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In the beginning was the act:
a plea for an action-oriented approach to cognitive psychology

Rede uitgesproken door

Bernhard Hommel

bij de openlijke aanvaarding van het ambt 

van gewoon hoogleraar in de Algemene Psychologie,

op 26 januari 2001 te Leiden.



Geschrieben steht: „Im Anfang war das Wort!“

Hier stock’ ich schon! Wer hilft mir weiter fort?

Ich kann das Wort so hoch unmöglich schätzen,

Ich muß es anders übersetzen,

Wenn ich vom Geiste recht erleuchtet bin.

Geschrieben steht: Im Anfang war der Sinn.

Bedenke wohl die erste Zeile,

Daß deine Feder sich nicht übereile!

Ist es der Sinn, der alles wirkt und schafft?

Es sollte stehn: Im Anfang war die Kraft!

Doch, auch indem ich dieses niederschreibe,

Schon warnt mich was, daß ich dabei nicht blei-

be.

Mir hilft der Geist! Auf einmal seh’ ich Rat

Und schreibe getrost: Im Anfang war die Tat!

JW von Goethe: Faust (1224-1237)
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Mijnheer de Rector magnificus,

geachte collega’s,

zeer gewaardeerde toehoorders,

in this oratie I will have it about human behavior, and how to approach it scientifi-

cally. If I asked you why you came here today, you are likely to come up with a variety

of answers: you may be interested in the talk, be eager to meet the new colleague, or

to fulfill your job duties, or just want to get some entertainment. Whatever your ans-

wer may be, it is likely to refer to some personal goal that you expect your visit to

satisfy. That human (and not only human) behavior is driven by goals may seem tri-

vial to emphasize, and perhaps it is. Nevertheless, open a cognitive psychology text-

book of your choice, and you will hardly find any appreciation of this obvious fact

(Prinz, 1997).

In contrast, what you commonly learn is that behavior begins with some physical

energy impinging on the surface of your sensory receptors, which is then transfor-

med into some internal, neural codes, from which so-called percepts are constructed,

hence, states underlying our conscious perception. These are fed into some decision

mechanism that selects an appropriate response, which then is executed. According

to Ulric Neisser’s (1967, p. 4) well-known definition, „the term cognition refers to all

the processes by which the sensory input is transformed, reduced, elaborated, stored,

recovered, and used“ and it is cognitive psychology’s mission to accompany, so to

speak, the stimulus energy through these stages and describe the transformation it

undergoes. Human action, so it appears from this picture, is driven by external sti-

muli and emerges as a natural extension of stimulus processing.

This view is anything but new: many stage models of human information processing

(for a selection, see Hasbroucq, Guiard, & Ottomani, 1990; Pashler, 1994; Sanders,

1980; Teichner & Krebs, 1974; Welford, 1968) are actually less elaborated versions of

what Donders developed in his Utrecht lab as early as 1868—and even his experi-

mental techniques are still in use (e.g., employing simple-reaction, go-nogo, and

choice tasks to identify processing stages). Donders believed that after some incre-

asingly complex elaboration of the stimulus representation, a „wilsorgaan“ would

intervene to translate percepts into actions, an act of „will determination“ he estima-

ted to take 36 ms1. Meanwhile, his somewhat outdated expressions have been

replaced by more fashionable terms like „S-R translation“ or „response selection“, but

Donders’ basic conception still holds (Hommel, 2000a, 2000b). Thus, the theoretical

analysis still begins with the stimulus that informs and triggers our intentions, which

then make sure that appropriate responses are selected. In other words, behavior is

thought to be induced by external stimulation, even though it may not be fully deter-

mined by it.
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My main message is rather simple, namely that this view—however plausible it may

seem—is at most half of the story. And inasmuch as it pretends to tell the whole

story—and this is what psychological textbooks do!—it is even incorrect and mislea-

ding. This is so because reconstructing human behavior as a function of stimulus

conditions neglects that it is also, and sometimes exclusively, driven by behavioral

goals. Goals, however, bring into play the stimulus events that follow, and are produ-

ced by an action, not the stimuli preceding it. And about these post-action events,

the intended consequences of our actions, mainstream cognitive psychology has very

little to say. Which is the more surprising as it was no later than 1896 when Dewey

turned himself against the upcoming behaviorist movement in emphasizing that

Stimulus-Response relations are actually bilateral: that is, stimulus conditions affect

behavior but behavior also modifies, and sometimes even creates the stimulus situ-

ation we experience. Unfortunately, however, Dewey’s warning did not enjoy suffi-

cient attention to have any impact on behaviorism or today’s cognitive psychology.

