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C H A P T E R 5

MEMBRANE MEDIATED INTERACTIONS

The organization of the membrane in a living cell is the result of the collec-
tive effect of many driving forces. Several of these, such as electrostatic and
Van der Waals forces, have been identified and studied in detail. In this chap-
ter we investigate and quantify another force, the interaction between inclu-
sions via deformations of the membrane shape. For electrically neutral sys-
tems, this interaction is the dominant organizing force. We use the domains
in phase separated ternary vesicles as probes to study membrane mediated
interactions. Once domains partially bud out from the mother vesicle, they
deform their surroundings and start interacting. We show that this partial
budding can only occur in a stretched membrane, where the vesicle surface
is in the elastic regime. The membrane mediated interactions that appear
as a consequence of this partial budding process, lead to a kinetically ar-
rested state in which coarsening is significantly slowed down. Consequently,
we find that long range order and a preferred domain size naturally appear
in our system. We quantify the interactions between the domains, both in
experiments and in the context of our theoretical model, and obtain the do-
main size distributions from Monte Carlo simulations.
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5.1 Introduction

As described in chapter 3, a ternary vesicle below its critical temperature will
quickly nucleate domains of one (typically Lo) liquid phase in a background
of another phase (typically Ld). When there is no pressure gradient across the
membrane, the vesicle as a whole is spherical and the nucleated domains can
freely diffuse on its surface. They grow by coalescing, and relatively quickly all
merge into one large domain. Allowing the vesicle to relax its enclosed volume
(by waiting for several days or even weeks), the resulting shape is the ‘snow-
man’ we studied in chapter 4. This equilibrium shape can be understood as a
trade-off between the elastic energy of the membrane and the line tension on
the domain boundary.

When we put a pressure gradient across the membrane before quenching
the vesicle below its critical temperature, the dynamics and resulting shape
are quite different. Because the vesicle very quickly reduces its enclosed vol-
ume in order to counter the pressure gradient, there is some excess membrane
area compared to the pressure-neutral case. Domains that have grown beyond
a certain minimal size (set by the invagination length ξ [69], the ratio of the
bending modulus and the line tension), can gain free energy by partially bud-
ding out from the vesicle, reducing the length of their domain boundary. The
energy due to the line tension term then gets reduced, but the elastic bend-
ing energy increases, suggesting another trade-off equilibrium. However, as
Lipowsky already showed [69], a model with just these two ingredients results
in either no budding at all for weak line tensions, or complete budding for
strong line tensions. We study this system in section 5.3 and show that partial
budding can be explained by including the energy contribution due to mem-
brane stretching.

Domains that partially bud do not only deform themselves, but also the
membrane around them. Such deformations lead to an effective interac-
tion between the domains through the differential curvature they impart.
These membrane-mediated interactions have recently attracted the atten-
tion of several groups [97–104]. They turn out to be repulsive between like
inclusions, and lead to the formation of kinetically arrested patterns of do-
mains [6, 105, 106]. Vesicles with such patterns of domains are said to exhibit
microphase separation: the domains are phase separated, but the vesicle as
a whole is not. Microphase separation is a metastable state (the ground state
is still the fully phase-separated vesicle of chapter 4), however, it persists for
biologically relevant time scales. Microphase separated vesicles are moreover
an ideal model system to study the interactions of other membrane inclusions
such as curvature-inducing proteins [97, 99, 103, 107]. Working with domains
carries two great advantages over using actual proteins. Firstly, the domains
interact only through the membrane shape deformations they induce. Sec-
ondly, they are straightforward to visualize and track.

In this chapter, we study the properties of the membrane-mediated inter-
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actions between many Lo domains on a Ld background in a ternary membrane
vesicle. We measure the distribution of domain sizes and find a pronounced
preferred length scale. By analysis of the fluctuations of domain positions we
quantify the strength of membrane interactions and find a nontrivial depen-
dence of the interaction strength on domain size. Those effects are captured
qualitatively in a simple model. Our findings shed new light on intramem-
brane interactions between protein patches. Moreover, they also yield new
information on the domain size distribution and the stability of microphase
separation in multicomponent biomimetic membranes.

ba

Figure 5.1: Typical example of a partially budded vesicle. (a) Complete vesicle,
the Ld phase is stained and appears bright, the dark spots are Lo domains. (b)
Cross-section, overlay of 405 nm excitation (perylene, red) and 546 nm excita-
tion (rhodamine, yellow). Both scalebars: 20 μm.

