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C H A P T E R 6

MEMBRANE MEDIATED SORTING

Inclusions in biological membranes may communicate via deformations
they induce on the shape of that very membrane, a purely physical effect
which is not dependent on any specific interactions. In this chapter we show
that this type of interactions can organize membrane domains and proteins
and hence may be significant in biological systems. Using a simple analytical
model we predict that membrane inclusions sort according to the curvature
they impose. We verify this prediction by both numerical simulations and by
comparison to experimental observations of membrane domains in phase
separated vesicles.



112 Membrane mediated sorting

6.1 Introduction

In the previous chapter we studied forces between membrane inclusions me-
diated by the membrane itself. These forces operate on the mesoscopic scale,
i.e., their range is comparable to the size of a cell. Membrane mediated in-
teractions may therefore play a role in cellular organization, alongside several
well known other forces, such as hydrophobic, electrostatic and Van der Waals
interactions [12]. Hydrophobic forces are responsible for creating the lipid bi-
layer membrane in the first place, as well as for including (trans)membrane
proteins (which, like lipids, have both hydrophilic and hydrophobic parts) in
it. Many highly specific protein-protein interactions are a consequence of
electrostatics, which are indeed crucial to the functioning of most enzymes.
However, for neutral or screened inclusions electrostatic interactions do not
have long range effects, which means that long range order in the membrane
stems from either Van der Waals or membrane mediated interactions. Since
the first decays faster (1/r6) than the second (1/r4), we expect the dominant
contribution to be due to forces mediated by the membrane curvature. These
interactions have therefore attracted the interest of several groups over recent
years [97–104]. Based on these results and the quantification of membrane
mediated forces in chapter 5, we demonstrate in this chapter how membrane
mediated interactions give rise to long range order in a biomimetic system. In
the membranes of living cells a similar breaking of the homogeneity, by the
formation of patterns and long-range order, carries significant biological im-
plications for processes like signaling, chemotaxis, exocytosis and cell division.

We study the effect of membrane mediated interactions on domain organ-
ization and pattern formation in the same experimental system that we used
in chapter 5. We consider the situation that we have many relatively small Lo

domains on a vesicle with a Ld background. The domains are in a metastable,
kinetically arrested state, which means they have partially budded out and no
longer fuse. However, they are by no means static, but rather mobile, and re-
organize continuously. Because larger domains exert a greater force on their
neighbors (see section 5.4), the domains will collectively try to find a configu-
ration in which larger domains have a larger effective area around them. We
expect that, due to this size-dependent interaction, the domains demix by size
to achieve an optimal configuration.

We note that this membrane mediated sorting effect is different from de-
pletion interaction in the sense that the interaction we consider here is both
long ranged and soft, whereas depletion is an effect seen in systems with hard-
core repulsions. Moreover, the sorting effect occurs in a system with a contin-
uous, polydisperse particle size distribution (see figure 5.3), severely limiting
the depletion effect. Depletion may of course still play a small role, but can
be ignored in comparison to the membrane mediated interactions discussed
here.

In this chapter we present a simple model in which we analyze the possi-
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ble distributions of domains on phase separated vesicles, and find that they
exhibit a striking tendency to sort. We complement this model by performing
both Monte Carlo and Brownian dynamics simulations using the membrane
parameters we obtained from the shape and fluctuation fits in chapter 4. The
simulations give the optimal domain distribution and show the sorting effect.
We find that sorting is an unavoidable consequence of the size-dependent na-
ture of the interactions and the finite area available on a vesicle. In addition, we
compare with experimental results on phase separated, ternary vesicles, which
do indeed show the sorting effect. In particular, we find a correlation between
the size of a domain and the size of its neighbors, which is reproduced by our
simulations.

6.2 Analytical model

A somewhat oversimplified analysis of the total energy of a fully mixed and a
fully demixed system gives us a direct clue as to whether the domains segregate
into regions of identical-sized ones or not. Because the bending rigidity of the
Lo domains is much higher than that of the Ld background (see chapter 4),
we assume the domains to be rigid inclusions, as in chapter 5. The pairwise
repulsive interaction potential is therefore again given by [97]

V ∼ α2 + β2

r4
, (6.1)

where α and β are the contact angles of the two inclusions or rigid domains
(see figure 5.5; a derivation of (6.1) is given in appendix 5.C). Although the in-
teractions are not pairwise additive, the qualitative dependence of V on the
contact angles and inclusion distance does not change if more inclusions are
added to the system [99]. It is therefore possible to use a mean-field descrip-
tion for a finite, closed system with many inclusions, from which the prefactor
in equation (6.1) can be determined experimentally (see chapter 5). Moreover,
we can write effective pairwise interactions for nearest-neighbor domains, as
a function of their sizes and the distance between them.

