional abil-
ities of the 3D-approach was most obviously demonstrated in �g. 2.2. While a

conventional 2D-approachwould only have shown free di�usion and transport
in a plane, the 3D-trajectory shows that the QD was transported along a tubu-
lar structure that extended into the third dimension. Hence, a 2D-approach

would have resulted in an incomplete interpretation of the observations.

In extrapolation of the results the fast 3D-tracking of individual �uorescent
fusion proteins like the green �uorescent protein, however seems exceedingly
di�cult. Typically in those experiments 150 photons/frame are detected from

a single molecule which would lead to an axial accuracy of σz = 120 nm at
optimal background conditions. Better results will be achieved for multiple-
labeled (5-10x) objects. �is will yield longer trajectories and signals of 4000

photons/frame and higher, in particular when additionally the excitation in-
tensity is increased. In this way dynamic localization of e.g. vesicles inside cells

at a resolution of 6 nm in lateral and 30 nm in axial direction can be easily ob-
tained. Hence, the application of this fast life-cell imagingmethodology to the
study of e.g. vesicle tra�cking or virus entry [15, 16] will prove highly valuable

and might help to li� ambiguities in present models of cellular transport.
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2.A Appendix

2.A.1 Derivations

In this appendix we will show how eqs. (2.4a) and (2.4b) were derived.
�e Cramer-Rao bound states that the inverse of the Fisher information

matrix is the lower limit to the variance of an unbiased estimator for a statistical

process. For a statistical process described by

f (x , y) = 4 ln 2

πσ2
e
−4 ln 2((x−µx )

2+(y−µy )
2)

σ2 (2.5)

the estimators for µx and µy are the mean values of the distribution in either

the x or y-direction and are therefore unbiased. To calculate z the FWHM σ
is needed and to calculate the accuracy in σ we use the unbiased estimator for
the variance s2:

E(s2) = E [∑(xi − x)2
n − 1

] = σ2 (2.6)

For large samples n ≈ n− 1 and therefore we assume that σ2 is also an unbiased
estimator. �e Fisher information matrix is de�ned as

I = −E (∂U
∂θ
) (2.7)

in which U is the score function de�ned as the gradient of the log-likelihood

function:

U(θ) = ∇ ln f (x , y) = ∇ ln 4 ln 2

πσ2
−
4 ln 2((x − µx)2 + (y − µy)2)

σ2
(2.8)

Taking the derivative of the log-likelihood function with respect to each unbi-

ased parameter of interest yields

Uµx = 8 ln 2σ2
(x − µx) (2.9a)

Uµy = 8 ln 2

σ2
(y − µy) (2.9b)
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Uσ 2 = − 1

σ2
+
4 ln 2((x − µx)2 + (y − µy)2)

σ4
(2.9c)

�e Fisher information matrix is then calculated using eq. (2.7) in which

∂U

∂θ
= ⎛⎜⎜⎝

−
8 ln 2
σ 2

0 −
8 ln 2
σ4
(x − µx)

0 −
8 ln 2
σ 2

−
8 ln 2
σ4
(y − µy)

−
8 ln 2
σ4 (x − µx) −8 ln 2

σ4 (y − µy) 1
σ4 −

8 ln 2((x−µx )2+(y−µy)2)
σ6

⎞⎟⎟⎠
Since E(x − µx) = 0 this results in

−E (∂U
∂θ
) = ⎛⎜⎝

8 ln 2
σ 2 0 0

0 8 ln 2
σ 2 0

0 0 −
1
σ4

⎞⎟⎠
According to the Cramer-Rao bound the theoretical lower bound for the error

(and therefore also the maximum attainable positional accuracy) in the pa-
rameters µx , µy and σ2 is calculated by taking the square root of the inverse

matrix:
sµx = σ√

8 ln 2
(2.10a)

sµy = σ√
8 ln 2

(2.10b)

sσ 2 = σ2 (2.10c)

Using error propagation sFWHM is calculated:

sFWHM = σ

2
(2.11)

For a process in which N photons are detected eqs. (2.10) and (2.11) should

be divided by a factor
√
N . Previously we showed how to calculate z from

eq. (2.1) and hence error propagation is used to estimate the theoretical limit
to the accuracy in z:

s2z = ( ∂z∂σ )
2

s2σ + ( ∂z∂zr )
2

s2zr + ( ∂z∂σ0)
2

s2σ0 (2.12)
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If we assume that zr and σ0 can be determined with high accuracy they can be
neglected in eq. (2.12) leading to

sz =
√
( z2r
2z
+
z

2
)2 (2.13)

In section 2.2 it was shown that the introduction of a cylindrical lens adds the
parameters γ and є to eqs. (2.1) and (2.5) and substitutes σ with σr . For our

method to work we need a small value for γ (< 300 nm). We have de�ned
γ as half the distance between the original position of an in-focus molecule
without cylindrical lens (i.e. the focal length fo of the microscope objective,

since our microscope uses in�nity-corrected optics) and the position of an in-
focus molecule with cylindrical lens in the perturbed axis (so,y):

γ = sclc = fo − so,y
2

(2.14)

in which sclc is the so-called circle of least confusionwhere the image is circular
(z = 0). With paraxial optics the position of the image (si,y) of a molecule at

so,y is approximated:

si,y = 1
1
ft
+

1
fc
−

1
d− 1

1
fo
− 1
so , y

(2.15)

with ft the focal length of the tube lens, fc the focal length of the cylindrical
lens, fo the focal length of the objective and d the distance between objective
and cylindrical lens. Rewriting it for an in-focus molecule:

so,y = − fo(25 ft fcd − 4 fcd − 4 ftd + 4 ft fc)
−25 ft fcd + 25 ft fc fo + 4 fcd − 4 fc fo + 4 ftd − 4 ft fo − 4 ft fc

(2.16)

Combining eqs. (2.14) and (2.16) allows to estimate the focal length of the cylin-
drical lens needed.

Using the same methodology as in the case without cylindrical lens the
maximum achievable positional accuracy in x, y and z is calculated using

eqs. (2.2) and (2.3) resulting in eqs. (2.4a) and (2.4b).
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2.A.2 Extension to image stacks

�emethodology as outlined in this chapter is mainly focused on experiments
in which all the particles are con�ned to a layer of 1.5 − 2 µm. When needed,
for example in the experiments presented in chapters 3 and 4, the method is

easily extended to a larger volume.

Recently several solutions have been proposed to image larger volumes in

which for example multiple CCD cameras are used to image di�erent planes
simultaneously [17], or in which a beam splitter cube and an extra lens were
used to generate a second image on the CCD camera focusing on a di�erent

plane [18].

In our experiments however we have used a di�erent method. We placed

the objective onto a piezo positioner (Physik Instrumente, Karlsruhe, Ger-
many) which enabled us to move the objective in steps of 0.7-1.0 µm and hence

image di�erent focal planes in a consecutive manner, hereby generating image
stacks. �e advantage of this method over the two other methods is that the
volume which can be imaged is in principal only limited by the working dis-

tance of the objective. In the other methods the volume is limited by either the
number of CCD cameras or the amount of simultaneous images that �t on the
CCD chip. A clear disadvantage of our method is the imaging speed. Moving

the objective from one position to the next takes around 15-20 ms and there-
fore imaging of larger volumes (e.g. 7 planes) can take up to 200 ms, which

includes the exposure time necessary to image each plane. In our experiments
the movement of the objects of interest was low enough (see chapter 4) to as-
sume that the movement of an object in a timespan of 50 ms (needed to image

two planes) is smaller than the positional accuracy of our system.

As a result of using image stacks objects will appear in multiple planes in

one image stack. In principle the 2D�tting method as presented in this chapter
could be used to determine the 3D position of the object relative to each plane
in which it appears. A better approach however is to globally �t each image

stack. For this purpose the 2D Gaussian pro�le were extended to 3D volumes,
taking into account that the width of the Gaussian varies with axial position z,
see eq. (2.3). In the �tting procedure it was taken into account that the total
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signal of the Gaussian is constant in each plane. �e global �t approach was
superior to other approaches in terms of stability and reliability of the results.
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Chapter 3

Intracellular Dpp morphogen transport studied

with Particle Image Cross Correlation

Spectroscopy (PICCS)1

Morphogens control pattern formation by forming concentration gradients.
Gradients are formed by a combination of di�usion and degradation. Re-
cently the e�ective di�usion and degradation rates of Dpp have been mea-

sured. Di�usion and degradation are determined by intracellular tra�cking
of morphogens: i.e. endocytosis, recycling, and degradation in the lysosomal
pathway. However, these tra�cking rates have not yet been measured. We fol-

lowed the transport of the morphogen Decapentaplegic (Dpp) in wing imag-
inal discs of fruit �y larvae. �ese experiments required the development of

a new analysis method for two-color, single-object data: Particle Image Cross
Correlation Spectroscopy (PICCS). With this method we were able to quan-
tify the fraction of Dpp that is correlated with early endosomes. We found that

early endosomes contain almost twice as much Dpp as compared to other en-
dosomes. Further we determined the rates underlying Dpp transport among
di�erent endosomal compartments. �ese rates are essential for a complete

description of the intracellular transport of Dpp. �is novel method is gen-
erally applicable to a multitude of biological processes that involve multiple

interaction partners and makes use of the superior positional accuracy that is
obtained in single-object microscopy.

1�is chapter is based on: L. Holtzer*, S. Semrau*, M. González-Gaitán, T. Schmidt, In-
tracellular Dpp morphogen transport studied with Particle Image Cross Correlation Spec-
troscopy (PICCS), in preparation (*equal contribution).
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3.1 Introduction

�e morphogen Decapentaplegic (Dpp) forms a gradient in the developing
wing imaginal disc of the fruit �y Drosophila melanogaster, ultimately con-
trolling patterning and growth of the tissue. Dpp originates from a stripe of

Dpp-producing cells at the anterior-posterior compartment boundary [1] and
is secreted to neighboring cells. A recent study [2] showed that a steady state
monoexponential gradient in Dpp is formed. While the latter study success-

fully and quantitatively describes the gradient on the level of the whole tissue,
it provides insu�cient insight into the (sub)cellular mechanisms that under-

lies Dpp transport. Other experiments further suggest that Dpp is spread by
three di�erent mechanisms: di�usion in the extracellular matrix [3], receptor-
mediated di�usion [4] and by intracellular transport [5], i.e. multiple endo-

cytosis and subsequent recycling events into the extracellular matrix [6]. �e
extracellular di�usion and receptor-mediated transport are governing short-

range spreading, while intracellular transport is essential for long-range
spreading of Dpp in tissue [7]. In the study described here we further eluci-
date the subcellular mechanisms of intracellular Dpp transport. �ree types of

endosomes are involved in Dpp gradient formation by intracellular transport:
early, late and recycling endosomes. By using �uorescent endosomal markers
and a �uorescent Dpp fusion protein we measured the fraction of Dpp in early

endosomes and thereby determined the intracellular tra�cking rates of Dpp.

To accomplish this we developed a new analysis techniquewhich quanti�es
the amount of correlation between two �uorescent species. In the past several

techniques have been applied to this problem. In particular single-molecule
�uorescence assays have been used successfully to quantify colocalization of
interaction partners [8–10]. Single-molecule �uorescence techniques require

only small amounts of �uorescent labels and contain information about po-
sitional correlations on sub-di�raction length scales [11]. However, the direct
mapping between single-molecule signals from two di�erent channels is prone

to a systematic error: colocalization is typically de�ned by a distance threshold
below which two signals are considered colocalized. �erefore a priori knowl-
edge about the distribution of distances, about the positional error, and about
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the experimentally unavoidable alignment mismatch between two channels
is needed to �nd a proper threshold. Even without any real correlation this
method will always yield a colocalization event due to accidental proximity of

signals. �is problem aggravates with increasing signal density. Hence, even
with the highest spatial resolution, proximity is not the optimal readout for

correlation.

Fluorescence Cross-Correlation Spectroscopy (FCCS) and Image Cross-
Correlation Spectroscopy (ICCS) directly determine the cross-correlation be-
tween the two di�erent color channels [12, 13] without the need for a threshold.

However, both have restrictions in accessible time scales, and proper treatment
of sometimes heterogeneous background signals is not straightforward.

Here we show how the advantages of ICCS and single-particle tracking
can be combined in one analysis technique: Particle Image Cross-Correlation

Spectroscopy (PICCS). �is technique is largely based on Particle Image Cor-
relation Spectroscopy (PICS) developed by us before [11]. PICCS uses high

accuracy single-molecule / single-object position data, but instead of correlat-
ing the positions of the same molecular species at several points in time (as is
done in PICS), PICCS correlates the positions of two molecular species at the

same point in time in two separate channels. �ose channels can be two colors,
as discussedbelow, or any othermolecular parameter that allows distinction of
two species like �uorescence signal level, �uorescence lifetime or polarization.

By PICCS a correlation fraction and a correlation length are retrieved on time
scales down to 1 ms. Since the input data consists of the positions of individ-

ual molecules / particles the auto�uorescent background or additional noise
sources do not in�uence the measurement. For the same reason the method is
not limited to the di�raction of light and the correlation length can therefore be

determined with nanometer accuracy. Finally, PICCS permits for the analysis
of subpopulations. As demonstrated below, it is possible, for instance, to de-
termine the correlation fractions for subpopulations which di�er in intensity

and obtain additional information in this way.

In the following we will present a detailed analysis of intracellular Dpp
transport, based on 1) a mathematical description of intracellular Dpp traf-

�cking and 2) the analysis of experimental data with PICCS.�is combination
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allows us to determine the intracellular tra�cking rates of Dpp.