5.2 Evidence for interactions

The experimental data presented in this chapter is once again due to S. Semrau
from the Leiden University experimental biophysics group, and used with per-
mission; see appendix 4.A for experimental details. The experimental system
considered in this chapter consists of a ternary GUV with many Lo domains
in a Ld background, see figure 5.1a. After preparation by means of electrofor-
mation the vesicles have a spherical shape. By increasing the osmotic pressure
outside the vesicle we produce a slight increase in surface to volume ratio. For
this reason some of the vesicles show partially budded Lo domains, see fig-
ure 5.1b. Those domains posses long term stability (see Movie S1 of [71]; in
experiments we observed stability on the time scale of several hours). In con-
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trast, ‘flat’ domains, which have the same curvature as the vesicle as a whole,
rapidly fuse until complete phase separation is attained [70, 106].

The stability of the vesicles with budded domains indicates that the do-
mains experience a repulsive interaction that prevents them from merging.
This interaction also affects the distribution of domain distances (radial dis-
tribution function) and domain sizes.

5.2.1 Radial distribution function

Figure 5.2 shows the radial distribution function (rdf) of the center-to-center
distance of domains for a typical vesicle. The rdf gives the probability of find-
ing a domain a distance d away from an arbitrary chosen central domain. The
first (and highest) maximum in the rdf corresponds to the first coordination
shell, i.e., the nearest neighbors. The distance between nearest neighbors is
denoted by a. On average a = 9 μm, while the radius of a domain is on av-
erage 3 μm and the vesicle radius equals 34 μm on average. Figure 5.2 clearly
shows two additional maxima roughly at 2a and 3a which correspond to the
second and third coordination shell. The rdf therefore indicates that the do-
mains are not randomly distributed, but that instead their positions are cor-
related. Consequently the system of diffusing domains can be characterized
as a two-dimensional liquid with interactions. Since a exceeds the typical do-
main radius by a factor of 3, this interaction is different from mere hard core
repulsion between the domains.
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Figure 5.2: Typical radial distribution function for the center-center distances
of the domains on a single vesicle. The nearest neighbor distance is denoted
by a.
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Figure 5.3: Distribution of domain sizes on all 24 vesicles. Inset: a logarithmic
plot of the domain size distribution shows that it exhibits an exponential decay
towards large domains (solid line).

5.2.2 Size distribution

Figure 5.3 shows the combined domain size distribution of all observed vesi-
cles. The distribution is not uniform, but instead shows an absolute maximum,
corresponding to a preferred domain size. Moreover, there is a long tail to
larger domain sizes which drops off exponentially, as can be seen in a logscale
plot (figure 5.3 inset). This nonuniform distribution can be understood in a
picture that includes both domain fusions and domain interactions.

As was already reported by Yanagisawa et al. [106], we find that domains
fuse when they are small. However, due to the repulsive interaction, which in-
creases in strength when domains grow larger, the fusion of domains becomes
kinetically hindered and slows down significantly with increasing domain size.
When the repulsive interaction has grown to the size of the thermal energy
(kBT ), the fusion process has slowed down considerably and the vesicle with
multiple domains enters the metastable, kinetically arrested state which we
observe in the experiments.