In the following I would like to illustrate, by means of four empirical examples, how

important action-related processes can be for the acquisition of information, the per-

ception of stimulus events, the direction of focused attention, and the perceptual inte-

gration of their elements. As these examples will demonstrate, our actions can strong-

ly affect basic cognitive processes in ways that are difficult to make sense of if we con-

tinue to begin our theoretical analysis with the stimulus, and if we try to understand

human behavior as a consequence of perception. Accordingly, my plea will be for a

more action-oriented approach to cognitive psychology, an approach that does not

exclude intentions, action plans, and goals when talking about cognition.

Example 1: Acquiring Action
We perform actions to achieve intended goals, that is, to produce desired effects. To

do that, we need to know which consequences our movements might have, hence,

intentional action presupposes the learning of movement-effect relationships.

According to the good old ideo-motor principle stated by Lotze (1852), Harless

(1861), James (1890), and others, we associate motor acts with representations of

their consequences automatically (for overviews, see Hommel, 1998a; Prinz, 1987;

Scheerer, 1984). Once we have formed such an association, we merely need to „think

of“ the consequences we intend to produce and the appropriate action is carried out.

Translated into more modern, mechanistic terms this means that voluntary action is

acquired in two steps: first codes of motor patterns get associated with codes of the

effects they systematically produce; then this association is used in a „backward“

direction, that is, the code of the action effect is activated in order to carry out the

associated motor act (Elsner & Hommel, 2001; Hommel, 1997).

Indeed, there is evidence that infants as young as 2 months of age are sensitive to sti-

muli that move, or appear contingently, with their movements. For instance, Watson
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& Ramey (1972) installed mobiles above the cribs of their 2-months-old subjects. In

one group of infants the mobile was programmed to move in a way that was contin-

gent on the pressure the infant exerted on his or her pillow; in other groups the

mobile moved noncontingently or not at all. As it turned out, the frequency of pillow

responses was considerably higher in the contingent group than in the other two

groups, suggesting that these infants were especially attracted by the close relations-

hip between their movements and the effects they produced, and encouraged to

explore this relationship in more detail. Comparable results were observed by Rovee

and colleagues (Fagen & Rovee, 1976; Rovee & Rovee, 1969), who gave only slightly

older infants the opportunity to manipulate mobile movements with strings attached

to their feet. And we are not talking about short-term effects: When the infants were

again presented with the mobile after 2 days or later, they immediately engaged in

mobile-related behavior (Butler & Rovee-Collier, 1989; Fagen, Rovee-Collier &

Kaplan, 1976). This demonstrates that the contingent action effects did not just

motivate the infants to show the critical behavior more often; they actually associated

the effects with the behavior they previously found out to produce them.

There are more examples of this sort. Rochat & Striano (1999) manipulated the paci-

fier of 2-months-old babies such that the pressure the babies applied to it systemati-

cally modified the pitch of a tone presented to them. Hence, the harder they sucked

the higher the tone. As a result, sucking behavior increased and became more syste-

matic. Kalnins & Bruner (1973) used a similar technique by presenting 5-12-week-

old babies with a movie the optical clarity of which varied with the pressure exerted

on the pacifier. Again, the babies were able to systematically adapt their sucking

behavior so to ensure good visual quality of the film.

And there are comparable effects in adults, as Birgit Elsner and I were able to

demonstrate in several studies. What we did was to have people perform simple key-

pressing actions, which always produced particular tones or sounds. Later, the same

tones or sounds were presented while the subjects performed another task. As it tur-

ned out, presenting a tone facilitated performing the same response that previously

produced it, but interfered with performing another response (Hommel, 1996;

Hommel & Elsner, 2000). Likewise, if a tone was presented during a task in which

subjects were to press a key of their choice, they tended to choose the key that had

previously produced that tone (Elsner & Hommel, 2001).