3.2 Intracellular transport of Dpp

Figure 3.1 illustrates intracellular Dpp transport. A�er endocytosis, a Dpp-

containing vesicle fuses with an early endosome. From the early endosome,
Dpp is either transferred to a late endosome for degradation, or to a recycling
endosome, where it will be exocytosed into the extracellular matrix. While we

regularly observed more than one endosome of each type per cell, in the fol-
lowing we treat each type of endosome as a single entity without loss of gen-

erality in modeling the intracellular tra�cking of Dpp. �is simpli�cation is
reasonable since we assume that the in- and out�ow of Dpp only depends on
the Dpp concentration (i.e. it is a �rst order reaction). �is assumption is

later con�rmed by the data. �e wing imaginal disc consists of a 2D-array of
cells. Since the gradient is one-dimensional, perpendicular to the line of Dpp-

producing cells, we model the disc as a 1D-array of cells. In�ow and out�ow of
Dpp is described by �rst order rate equations for each type of endosome. �is
approach details the theoretical description of Dpp spreading as described be-

fore [14], focusing solely on the intracellular tra�cking.

Early endosomes receive an in�ow of Dpp by endocytosis, depending only

on the extracellular Dpp concentration Cex with an in�ow rate kex. If the out-
�ow of Dpp from early endosomes occurs with the rate kea, the change in Dpp

concentration in the early endosomes of cell n (Cn
ea) is given by

dCn
ea

dt
= 1

2
kexC

n
ex +

1

2
kexC

n+1
ex − keaC

n
ea (3.1)

assuming that the transport of Dpp is non-directional [5]. Since in �g. 3.1 we
have de�ned Cn

ex to be on the le� of cell n, the endocytosis term consists of a

contribution from both Cn
ex and Cn+1

ex , taking into account non-directionality.
For the recycling endosome a similar equation is derived, in which a parame-

ter ε is introduced to describe the fraction of Dpp in early endosomes that is
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Figure 3.1: Intracellular transport of Dpp. A�er endocytosis Dpp is transported – via

early endosomes – to either late or recycling endosomes. While Dpp in late endosomes

is destined to be degraded, Dpp in recycling endosomes is eventually exocytosed into

the extracellular matrix.
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transferred to recycling endosomes.

dCn
r

dt
= εkeaCn

ea − krC
n
r (3.2)

where Cr is the concentration of Dpp in recycling endosomes and kr is the rate
of Dpp out�ow from recycling endosomes. For late endosomes we obtain:

dCn
l

dt
= (1 − ε)keaCn

ea − klC
n
l (3.3)

where Cl is the concentration of Dpp in late endosomes and kl is the degra-
dation rate. Finally the concentration of Dpp in the extracellular matrix Cex

depends only on the recycling rate kr and the endocytosis rate kex, taking into
account the non-directionality of intracellular Dpp transport.

dCn
ex

dt
= 1

2
krC

n−1
r +

1

2
krC

n
r − kexC

n
ex (3.4)

Solving eqs. (3.1) to (3.4) in a steady state [5, 15] gives the average Dpp concen-
tration in each type of endosome in each cell. From the solution we derive the
fraction f of endosomal Dpp that is contained in early endosomes:

f = Cea

Ctot,endo

= 1

1 + εkea
kr
+ (1 − ε) keakl (3.5)

From the known decay length of the Dpp-gradient (λ = 7.7 ± 2.1 cells) ε =
0.996±0.002, is derived [2]. Amore detailed theoretical derivation of eq. (3.5)
and the determination of ε is found in section 3.A.1. For the recycling endo-

some out�ow rate kr we further derive:

kr = ε f keakl(1 − f ) kl − f (1 − ε) kea (3.6)

In previous experiments the degradation rate kd for Dpp has been determined

[2]. Before a Dpp molecule is being degraded in a lysosome [5] it has been
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endocytosed, transported to an early endosome and consecutively to a late en-
dosome, a�er which it �nal goes to the lysosome. Hence the degradation rate
kd can be expressed in terms of the other rates:

1

kd
= 1

kex
+

1(1 − ε)kea + 1

kl
(3.7)

Combining eqs. (3.6) and (3.7) gives for kr :

kr = ε f keakexkd
kexkd − f kea(1 − ε)(kex − kd) (3.8)

which also gives an upper limit to the out�ow rate for the early endosome kea:

kea < kexkd
f (1 − ε) (kex − kd) (3.9)

3.3 Particle image cross-correlation spectroscopy

Particle image cross-correlation spectroscopy (PICCS) is amethod to quantita-
tively determine the correlation between arbitrary, �uorescently labeled mol-

ecules. Here we present the basic idea behind the PICCS methodology and
algorithm. �e theoretical background is detailed in section 3.A.2 and the
scaling of the errors of the method is discussed in section 3.A.4. We assume

that two interaction partners are labeled with two spectrally distinguishable
�uorophores. �e interaction partners can be single molecules or extended

objects. We further assume that their density is so low that they can be re-
solved individually and their position determined with a high positional ac-
curacy [16–18]. For simplicity we will denote the signals coming from the two

�uorophores by ‘YFP’ and ‘CFP’ without loss of generality. �e task is to deter-
mine the correlation fraction of the interaction partners, i.e. to determine the
fraction of CFP that colocalizes with YFP (or vice-versa). In what follow we

will calculate the fraction of YFP signals which are correlated to a CFP signal.
�e �rst step in the PICCS analysis is identical to existing single-molecule

tracking methods [9, 10]: the position of YFP and CFP signals is determined
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Figure 3.2: PICCS algorithm. For all YFP signals (solid circles) the number of CFP

signals (open circles) are counted which fall into a circle of radius l from a YFP signal.

�e total number is subsequently divided by the number of YFP signals. By increas-

ing l from 0 to lmax the correlation function Ccum(l) is constructed. �e dashed line

encloses the area in which the YFP signals are used for analysis. �is area is sepa-

rated from the edges of the image by lmax (lmax = 2 µm is taken). �e signal positions

were simulated with the following parameters: density of YFP signals cYFP = 1 µm−2,
correlation fraction α = 0.5 (results in a density of CFP signals of cCFP = 0.5 µm−2),
correlation length σ = 150 nm.

with sub-di�raction positional accuracy by �tting two-dimensional Gaussians
to the �uorescence signals. Subsequently a cross correlation function Ccum(l)
between the two channels is calculated with an ensemble approach. Ccum(l)
is equal to the average number of CFP signals at time t + ∆t which have a
distance smaller than l to a certain YFP signal at time t (�g. 3.2). When both

�uorophores are imaged at the same time ∆t = 0 s.
To avoid edge e�ects, only those YFP signals are used which lie farther

away from the edges of the image than a prede�ned maximal distance lmax

(0 < l < lmax, dashed line in �g. 3.2).
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As detailed in [11] and Sec. 3.A.2, this procedure results in a correlation
function of the form

Ccum(l) = αPcum (l) + cCFP ⋅ π l2 (3.10)

if the uncorrelated CFP signals are distributed randomly with a uniform den-
sity cCFP. Pcum (l) is the cumulative probability to �nd a distance smaller than l
between a YFP and a CFP signal which are correlated. α is the correlation frac-

tion, i.e. the fraction of YFP signals which are correlated to a CFP signal. α = 1
if there is a corresponding CFP signal for any YFP signal and α = 0 if CFP
and YFP signals are completely uncorrelated. In the form presented so far,

the algorithm requires a random, homogeneous distribution of CFP signals,
which results in the term cCFP ⋅ π l2 in eq. (3.10). To correct for a non-random

distribution of CFP signals we can calculate the spatial correlation among CFP
signals by regular Particle Image Correlation Spectroscopy (PICS), see [11] and
section 3.A.2.

Figure 3.3 shows an example for an experimentally determined correlation
function. A wing imaginal disc of a fruit �y larva expressing Dpp-YFP and

Rab5-CFP was imaged. Rab5 is a marker for early endosomes [19]. In total
28 z-stacks in both channels were taken. �e endosome positions for each
image in a z-stackwere projected into oneplane resulting in 28YFP-CFP image

pairs. Figure 3.3a,b show the �rst image stack for the YFP and CFP channel.
�e correlation function is shown in �g. 3.3c and the cumulative probability
function Pcum(l) (eq. (3.12)) is shown in �g. 3.3d.

�e density of CFP signals cCFP and the correlation fraction α were deter-
mined by �tting a straight line to the linear part of Ccum (l) plotted against l2

(�g. 3.3c). �e slope of this line gives π ⋅cCFP while the o�set is equal to α. A�er
subtraction of the linear contribution and division by α, Pcum (l) remains.

If correlated signals were perfectly colocalized (both �uorescent molecules

are at the same position in space), Pcum (l) would be given by

Pcum (l) = 1 − exp(− l2

2σ2
) (3.11)

with the correlation length σ . In any real experiment however, the positions of
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Figure 3.3: Correlation fraction, signal density and correlation length from experi-

mental data. A wing imaginal disc was imaged for 300 s using an alternating excita-

tion method (described in section 3.4). Each image stack consists of 5 image planes

(10 × 10µm) separated by 0.7 µm in axial direction. Low frequency background was

eliminated by applying a high-pass �lter. a) Raw image stack from theDpp-YFP chan-

nel (scale bar = 2 µm). b)Raw image stack from theRab5-CFP channel. c)Correlation

function Ccum(l) obtained by PICCS. Fitting to the linear part yielded a Dpp-YFP

density of c = 0.12 ± 0.02 endosomes ⋅µm−2 (solid line) and a correlation fraction of

αe,Dpp = 0.46 ± 0.04 (o�set of the �tted line). d) Pcum(l) which resulted from sub-

traction of the linear contribution from Ccum(l) and division by αe,Dpp. �e correla-

tion lengths σ1, σ2 and the fraction β were determined by �tting eq. (3.12) which gave

σ1 = 71 ± 17 nm, σ2 = 161 ± 34 nm and β = 0.44 ± 0.17, respectively. All errors were

determined from simulations, see section 3.A.4.
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particles cannot be exactly determined. �is introduces an (apparent) corre-
lation length, given by the �nite positional accuracy σ = √2δ, where δ is the
one-dimensional positional accuracy for a �uorescent signal, see section 3.A.2.

Any real correlation originating from the interaction between the studied ob-
jects adds to the correlation length given above.

In the experiments presented here, the signal intensity varies between sig-

nals and since the positional accuracy depends on the signal intensity, there
is no well-de�ned overall positional accuracy. �erefore a modi�ed version of

eq. (3.11) including two e�ective correlation lengths (σ1 and σ2) is needed to
describe the observed data.

Pcum (l) =β (1 − exp(− l2

2σ2
1

))
+ (1 − β)(1 − exp(− l2

2σ2
2

)) (3.12)

where β is the fraction of data that has a correlation length σ1. Adding more

e�ective correlation lengths does not signi�cantly improve the �t.

�emethoddeveloped so far disregards signal intensities. We can therefore
only determine the fractional amount ofDpp-containing early endosomes and

not the fraction of Dppmolecules contained in early endosomes. Since there is
no reason to assume that Dpp is homogenously distributed among the di�er-
ent types of endosomes, it is essential to include the intensity (which is a direct

measure for the amount of Dpp molecules in an endosome) into the PICCS
algorithm. We did this by weighting the occurrence of a YFP signal (Dpp-
containing endosome) by its intensity. �e average intensity of the correlated

fraction was subsequently calculated by the o�set of the correlation function
and dividing the obtained value by that from the original unmodi�ed correla-

tion data (�g. 3.4).
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3.4 Materials and Methods

�eUAS-YFP-Dpp line was generated by using the existingUAS-GFP-Dpp vec-
tor [5] where GFP was replaced by YFP (Venus) [20]. dppd8/dppd12; dpp-Gal4/
UAS-YFP-Dpp �ies have an identical wing phenotype to the dppd8/dppd12; dpp-
Gal4/UAS-GFP-Dpp �ies [5]: they survive to adulthood and have normally
patterned wings, although smaller in size (data not shown). For determina-

tion of early, recycling and late endosome distributions in wing imaginal discs
we used the following genotypes: tub-CFP-Rab5, tub-YFP-Rab7 and tub-YFP-
Rab11 [21].

To obtain wing imaginal discs, third instar larvae (tubulin-CFP-Rab; dpp-
Gal4/UAS-YFP-Dpp) were dissected in Clone8 medium (Shields & Sang M3
Medium containing 2% Fetal Calf Serum, 2.5 % Fly Extract, 12.5 IU Insulin/100

ml medium and 1X Penicillin/Streptomycin), a�er which the wing imaginal
discs were mounted in a custom-made sample holder. Nail polish was used for
sealing of the sample holder. �e wing imaginal discs were imaged approxi-

mately 10 min a�er dissection. Samples were discarded 1 hour a�er dissection.

Imagingwas done on a 3Dwide-�eld �uorescencemicroscope as described
previously [22]. To image a z-range of ∼ 4 µm, image stacks were generated

using a piezo-driven objective holder (Physik Instrumente, Karlsruhe, Ger-
many) to move the objective in axial direction. Each image stack contained 5
image planes with ∆z = 0.7 µm between each image plane. �e time between

image planes was 40 ms, during which the movement of the endosomes was
negligable. �erefore each image stack was assumed to be acquired at one time

point. Wing imaginal disc samples were excited by an Argon-ion laser (Coher-
ent, Santa Clara CA, USA) at either 458 nm to excite Rab5-CFP or 514 nm to
excite Dpp-YFP. An alternating excitation pattern was used to distinguish be-

tween the two �uorophores. �e pattern consisted of 1 image stack which was
excited at 458 nm and consecutively 10 image stacks were excited at 514 nm
with a stack rate of 1 Hz. �e fast switching between laser lines was done using

an Acousto-Optic Tunable Filter (AA Opto-Electronic, Orsay, France). �is
pattern was chosen to minimize photobleaching of the CFP, since the amount

of Rab5-CFP per endosome was lower than the amount of Dpp-YFP. Imaging
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Figure 3.4: a) Correlation function for the correlation between Rab5-CFP and Dpp-

YFP. Fitting a line to the linear part resulted in an o�set at l2 = 0 of 59±5%. Correction

of the data using spatial correlations gives αDpp,e = 66 ± 5%. b) Correlation function

for the same data a�er weighting of the Dpp-YFP endosomes with their respective

intensities. Fitting the linear part resulted in αDpp,e Ī = (5.2 ± 0.4) ⋅ 103 counts, which
gives an average Dpp-YFP signal of Ī = (8.9 ± 1.0) ⋅ 103 counts for early endosomes

that contain Dpp-YFP.

was done in the apical region of the cells since most of the endosomes are lo-
cated there [2]. Dpp-producing cells (the source) were located by eye using

a Mercury lamp (Zeiss, Oberkochen, Germany) for excitation. Using a mo-
torized stage the center of the image was typically 20 µm displaced from the

source, with an image area of 100 µm2 showing approximately 17 cells in each
experiment.