The exponential tail we find in the domain size distribution is a direct con-
sequence of the finite total domain area. We expect to find such a tail both with
and without interactions between the domains, as can be easily seen from a
simple master equation description of the system (see appendix 5.A). We note
that the master equation approach breaks down when the total number of do-
mains becomes small, but since the experimental vesicles typically have sev-
eral hundreds of domains, we are well within the validity range of this descrip-
tion. Without interactions between the domains, we find that the distribution
of domain sizes is purely exponential and decays quickly, until ultimately a
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single domain remains. In the experimental data shown in figure 5.3 however,
there is a distinct peak in the distribution around domains of about 25 μm2 in
area, or 3 μm in radius. Moreover, the distribution remains stable on timescales
much longer than it takes for flat domains to all merge. Both these observa-
tions suggest the presence of a repulsive force between the domains, hinder-
ing their fusion. To verify the claim that such a repulsion gives the observed
size distribution, we performed Monte Carlo simulations of domain coales-
cence. The details of these simulations are given in appendix 5.B. The results
of the simulations, both with and without interactions between the domains,
are plotted in figure 5.4. As expected, the exponential tail in the domain size
distribution is reproduced by both simulations. However, the absolute max-
imum in the experimental data is only reproduced in the simulations which
include an interaction between the domains. Moreover, when interactions are
present, we find that at TMC ≈ 175 phase separation is still not complete. This
relaxation time is much longer than the time we found for complete phase
separation in the case without interactions (TMC ≈ 2). The Monte Carlo simu-
lations therefore show that microphase separation is a quasistatic case which
can be explained by assuming a repulsive force between the domains.
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Figure 5.4: Domain size distributions determined using Monte Carlo simu-
lations. All plots show the distribution for four different Monte Carlo times
averaged over 1000 simulation runs (open circles). The initial condition is a
random distribution of 104 domains of area ε = 10−4. (a) Simulation with-
out interactions and without diffusion. The gray line shows an exponential
fit. (b) Simulation without interactions but including diffusion of domains. (c)
Simulation including both domain diffusion and interactions; here p

merge
i,j =

10−6/
√

i ∗ j. (d) Simulation including both domain diffusion and interactions;
here p

merge
i,j = 10−6/(i ∗ j).
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5.3 Domain budding

The experimentally observed distributions of domain distances and sizes can
be explained by a repulsive membrane mediated interaction between the do-
mains. Domains that partially bud out from the vesicle locally deform the
membrane around them. Placing two budded domains close together causes
this deformation to be larger, carrying a larger energy and resulting in an effec-
tive force between them. This membrane mediated force is therefore a direct
consequence of the fact that the domains partially bud out from the vesicle.
In this section we analyze the energetics of this partial budding process.

The first systematic study of domain budding was performed by Lipowsky
in 1992 [69]. He modeled the domains as either circular disks in, or spherical
caps on, a flat background. Domain budding is then a consequence of a trade-
off between two competing forces, which we will treat here in a coarse-grained,
mean-field manner. For a more detailed view on the microscopic processes
involved we refer to reviews by Lipowsky et al. [108] and Seifert [109]. The
first force is the line tension between the Lo domain and the Ld background,
which favors budding because it reduces the length of the domain boundary.
On the other hand the bending energy of the Lo domain resists budding be-
cause a budded domain has a higher curvature. Lipowsky found that there is a
critical domain size at which there is a transition between an unbudded state
and a fully budded domain. This lengthscale is called the invagination length,
given by ξ = κo/τ , with κo the bending modulus of the Lo phase and τ the
line tension on the domain boundary; in our experimental vesicles we have
κo ∼ 8.0 · 10−19 J and τ ∼ 1.2 pN, giving ξ ∼ 0.7 μm (see chapter 4). The in-
vagination length therefore sets the length scale at which we expect to find the
first occurrence of domain budding. Although we occasionally see domains
splitting off from the vesicle completely, we mostly observe partially budded
domains. In the model proposed by Lipowsky partial budding is not possible,
suggesting that we need to consider additional constraints on, for example, the
vesicle area and volume, and/or additional energy contributions. Such con-
straints were also studied by Jülicher and Lipowsky [52,82]. They used numer-
ical methods to find the minimal-energy shape of a Ld vesicle with a single Lo

domain. Their results confirm the finding by Lipowsky that there is a critical
domain size for budding. Moreover, they found that a constraint on the vol-
ume of the vesicle only changes the budding point but does not modify the
qualitative budding behavior. In the following we show that it is not sufficient
to just include area and volume constraints to explain the shape of our experi-
mental vesicles. If we also allow for stretching of the membrane, we do get the
partially budded vesicle shapes.