For simplicity we look at a system with only two sizes of domains, which
we will call big and small for convenience. In our model the most abun-
dant experimental domain size (with a typical radius of 3.0 μm, see figure 5.3)
corresponds to the small domains. For the big domains we take a radius of
(3.0 μm) · √2 = 4.3 μm, which means that their area is twice that of the small
domains.

Let us denote the number of domains by N , the number of big domains
by Nb = γN and that of small domains by Ns = N − Nb = (1 − γ)N . Like-
wise we denote the contact angle of a big domain by αb, that of a small do-
main by αs, and the average contact angle of a domain’s nearest neighbors (in
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the mean-field approach) by β. If we neglect the small curvature of the back-
ground sphere, which has surface area A, we can associate an effective radius
to each domain corresponding to the patch of area which it dominates (i.e.,
in which it is the closest domain). In a completely mixed system the effective
radius of all domains is equal and given by

Reff =

√
A

πN
. (6.2)

In a fully mixed system each of the domains has 6 · γ big and 6 · (1 − γ) small
neighbors, which allows us to calculate the potential of that configuration in
the mean field approach:

Vmixed =
6
16

Nb
α2

b + β2

A2/(π2N2)
+

6
16

Ns
α2

s + β2

A2/(π2N2)
(6.3)

where β = γαb + (1 − γ)αs. In the fully demixed system, the big domains can
take up a larger fraction φ of the vesicle surface than they occupy in the fully
mixed system. By doing so they can increase the distance between them, re-
ducing the interaction energy. The penalty for this reduction is a denser pack-
ing of the small domains, but since their repulsive forces are smaller, the total
configuration energy can be smaller than in the mixed system. We consider
the regions in which we have big and small domains separately and get two
effective radii:

Rb
eff =

√
φA

πNb
, (6.4)

Rs
eff =

√
(1− φ)A

πNs
. (6.5)

For the potential energy we obtain

Vdemixed =
6
16

Nb
2α2

b

(φA/(πNb))2
+

6
16

Ns
2α2

s

((1− φ)A/(πNs))2
, (6.6)

where we have assumed the number of domains is large enough that ignoring
the boundary between the two regions is justified. For a fully mixed system we
would have φ = γ, i.e., the area fraction assigned to the big domains is equal to
their number fraction. In the demixed system the parameter φ becomes freely
adjustable and can be tuned to minimize the interaction energy. Comparing
the demixed potential (6.6) to the mixed potential (6.3), we find

Vdemixed

Vmixed
= 2

[
γ3

φ2

(
αb

αs

)2

+
(1− γ)3

(1− φ)2

]
(6.7)

·
[
γ(1 + γ)

(
αb

αs

)2

+ 2γ(1− γ)
(

αb

αs

)
+ (1− γ)(2− γ)

]−1

.
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Figure 6.1: Comparison of the potential energies of the completely mixed and
completely demixed state of a vesicle with domains of two different sizes. The
freely adjustable parameter φ denotes the fraction of the vesicle’s surface area
claimed by the big domains. The top figure has γ = 1

2 (equal numbers of big
and small domains), and the bottom figure has γ = 1

5 (one fifth of the domains
is big). The dashed blue line indicates the case in which the big and small do-
mains are equal in size (and hence have equal contact angles). The solid red,
yellow and green lines indicate contact angle ratios αb/αs of 1.5, 2.0 and 2.5 re-
spectively. Domain demixing occurs for any value of φ for which the potential
ratio is less than 1 (black horizontal line). For comparison the number frac-
tion γ of the big domains is indicated by the gray vertical line. Insets: typical
distributions of domains for small (left) and big (right) values of φ. For small φ,
the big domains are packed closely together and the small domains claim the
largest area fraction, for large φ the situation is reversed.

Plots for several values of the parameters are given in figure 6.1. For a range of
values of the adjustable parameter φ the energy of the demixed state is smaller
than that of the mixed state; this effect becomes more pronounced as the dif-
ference in contact angle (and therefore repulsive force) increases. In the con-
figuration which has the lowest total energy the area fraction φ claimed by the
big domains is indeed larger than their number fraction γ.