3.5 Results and discussion

In �g. 3.3 we showed for one wing imaginal disc that the correlated fraction

of early Rab5-CFP labeled endosomes in the pool of all endosomes that con-
tain Dpp-YFP in a wing imaginal disc is αe,Dpp = 46 ± 4%. Correction for

a non-random distribution of CFP signals, see section 3.A.2, did not change
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this result. Conversely the correlated fraction of Dpp-YFP containing endo-
somes in the pool of all Rab5-CFP labeled early endosomes was 59 ± 5% (see
�g. 3.4a). A�er correction for the non-randomdistribution of CFP signals (see

section 3.A.2) the latter value was �nally increased to αDpp,e = 66± 5%. Hence,
two-thirds of the early endosomes contained Dpp, and about half of the Dpp-

YFP containing endosomes were early endosomes.

To determine further whether Dpp molecules were homogeneously dis-

tributed over the di�erent types of endosomes we used the ‘weighted’ PICCS
method. Figure 3.4b shows the cross-correlation between Rab5-CFP labeled
early endosomes and Dpp-YFP-containing endosomes weighted by the Dpp-

YFP intensity. Fitting a straight line to the linear part gave a coe�cient of
αDpp,e Ī = (5.2 ± 0.4) ⋅ 103 counts. From the latter and our earlier result on
αDpp,e (�g. 3.4a) we obtained the average intensity of Dpp in early endosomes

to be Ī = (8.9 ± 1.0) ⋅ 103 counts per endosome. �e latter value, together with
the knowledge of the total number of measured intensities of Dpp-YFP con-

taining endosomes in the wing disc (N = 735 endosomes in 28 image stacks,
data not shown) and the total �uorescence signal of Dpp-YFP in the wing disc
(Itot = (4.9 ± 0.8) ⋅ 106 counts in all image stacks, data not shown), the frac-

tion of all Dpp-YFP molecules that was contained in early endosomes was

f = αDpp,eN I

Itot
= 60 ± 2%. Hence, we found that early endosomes contained

on average nDpp,e = 1.8 times as much Dpp-YFP as compared to late and/or
recycling endosomes.

Segmentation with respect to the Dpp concentration in each endosome,
as determined by the detected �uorescence signal, con�rmed the latter �nd-

ing. Analysis performed on the more intense half of the Dpp-YFP containing
endosomes resulted in αe,Dpp = 55 ± 7%, and αe,Dpp = 35 ± 6% for the less in-
tense half of the endosomes (�g. 3.5a). Together our results showed that Dpp

was not homogenously distributed among the di�erent types of endosomes.
All results were independent on spatial data segmentation with respect to the

cell’s distance to the Dpp-source.

As reported previously [23] the amount of Rab5 associated to endosomes

�uctuates on the time scales of our experiments. To study the e�ect of Rab5
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Figure 3.5: Correlation fraction calculation α of early endosomes for segmented data

sets. a) Correlation fraction for Dpp-YFP-containing endosomes segmented accord-

ing to Dpp concentration. For each image stack the Dpp-containing endosomes were

divided in two halfs, high intensity and low intensity. Applying PICCS on each sub-

set shows that αe,Dpp = 55 ± 7% of the high-intensity Dpp-containing endosomes

were early endosomes, in comparison to αe,Dpp = 35 ± 6% of the low-intensity Dpp-

containing endosomes. b) αe,Dpp calculated at di�erent time points, using only 2 YFP-

CFP image stacks for each data point. αe,Dpp �uctuates around 47 ± 14%, indicated

by the dashed line. �e large error bars are caused by the low amount of data in each

point (i.e. only 2 CFP-YFP image stack pairs).

�uctuation on our measurements we analyzed the changes in correlation frac-
tion over time. Instead of using the whole data set (28 YFP-CFP image stack
pairs), we calculated the correlation fraction for data subsets containing 2 adja-

cent YFP-CFP image stacks (i.e. stack 1-2, stack 3-4, stack 5-6, etc.). In �g. 3.5b
αe,Dpp is plotted versus the time. αe,Dpp �uctuates around 47% with σ = 14%,

however no systematic trend on longer timescales was observed as has been
reported for Rab5 �uctuations in early endosomes [23].

�e results presented so far were obtained from one wing imaginal disc
(17 cells in the �eld of view). We repeated the described experiments for two

other wing imaginal discs (total number of cells=51, image centered at 20 µm
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from the source), and found that αe,Dpp = 38 ± 2% of Dpp-containing endo-
somes were early endosomes, and that early endosomes contain f = 52± 1% of
the endosomal Dpp with on average nDpp,e = 1.9 times as much Dpp in early

endosomes compared to late and recycling endosomes.
All experiments were done in the apical 4.5 µm region of the cells. In order

to draw conclusions about the kinetic parameters of intracellular Dpp tra�ck-
ing, the complete apicobasal distribution of the di�erent types of endosomes
has to be considered. Both early and recycling endosomes are known to be

located mainly in the apical region of epithelial cells [24, 25]. We con�rmed
this distribution for wing imaginal discs by measuring the apicobasal distribu-

tion of early, recycling and late endosomes over an axial range of 20 µm with
Rab5-CFP, Rab11-YFP or Rab7-YFP, respectively. We found that 65% of the
early endosomes, 41% of the recycling endosomes, and 62% of late endosomes

are located in the most apical 4.5 µm of the disc, i.e. 51% of non-early endo-
somes were in the volume measured in our experiments, compared to 65 % of
the early endosomes. We corrected our results for this di�erence by calculating

the real Dpp fraction f using

f = αe,DppnDpp,eMnon-early

αe,DppnDpp,eMnon-early + (1 − αe,Dpp)Mearly

(3.13)

in which Mearly and Mnon-early are the fractions of the total pool of early and
non-early endosomes, respectively, which were in the measured volume. Tak-

ing into account that early endosomes contained 1.9 times as much Dpp as
other endosomes we found a Dpp fraction of f = 48 ± 5% contained in early

endosomes.
From previous FRAP experiments the Dpp degradation rate was deter-

mined [2] to be kd = (2.52 ± 1.29) ⋅ 10−4 s−1 [2]. �e contribution of kex was
estimated from the Dpp production rate, which was found to be 2.69 ± 1.58
molecules per cell per second [2]. Since the system is in a steady state, the pro-
duced Dpp needs to be endocytosed at the same rate as it is produced and we

set kex = 2.69 ± 1.58 s−1. �is value is much faster than the typical endocy-
tosis time, which typically is on the order of tens of seconds to a few minutes

[26, 27]. �e value reported here however is the average rate per Dppmolecule
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if they would be endocytosed one by one. It therefore does not say anything
about the amount of Dpp molecules that are endocytosed at the same time.
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Figure 3.6: Possible values for the recycling endosome out�ow rate kr for di�erent

values of the early endosome out�ow rate kea, using f = 0.48 and ε = 0.996 (solid

line). �e dotted lines show kr and kea for values of ε=0.994 (1), ε=0.995 (2), ε=0.997

(3) and ε=0.998 (4). �e dashed lines indicate the allowed values for kr and kea if

transport across a single cell takes 150 s as lower limit and 50 s as upper limit as esti-

mated andmeasured before [2, 6, 28, 29]. �e intersection of the solid and the dashed

lines indicate range of solutions for the values of 1.0 ⋅ 10−2 < kr < 3.5 ⋅ 10−2 s−1 and
1.9 ⋅ 10−2 < kea < 4.7 ⋅ 10−2 s−1.

Using eq. (3.9) we further determined an upper limit value for the early

endosomes out�ow rate to be kea,max = 0.13 s−1, which translates to a minimum
Dpp residence time in early endosomes of tr = 1

kea
> 7.6 s. Values for the

early endosome out�ow rate kea and the recycling endosome out�ow rate kr
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are further limited by eq. (3.6). By realizing that both rates must be ultimately
limited by the total rate estimated for Dpp transport across a single cell [6, 28,
29] which was 1/(50 s) and 1/(150 s), repectively, we �nd the constraint

50 < 1

kex
+

1

εkea
+

1

kr
< 150 (3.14)

as indicated as dashed lines in �g. 3.6. We already determined that kex is much
faster compared to kea and kr. Hence, the contribution of kex in eq. (3.14) is

negligable. From the graph in �g. 3.6 we �nd that 1.9 ⋅ 10−2 < kea < 4.7 ⋅ 10−2 s−1
and 1.0 ⋅ 10−2 < kr < 3.5 ⋅ 10−2 s−1. For the average residence times tr of Dpp in
the early and recycling endosomes we found 21 < tr,ea < 53 s and 29 < tr,r < 100
s, respectively. Uncertainty in ε, estimated to be 0.002, did not signi�cantly
in�uence this result (see dotted lines in �g. 3.6 for ε =0.994 (1), 0.995 (2), 0.997
(3), and 0.998 (4)).

3.6 Conclusion
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Figure 3.7: Summary of the obtained results.

Our data show that PICCS is a quantitative tool for addressing spatial and
temporal correlations between interacting particles or proteins. �e method

alleviates restrictions which hampered previously developed methods. PICCS
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reliably allowed us to measure the cross-correlation between two populations
by which we arrived at quantitative insights into the subcellular mechanisms
underlying intracellular Dpp transport. �e results are summarized in �g. 3.7,

where the estimations for the di�erent rates are shown for the slow limit of
intracellular transport. From the rates we found that the average residence

time of Dpp in early endosomes is slightly shorter compared to recycling en-
dosomes. Compared to the total life time of a Dpp molecule of 46 min [2] the
average residence time in early and recycling endosomes is about 1 min for the

slow limit and about 25 s for the fast limit. Furthermore we found that early
endosomes contain on average almost twice as much Dpp compared to other

endosomes. �e results obtained are the �rst steps in a quantitative description
of the transcytosis pathway in morphogen gradient formation.
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3.A Appendix

3.A.1 �eory - Intracellular tra�cking

�e steady-state concentration of Dpp in each type of endosome in given cell

n is calculated from eqs. (3.1) to (3.4)

Cn
ea = kex (Cn

ex + C
n+1
ex )

2kea
(3.15a)

Cn
r = εkeaCn

ea

kr
(3.15b)
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Cn
l = (1 − ε)keaCn

ea

kl
(3.15c)

Cn
ex = kr (Cn−1

r + C
n
r )

2kex
(3.15d)

Combining eqs. (3.15a), (3.15b) and (3.15d) gives

Cn
ex = 1

4

ε

1 − ε
(Cn−1

ex − 2C
n
ex + C

n+1
ex ) (3.16)

If the Dpp gradient varies on length scales which are large compared to the size
of a cell, we can approximately write the right side of the above equation as a

second derivative, which results in

Cex = 1

4

ε

1 − ε

d2Cex

dn2
(3.17)

with solution
Cex(n) = Cex(0)e− n

λ (3.18)

with the decay length λ in number of cells. Equation (3.16) and eq. (3.18) relate

ε to λ, with

ε = 2

1 + cosh (λ−1) = 0.996 (3.19)

using the experimentally determined value for λ (λ = 7.7 cells, [2]).
�e total concentration of Dpp in endosomes Cn

tot,endo in cell n is given by
the sum of eqs. (3.15a) to (3.15c)

Cn
tot,endo =

kexkrkl + εkeaklkex + (1 − ε)keakexkr
2keakrkl

× (1 + e−( 1
λ
))Cn

ex ≡ const. × C
n
ex (3.20)

�us the gradient of the intracellular Dpp concentration follows the extracel-

lular gradient linearly.
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3.A.2 �eory-Particle image cross-correlation spectroscopy

We consider 2 interaction partners whose �uorescence signals are labeled
‘YFP’ and ‘CFP’ without loss of generality. �e goal is to �nd the correlation
fraction and length from the spatial positions of the signals.

If P(x , y) is the probability to �nd two correlated signals separated by a
vector (x , y), then the cumulative probability Pcum (l) is found by integration
of P(x , y) in polar coordinates

Pcum (l) = 2π ∫ l

0
drP(r) (3.21)

with r = √x2 + y2.
�e shape of the function Pcum (l) depends on the nature of the interaction

between the interaction partners and the positional accuracy for determina-
tion of the YFP andCFP signals. �e experimentally observed P(x , y) is found
from the convolution of the real correlation Pcorr(x , y), which is characteristic

for a speci�c interaction, and the probability density Ppos. acc.(x , y) describing
the (apparent) correlation due to the �nite positional accuracy [30].

P(x , y) = ∫ ∫ dx′ dy′Pcorr(x − x′, y − y′)
× Ppos. acc.(x′ , y′)

Ppos. acc.(x , y) = 1

2πσ2
exp(−x2 + y2

2σ2
) (3.22)

where σ = √2δ and σδ is the one-dimensional positional accuracy.

In the simplest case, if the YFP and CFP signal are at the same position,
Pcum (l) is determined by the positional accuracy alone:

Pcum (l) = 1 − exp(− l2

2σ2
) (3.23)

A �t of Eq. 3.23 to Pcum (l) with σ as the free �t parameter results in a value
for the one-dimensional positional accuracy σpos. acc. = σ/√2. More generally

σ can be regarded as a typical correlation length.
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To accurately describe the experimentally determined Pcum(l) we found
that we had to assume two correlation lengths (σ1 and σ2)

Pcum (l) =β (1 − exp(− l2

2σ2
1

))
+ (1 − β)(1 − exp(− l2

2σ2
2

)) (3.24)

where β is the fraction of data that has a correlation length σ1. We suppose that
a broad distribution of positional accuracies explains this functional form of
Pcum (l).