In general, the equilibrium shape of the membrane of a GUV is found by
minimizing the associated shape energy functional under appropriate con-
straints on the total membrane area and enclosed volume, as explained in
detail in section 2.3.5. The functional is composed of several contributions,
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reflecting the energy associated with the deformation of the membrane and
the effect of phase separation of the different lipids into domains. The contri-
bution due to bending of the membrane (the bending energy) is given by the
Canham-Helfrich energy functional, equation (2.78):

Ecurv = Emean curv + EGauss =
∫
M

(κ

2
(2H)2 + κ̄K

)
dS. (5.1)

Here H and K are the mean and Gaussian curvature of the membrane respec-
tively, and κ and κ̄ the bending and Gaussian moduli. Using the Gauss-Bonnet
Theorem from section 2.3.4, we find that the integral over the Gaussian curva-
ture over a continuous patch of membrane, such as one of our Lo domains or
the Ld background, yields a constant bulk contribution (which we can disre-
gard) plus a boundary term.

For a GUV with a uniform membrane, the shape that minimizes the bend-
ing energy (5.1) is found to be a sphere. If the membrane contains domains
with different bending moduli κ, the sphere is no longer the optimal solution.
However, within the bulk of each domain, far away from any domain bound-
ary, the sphere is still a good approximation of the actual membrane shape
(see section 4.3). For the case at hand, where we have many small and rel-
atively stiff domains in a more flexible background, we follow Lipowsky [69]
and model the small domains as spherical caps on a vesicle which also has
spherical shape itself (see figure 5.5d). Although this model has the serious
shortcoming that it suggests infinite curvature at the domain edge, it remains
a good approximation for the overall vesicle shape, because it corresponds to
the minimal-curvature solution of the shape equation on the entire vesicle ex-
cept a few special points. For the special case that all domains are equal in
size, we can describe them with a curvature radius Rc and opening angle θc,
and the background sphere with its radius Rb and opening angle θb (see fig-
ure 5.5d). For the mean curvature energy of a system with N domains we then
have

Emean curv = 4πκoN(1− cos θc) + 4πκd(2−N(1− cos θb)), (5.2)

where κo and κd are the bending moduli of the Lo and Ld phases respectively.
The Gaussian curvature contribution is given by the boundary term

EGauss = 2πNΔκ̄ cos θc, (5.3)

with Δκ̄ the difference in Gaussian curvature modulus between the Lo and
Ld domains. As mentioned above, we model the fact that the lipids sepa-
rate into two phases by assigning a line tension to the phase boundary (equa-
tion (2.102), see also section 3.4). The energy associated with that line tension
τ in the spherical cap model is given by

Etens = 2πτNRb sin θb. (5.4)
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Figure 5.5: Coordinates and energy plots of the sphere-with-domains system.
Energies are plotted for 10 (a), 25 (b) and 50 (c) domains as a function of the
radius Rb of the background sphere. In each case the geometrical (5.5) and
volume constraint (5.6) are met and the total area of the domains is fixed. The
vesicles have an excess area fraction (RA − RV )/RV of 0.012. For the material
parameters we use the values we obtained in chapter 4. The black solid line
shows just the contributions of curvature and line tension; the dashed gray
line those plus a surface tension term, and the gray solid line all contributions
including a surface elasticity term (5.11). Without the surface elasticity term,
the minimum of the energy is located at the maximum vesicle radius (figures
b and c), implying flat domains (figure e top), or the minimum vesicle radius
(figure a), implying full budding (figure e bottom). In the case of 50 domains
the line tension energy per domain is not large enough to create buds. How-
ever, when there are only 25 domains, the line tension forces them to bud out
and form spherical caps. (d) Coordinate system for the spherical caps model.
(e) The two extremal situations - complete budding (bottom) and no budding
at all (top). (f) Minimum of the energy (5.11) as a function of the number of do-
mains. From the logarithmic plot shown here we find that the total energy as a
function of the number of domains behaves as a power law with exponent 0.53.
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If the total number N of domains is fixed, the energy given by the sum of equa-
tions (5.2), (5.3) and (5.4) is a function of four variables: Rb, Rc, θb, and θc. These
variables are not independent, since they are subject to constraints. The first is
that the membrane must be continuous at the domain boundary, which gives
the geometric constraint