In another study of ours (Elsner, Hommel, Mentschel, Drzezga, Conrad & Siebner,

2001), subjects carried out a couple of tone-producing keypresses before performing

a purely perceptual, passive tone monitoring task. As the monitoring task was perfor-

med in a PET (Positron Emission Tomography) scanner, we were able to assess and

compare the brain activity induced by neutral tones and tones that the subjects had

actively produced in the keypressing task. As expected, self-produced, but not neutral
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tones, activated the SMA (Supplementary Motor Area)—a brain area that is known

to be involved in voluntary action planning (Decety et al., 1996; Jeannerod, 1994;

Passingham, 1993). Hence, re-experiencing a stimulus event that one previously had

the chance to produce oneself induces the action plan to produce it again.

What these observations show is that people of nearly any age seem to be particularly

sensitive to contingencies between the movements they make and the perceivable

effects that produces. This makes sense, and is actually to be expected, from an

action-oriented view, because the integration of action-contingent information is

crucial for learning to control one’s actions. From a stimulus-oriented information-

processing view, however, it would be hard to explain why stimulus information

attracts more attention and leads to better memory if it happens to be contingent on

one’s own action.

Example 2: Observing Objects
Admittedly, the case for a prominent role of action in cognition appears to be least

plausible if it comes to purely perceptual judgements. Consider, for instance, a psy-

chophysical color-perception task, where people are seated before a computer moni-

tor and presented with patches of various colors, which they are asked to identify,

categorize, or compare with each other. How should action get into this picture?

Moreover, motor theories of perception—that is, theories assuming that perceptual

content is coded in terms of motor activity—have been proposed from the beginning

of scientific psychology (see Scheerer, 1984). Admittedly, with little success, mainly

because perceptual performance was not found to be systematically related to parti-

cular efferent processes. So, why insisting on a role of action?

Well, the recent development of brain-imaging techniques, like PET, fMRI, and

MEG, and the widespread use of single-cell recordings in animal research have provi-

ded us with new, very sensitive means to reveal contributions from action-related

processes even in the absence of overt movement. And these means do point to a role

of action-related brain structures in perception. A good example is the recent disco-

very of so-called mirror neurons in the macaque monkey and evidence of similar

structures in humans. Using single-cell recordings, Rizzolatti and his coworkers

(Gallese, Fadiga, Fogassi & Rizzolatti, 1996; Rizzolatti, Fadiga, Gallese & Fogassi,

1996) have studied populations of neurons in the macaque premotor cortex—a brain

structure mediating action planning (Passingham, 1993). When the monkey perfor-

med a particular goal-directed action, such as grasping an object, particular neurons

were active—which is to be expected from neurons in the premotor cortex! However,

the same neurons fired when the monkey merely observed an experimenter perfor-

ming the same action, without moving himself. Thus, the same motor structure was

involved in controlling a particular action and perceiving it. And, very interestingly,

the dual role of this structure was restricted to goal-directed actions—no activity was
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recorded if the monkey watched a hand movement without an object, or the object

without a hand movement.

So much about monkeys. However, mirror neurons have been identified in humans

as well. Fadiga, Fogassi, Pavesi & Rizzolatti (1995) excited the motor cortex of human

subjects by means of TMS (Transcranic Magnetic Stimulation) while the subjects

watched an experimenter grasping an object or performing aimless movements, or

they only saw the object. As it turned out, the measured motor-evoked potentials

were largely increased if subjects watched the goal-directed movement, as compared

to the other conditions. Interestingly, increases were obtained only in those muscles

that the subject would have used him- or herself when performing the grasp. In a

way, these findings underscore what I just said: Seeing a possible goal prepares one to

achieve it, even if one eventually resists. However, they also suggest that action does

contribute to perception. But apart from these empirical examples, there are also

logical arguments that question the apparent „mere receptiveness“ of perception.

First, even the observation that we do not overtly or covertly move while processing a

stimulus does not rule out a crucial role of action in the ontogenetic history of the

respective processes. For instance, identifying a stimulus event may require, or be

done by covertly naming it. Obviously, our ability to name something covertly emer-

ges from our earlier practice in naming things overtly, and from being supervised

and corrected by parents or peers. The same applies to categorization: Everyone

knows the sometimes very funny over- and undergeneralizations children exhibit in

the first years of their struggle with language: everything with a tail is a bow-wow.