Now we derive step-by-step the form of the correlation function Ccum(l)
given above in Eq. 3.10. If, per image, there is only one pair of correlated signals

(for clarity they will be called ‘YFP signal’ and ‘CFP signal’) the correlation
function Ccum (l) equals Pcum (l): Ccum (l) = Pcum (l). If only for a fraction

α of all YFP signals there is a correlated CFP signal, we observe Ccum (l) =
αPcum (l). Typically there ismore than one YFP signal per image and therefore
also more than one CFP signal. If l gets bigger, neighboring CFP signals in

close proximity are counted by the PICCS algorithm although they are not
correlated with the YFP signal. Additionally there might be CFP signals which
are not correlated with any YFP signal. �ese CFP signals, in close proximity

or not correlated with any YFP signal, lead to an additional contribution cCFP ⋅
π l2 to Ccum(l). Here we assume that the positions of the CFP signals follow a

uniform random distribution with density cCFP. In total Ccum(l) = αPcum(l) +
cCFP ⋅ π l2.

If there are no CFP signals in addition to the ones correlated with a YFP
one, cCFP can be calculated from the density of YFP signals cYFP, the correlation
fraction α and the image area A by

cCFP = α(cYFPA− 1)/A = α(cYFP − 1/A) ≡ c∗CFP (3.25)

If α/A≪ cYFP, cCFP ≈ αcYFP. In general cCFP = c∗YFP+cCFP, uncorr., where cCFP, uncorr.
is the density of CFP signals which are not correlated with any YFP signal.
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Non-random distribution of signals In any real life situation, the assump-
tion that all CFP signals are distributed randomly with a uniform density is of-
ten violated. One reason is the di�raction limit: if two molecules are too close

to each other (< 200 nm) their �uorescence signals will merge and only one
signal is observed. Consequently, close to a given CFP signal the probability to

�nd another signal is decreased. Additionally, there might be biological rea-
sons for correlations between the CFP signals. For example, receptors might
be distributed evenly (and non-randomly) to achieve a very homogeneous sur-

face coverage. Any correlation between the positions of CFP signals will cause
a deviation from the simple quadratic contribution cCFP ⋅ π l2 we assumed. �e

in�uence of this correlation on the cumulative correlation Ccum(l) between
the two color channels depends on the distribution of distances between YFP
and CFP signals Pcum(l). We de�ne the function s(r, l) as the number of CFP

signals in a circle with radius l if the distance between the YFP signal and a
correlated CFP signal is r. For YFP signals which have a correlated CFP signal,
the contribution of uncorrelated signals can be written as

α ∫
∞

0
dr s(r, l)∂Pcum

∂r
(r) (3.26)

where ∂Psum(r)/∂r gives the probability for a distance r between a pair of cor-
related signals. For YFP signals without correlated CFP signals, and assuming
the simple quadratic dependence, we derive

Ccum(l) = αPcum(l) + (1 − α)c ⋅ π l2 (3.27)

+ α ∫
∞

0
dr s(r, l)∂Pcum

∂r
(r)

s(r, l) is determined empirically from the experimental data by correlation of

a ‘virtual’ YFP channel image with the measured images from the CFP chan-
nel. �e virtual YFP image is constructed from the CFP image by placing YFP
signals at a distance r from a CFP signal. �e Ccum(l) determined for a given

r with the standard algorithm is equal to s(r, l). Typically the results from 20
virtual images (where the YFP signals aremoved around on circles with radius

r around the CFP signals) are averaged to obtain s(r, l).



72 Intracellular Dpp transport studied with PICCS

Subsequent to the calculation of s(r, l) the correction is determined nu-
merically by the following self-consistent algorithm:

1. as an initial guess for the correction term determine the slope of the lin-

ear part of Ccum and use the original correction term from eq. (3.10).

2. subtract the correction.

3. determine α as the average over the �at part of the resulting curve

4. normalize to 1 and �t the model eq. (3.11).

5. calculate the new correction according to eq. (3.27), go to step 2.

Steps 2 to 5 are repeated until the �t parameters change less than a prede�ned
threshold.

3.A.3 Bleaching

Bleaching of the �uorescent label can in�uence the results. If one of the two
�uorescent labels bleaches more quickly than the other, signals are lost and
the correlation fraction will decrease over acquisition time. To con�rm that

the number of early endosomes (CFP signal) and Dpp-containing endosomes
(YFP signal) stayed constant we measured the total number of detected endo-

somes per image stack (�g. 3.8). On average we detected 17 early endosomes
in a �eld of view (1 early endosome per cell on average) and the number of
observed endosomes was constant around this value. �e average number of

Dpp-containing endosomes found was 1.5 per cell. Since Dpp is also in the
other endosomes we expected to �nd more Dpp-containing endosomes on
average. Fluctuations in the number of detected endosomes were caused by

movement of endosomes in and out of the image volume or by endosomes that
were moving too close together to be detected individually. �e latter e�ect is

corrected for in the PICCS-algorithm.
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Figure 3.8: Number of detected endosomes per image stack for a) early endosomes and

b)Dpp-containing endosomes. �e number of endosomes (signals) in both channels

stayed approximately constant. �e average number of endosomes and the standard

deviation are indicated for both cases.

3.A.4 Error scaling in PICCS

To design a successful experiment it is crucial to know how the error of the
measured observables (α, cCFP , σ) scales with the experimental and �tting pa-

rameters (�g. 3.9). We determined the error by application of the PICCS al-
gorithm described above to simulated data, assuming that the signals are dis-

tributed randomly and uniformly in space and the correlations are governed
by eq. (3.11). First, we assume that all CFP signals are correlated with a YFP
signal, so cCFP = α(cYFP − 1/A), where A is the area of the image. �en we

add additional CFP signals, which are not correlated with any YFP signal. For
every set of parameters the simulations are repeated 100 times and the errors

∆α, δcCFP, ∆σ are determined as the standard deviation.

Experimental parameters �e experimental parameters are the correlation
fraction α, the density of YFP and CFP signals cYFP and cCFP, the correlation
length σ and the number of images M. As evident from �g. 3.10a all errors
scale approximately like 1/√M where M is the number of acquired images.

�is behavior assures that any error can be made small just by acquisition of
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Figure 3.9: Experimental and �t parameters. �e open circles correspond to Ccum(l)
calculated from simulated data. �e closed circles give Ccum(l) a�er subtraction of

the linear contribution given by the dotted line. To determine the slope π ⋅ cCFP of

the linear contribution the Ccum(l) is �tted to a straight line between lmin and lmax.

�e o�set of this straight line is equal to the correlation fraction α. σ is equal to the

distance l where the function Ccum(l) − π ⋅ cCFP l2 has the value α (1 −
√
e)

more images. �e same scaling behavior is found for α, see �g. 3.10b. As to

be expected, the relative errors become large if the correlation fraction is small
or, equivalently, more images have to be acquired to achieve a certain accuracy.

�e dependence of the error on the density of YFP signals cYFP is di�erent for
the various observables (�g. 3.10c). While the error for cCFP scales like the in-
verse square root (1/√cYFP), the errors of α and σ are �tted with the empirical

model A ⋅ (cYFP/µm−2)−0.5 + B ⋅ (cYFP/µm−2)0.25. �is model has a minimum
at (2A/B)4/3, which implies that there is an optimal density cYFP, where the er-
rors are minimal. As will become clear below, the value of this optimal density

depends on the �tting parameters. �e errors of α and σ initially decrease with
increasing cYFP because of the higher number of YFP signals, which increases

statistical signi�cance. At the same time, cCFP increases and therefore the con-
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tribution cCFP ⋅ π l2 increases relative to α. Consequently, the errors of α and σ
increase for big densities cYFP.

So far, all CFP signals had a corresponding (i.e. correlated) YFP signal.

Now we add additional, non-correlated CFP signals. If the density of YFP sig-
nals cYFP and the interaction fraction α are kept constant, α and σ scale approx-
imately like

√
cCFP while the error of cCFP scales like 1/√cCFP (�g. 3.10d). As to

be expected, the presence of extra CFP signals makes the determination of α
and σ increasingly di�cult. A change in the correlation length σ has signi�-

cant in�uence only on the error for σ which scales like 1/√σ . For increasing σ
there are more data points in a region which is important for the determina-

tion of σ , namely where Pcum(l) is signi�cantly smaller than 1. �e errors of α
and cCFP are approximately constant (�g. 3.10e).

Fitting parameters �e �tting parameters are the length of the interval for
the linear �t lmax − lmin, its center lcenter = (lmax − lmin)/2 and the distance be-

tween two data points ∆l (�g. 3.9). Figures 3.11a-c show that the general scaling
behavior is independent on the position of the �t interval lcenter. However, the
position of the minimum error of α and σ depends on lcenter: �e bigger lcenter,
the smaller the optimal density cYFP. �erefore, lcenter should be as small as the
data allows - of course, the �t interval must be in the region where Ccum(l)
is linear when plotted versus l2. Figures 3.11d,e show the dependence on the
errors on the length of the �t interval and the distance between data points re-

spectively. �e errors asymptotically become constant for big �t intervals and
small distances between data points. Note that increasing lmax at constant lmin

enlarges the �t interval but also moves its center lcenter, which is disadvanta-

geous, see above.
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Figure 3.10: a) Dependence of the relative errors on the number of images M. �e

relative errors of α (circles), σ (triangles) and cCFP (squares) all scale approximately

like 1/√M (solid line). M = 10, α = 0.5, cYFP = 0.5 µm−2,σ = 0.15 µm b) Depen-

dence of the relative errors on the interaction fraction α. �e legend is the same as

in �g. 3.10a, where cYFP = 1 µm−2 (closed symbols), cYFP = 10 µm −2 (open sym-

bols), M = 10, σ = 0.15 µm in both cases. �e errors of all determined parame-

ters approximately scale like 1/√α (solid line), independent of the density cYFP. c)

Dependence of the relative errors on the density cYFP. �e legend is the same as in

�g. 3.10a. �e relative error of α (circles) and σ (triangles) are �tted with the model

A ⋅ (cYFP/µm−2)−0.5 + B ⋅ (cYFP/µm−2)0.25 (black solid and dashed line respectively).

For α A = 0.04, B = 0.12, which results in a minimum at 0.6 µm−2 and for σ A = 0.07,
B = 0.14, which gives a minimum at 0.5 µm−2. �e relative error of cCFP (squares)

scales approximately like c
−2/3
YFP (�e gray solid line is a linear �t in the logarithmic plot

given by y = −0.66(cYFP/µm−2)− 2.9). M = 10, α = 0.5, σ = 0.15 µm. d)Dependence

of the relative errors on the density cCFP. �e legend is the same as in �g. 3.10a. �e

relative error of α and σ scale approximately like
√
cCFP (solid line), the relative error

of cCFP scales like 1/√cCFP (dashed line). M = 10, cYFP = 1 µm−2, α = 0.5, σ = 0.15 µm.

e) Dependence of the relative errors on σ . �e legend is the same as in �g. 3.10a. �e

relative error of α and cCFP do not change signi�cantly with σ . �e relative error of

σ scales approximately like 1/√σ (�e solid line is a linear �t in the logarithmic plot

given by y = −0.52(cYFP/µm−2) − 2.8)) M = 50, cYFP = 1 µm−2, α = 0.5.
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Figure 3.11: a) Dependence of the relative error of α on the center of the �t interval

lcenter = (lmax − lmin)/2. �e legend is the same as in �g. 3.10a, where lcenter = 0.925

(solid symbols), lcenter = 1.175 (gray symbols) and lcenter = 1.375 (open symbols). �e

relative error of α is �tted with the model A ⋅ (cYFP/µm−2)−0.5 + B ⋅ (cYFP/µm−2)0.25.
A = 0.04, B = 0.05 (black solid line), A = 0.04, B = 0.09 (gray solid line) and A = 0.04,
B = 0.13 (dashed line). �at results in minima at 1.9 µm−2,0.9 µm−2 and 0.5 µm−2
respectively. M = 10, α = 0.5, σ = 0.05 µm. b) Dependence of the relative error

of σ on the center of the �t interval lcenter = (lmax − lmin)/2. �e legend is the same

as in �g. 3.10a, where lcenter = 0.925 (solid symbols), lcenter = 1.175 (gray symbols)

and lcenter = 1.375 (open symbols). �e relative error of σ is �tted with the model

A ⋅ (cYFP/µm−2)−0.5 + B ⋅ (cYFP/µm−2)0.25. A = 0.07, B = 0.15 (black solid line),

A = 0.08, B = 0.25 (gray solid line) and A = 0.09, B = 0.34 (dashed line). �at

results in minima at 0.9 µm−2, 0.6 µm−2 and 0.4 µm−2 respectively. M = 10, α = 0.5,
σ = 0.05 µm. c)Dependenceof the relative error of cCFP on the center of the �t interval

lcenter = (lmax − lmin)/2. �e legend is the same as in �g. 3.10a, where lcenter = 0.925

(solid symbols), lcenter = 1.175 (gray symbols) and lcenter = 1.375 (open symbols). �e

relative error of σ is �tted with the straight line (in the logarithmic plot). �e slope

is −0.77 (black solid line) −0.67 (gray solid line) and −0.62 (dashed line). M = 10,

α = 0.5, σ = 0.05 µm. d) Dependence of the relative errors on the length of the �t

interval (lmax − lmin). �e legend is the same as in �g. 3.10a. M = 50, α = 0.5, σ = 0.15
µm, cYFP = 1 µm−2. e) Dependence of the relative errors on the step size ∆l (�g. 3.9).

�e legend is the same as in �g. 3.10a. M = 50, α = 0.5, σ = 0.15 µm, c = 1 µm−2.
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Chapter 4

Endosome motility and endosomal cargo dynamics

mediate morphogen gradient formation

In the wing imaginal disc of Drosophila melanogaster positional information is pro-

vided by a concentration gradient of the morphogens Decapentaplegic (Dpp) and

Wingless. �ree transport mechanism govern formation and maintenance of the gra-

dient. Here we focus on intracellular transport of Dpp. Using a 3D wide-�eld �uores-

cence microscope and particle tracking algorithms we were able to quantify the role

of endosome mobility and endosomal cargo dynamics in intracellular Dpp transport.