Rc sin θc = Rb sin θb. (5.5)

Since the volume of the vesicle changes only over long timescales (hours) [110],
we assume it is constant in our experiment (minutes), leading to a volume con-
straint on our system

4π

3
[
R3

b + NR3
c(1− cos θc)2(2 + cos θc)−NR3

b(1− cos θb)2(2 + cos θb)
]

= V0,

(5.6)
where V0 is the volume of the vesicle. Finally we consider the area of the vesicle.
We have to treat the (total) area of the domains and that of the bulk phase
separately. If we fix both of them, we obtain two additional constraints:

2πNR2
c(1− cos θc) = Ac,0, (5.7)

and
2πR2

b(2−N(1− cos θb)) = Ab,0. (5.8)

If all four constraints given by equations (5.5)-(5.8) are imposed rigorously, the
shape of the vesicle is fixed, because there were only four unknowns in the sys-
tem. For an experimental system at temperature T > 0 however, the total area
is not conserved. Thermal fluctuations cause undulations in the membrane,
resulting in a larger area than the projected area given by Ac,0 and Ab,0 [111].
For T > 0 we should therefore not work in a fixed-area ensemble, but rather
in a fixed surface-tension ensemble. We drop the constraints given by equa-
tions (5.7) and (5.8) and instead add an area energy term to the total energy

Earea = 2πσoNR2
c(1− cos θc) + 2πσdR2

b(2−N(1− cos θb)), (5.9)

with σo and σd the surface tensions of the Lo and Ld phases respectively. Note
that equation (5.9) can be interpreted in two ways: in the fixed area ensem-
ble, it contains two freely adjustable Lagrange-multipliers (σo and σd) which
enforce the conditions given by equations (5.7) and (5.8). In the fixed surface
tension ensemble, σo and σd are set and the shape is found by minimizing the
total energy with respect to the free parameters, considering the remaining
geometrical and volume constraints given by equations (5.5) and (5.6). These
constraints can of course be included in the total energy using Lagrange multi-
pliers as well. This is often done for the volume constraint, and the associated
Lagrange multiplier is usually identified as the pressure difference across the
membrane. We stress that since we fix the total volume (i.e., work in a fixed
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volume ensemble), this pressure is selected by the system and is not an input
parameter. The Lagrange-multiplier approach is mathematically equivalent to
imposing an external volume constraint as we do here for practical purposes.

Equation (5.9) correctly gives the free energy contribution of the area en-
ergy in what is called the entropic regime, where the dominant contribution
to the area term is due to the thermal fluctuations of the membrane [111]. To
account for the fact that the membrane itself can be stretched or compressed
away from its natural area A0, we include a quadratic term in the area of the
membrane [112]

Eelastic = γ

(
A−A0

A0

)2

. (5.10)

The elastic modulus γ is approximately 10−14 J in the ternary system consid-
ered here [110]. One way to understand equation (5.10) is that in the high-
tension or elastic regime, the surface tension is no longer a fixed number, but
itself depends linearly on the area [111]. The total shape energy is given by
the sum of the five contributions given by equations (5.2), (5.3), (5.4), (5.9),
and (5.10)

E = Emean curv + EGauss + Etens + Earea + Eelastic. (5.11)

With the constraints (5.5) and (5.6), we are left with two independent variables
for the minimization of the total energy. Since the surface tension and elastic
modulus of the Lo phase are much larger than that of the Ld phase [70, 110],
we further assume that the area of the Lo domains is fixed. This leaves us with
a single variable minimization problem, which we solve numerically. For the
material parameters we use the values we obtained in the study of the fully
phase-separated vesicles in chapter 4. In order for buds to be able to form,
the vesicle needs to have some excess area, which we express by the excess
area fraction (RA − RV )/RV . Here RA =