6.3 Simulations

In the analytical model we only considered the two extreme configurations of
a completely mixed and a completely demixed system. In order to be able
to study also intermediate states of the system we performed Monte Carlo
simulations in which we included all nearest-neighbor interactions. In these
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simulations we again studied a binary system consisting of small and big do-
mains, where the surface area of the big domains is twice that of the small
ones. Starting from a random configuration of big and small Lo domains on a
Ld sphere, we used Monte Carlo steps to find the energy minimum, and con-
sistently found demixing. A typical example of a relaxation process and a con-
figuration after 50,000 timesteps are shown in figure 6.2. The potential we used
in the simulations is based on (6.1) and given by V = Vij/r4, with i = 1 for a
small domain and i = 2 for a big one, and likewise for j. The Vij values we
obtained from the spring constant measurements described in chapter 5.

Complementing the Monte Carlo simulations, we also performed Brow-
nian dynamics simulations. In these simulations, we calculate in each time
step the force on each domain due to its nearest neighbors and displace it ac-
cordingly. Moreover, we add thermal fluctuations by displacing each domain
a distance x over an angle θ in each timestep. The angles are sampled from
a uniform distribution and the distances are sampled from the distribution

P (x) ∼ exp
(
− kx2

2kBT

)
, where k is the effective spring constant due to the poten-

tial created by a domain’s nearest neighbors (see section 5.4). In the simula-
tions we use k = 1.5 kBT/μm2, corresponding to the mean value found experi-
mentally (see figure 5.9. In the Brownian dynamics simulations, we do not just
study a binary system but also a system with a more realistic exponential dis-
tribution of domain sizes (figure 5.3). Including multiple domain sizes allows
for better comparison with experiment; in particular we can look for correla-
tions between the size of a domain and its nearest neighbors. The Brownian
dynamics simulations showed demixing like the Monte Carlo simulations did.
An example of an obtained correlation plot is shown in figure 6.3a.

6.4 Experimental verification

Our theoretical prediction that domains segregate into regions of equal-sized
ones is confirmed by experimental observations. In experiments detailed in
appendix 4.A, we studied the distribution of budded domains on the entire
vesicle. The vesicles we observed were lying on top of other vesicles, pre-
venting distortion due to adhesion to the underlying coverslip. We consis-
tently found that vesicles have regions where some domain sizes are overre-
presented. An example of such an experiment is given in figure 6.3b, where
two sides of the same vesicle are shown. Quantitatively we found that there is
a correlation between the size of a domain and the average size of its nearest
neighbors (also shown in figure 6.3b). The domain sorting occurred consis-
tently in all 21 vesicles with budded domains we studied.
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10,000 steps 20,000 steps

30,000 steps 50,000 steps

Figure 6.2: Monte Carlo relaxation of a random configuration of 70 small (red)
and 30 big (blue) domains on a spherical vesicle. Left: a folded-open view of
the entire vesicle, with the azimuthal angle along the horizontal direction and
the polar angle along the vertical direction. The configuration is shown after
10,000 (top left), 20,000 (top right), 30,000 (bottom left) and 50,000 (bottom
right) timesteps. Here V12 = 3.3V11, V22 = 4.5V11 and kBT = 0.25V11. Right: the
configuration on a sphere after 50,000 timesteps.

6.5 Conclusion

As we have shown in this chapter, membrane mediated interactions on closed
vesicles lead to the sorting of domains by size. Our analysis shows that this
is due to the fact that larger domains impose a larger curvature on their sur-
rounding membrane. We expect the same sorting effect to occur for other cur-
vature inducing membrane inclusions, in particular cone shaped (trans)mem-
brane proteins. This spontaneous sorting mechanism could potentially be
used to create polarized soft particles. Moreover, similar sorting effects may
occur in the membranes of living systems without the need of a specific inter-
action or an actively driven process.
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Figure 6.3: Correlations between the size of a domain and that of its nearest
neighbors. (a) Results of the Brownian dynamics simulations. Left: example of
the actual distribution of domains on the vesicle after 10,000 steps. Right: av-
erage correlation plot of ten Brownian dynamics simulations. Each simulation
starts with 200 domains of 1.0 μm diameter. The force between two domains
scales with the distance between them as 1/r5. The spring constant we used
for the random displacements is 1.5 kBT/μm2. (b) Experimental data. Left: two
sides of the same vesicle showing very different domain sizes; scalebar 20 μm.
Right: correlation plot averaged over 21 experimental vesicles; the dashed line
corresponds to the average 3.3 μm. Domain sizes are grouped in equally sized
bins.