We found that the lateral motility of endosomes by itself cannot account for ef-

fective intracellular transport. In the apicobasal direction however directed transport

was observed during 6% of the time, with velocities that agreed with previously found

values for molecular motors. �e function of this endosomal transport remained un-

clear, but we speculate that it might play a role in Dpp degradation. We characterized

the spatio-temporal endosomal Dpp distribution in the wing disc in all three dimen-

sions in vivo and found it to be single-exponential, identical to the distribution of the

complete Dpp population. �e number of endosomes however remained constant

throughout the disc. Endosomes contained up to 250 Dpp molecules allowing us to

follow endosomes for hundreds of frames with high accuracy. Sudden changes in Dpp

content of up to 25 Dpp molecules were observed, indicating that vesicles traveling

between endosomes contain multiple Dpp molecules both before fusion with an en-

dosome, and a�er �ssion from an endosome. �e time between Dpp in- and out�ow

events was found to be about one minute. Dpp out�ow was found to be a passive,

probabilistic process. Combining these results suggested the presence of an immobile

Dpp fraction, similar to what was observed with FRAP experiments before.

Our study is the �rst study to quantify intracellular Dpp transport on the level of

individual endosomes. �e results on the role of endosomal motility and endosomal

cargo dynamics will have to be integrated in the future into a more detailed model

describing intracellular Dpp transport.
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4.1 Introduction

Almost 60 years ago Turing proposed that morphogens are providing the po-
sitional information in morphogenesis [1]. Wolpert in turn further developed
a model in which morphogens are produced only by spatially localized cells.

�is then leads to the formation of a morphogen gradient in the surrounding
‘receiving’ tissue [2]. �e position of a cell is hence coded into its position in

a morphogen gradient. In the receiving tissue, the morphogen is detected by
receptors on the cell surface. Depending on the morphogen concentration,
cells will change their gene expression pattern accordingly. While the concept

of morphogen gradients is now accepted for decades, the mechanism underly-
ing the formation of these gradients on the cellular, sub-cellular andmolecular

level has only started to become understood in recent years. �e formation of
a stable gradient requires three mechanisms: production of the morphogen,
spreading to neighboring cells and �nally degradation of the morphogen.

In what follows we focus on morphogen spreading in tissue. For this pro-

cess three mechanisms have been proposed: (i) di�usion in the extracellular
matrix [3], (ii) receptor-mediated transport along the cell membrane [4] and

(iii) intracellular transport [5], a sequential sequence of endocytosis of the
morphogen-receptor complex followed by recycling and release of the mor-
phogen into the extracellular matrix [6].

We studied the spreading of the morphogen Decapentaplegic (Dpp), a

member of the TGF-β superfamily, which plays a major role in the develop-
ment of the fruit �y Drosophila melanogaster. Dpp is expressed in a stripe of

cells (the ‘source’) at the anterior-posterior compartment boundary (�g. 4.1a)
of the wing imaginal disc [8]. �e wing imaginal disc is a precursor of the later
wing (�g. 4.1b). Figure 4.1c shows a schematic xz projection (a cross-section

perpendicular to the dorso-ventral axis) of the wing imaginal disc consisting
of two layers of distinct cells. �e peripodial layer on top and the columnar
cells beneath in which the Dpp gradient is present. �e producing cells are

indicated with a green bar in �g. 4.1c. From these producing cells Dpp is se-
creted to neighboring cells where it forms an exponential gradient in the wing

epithelium [5, 9, 10]. In a recent experimental study of the Dpp gradient it was
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Figure 4.1: �e wing imaginal disc. �e x, y and/or z-axes are indicated in each sub-

�gure. a) Top view of the wing imaginal disc showing the anterior (A) and posterior

(P) compartment. �e Dpp source (green) is located at the A-P compartment bound-

ary. �e dorsal (D) and ventral (V) sides are also indicated. b) Wing of a mature �y

with the anterior and posterior compartment indicated. c) Schematic cross-section of

a wing imaginal disc perpendicular to the D/V-axis. �e Dpp source is indicated by

the green color. (images from [5, 7])

shown that the formation of the gradient is a combination of Dpp production,

Dpp spreading throughout the tissue and Dpp degradation within the cells as
described by

∂tC(x , t) = De�∇
2C − kC + 2 j0δ(x) (4.1)

in which C(x , t) is the Dpp concentration at time t and distance to the source
x. With confocal �uorescence microscopy quantitative values for the e�ec-
tive di�usion coe�cient De�, the degradation rate k and the production rate

j0 have been obtained [10]. While in the latter study the actual Dpp trans-
port mechanisms were modeled with one e�ective di�usion coe�cient De�,

here we report on experimental �ndings that describe morphogen spreading
by subcellular processes which �nally lead to the e�ective coe�cients and rates
reported. Our experimental work is in line with ongoing theoretical e�orts to

describe Dpp spreading on the cellular and subcellular level [7, 11, 12].

4.1.1 Intracellular Dpp transport

Here we experimentally study the intracellular transport of Dpp in wing ep-

ithelia on the cellular and sub-cellular level by analyzing endosome motility
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Figure 4.2: Schematic drawing of intracellular Dpp transport. Numbers indicate the

di�erent events that occur: 1) Dpp endocytosis into a vesicle and concurrent fusion

with an early endosome. 2) Fission of a vesicle containing Dpp from an early endo-

some. 3) �e vesicle from (2) going to a recycling endosome. 4) �e vesicle from

(2) going to a late endosome. 5) Fission of a vesicle from a recycling endosome and

concurrent exocytosis. 6) Fission of a vesicle from a late endosome to a lysosome. In-

tracellular Dpp transport is non-directional. Any directionality of Dpp transport as

suggested in this �gure is for clarity purposes only.
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and monitoring the concentration of Dpp in endosomes. Intracellular Dpp
transport plays amajor role in gradient formation. �is idea is supported by ex-
periments in which intracellular Dpp transport was selectively blocked within

part of the tissue by locally de�ned genetic shut down of endocytsosis [5]. �e
intracellular transport of Dpp is schematically shown in �g. 4.2. In this model

we distinguish di�erent events 1:

1. Endocytosis of Dpp into a vesicle with concurrent fusion of this vesicle
with an early endosome (+).

2. Fission of a vesicle containing Dpp from an early endosome (-)

3. a�er which it can go either to a recycling endosome (+)

4. or into a late endosome (+).

5. Fission of a vesicle containing Dpp from a recycling endosome and con-

current recycling of the Dpp into the extracellular matrix (-).

6. Fission of a Dpp-containing vesicle from a late endosome to a lysosome
for degradation (-).

Such sequential processes are best described in terms of a system of rate
equations in which a change in endosomal Dpp concentration dC is related to

a rate ki and the Dpp concentration ci in the vesicle that is involved in process
i. �e change in concentration for each endosome is described by:

∂tCearly = c1k1 − c2k2 (4.2a)

∂tCrecycle = c3k3 − c5k5 (4.2b)

∂tClate = c4k4 − c6k6 (4.2c)

1For each event it is indicated in parenthesis if the Dpp concentration in the speci�ed
type of endosome increases (+) or decreases (-). For each event the corresponding number is
indicated in �g. 4.2.
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Further we identify from �g. 4.2 that a vesicle that originates from an early
endosome (event 2) will transfer either to a recycling endosome (event 3) or
a late endosome (event 4). As the Dpp concentration in this vesicle will not

change during these events (2→3 or 2→4) c2 = c3 + c4. Knowledge of the pa-
rameters involved in the coupled di�erential equations will provide us with the

full description of intracellular Dpp transport.
�eoretical calculations have estimated that one cycle of intracellular trans-

port has a duration between 50 and 150 s [6, 13]. In a companion study to the

current one we determined rates k2 and k5 of the events described above using
Particle Image Cross-Correlation Spectroscopy (PICCS, chapter 3). By label-

ing both Dpp and early endosomes we estimated the o� rates for the ‘�ssion’
events by determining the cross-correlation between both populations using
the PICCS algorithm.

Much of the previous work on Dpp gradients has been done with conven-
tional �uorescence microscopy. Here we build on our expertise in the �eld
of single-molecule wide-�eld �uorescence microscopy [14, 15] which has dis-

tinct advantages over confocal microscopy in imaging speed and sensitivity
and allows for straightforward determination of the Dpp concentration in en-

dosomes. While in the companion study we focused on the kinetic parameters
for Dpp transport, here we study how intracellular transport is actually facili-
tated. In particular we investigated:

1. Do endosomes or the vesicles travelling between endosomes control

Dpp transport?

2. What are the other roles of endosomes we see?

3. Do Dpp molecules travel individually or in clusters during intracellular

transport?

4. Is there evidence for directionality in intracellular transport?

By employing single particle tracking methods we studied all those questions
and developed a quantitative description of intracellular Dpp transport on the

level of individual endosomes.
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4.2 Materials and methods

4.2.1 Sample preparation

�e UAS-Venus-Dpp line was generated by using the existing UAS-GFP-Dpp
vector [5] where GFP was replaced by Venus [16]. dppd8/dppd12; dppGal4/UAS-
Venus-Dpp�ies have an identicalwing phenotype to thedppd8/dppd12; dppGal4/
UAS-GFP-Dpp�ies [5]: they survive to adulthood andhavenormally patterned
wings, although smaller in size (data not shown). To obtain wing imaginal

discs third instar larvae (dpp-Gal4/UAS-Venus-Dpp) were dissected in Clone8
medium (Schields & Sang M3Medium containing 2% Fetal Calf Serum, 2.5 %
Fly Extract, 12.5 IU Insulin/100 ml medium and 1X Penicillin/Streptomycin)

a�er which the wing imaginal discs were mounted in a custom-made sample
holder. Nail polish was used for sealing of the sample holder. �e wing imag-

inal discs were imaged approximately 10 min a�er dissection. Samples were
discarded 1 hour a�er dissection.

4.2.2 Data acquisition

A transmission image of a wing imaginal disc is shown in �g. 4.3a. When the
sample is excited by a mercury lamp (excitation in the 500-520 nm range) the
�uorescence from the DppVenus is clearly seen (�g. 4.3b). Magni�cation of

the source area shows endosomes containing Dpp (�g. 4.3c). A�er addition
of low concentrations of the membrane marker FM4-64 (Invitrogen, Leiden,

�e Netherlands) to wing disc during preparation, both the Dpp-Venus �u-
orescence (�g. 4.3c, λ < 600 nm) and the cell membranes (�g. 4.3d, λ > 600
nm) become visible. Overlaying both images (�g. 4.3e) allows us to assign each

endosome to a speci�c cell.

Experiments were carried out on a wide-�eld �uorescence microscope ca-
pable of three dimensional particle-tracking through astigmatism [17]. �e

setup was additionally combined with a piezo-driven objective holder (Physik
Instrumente, Karlsruhe, Germany) to move the objective in axial direction at

10 nm-precision. A motorized sample stage (Märzhäuser, Wetzlar, Germany)
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a) b)

f )

c) d) e)

Figure 4.3: a) Transmission image of a wing imaginal disc directly a�er dissection. b)

�e same wing imaginal disc, now excited by a �uorescent lamp (500-520 nm). Dpp-

Venus can be clearly seen, especially in the Dpp producing cells. �e location of the

Dpp source is indicated, together with the anterior-posterior compartment boundary

which marks the border between producing and receiving cells. In the receiving cells

a gradient is observed. c) A close-up of the receiving cells, individual Dpp-containing

endosomes can be clearly seen. d)�e same area as in (c), but now imaged in the red

channel, showing the �uorescence of membrane-marker FM4-64, clearly outlining

the columnar cells. e) Merge of images (c) and (d). f) Typical data obtained during

an experiment in one image stack. Each image corresponds to a di�erent z-position

going from very apical (le� image) to more basal (right image) with a distance of 0.7

µm between the planes. Out-of-focus �uorescence is removed in these images for

clarity.
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was used to move the sample in lateral direction with sub-micrometer accu-
racy. Image stacks with 5 to 8 image planes were generated in order to image
large volumes. �e distance between planes was set between 0.7 and 1.0 µm

such that endosomes appeared in at least two planes. �e time between planes
was kept as short as possible (typically 40 ms) to prevent large movements of

endosomes between planes, while allowing enough time for the piezo to move
the objective. Imaging was done in the apical region of the wing imaginal disc.
A typical image stack is shown in �g. 4.3f, where 7 planes with ∆z = 0.7 µm

were imaged. Endosomes containing Dpp-Venus were clearly identi�ed in at
least two images at the same time. �e movement of endosomes between two

consecutive planes was negligable. �e astigmatism introduced for 3D posi-
tion determination is visible in the images (see the endosome indicated by the
white arrows in �g. 4.3f).

4.2.3 Data analysis

Positional information of endosomes was obtained as described before [17].

�e method of �tting elliptical 2D-Gaussian pro�les to the image of a single
particle was extended here to incorporate image stacks. A stack of elliptical
2D-Gaussianswas simultaneously �tted to the data, e�ectively producing a 3D-

Gaussian pro�le. From this �tting procedure we obtained a static characteri-
zation for each experiment. A typical analysis output is shown in �g. 4.4. Each
graph summarizes data from all endosomes detected during one experiment at

all time points. Figure 4.4a shows the distribution of the local background for
each endosome in the �rst image stack. �is is a measure for the out-of-focus

�uorescence. �e background has a mean value of 625 ± 20 cnts, with a stan-
dard deviation of 117 cnts. �is value is much smaller than the average signal
observed from an individual endosome of I = 8.6 ± 0.8 ⋅ 103 cnts, with a stan-

dard deviation of 4.4 ⋅103 cnts, as shown in �g. 4.4b. A wide range of intensities
was observed in this experiment, re�ecting the di�erences and changes in the

Dpp concentration in endosomes and photobleaching of the Dpp-Venus.