√
A/(4π) and RV = (3V/(4π))1/3,

with A the total vesicle area and V its volume. The results of the minimization
of equation (5.11) are shown in figure 5.5a-c. In the same figures we plot the
energy without the membrane stretching term (5.10). In this case we find no
partial budding, showing that the area elasticity term is required to reproduce
the experimental results, and that our experimental vesicles are well within the
elastic regime. Plotting the minima of the energy as a function of the number
of budded domains on the vesicle, we find that it decreases with the number of
domains (figure 5.5f). Therefore the fully phase-separated vesicle is the ground
state, as we expected from the fact that the line tension is strong enough to
dominate the shape.
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5.4 Measuring the interactions

5.4.1 Domain position tracking

In order to determine quantitatively the interaction strength between the do-
mains, we tracked their positions over time. In particular, we regarded situa-
tions like the one shown in figure 5.6a, in which a single domain is surrounded
and held in place by a shell of 4 to 6 neighbor domains. We recorded the dis-
tance between the central domain and the center of mass of the shell domains
(projected on the vesicle surface) over time and calculated the mean squared
displacement (msd), see figure 5.6a for a typical example. Using only relative
distances eliminates any influence of putative flow or overall movement of do-
mains.

Although the precise form of the potential that confines the central domain
is not known, we can approximate it around the local minimum by a harmonic
potential U(x) = 1

2kx2 with spring constant k, where x is the distance from
the center of mass of the nearest neighbors. If we treat the domain as a ran-
dom walker with diffusion constant D, our model is formally equivalent to an
Ornstein-Uhlenbeck process [113]. Alternatively, one can imagine all domains
connected by harmonic springs. This approach also leads to an isotropic har-
monic confining potential for the central domain. The msd of the domain is
then given by:

〈Δx2(Δt)〉 =
4kBT

k

[
1− exp

(
− kD

kBT
Δt

)]
≈ 4DΔt for small Δt. (5.12)

In practice, we determined the diffusion coefficient D (and a small offset
due to the finite positional accuracy) from a linear fit to the first 3 time lags (see
figure 5.6a), since the reliability of the data points is highest in that region. The
inset of figure 5.7 shows the diffusion coefficient as a function of the size of the
central domain. The other parameter of the Ornstein-Uhlenbeck model (5.12)
for the msd of a domain is the spring constant k. We determined its value
from a fit of equation (5.12) to the full experimental data set, where D was
fixed to the value determined before. Figure 5.7 shows k normalized by the
number of nearest neighbors as a function of the size of the central domain.
On average k = 1.4 ± 0.5 kBT/μm2. This value supports the observation that
domains are stable over extended periods of time: since the distance between
domains is typically several μm the energy barrier that the domains have to
overcome in order to fuse is well above kBT . Due to the limited amount of
available trajectories, the error in the determination of k is fairly large. Hence
it is not possible to deduce the quantitative dependence of k on the domain
size. Therefore we determined k more precisely in a separate, independent
way, based on domain distance statistics.
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Figure 5.6: Domains caged in a shell of neighbors. (a) Typical example of the
mean square displacement (msd) of the distance between a central domain
and the center of mass of the surrounding domains (dots). The solid line is a
fit to the Ornstein-Uhlenbeck model given by equation (5.12), the dashed line a
linear fit to the first three data points, which we use to determine the diffusion
coefficient. The inset shows an example of the tracking configuration. The
centroids of the domains are indicated by white dots, and the center of mass of
the six domains in the shell by a black dot. The distance between the centroid
of the central domain and the center of mass is indicated by the gray line. The
mean square displacement of this distance is used to determine the diffusional
behavior of the central domain. Scalebar 20 μm. (b) Shell radius versus central
domain radius, the solid line corresponds to a linear fit with slope 1.5 and offset
4.1 μm.