Would the kids continue to apply their incorrect categories, they would not be able

to communicate properly; and would they not overtly apply them, they could never

be corrected. No doubt, the fact that we can learn to internalize these overt behaviors

represents an enormous achievement and it certainly improves our cognitive life. But

internalization presupposes something formerly external, which necessarily brings in

action as a constituent of cognitive processing.

Second, there is little doubt that scientific progress in cognitive psychology depends

on exact, highly controlled experimentation. Conducting a good experiment often

requires investigating people under rather artificial circumstances by using rather

artificial tasks, and that’s why in perceptual experiments subjects are made to passi-

vely await a randomly chosen stimulus that outside of any natural context flashes on

the screen. In daily life, however, we are not passively awaiting randomly chosen sti-

muli! Instead, we actively seek and selectively pick up particular, interesting stimulus

events. And processing them properly often requires the whole body: Scrutinizing the

apple you consider to buy in the supermaket requires you to orient your body

towards it, to move and then fixate your eyes so that its image is properly foveated, to

coordinate movements of your arm, hand, head, and eyes to inspect it from all sides,
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all this while holding balance despite of the other customers bumping into you, and

so forth. In fact, perceiving without acting is hardly possible in most cases we can

imagine (Dewey, 1896; Gibson, 1979; Piaget, 1946). This does not only apply to

vision: try to localize an auditory source without moving head and body; try to iden-

tify an object you touch without moving your fingers across its surface, or a piece of

food in your mouth without pushing it around with your tongue; or try to characte-

rize a smell without moving your nose. Difficult to impossible I would say, which

illustrates how fundamental action is for perception.

One of the most beautiful demonstrations of that fundamental relationship has been

provided by Hershberger & Misceo (1983). In their simple, but ingeneous experi-

ment subjects were asked to judge the relative weight of metal cylinders individually

dropped in their hand. Unbeknownst to the subjects, they always judged the same

object, hence the weight was always identical. The only manipulation concerned a

warning light, which was lit either half a second before the weight was delivered or

simultaneously with delivery. The authors reasoned that presenting the light in

advance of the weight would allow subjects to prepare their motor system for cat-

ching the weight, which again should make the weight appear lighter. And this is

what happened: the weights were judged lighter when preceded than accompanied by

the warning light—illustrating how even the content of our perception can depend

on action control.

Example 3: Attending & Acting
Another example for how action control can affect „earlier“ information-processing

operations comes from research on the direction of focused attention. Focused atten-

tion is known to be necessary if an object is difficult to perceive or to discriminate

from other available information, especially in the case of visual stimuli. Deubel &

Schneider (1996) presented their subjects with a discrimination task that included

such stimuli. Subjects faced a row of neutral symbols on a screen. At some point, the

symbols changed very briefly into irrelevant distractors and one visually marked tar-

get stimulus, and then changed back into neutral symbols. The target was always an

uppercase E, and subjects were to judge whether it was normally oriented or mirror-

reflected—a difficult but solvable task.

The interesting manipulation was that subjects performed the discrimination task while

planning a saccadic eye movement to some previously instructed location. When this

location coincided with that of the to-be-discriminated letter, discrimination perfor-

mance was nearly perfect. However, when saccadic target and target letter were separa-

ted by as little as 1 degree of visual angle—about 1 cm with normal viewing distance—

discrimination performance broke down and was close to chance. Thus, the proces-

sing of the visual stimulus was fully dependent on action planning or, more precisely,

on whether the locations of stimulus and spatial action goal were compatible.

In the beginning was the act8



Now, there is a close relationship between eye movements and visual attention, even

at sub-cortical neural levels, which raises the question whether such interactions

between attention and action generalize at all. To test that, Deubel, Schneider &

Paprotta (1998) replicated the Deubel & Schneider (1996) study in all respects,

except that subjects were to point with their right hand to some specified location

while keeping their eyes fixated at the center. The results were the same as with eye

movements: Discrimination of the target letter was excellent when it appeared at the

location to which the pointing movement was programmed, but close to chance

when the locations of target letter and pointing movement differed. Along these

lines, Hommel & Schneider (in press) had subjects to perform a visual-search task

while planning a manual keypress. Again, search performance was strongly affected

by the spatial correspondence between visual target stimulus and manual action.

That is, a target stimulus appearing among distractor stimuli is identified more accu-

rately if its relative location is shared by the location of a keypress that was just being

planned.