�e black curve in �g. 4.4b shows the intensity distribution for single YFPs

attached via a membrane anchor to human embryonic kidney cells [18]. �e
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Figure 4.4: Typical output of the initial data analysis of a single experiment. a) Dis-

tribution of background values (CCD counts) associated to each detected endosome

in the �rst image stack of the experiment. b) Distribution of all intensities for every

endosome detected during the whole experiment (bar plot). For this plot each im-

age stack is treated individually and therefore one endosome appearing in multiple

image stacks will contribute multiple data points to this plot. �e intensity distribu-

tion of single YFP proteins is plotted (black line) and the intensity is scaled for better

comparison with endosome intensities. c) Distribution of the positional error for lo-

calizing an endosome for each dimension (x in black, y in red and z in blue), again

for the whole experiment. d) Location in x (distance to the source), y and z for each

detected Dpp endosome in the �rst image stack.
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distribution peaked at 281 cnts. �is distribution was already corrected for
the di�erent exposure time and excitation intensity used in the Dpp experi-
ments. In doing so we assumed that the �uorescence intensity of YFP scales

linearly with both parameters, since both experiments were performed in the
non-saturating regime for YFP (excitation intensity Iex = 0.1 kW/cm2 was far

below the saturation intensity [19]). Furthermore we assumed that quenching
of �uorescence does not play a signi�cant role inside the endosome given that
the average distance between Dpp molecules in a 400 nm diameter endosome

containing 100 Dpp molecules is approximately 80 nm.

To be able to calculate the number ofDppmolecules in an endosome it was
necessary to correct the measured endosome signal for photobleaching. �is
was done by calculating a photobleaching curve for each experiment from the

average signal per detected endosome and image stack for an entiremovie. �e
fact that there were a large number of endosomes (> 15) in each image stack

rendered this strategy reliable. We found that DppVenus bleached following a
bi-exponential decay with o�set as reported earlier by others [20]. �e bleach-
ing curve was subsequently �tted to a bi-exponential decay, the parameters ob-

tained in this way (typical values τ1 = 7 images, τ2 = 244 images, o�set = 2000
counts) were further used to correct the intensity of each individual endosome

in retrospect.

To determine Dpp concentration changes in endosomes we used a step-

�tting algorithm developed by Kerssemakers et al. [21]. We decided for the
latter algorithm as it directly accounts for noise and no pre-�ltering of the data

is needed (for a review of other algorithms see [22]). Small steps of a few Dpp,
however, were di�cult to observe due to the unavoidable background �uores-
cence present in tissue. Furthermore, since photon shot noise has a bandwidth

of a few Dpp, small changes on short time scales were not detected.

�e positional accuracy by which the x, y and z coordinates of each endo-
some were determined is shown in �g. 4.4c. Since the positional accuracy is
inversely proportional to the square root of the number of detected photons,

endosomes with more Dpp were detected more accurately. Photobleaching
slightly reduced positional accuracy. As shown before the positional accuracy

in axial direction ∆z = 172 nm is approximately 2.5 times that in lateral di-
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rection ∆x = ∆y = 64 nm [17]. Finally �g. 4.4d shows the positions of the
detected endosomes during the experiment showing that most of the endo-
somes where located in an apical slice of 4 µm at about 1 µm inside the tissue.

A�er locating the endosomes in each image stack, endosome trajectories were
reconstructed by using a particle tracking algorithm that has previously been

described [14, 17]. With this approach the 3D position of each endosome as
well as its Dpp content was followed for a long period (up to 600 time points).

Trajectories were further analyzed [23] in order to detect di�erent types
of motional behavior for each endosome. Free di�usion was classi�ed against

con�ned di�usion and against directed transport. For parts of trajectories were
free di�usion was detected, a mean squared displacement (MSD) versus time

plot was generated from which the di�usion coe�cient D was calculated

MSD = 2nDt +∑2σ2
n (4.3)

in which n is the dimensionality of the data and σn the positional accuracy in
the nth dimension. To locate parts of a trajectory where directed motion is oc-

curring an ‘asymmetry’ parameter was calculated following the methodoogy
described by [23]. �e trajectory of a transported object will be highly asym-
metric, showing up as an asymmetry parameter larger than 1. As argued by

[23] this value is indicative of a probability > 99% that the object undergoes
directed motion. A�er analysis of the asymmetry parameter, in the case of di-

rected transport, the MSD versus time plot was calculated on the part of the
trajectory where asymmetry > 1 and �tted to

MSD = 2nDt + (νt)2 +∑ 2σ2
n (4.4)

fromwhich the average velocity ν of the endosomeduring the transport period

was obtained [24].
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Figure 4.5: a) Trajectory (total length = 600 s) of an endosome undergoing transport

in the lateral direction during a short period (15 s). �e distance to the Dpp source

is indicated on the x-axis. b)�ree-dimensional asymmetry parameter of the trajec-

tory versus time. Values above 1 indicate a high probability that directed motion is

occurring. c) Mean squared displacement versus time lag for the part of the trajec-

tory indicated with the arrow. From a �t to eq. (4.4) we found that the endosome was

transported with an average velocity ν = 78 ± 20 nm/s.
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4.3 Results-Endosome mobility

4.3.1 Intracellular transport by endosomes

�e simplest form of intracellular transport would be endocytosis of Dpp, fol-
lowed by a short period of transport or di�usion through the cytosol and sub-

sequent exocytosis. During a typical experiment with a duration of 600 s we
expected these events to be frequently observable given that the estimated time
of intracellular transport lies between 50 s and 150 s [6, 13, 25]. In particular,

our experiments were intended to unravel whether intracellular transport was
mainly di�usion-driven or whether it was directional.

Previous experiments suggested that on macroscopic length scales intra-
cellular transport was non-directional [5]. Indeed, on the (sub)cellular level
we did not observe any signi�cant long-range endosome transport over the

whole width of a single cell (typical cell diameter 2.6 µm). In total 48 wing-disc
preparations were analyzed, of which 15 preparations contained trajectories of
a satisfactory quality (no signi�cant sample dri� and endosomes were visible

during the whole experiment). Each experiment provided between 5 ⋅ 103 and
104 endosome positions of which typically around 200 endosome trajectories

were obtained with average length of 25 steps (exponentially distributed). Of
those, trajectories of lengths > 30 steps (∆t > 30 s) were further analyzed (typ-
ically 10 < N < 60 for one experiment). One wing imaginal disc (on average

17 cells were visible in our experiments) was analyzed more thoroughly for en-
dosome motility and we found that only 14% of long trajectories covered the
whole diameter of a cell, and that thismovement took signi�cantly longer than

150 s.

As an example of this movement, �g. 4.5a shows an endosome trajectory

of length 600 s showing clear directed transport in the xy-plane on a length
scale that matched the typical cell size. From the three-dimensional asym-
metry parameter (�g. 4.5b) it became clear that the endosome underwent di-

rected transport in parts of its trajectory. For one of those stretches lasting for
∆t = 15 s the two-dimensional (xy) MSD was calculated (�g. 4.5c.) From a

�t to eq. (4.4) the average lateral velocity by which this endosome was trans-
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Figure 4.6: a)Distribution of two-dimensional (xy) di�usion coe�cients D for Dpp-

containing endosomes. b) Distribution of the range in which each endosome moves.

For each dimension (x (along the gradient), y (perpendicular to the gradient), z (api-

cobasal)) the range is plotted. Endosomes clearly were more mobile in axial as com-

pared to lateral direction.

ported was ν = 78 ± 20 nm/s. �is value is lower than what is typically found

in comparable systems [26, 27]. Hence, although we found trajectories which
could account for directed transport, the fact that we observed only few of
these events and that the observed velocities were low, rules out that they are

the main mediators of intracellular Dpp transport. In general we therefore
rule out that the motion of endosomes is facilitating intracellular transport or

is causing directionality herein.

For non-directional intracellular transport, endosomes do not need to

cover the whole diameter of a cell. �ey could travel from one position, close
to the cell membrane, to a random other one, either by di�usion or directed
transport and carry Dpp along with them. Here we analyzed whether di�u-

sion of endosomes was su�cient to play a role in intracellular Dpp transport.
�erefore we calculated the two-dimensional MSD versus time lag for each
endosome. We estimated the two-dimensional (xy) di�usion coe�cient D by

�tting eq. (4.3) to the data for 1 s ≤ tlag ≤ 25 s for each individual endosome.
�e measured distribution of di�usion coe�cients is shown in �g. 4.6a. �e

mean di�usion constant which characterizes endosome transport was ⟨D⟩ =
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8.9±1.5⋅10−4 µm2/s. If we however do not take into account the endosomepop-
ulation which covered the range of a whole cell during the experiment (14%)
we obtain ⟨D⟩ = 6.9 ± 1.0 ⋅ 10−4 µm2/s. For the upper limit (150 s) for intracel-

lular Dpp transport an endosome would cover on average an area of 0.4 µm2

or a typical distance of 0.6 µm. For e�ective intracellular transport this value

is on the low side when compared to the cell diameter, also since most of the
endosomes were usually not close to the cell membrane. �erefore we rule out
here that mobility of whole endosomes will govern or facilitate intracellular

Dpp transport.

4.3.2 Axial endosomal movement

So far we addressed lateral (xy) motion of endosomes. In what follows the
axial (z, along the apicobasal axis) movement will be further evaluated. Since
the observed lateral di�usioncoe�cients were small and lateral movement was

small compared to the cell diameter, we did not expect to see a di�erence be-
tween lateral and axial movement. Lateral movement was even so small that

during the timeframe of our experiments (t=600 s) we did not observe any in-
�uence of the cell membrane and we did not �nd lateral con�nement with the
size of the cell diameter. In �g. 4.6b a histogram is plotted showing the distri-

bution of ranges each endosome covered during the experiment. �e average
covered range in x and y is 0.76±0.09 µm and 1.1±0.2 µm, respectively. In z the
average range covered by an endosome equals 2.5 ± 0.3 µm, more than twice

the range for lateral movement. Hence we found a clear di�erence between
lateral movement and movement along the apicobasal axis.

In �g. 4.7a a trajectory from an endosome showing preliminar apicobasal
directed motion is plotted. From the yz and xz projections it was clear that the
range of movement of the endosome in z was larger than in lateral directions.
From the asymmetry parameter (�g. 4.7b) several periods of directed transport
were detected. For one of these periods, indicated with an arrow in �g. 4.7a the

MSD versus time plot is shown in �g. 4.7c. During that period the endosome
was transported at an average velocity ν = 283 ± 32 nm/s. �is value is well in

the range of velocities observed for intracellular transport bymolecularmotors
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Figure 4.7: a) 3D trajectory of a Dpp-containing endosome showingmovement in x, y

and z. b)Asymmetry parameter of the trajectory shown in a). c)MSDversus time plot

of the part of the trajectory indicated with the arrow. Directed transport was observed

for 12 s and the endosome had an average velocity ν = 283 ± 32 nm/s.
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[26, 27]. �erefore we assume that this particular endosome was transported
by molecular motors during a period of 12 s thereby traveling a distance of 3.4
µm. We excluded the possibility that the tissue as a whole was moving in axial

direction, since the axial movement of the other observed endosomes was not
correlated to the axial movement of the endosome shown in �g. 4.7.

We analyzed all long trajectories in this wing imaginal disc (N=27 trajecto-
ries) according to themethodology delineated in �g. 4.7. Figure 4.8a shows the

distribution of axial velocities for directed transport events, characterized by
an average of νz = 212±13 nm/s. �ereby axial transport lasted between 3 s and

15 s with average duration of 7.6±0.4 s (�g. 4.8b). It should be noted that short
(< 3 s) periods of transport were not detected due to the temporal threshold
that had to be introduced into the trajectory analysis algorithm. Likewise slow

movements (< 50 nm/s) were not reliably detected if they occurred over short
periods of time. Averaged over periods of transport, during single transport

events endosomes travelled in axial direction by 1.4± 0.1 µm (�g. 4.8c). When
we summed the duration of all the periods of directed transport, we found that
in 6% of the time endosomes were clearly transported in the z-direction.

If all directed transport events were independent of each other, the distri-

bution of the time between events is expected to peak around 124 s (i.e. equal
to the total time without directed motion divided by the number of detected
directed motion events). Our data however showed a completely di�erent dis-

tribution, as shown in �g. 4.8d. In 56% of the cases transport in the z direc-
tion (either apical or basal) was followed by transport in the opposite direction
within 17 s. In 32% of the cases reversal of transport is almost instantaneous.

Such a large fraction of trajectories showing fast reversal of the direction of
transport cannot be a result of random events. �ese events were most likely

actively driven and therefore correlated.
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Figure 4.8: Directed transport statistics for multiple endosomes showing data from all
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histogram for the data where time between events < 50 s.
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Figure 4.9: a) Amount of Dpp molecules per endosome plotted versus the distance

to the source. Di�erent colors indicate di�erent wing imaginal discs. Fit of a single

exponential to the data gives a decay length λ = 22 ± 9 µm. b) Total number of Dpp

molecules (black squares) and number of Dpp endosomes (red triangles) in a volume

of 10x10x5 µm3 versus source distance for one wing imaginal disc (λ = 20.8±3.4 µm).

c) Apicobasal distribution of Dpp endosomes in the wing imaginal disc. All positions

of the detected endosomes in each image stack from an experiment are binned to-

gether. �e apical edge of the columnar cells is de�ned as z = 0 µm. d) Apicobasal

distribution of Dpp molecules (black squares) and number of Dpp endosomes (red

triangles) for the same disc as in b).
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4.4 Results-Dpp content of endosomes

4.4.1 Static characterization

�e Dpp gradient was measured in wing imaginal discs (N=28) by locating

Dpp-containing endosomes relative to the source and determining their Dpp
content (�g. 4.9a). Each sample is indicated with a di�erent color, showing the

large heterogeneity between di�erent discs. On top of large inter-sample het-
erogeneity, the number of Dpp molecules per endosome varied enormously
within one disc. In one imaginal disc Dpp content was found to be ranging

from 21 to 244 Dpp per endosome, a variation of one order of magnitude.
Despite this heterogeneity the single-exponential nature of the gradient was
visible.

Fitting a single exponential decay to all data in �g. 4.9a (number of endo-
somes > 500) gave a gradient of decay length λ = 22±9 µm, agreeing well with

previous experiments where λ = 20.2 ± 5.7 µm was found [10]. �e average
amount of Dpp per endosome at the source (C0) was determined to be 110± 10
Dpp molecules.