5.4.2 Domain distance statistics

The interaction potential between two domains can be directly inferred from
the distribution of domain distances, as already demonstrated by Rozovsky et
al. [105]. We consider a central domain surrounded by N nearest neighbors,
whose combined imposed potential is given by U(x). Then the probability p(x)
to find the central domain a distance x from the center of mass of the neigh-

bors is proportional to the Boltzmann factor p(x) ∝ exp
(
−U(x)

kBT

)
. As before we

assume the imposed potential, at least locally, to be harmonic, U(x) = 1
2kx2,

which gives for p(x):

− log (p(x)) = const. +
1
2
kx2. (5.13)

In order to determine k, we used (5.13) to fit − log (p(x)). We determined
p(x) from the distances of the 4 nearest neighbors of each domain, where we
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binned the data according to the size of the central domain. Figure 5.8 shows
an example of the distance distribution and a fit of the potential to− log (p(x)).

The available data set for domain distances is much larger than the one
we obtained from domain tracking. Consequently, the spring constant k
can be determined with a smaller error, see figure 5.9. The average k =
1.6 ± 0.2 kBT/μm2 coincides with the result found from domain tracking k =
1.4 ± 0.5 kBT/μm2. Interestingly, k shows a a nonlinear behavior with a clear
maximum for domains of an intermediate size which roughly coincides with
the size of the most abundant domains, see figure 5.3.
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Figure 5.7: Spring constant k corrected for the number of nearest neighbors
versus domain radius (circles), the squares correspond to binned data. The
gray solid line marks the average k = 1.4±0.5 kBT/μm2. Reported error bars are
standard errors of the mean. Inset: Diffusion coefficient versus domain radius
(circles) for 103 trajectories. The squares represent binned data. For compari-
son, the dashed-dotted line gives the behavior of D(r) kBT/(16ηr), which holds
if the viscosity of water (η ≈ 10−3 Ns/m2) is dominant [114]. The gray solid line
shows a fit to the model described in [115] which gives η′ = 4.8 × 10−8 Ns/m
for the 2D membrane viscosity. Reported error bars are standard errors of the
mean.

5.4.3 Model for the spring constant

Due to the fact that the membrane of a GUV is both curved and finite in size,
the calculation of the interaction potential between two distortions on such a
membrane is a very difficult task. However, in the case where we are dealing
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Figure 5.8: Spring constant k determined by domain distance statistics. Upper
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with a large number of small domains on a big vesicle the situation approaches
that of domains on an infinite and asymptotically flat membrane. For two such
domains with the shape of spherical caps, the interaction potential was first
calculated by Goulian et al. [97] and reads

V = 4πκ(α2
1 + α2

2)
(a

r

)4

(5.14)

where r is the center-to-center distance between the two domains, a is a cut-
off lengthscale taken to be the membrane thickness (a few nanometers), α1

and α2 are the domain’s contact angles with the surrounding membrane (see
figure 5.5d) and κ is the bending modulus of the background membrane. In
appendix 5.C we give a derivation of equation (5.14), based on a calculation by
Dommersnes and Fournier [99]. In order to be able to use equation (5.14) in
our system, we again assume that the domains are nondeformable spherical
caps. Because the ratio of the bending modulus of the Lo domains with that
of the surrounding Ld membrane is significantly larger than 1 (κo/κd ≈ 4, see
chapter 4), this spherical cap approximation is valid.

As Dommersnes and Fournier showed [99], the interaction between multi-
ple inclusions is not equal to the sum of their pairwise interactions. However,
the scaling of the interaction with the distance between the domains r and
the contact angles αi does not change, only the prefactor does. For any bud-
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ded domain surrounded by several other budded domains, we can therefore
assume a potential of the form