We can conclude from these observations that spatial attention to visual stimuli is

not as ignorant with respect to what goes on in action control as the idea of a linear

processing stream from stimulus to response suggests. From an action-oriented view,

however, this coupling of perception and action makes sense: it not only prepares the

cognitive system for processing information from the location a planned action is

directed to, but also reduces the likelihood of interference from perception on action.

Example 4: Integrating Information
My last example comes from research on the integration of information. There is

converging evidence showing that our brain processes and stores the different featu-

res of perceptual events in different neural systems and cortical areas (Cowey, 1985;

DeYoe & Van Essen, 1988). Given these distributed representations it is an interesting

research question of how the respective features are integrated or, in other words,

how the brain „knows“ which representational elements belong together and to

which event (Treisman, 1996). The physiological details of integration do not need to

bother us here (see, e.g., Damasio, 1989; Hummel & Biederman, 1992; Niebuhr,

Koch, & Rosin, 1993; Schillen & König, 1994; Singer, 1990), but there is increasing

behavioral evidence that features belonging to the same event are temporarily bound,

glued together, so to speak, to cognitive structures that have a longer lifetime than

the perceptual event itself (Kahneman, Treisman, & Gibbs, 1992).

One possible function of these bindings might be to mediate object constancy—our

impression that an object continues to exist even when temporarily hidden from

view, such as when it disappears behind another object. Thus, there might be internal

representations or models of events that are sufficiently „inert“ to survive the tem-

porary absence of external stimulation. Consistent with this idea, people have been
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demonstrated to be very sensitive to the repetition of feature combinations. For

instance, when being presented with two visual objects in short succession, subjects

find it easier to process the second object if it either is the same object as the first, or

an entirely different object, than if it shares some but not all features with the first

object (Gordon & Irwin, 1996; Henderson, 1994; Henderson & Anes, 1994; Hommel,

1998b, 2001; Kahneman et al., 1992). It is as if re-using an already existing event

model is as easy as creating a new one, whereas disassembling an existing model to

re-combine its elements in a new way is difficult.

The human brain uses distributed representations not only for coding perceptual

events but also for planning actions (Keele, Cohen & Ivry, 1990; Stoet & Hommel,

1999; Wickens, Hyland & Anson, 1994). Both single-cell studies in monkeys and elec-

trophysiological measurements in humans have shown that different neural codes are

used to represent different intended movement features, such as direction (Alexander

& Crutcher, 1990; Georgopoulos, 1990), distance (Riehle & Requin, 1989), duration

(Requin, 1992; Vidal, Bonnet & Macar, 1991), and force (Bonnet & MacKay, 1989;

Kalaska & Hyde, 1985; Kutas & Donchin, 1980).

Now, if perception and action are really related as closely as suggested here, one

might speculate that action plans are made the same way as perceptual event repre-

sentations, that is, they may also consist of temporary feature bindings. Indeed, Stoet

& Hommel (1999) observed that planning an action is more difficult if it shares

features with another, already prepared action, be it in terms of effector or body side.

For instance, we asked human subjects to prepare, but not yet carry out a a sequence

of keypresses with their left or right hand. Next, we presented a stimulus that signa-

led performing a brief tap with the left or right foot as soon as possible. What we

were interested in was whether the action plan subjects held in memory would affect

the reaction time for the foot response.

How might such an effect look like? Assume that action plans are really made up of

distributed feature codes that are bound together to form a coherent cognitive struc-

ture. And assume further that a code that is already bound to one plan is difficult to

bind to another. Just as a friend who is less likely to follow your invitation to a restau-

rant if he or she has already joined another group of people to go to a concert. If so,

we would expect that creating an action plan that involves the feature LEFT, say,

would make it more difficult to create another plan with the same feature. Hence,

planning a LEFT action and maintaining this plan should make it more difficult to

plan another LEFT action, as compared to planning a RIGHT action. And this is what

we observed: Maintaining the plan to perform a movement sequence with the left

hand made it more difficult to perform a speeded response with the left foot.