To remove the e�ect of inter-sample heterogeneity the amount of Dpp in
only one imaginal discwasmeasured as a function of the distance to the source
(�g. 4.9b, black squares). Images were taken at intervals of 10 µm and all de-

tected Dpp was summed. �e data was �tted to a single-exponential (omitting
the data point at x = 0 µm, since the image at that point contained both the
Dpp-producing cells as well as the Dpp-receiving cells). �e gradient has a

decay length λ = 20.8 ± 3.4 µm, which again agrees nicely with previously
obtained results.

In the following we analyzed the data in more detail to unravel which un-
derlying property was the source of the Dpp gradient. �e observed single-
exponential gradient can arise in three di�erent ways:

1. �e concentration of Dpp per endosome is constant and the number of

endosomes per cell decreases further away from the source;

2. �e opposite, i.e. a constant number of endosomes per cell and a de-
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creasing amount of Dpp per endosome versus distance to the source;

3. A combination of 1 and 2.

From a biological point of view (1) seems to be unlikely, since the function

of endosomes is not limited to collecting and transporting Dpp. A decrease
of number of endosomes further away from the Dpp source would therefore

also a�ect other cellular processes which involve endosomes. �e same rea-
soning quali�es option (3) also as less likely. Furthermore a combination of
changing the Dpp concentration and the number of endosomes seems to be a

complexway to establish a single-exponential gradient. We therefore predicted
that mechanism 2 will be the most likely mecahnism of gradient formation.

We con�rmed this experimentally bymeasuring the average number of de-
tected Dpp-containing endosomes versus distance to the source for the same
wing disc as was used before (�g. 4.9b, black squares). �e result is plotted in

�g. 4.9b (red triangles). Our data show that over a large range (∆x = 19 cells)
the number of detected Dpp endosomes stays constant (44±2Dpp endosomes
per 500 µm3). While previous experiments have shown the presence of a gra-

dient for the whole Dpp population, our results demonstrated that also the
endosomal Dpp subpopulation (85% of total Dpp population [10]) faithfully

re�ects the morphogen gradient, while the number of endosomes that contain
Dpp does not change with distance to the source.

Besides the lateral distribution of Dpp we further studied the apicobasal

distribution of Dpp endosomes and of Dpp itself. Previously it has been found
that most of Dpp is located in the most apical 5 µm of the wing epithelium

[5, 10]. We con�rmed this by imaging the most apical 25 µm of the wing ep-
ithelium (data not shown). For one experiment (600 image stacks, lateral size
= 10x10 µm2, axial size = 5 µm.) the distribution of the z-positions of all de-
tected endosomes during the movie were plotted in �g. 4.9c. In this experi-
ment the majority of the endosomes were clearly con�ned to a layer of 3 µm
within the tissue. In �g. 4.9d the apicobasl distribution of Dpp (black squares)

and the apicobasal distribution of Dpp endosomes (red triangles) is shown for
the most apical layer of 5 µm of the wing disc (distance to the source ranges

from 0 µm till 50 µm). We again observed that the amount of Dpp is largest
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at the most apical side of the cell and decreases basally. Interestingly, also the
amount of Dpp endosomes was largest in the most apical part of the cell. �e
relative decrease of the number of Dpp endosomes however is smaller than the

relative decrease of the amount of Dpp. �erefore the average amount of Dpp
per endosome is also the highest close to the apical membrane and decreases

basally.

4.4.2 Dynamic characterization

As was shown before (�g. 4.5a & �g. 4.7a) Dpp-containing endosomes were
followed for up to 600 frames for endosomes with high (>100 Dpp molecules)

Dpp content. Such trajetories allowed us to study the �uctuations in the �u-
orescence signal of individual endosomes. �e signal is taken as direct mea-
sure for changes in the Dpp concentration in the endosome. However, due

to photobleaching, the �uorescence intensity of each endosome will decrease
over time which in turn would translate into an apparent reduction of Dpp

molecules in the endosome. Hence, to correct for photobleaching we mea-
sured for each experiment the average intensity per endosome for every time
point, as shown in �g. 4.10a. A bi-exponential decay was subsequently �tted to

the data and the curve obtainedwas in turn used to correct the intensity pro�le
for each individual endosome in retrospect.

Figure 4.10b shows theDpp content of the endosomeversus time in a living
wing disc (blue curve) and in a �xed wing disc (red curve) inwhich supposedly

no dynamics took place. For the �xed sample the 2σ con�dence interval level
for the noise is shown (dashed area) which arises from both photon shot noise
(50 % of total noise) as from sources in the sample itself (out-of-focus �uores-

cence). For the experiment in the live wing disc, data were treated accordingly.
In contrast to the data on the �xed wing disc the observed �uctuations clearly
fall outside of the 2σ interval and cannot be purely explained by noise. Fig-

ure 4.10c and �g. 4.10d show the distribution of the measured intensities for
the �xed and the living wing disc endosome, respectively. As predicted, the

intensity distribution for the �xed wing disc endosome was fully described by
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Figure 4.10: a)Average intensity per endosome for each image stack. A bi-exponential

is �tted to the data and this curve is used to correct the intensity pro�le of individual

endosomes in this experiment. b)�e intensity of two endosomes plotted versus time

and corrected for photobleaching. �e red curve shows data from an endosome from

a wing disc in which all material was �xed. �e blue curve shows the intensity of an

endosome from a live wing disc (not �xed). �e expected noise in the intensity is indi-

cated by the dashed area. c)Histogramof the intensity values of the data from the�xed

endosome in (b). As expected the shape of the histogram is Gaussian, and thus the in-

tensity �uctuations are fully explained by noise. d) Histogram of the intensity values

of the data from the not-�xed endosome in (b). �e shape of the histogram is clearly

non-Gaussian, indicating that the intensity �uctuations cannot only be explained by

noise.
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a Gaussian with µ = 17392 ± 25 counts and σ = 827 ± 25 counts.2 �e intensity
distribution for the non-�xed endosome however, could not be described by a
simple Gaussian distribution, supporting the conclusion that the �uctuations

are not purely caused by noise, but by Dpp dynamics. Since the noise level in
all experiments was on the order of a few Dpp molecules (depending on the

total intensity) we conclude that our experimental setup was sensitive enough
to directly observe in- and out�ow of Dpp from endosomes in small packages
of Dpp.

As explained before (section 4.1.1) changes in Dpp concentration in an en-

dosome occur when a vesicle containing Dpp fuses with an endosome (up
steps) orwhenDpp is removed from an endosome (down steps), see �g. 4.2. By
collecting many trajectories of endosomes and their Dpp-concentration pro-

�les we obtained distributions of Cendo, ki and ci . �ese distributions were
subsequently used to make a detailed quantitative description of events in in-

tracellular Dpp transport. It should be noted that in this analysis we could not
segment the endosomes according to their type (i.e. early, recycling or late) and
the obtained distributions will therefore represent multiple underlying events.

To determine if the events in intracellular transport as described in sec-

tion 4.1.1 are involving individual Dppmolecules or clusters of Dpp we studied
the size of the changes in Dpp concentration for each endosome. For this pur-
posewe obtainedDpp concentration pro�les for each individual endosome (an

example is shown in �g. 4.11a) and subsequently used a step-�tting algorithm
[21] to determine the step size of each event. �is has been done for many dif-
ferent endosomes, resulting in 179 ‘step’-events, the distribution of step sizes is

shown in �g. 4.11b. From the result it became clear that both in- and out�ow
events usually involve clusters of Dpp, with 97% of the events having a Dpp

cluster size of 25 or less.

To determine if there was a di�erence between the Dpp cluster size for Dpp

in- or out�ow we calculated the average cluster size for both groups. For up-
steps we found ⟨∆cin⟩ = 8.5 ± 1.1 Dpp and for down-steps ⟨∆cout⟩ = 6.6 ± 0.6

2Although shot noise is Poissonian distributed, it can be approximated by a Gaussian dis-
tribution for large values
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Figure 4.11: a) Intensity of a Dpp endosome versus time (black line). �e green line

shows the result of the applied step-�tting algorithm [21]. b)Distribution of step sizes

independent of distance to the Dpp source. �e size of Dpp steps seems to be expo-

nentially distributed with an average of ⟨∆cin⟩ = 8.5 ± 1.1 Dpp for Dpp in�ow and

⟨∆cout⟩ = 6.6 ± 0.6 Dpp for Dpp out�ow. Small steps (< 2 Dpp) are within the noise

and explain the dip in the data at ∆cendo = 0. c) Time between fusion events (Dpp in-

�ow). Fitting with a single exponential gives kon = 0.75±0.20min−1. d) Time between

o�-events (Dpp out�ow). Fitting with a single exponential (�rst order rate reaction)

gives ko� = 1.1 ± 0.2 min−1.
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Dpp. Hence, in�ow is characterized by smaller clusters as compared to Dpp
out�ow. It should be noted that further conclusions based on the shape of the
step-size distribution should be drawn with care. �e data was taken at di�er-

ent distances to the Dpp source and therefore the distance distribution of the
experiments in�uences the distribution of observed step sizes (more experi-

ments close to the Dpp source will contain more endosomes with high Dpp
content and could result in larger step sizes and vice versa). Furthermore, the
distribution is slightly biased to larger step sizes. First, small steps (up to a

few Dpp) could not be observed because of noise. Secondly, small steps will
be more di�cult to detect when the endosome �uorescence has signi�cantly

bleached. At that moment only a certain fraction of the Dpp in a ‘step-event’
will be still �uorescent and therefore become more di�cult to detect. �e
bleach-correction algorithm cannot correct for this since it not only increases

the �uorescence to original levels, it also increases the noise associated to it.

�e di�erence between the cluster size for Dpp in- and out�ow should be

re�ected in the frequency of these events, provided that both processes are in
equilibrium. �erefore, wemeasured the time between events of the same type

(i.e. in�ow-in�ow and out�ow-out�ow) using the output of the step-�tting
algorithm. �e result is plotted for Dpp in�ow (�g. 4.11c) and Dpp out�ow
(�g. 4.11d). Fitting a single exponential yielded kon = 0.75 ± 0.20 min−1 and
ko� = 1.1±0.2min−1. �e average out�ow rate ⟨∆cout⟩ko� = 7.3 Dpp/min hence
equals (within the margin of error) the average in�ow rate ⟨∆cin⟩kon = 6.4
Dpp/min, showing that the system is in a steady state indeed. It should be

noted that the distributions in �gs. 4.11c,d are probably biased towards longer
times, since rapid events involving small changes in Dpp content could not be

observed during our experiments.

�e obtained values for the in- and out�ow rates for individual Dpp are

larger than those obtained previously in chapter 3. For the slow limit of intra-
cellular transport (150 s for the whole process) there we found tr,ea = 53 s and
tr,r = 100 s for early and recycling endosomes, respectively (with an average

tr = 77 s), while here we �nd tr = 8.2 s. �ese numbers however do not rep-
resent the same parameter of the model. Here we analyzed the time between

events, which in itself does not allow us to conclude on the residence time
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of Dpp in endosomes, which was calculated in chapter 3. �e time between
events also depends on the number of Dpp in the endosome. �emoreDpp in
an endosome, the shorter the time between events for the same residence time.

Hence, from the di�erence between the values we can predict that there should
be 77/8.2 = 9 Dpp molecules on average per endosome in our experiments.

We found however that the endosomes inwhichwe observedDpp-concen-
tration changes, had an averageDpp content of 77±7Dppmolecules. From this
we concluded that 88% of the Dpp in endosomes appeared to be immobile on

the timescale of our experiments. �is immobile fraction of Dpp has been de-
tected before by FRAP experiments, where it was determined to be 62±8% [10].

We suggest that the rest of the di�erence between the FRAP experiments and
our experiments is explained by experimental limitations, which prevented us
from seeing small changes in Dpp concentration.

�emodel presented before (�g. 4.2) contains six events which all could re-
sult in the Dpp concentration changes observed. At the same time the model
reveals three redundant parameters (−c2 = c3+ c4) which involve vesicle trans-
port between endosomes. �erefore they will appear both as up-steps and as
down-steps in �g. 4.11b, assuming there is no change in vesicle composition

during the transport between endosomes. As a result we rule out events 2, 3
& 4 (i.e. �ssion of a vesicle containing Dpp from an early endosome which is
transported either to a recyling endosome or a late endosome) as possible con-

tributors to the di�erence between up- and down-steps. �e observed di�er-
ence can therefore only arise from a di�erence in the number ofDppmolecules
that are endocytosed in one step on one hand, and that are recycled and/or de-

graded on the other hand.
In �g. 4.11d we analyzed the time between �ssion events. As predicted for a

�rst-order reaction the distribution followed a single-exponential decay. Such
�rst-order reaction (i.e. �ssion from an early, recycling or late endosome) is
summarized in:

Endosome→ Endosome+Dpp-vesicle (4.5)

As was shown in chapter 3 the fraction ε of Dpp transferred from an early

endosome to a recycling endosome determines the decay length λ of the gra-
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dient. Hence, for a well de�ned gradient it is necessary to keep ε stable. �is
could be achieved by an active process in the early endosome in which vesicles
are predestined to be transferred to a recycling endosome or a late endosome.

Since 99.6% of Dpp is transferred to a recycling endosome, in this hypothet-
ical active process, a controlled threshold in Dpp concentration needs to be

reached before a vesicle with Dpp leaves the endosome. In a passive process
on the other hand the amount of Dpp in the vesicle would be proportional to
the Dpp content of the endosome and ε (and hence the gradient) would be

statistical.

To distinguish between the twopossible processeswe calculated the relative

step size of all the down-steps. Figure 4.12a shows the distribution of the Dpp
concentration in endosomes (Cendo) just before an out�ow-event took place.
�e distribution is clearly peaked around 30 Dpp molecules. �e distribution

of step sizes of the down-steps (dCendo) is shown in �g. 4.12b which shows a
resemblance to �g. 4.12a. �e latter observation can be best seen in the relative

step size
dCendo
Cendo

distribution (�g. 4.12c). �e distribution is sharply peaked at

0.11, hence in each event 11% of the Dpp content is exchanged. At �rst sight we
concluded from this that the o�-events are passive events. However, since the

data was slightly biased towards larger step sizes, a fraction of the small relative
changes will automatically not appear in �g. 4.12c. Hence, from this data alone

we could not rule out that there is still an active process that decides howmany
Dpp is transferred to a vesicle during a �ssion event.