Suggesting that a feature code that was already bound to a particular action plan was

temporarily „occupied“ and not easily available for integration into other action plan.
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In other studies we went one step further and asked whether integrating a feature

into an action plan would even impair perception. Assume, for instance, you plan a

left-hand keypress. And assume that this involves binding the LEFT feature code to

the corresponding action plan. Does that mean that you encounter difficulties in per-

ceiving a left stimulus while maintaining your action plan? Several studies conducted

by Müsseler, Hommel, and colleagues (Hommel & Müsseler, 2001; Müsseler &

Hommel, 1997a, 1997b; Müsseler, Wühr & Prinz, in press) suggest that this is actual-

ly the case. For example, preparing a left- or right-hand keypress strongly impairs the

identification of briefly presented arrows pointing in the same direction. Likewise,

preparing the utterance „LEFT“ or „RIGHT“ strongly impairs the identification of

the briefly presented words „LEFT“ and „RIGHT“, respectively. People have even dif-

ficulties to detect the presence or absence of stimuli sharing a spatial feature with a

planned action. More recent observations of Stoet & Hommel (in press) confirm that

these effects go either way. That is, having people to attend to a stimulus—which pre-

sumably leads to feature integration—makes it more difficult to plan a manual

action on the same side.

In sum, these findings suggest that a feature code used to represent an intended

action or a perceived event is temporarily bound to a coherent cognitive structure,

and therefore difficult to integrate into other action plans or event representations.

Moreover, these findings demonstrate that the effects of feature integration can

extend from action planning to perception and vice versa. This does not only provide

another example of how our actions can affect our perception. The observation that

feature-related similarities between perception and action matter at all also suggests

that perception and action may not be that different anyway. At least they seem to

share some representational codes.

Babies & Bathwaters
I don’t know whether these few examples were sufficient to already convince you that

it is about time for a more action-oriented approach to human cognition. Personally,

I would be satisfied if they at least raised some doubts in the generality of the tradi-

tional concept of human cognition and action as a extensions and consequences of

transforming stimulus energy into neural codes. A concept that, after all, dominates

psychological textbooks and that our students take to provide a fair picture of how

our cognitive system works! 

Of course, I’m a bit beating at strawmen, and it would be unfair to give the impres-

sion that users of stimulus-oriented stage models were unwilling to admit that

human behavior is affected by goals. Indeed, there are already numerous recent

attempts to investigate how they do so, ranging from studies on task-switching to

investigations of prospective memory (for a recent overview of such work see, e.g.,

Monsell & Driver, 2000). Nevertheless, it is fair to say that today’s cognitive psycholo-
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gy is characterized by a pronounced imbalance between perception- and action-rela-

ted issues, and between input- and output-oriented approaches. As long as this is so,

and there is not much evidence of a dramatic change, it may be acceptable to empha-

size, perhaps even over-emphasize, the relevance and role of action in and for human

cognition.

An Alternative Approach
But where to go from here? What perspective to assume for guiding research and

theorizing, for making sense of human cognition and behavior? As a first step, my

former Munich colleagues and I have developed what we call a Theory of Event

Coding (Hommel, Müsseler, Aschersleben & Prinz, in press). Actually, it is not so

much a theory that would make specific predictions of reaction time differences in

particular tasks. Rather, it is a general framework for how to look at phenomena—a

meta-theory to be replaced by something more detailed in the hopefully near future.

Our basic assumptions are these: First, we assume that cognitive structures are

assembled, that is, created by combining and integrating more basic representational

elements. These elements, we believe, are codes of perceived features that events in

the world possess. Second, we assume that these feature codes refer to the distal attri-

butes of events, not to their sensory or motor representations: a rectangular shape,

not a retinal pattern; a straight movement, not a particular muscle coordination. Of

course, to be effective, feature codes must also be associated with sensory and motor

patterns, but they do not represent them. Third, and this is the most challenging part,

we claim that feature codes, and the cognitive structures the make up, always repre-

sent events, independent of whether an event is a perceived stimulus or a planned or

performed action. Hence, perception and action planning do not only interact, they

actually use the very same representational codes!

We feel that these ideas have extremely interesting implications, apart from allowing

us to understand the effects and phenomena I just went through. In fact, our appro-

ach removes any logical border and distinction between perception and action, and

we ourselves have sometimes difficulties to grasp what that really means.

Nevertheless, we did find this an exciting starting point that already permitted us to

discover such odd and counter-intuitive phenomena as the „action-effect blindness“

of Müsseler and colleagues or the „code-occupation effect“ of Stoet and Hommel. If

you are interested, let me invite you to see where this leads us!

Plans & Projects
So far, I have attempted to give you some insights into my and our general theoreti-

cal and empirical interests. But, of course, you may also like to know in some more

detail what to expect from this new colleague and his coworkers, at least with respect

to science. Let me therefore end with a short list of research projects that already
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were or are going to be started, and a few plans for the near future. Perhaps you find

it sufficiently interesting to hear more about it, and perhaps there are some interests

that you share.

• We investigate how people attach meaning to their actions, and when and how

they are able to adapt this meaning if the task and context changes. Obviously,

the same movement can have several, sometimes quite different, context-speci-

fic meanings, which raises the question of how this context-specificity is learned

and cognitively represented.

• We want to find out more about the development of voluntary action and study

interactions between intentional and automatic processes in infants between 6

months and 7 years of age. There are dramatic discontinuities in the early deve-

lopment of action control—possibly related to the maturation of the frontal

cortex—the study of which might increase our insight into how action control

works.

• We further investigate positive and negative influences of action planning on the

perception of objects and events. This is likely to increase our knowledge about

both the representation and formation of action plans, and the relationship

between perception and action.

• We examine interactions between concurrently performed tasks, to learn more

about how action plans are made up, organized, and controlled. These studies

have also implications for application, such as the design of working places.

• We study the integration of features in perception and action planning, in stu-

dents, in elderly people, and in patients suffering from Alzheimer’s or

Parkinson’s disease.

• We look at the temporal dynamics of feature integration in both behavioral

experiments and studies using brain-imaging techniques, such as MEG.

• We also analyze the role of emotions and emotional goals in and for action con-

trol. We are especially interested in whether emotions play a special role that

differs from cognition.

This & Thanks
Dear colleagues, I hope this plea and brief overview have made you curious about

what is going on in Funktieleer en Theoretische Psychologie in the next years.

Personally, I’m very impressed by, and very grateful for, the open-hearted and open-

minded reception in this university in general and my new section in particular. And

I would like to thank my new colleagues for their valuable help and advice, and their
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touching patience with me. I’m also very enthusiastic about my new colleagues in the

department, and I’m grateful for the encouraging support I received in many respects

and from all sides. Especially the unique and charming mixture of highly profession-

al attitude and personal friendliness is a very special experience for me.

In looking back, there would be of course many people to say thanks to: supporting

and inspiring friends and colleagues, curious students, and all the poor subjects that

must have been bored to death in my experiments. Or Martin Kumpf, whose exciting

social psychology lectures convinced me that psychology is it. Or Odmar Neumann,

whose brilliant thoughts and thinking attracted me to cognitive psychology and

made me modest at (about) the same time. But career-wise I guess the one I owe

most is Wolfgang Prinz, director of the Max-Planck Institute for Psychological

Research in Munich. He was able and willing to stand me even in my wilder years—

personally speaking—and provided virtually everything I needed to grow: A job,

wonderful working conditions, personal support and understanding, patience in

times of improvable output. And he is the best role model you can have in terms of

organization, strategy, and social intelligence.

And yes, scientists do have a private life and even family. Sadly, this day came a coup-

le of years too late for my father, who I’m sure would have been the proudest man in

this room. Danke von Herzen, to him and to my dear mother, for whom the travel

would have been too much. It goes without saying that I would not be here without

their care, support, and sacrifices. And of course I cannot end without saying grazie

to Lorenza, my dear wife, for sharing her life con uno moppolo locino.

Hartelijk bedankt for Uw aandacht,

Ik heb gezegd.
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Footnotes

1 To measure how long the wilsorgaan would need to make a decision, Donders

(1868) manipulated stimulus-response uncertainty in an experiment in which sub-

jects responded to the electrical stimulation of their left or right foot by moving

their left or right hand, respectively. Subjects were faster to respond correctly if they

knew in advance which stimulus would occur than when they did not, and Donders

took this difference in reaction time as an estimate for the combination of stimulus

discrimination and „determination of the will“. To further disentangle these two

processes, Donders employed a Go-Nogo task that required the selective responding

to a specified subset of the stimulus set. Since the response was already known to

the subject, Donders reasoned that such a task would not require any further will-

determination processes, so that their duration can then be estimated by subtrac-

ting the Go-Nogo reaction time from that obtained in conditions that require a

response decision. As a result, he calculated will determination to take 36 ms.
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