�ereforewe also analyzed the step sizes versus distance to theDpp-source.
As a consequence of the single exponential distribution ofCendo (�g. 4.9a) and a
constant relative step size, the absolute step size dCendo should become smaller

further away from the source in a passive model. Figure 4.12d shows dCendo as
a function of the distance to the source. Fitting a straight line to the data indeed
con�rmed that dCendo became smaller further away from the source. Fitting

a single exponential decay did not signi�cantly improve the �t. Averaging the
data (�g. 4.12e) showed that both o�-steps and on-steps are smaller further

away from the source.
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4.5 Conclusion

In conclusionwe found that themotility of endosomes by itself cannot account
for intracellular transport, the observed di�usion constants are too low and

almost no lateral active transport occurs. Our observation of regular active
transport along the apicobasal axis seems to suggest that endosomal transport
takes part in Dpp breakdown.

Static characterization of endosomal Dpp content showed that the num-
ber of Dpp-containing endosomes does not vary along the Dpp gradient. �e
Dpp concentration in those endosomes however becomes smaller further away

from the source. From the apicobasal distribution ofDpp endosomeswe found
that both the number of endosomes and the Dpp content in endosomes is

smaller more basally in the tissue.
Intracellular transport of Dpp is governed by small vesicles, which travel

between endosomes. �ose vesicles contained up to 25 Dpp molecules. Dpp

in�ow happened in larger cluster sizes than Dpp out�ow. From this we con-
cluded that the number of Dpp molecules endocytosed in one step is larger

compared to the number of Dpp molecules that is recycled or degraded in one
step.

�e time between fusion of vesicles with an endosome was about 1 minute

on average. A similar value was found for time between �ssion of vesicles
from an endosome. In combination with the results from chapter 3 we found
that 88% of Dpp appears to be immobile on the timescale of our experiments,

hereby supporting previous FRAP experiments. Control of the vesicle concen-
tration is a result of a passive, probabilistic process.

�e quantitative information we obtained on vesicular transport here will
have to be integrated in the future into more detailed models to describe the
intracellular transport that controlsmorphogen spreading in tissue and animal

development.
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Samenvatting

Groei en ontwikkeling. Elk organisme, of het nu een mens, een plant of een

bacterie is, hee� ermee te maken. Het is zelfs zo belangrijk dat leven simpel-
weg niet zou kunnen bestaan zonder groei en ontwikkeling. Ze zijn zo van-
zelfsprekend dat niemand er raar van opkijkt wanneer een pasgeboren baby

enkele weken later al centimeters is gegroeid en diezelfde baby na een paar
jaar al behoorlijk kan praten. Als we echter wat verder kijken blijken de pro-
cessen die groei en ontwikkeling mogelijk maken uiterst complex. Er zijn dui-

zenden verschillende processen die er uiteindelijk voor zorgen dat een enkele
bevruchte eicel uitgroeit tot een volwassen mens. Door deze grote hoeveel-

heid aan processen lijkt het een onbegonnen werk om groei en ontwikkeling
te doorgronden.

De ontwikkelingsbiologie is de tak van wetenschap die de groei en ont-

wikkeling van organismen bestudeert en deze probeert te begrijpen. De ont-
wikkelingsbiologie is al erg oud; Leonardo da Vinci was in de 16e eeuw al

gëınteresseerd in de groei van de menselijke foetus en maakte er tekeningen
van. Tegenwoordig bestuderen we groei en ontwikkeling steeds vaker door
naar processen te kijken die zich op cellulair en subcellulair niveau afspelen.

De ontwikkelingsbiologie is hierbij in drie hoofdgebieden in te delen. Die hou-
den zich bezig met:

• de groei van cellen;

• de di�erentiatie van cellen;

• de vorm en structuur vanweefsel, organen en volledige organismen, ook
wel morfogenese genoemd.

In dit proefschri� houden we ons met dit laatste gebied bezig. Eén van de

belangrijke vragen in demorfogenese is hoe een cel weet waar hij zich bevindt.
Een niercel hee� immers een andere functie dan een hersencel, terwijl alle cel-

len in een organisme toch hetzelfde genetische programma (DNA) hebben. En
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a) b) c)a)

Figuur 5.1: De ‘imaginal disc’ van de vleugel van de fruitvlieg. a) Bovenaanzicht van

de imaginal disc. De disc is ongeveer een halve millimeter lang. Dpp is met groen

aangegeven, de producerende cellen zijn duidelijk zichtbaar. b) De vleugel van een

volwassen fruitvlieg. c) Een dwarsdoorsnede van de imaginal disc over de lijn van A

(anterior) naar P (posterior) in �guur (a). De twee lagen cellen zijn duidelijk zichtbaar.

De Dpp-producerende cellen zijn met groen aangegeven.

wanneer zo’n cel eenmaal weet in welk orgaan hij zich bevindt, is het ook nog

van belang of hij zich in het midden of aan de rand van het orgaan bevindt.
Dit laatste is precies wat we in dit proefschri� hebben bestudeerd.

We hebben hiervoor een modelsysteem gebruikt: de ‘imaginal disc’ van
de vleugel van de fruitvlieg (Drosophila melanogaster). Deze ‘imaginal disc’ is
een schijf (�g. 5.1a) in de larve van de fruitvlieg en wordt na de verpopping

een vleugel (�g. 5.1b) van de volwassen vlieg. De schijf bestaat uit twee lagen
cellen. De bovenste laag bevat grote, platte cellen en de onderste laag bestaat

uit langgerekte, kolomvormige cellen. Figuur 5.1c toont een dwarsdoorsnede
van de ‘imaginal disc’, waarin de twee lagen cellen duidelijk te zien zijn.

Voor de kolomvormige cellen is het van belang om te weten waar ze zich
in de ‘imaginal disc’ bevinden. De aderen die zich in de volwassen vleugel be-
vinden (zoals te zien in �guur 5.1b) moeten bijvoorbeeld op speci�eke locaties

worden aangelegd. Het eiwit Dpp (Decapentaplegic) speelt een belangrijke rol
in de positiebepaling van de kolomvormige cellen in de ‘imaginal disc’. Dpp
is een morfogeen, een molecuul dat aan cellen informatie gee� over hun po-

sitie. In het midden van de schijf bevindt zich een band van kolomvormige
cellen waarin productie van Dpp plaatsvindt. In �guur 5.1a en 5.1c zijn deze

producerende cellen met groen aangegeven.
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Dpp concentratie

C1

C2

Gen 1

Gen 2

Producerende

cellen
Ontvangende cellen

Figuur 5.2: De Dpp-gradient. De concentratie van Dpp (kleine groene cirkels) neemt

af naarmate de afstand tot de producerende cellen (aangegeven met groen) groter

wordt. A8ankelijk van de Dpp-concentratie worden bepaalde genen wel of niet tot

expressie gebracht. Dit leidt vervolgens tot wel of geen productie van bepaalde eiwit-

ten.
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Alle kolomvormige cellen die geen Dpp produceren, noemen we de ont-
vangende cellen. Door de producerende cellen wordt Dpp uitgezonden naar
de ontvangende cellen. Het Dpp verspreidt zich vervolgens over de hele schijf

en vormt zo een concentratie-gradiënt, zoals te zien in �guur 5.2. Hoe ver-
der cellen zich van de Dpp-bron bevinden, hoe lager de Dpp-concentratie op

hun positie. De ontvangende cellen kunnen deze Dpp-concentratie meten en
a8ankelijk van de concentratie produceren ze bepaalde eiwitten wel of niet.

In dit proefschri� hebben we bestudeerd hoe Dpp van de producerende
cellen naar de ontvangende cellen wordt getransporteerd. Er zijn drie ver-

schillende transportmechanismen bekend, waarvan wij er één onderzochten:
het intracellulaire Dpp-transport. Figuur 5.3 toont een schematische weergave
van intracellulairDpp-transport voor één cel. Via een proces datwe endocytose
noemen, neemt de cel Dpp op. Vervolgens wordt het Dpp door verschillende
endosomen geleid. Endosomen zijn de verdeelstations van de cel. Na opname

van Dpp door de cel transporteren vesicles (een kleinere variant van endoso-
men) het Dpp naar een ‘vroeg’ endosoom. Vervolgens zijn er twee mogelijkhe-
den: (i) Dpp gaat weer de cel uit via een ‘recycling’-endosoom en aansluitend

vindt exocytose plaats, waarna de hele cyclus weer opnieuw kan beginnen, óf
(ii) Dpp gaat naar een ‘laat’ endosome, waarna het gedegradeerd wordt in een

lysosoom.

Om te begrijpen hoe dit intracellulaire Dpp werkt volgden we individuele

Dpp-moleculen met een �uorescentiemicroscoop. Daarvoor hebben we een
geel �uorescent eiwit met het Dpp gefuseerd. Wanneer we er dan met een

groene laser op schijnen, zendt het Dpp een gele kleur uit. Op die manier
kunnen we, zonder het weefsel te beschadigen, elke seconde een foto maken
van de Dpp-moleculen in de schijf. Uiteindelijk hebben we op deze manier

�lmpjes gemaakt van zo’n 10 minuten per stuk.

Tot nu toe was over de verschillende stappen van intracellulair Dpp-trans-
port vooral kwalitatieve informatie beschikbaar. Met behulp van onze �lmpjes
hebben we vervolgens deze processen kwantitatief beschreven. Voorbeelden

van deze processen zijn hoe lang een Dpp-molecuul zich in een bepaald en-
dosoombevindt, met welke snelheden de endosomen zich bewegen, hoe groot

de groepjes zijnwaarinDpp in vesicles getransporteerd wordt en of dit a8angt
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Figuur 5.3: Schematische weergave van intracellulair Dpp-transport in een ontvan-

gende cel. Via endocytose wordt Dpp opgenomen door de cel. Kleine vesicles trans-

porteren het vervolgens naar een ‘vroeg’ endosoom. Vanuit dit vroeg endosoom gaat

het Dpp vervolgens naar een ‘recycling’-endosoom of een ‘laat’ endosoom. In het eer-

ste geval gaat Dpp uiteindelijk weer de cel uit via exocytose, waarna de hele cyclus

weer opnieuw kan beginnen. In het tweede geval (het laat endosoom) betekent dit het

einde van het Dpp-molecuul: degradatie vindt plaats in een lysosoom.
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van de hoeveelheid Dpp in een endosoom.

Omdat �uorescentiemicroscopen nog niet erg geschikt waren om snel ei-

witten in drie dimensies te volgen bedachten we eerst een methode om dit wel
mogelijk te maken. Hoofdstuk 2 beschrij� deze techniek. Ook bepaalden we
op verschillende manieren wat de eigenschappen van deze nieuwe techniek

zijn. De nauwkeurigheid van de positiebepaling van individuele moleculen
hebbenwe zowel theoretisch, met simulaties als met experimenten vastgesteld.

Met �uorescente deeltjes in levende cellen toonden we vervolgens aan dat de
microscoop geschikt is om biologische vraagstukken aan te pakken. Deze 3D-
microscoop was dus ook erg geschikt om op een kwantitatieve manier het in-

tracellulaire transport van Dpp te bestuderen.

In hoofdstuk 3 bekeken we hoe lang Dpp zich in de ‘vroege’ en in de ‘recy-

cling’-endosomen bevindt. Daarvoor hebben we de vroege endosomen ook
�uorescent gemaakt, maar met een andere kleur dan het Dpp. Met een nieuw
experimenteel algoritme, Particle Image Cross-Correlation Spectroscopy, be-

paalden we vervolgens nauwkeurig hoeveel procent van de Dpp-moleculen
zich in de vroege endosomen bevond. Met behulp van een model vonden we

dat een Dpp-molecuul gemiddeld korter in een vroeg endosoom zit dan in
een recycling-endosoom. Ook ontdekten we dat vroege endosomen gemid-
deld twee keer zoveel Dpp bevatten als andere endosomen.

Hoofdstuk 4 behandelt twee andere aspecten van intracellulair Dpp-trans-
port. Eerst kekenwenaar demobiliteit van endosomen enwelke rol deze speelt

in Dpp-transport. Hiervoor volgden we de 3D-positie van endosomen met
Dpp gedurende een lange tijd. Hieruit bleek dat endosomen veel te langzaam
bewegen om een e�ectief transportmiddel te zijn voor Dpp. Blijkbaar is dus

het transport dat tussen de verschillende endosomen plaatsvindt hiervoor be-
langrijker. Dit transport tussen de endosomenwordt gefaciliteerd door de eer-
dergenoemde ‘vesicles’. In onze experimenten konden we deze vesicles helaas

niet zien.

Om tochmeer te weten te komen over dit aspect vanDpp-transport, keken

we naar de hoeveelheid Dpp-moleculen in endosomen en hoe dit verandert in
de tijd. Hieruit bleek dat de hoeveelheid Dpp in endosomen stapsgewijs veran-

dert en dat deze stappen vaakmeerdere Dpp-moleculen groot zijn. Dpp wordt
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dus blijkbaar in clusters opgenomen door cellen en dus ook in clusters getrans-
porteerd tussen de endosomen. Verder vonden we ook dat uitstroom van Dpp
uit endosomen een passief proces is en lineair a8ankelijk is van de hoeveelheid

Dpp in het endosoom. Er is dus geen bepaalde drempelwaarde nodig voordat
Dpp uitstroom plaatsvindt. Met de kennis uit hoofdstuk 3 bepaalden we ver-

volgens dat een deel van het Dpp niet mobiel is en dus niet getransporteerd
wordt op korte tijdschalen.

Samenvattend hee� dit onderzoek geleid tot een nieuwe experimentele

techniek waarmee biologische processen bestudeerd kunnen worden. Met be-
hulp van deze techniek verkregen we meer inzicht in de subcellulaire proces-

sen die een rol spelen in het intracellulaire transport van Dpp. Hiermee is dit
werk een van de eerste onderzoeken die deze processen kwantitatief beschrij�.
Ook hee� het bijgedragen aan een verbeterd inzicht in de processen die een

rol spelen bij de groei en ontwikkeling van organismen.
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