V = C̄κa4
N∑

i=1

α2
0 + α2

i

r4
0i

, (5.15)

where C̄ is a numerical constant (which can be determined numerically using
the method described in appendix 5.C), α0 the contact angle of the domain
we are interested in, αi that of the ith neighbor and r0i the distance between
the central domain and its ith neighbor. The number of neighbors is N , which
in experimental vesicles is typically 5 or 6, corresponding to a relatively dense
packing of domains. Let us assume for simplicity that the equilibrium of the
potential (5.15) is such that the nearest neighbors form a circle of radius r0

around it, on which they are on average equally distributed (see figures 5.2
and 5.1a). This mean field assumption means that the central domain sees
its environment as isotropic (it is not pushed in any particular direction) and
its potential has a unique global minimum at the center of the circle. The en-
ergy of any displacement Δr of the central domain away from its energy min-
imum can then be calculated by an expansion in Δr of (5.15). The linear term
in that expansion vanishes because of the isotropic distribution of the neigh-
bors, in agreement with the assumption of the existence of a global potential
minimum at Δr = 0. The first term of interest is therefore the quadratic term,
which is given by

Vquadratic =
Cκa4

2
α2

0 + β2

r6
0

(Δr)2, (5.16)

where C is another constant and β the contact angle of a neighboring domain
that would correspond to the time-average isotropic potential assumed above.
Equation (5.16) allows us to experimentally determine the strength of the in-
teractions between budded domains, since it yields an effective spring con-
stant which can be measured:

k = Cκa4 α2
0 + β2

r6
0

. (5.17)

In order to be able to predict the behavior of the spring constant k as a func-
tion of the domain size d (the length of its projected radius), we need to estab-
lish how α and r0 vary with d. At present we have no way of determining α(d)
from first principles, since that would require having a full description of the
complete vesicle membrane. We can argue though that at least it should be
an increasing function of d for small domains. When a domain has just grown
large enough to bud out, its circumference will still be small, and the amount
of membrane bending and stretching it can induce to reduce the line tension
term will also be small. As the domain grows in size, this balance shifts, and
by budding out further the domain makes its presence felt more strongly in
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the surrounding membrane. Because in our experimental system we always
consider vesicles with many small domains, we assume α(d) to be in the linear
regime. We therefore phenomenologically write: α ∝ (d − d0), where d0 is the
domain size at which budding first occurs, which should be of the order of the
invagination length (0.5− 1.0 μm, see section 5.3).

For r0(d) we do not need to make a guess, but can simply rely on experi-
mental results, which show that r0 depends linearly on d (figure 5.6b). Finally
we will assume that α0 ∼ β, since in experiments we typically find that do-
mains are surrounded by domains of approximately equal size (see chapter 6).
Using the linear dependencies of α0 and r0 on d in the expression for the spring
constant (5.17), we find

k = A
(d− d0)2

(r̄0 + cd)6
. (5.18)

Equation (5.18) has two fitting parameters (A and d0). The best fit of the ex-
perimental data is given by the dark gray solid line in figure 5.9. We find
A = 1.5 × 105 kBTμm2 and d0 = 0.55 μm, which indeed is approximately the
size of the invagination length (0.7 μm). Qualitatively we find that due to the
increase in repulsion strength with growing domain size the spring constant
increases with domain size for small domains. For very large domains on the
other hand the interdomain distance also grows, and because the interactions
fall off very steeply with distance, the spring constant decreases. In between
we find a maximum that corresponds to the most abundantly present domain
size in the experimental vesicles.

domain radius [μm]

s
p
ri
n
g

c
o
n
s
ta

n
t
[k

T
/

m
]

B
�

2

0.0
0.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 5.9: Effective spring constant k versus domain radius (circles), the
squares correspond to binned data. The light gray solid line marks the average
k = 1.6±0.2 kBT/μm2 and the dark gray solid line the theoretical fit determined
using equation (5.18).
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5.5 Conclusion

The experimental results on vesicles with many domains demonstrate the ex-
istence of membrane mediated interactions between them. In this chapter we
have quantified the strength of these interactions. We have shown that they
originate in the curvature the domains locally impose on their environment.
We have also shown that the phenomenon of partial domain budding can be
explained as a competition between curvature and elastic forces on the one
hand and tensile forces on the other hand. Furthermore, we found that the
membrane mediated interaction influences the fusion behavior of domains,
resulting in a preferred domain size. Using a simple Monte Carlo simulation
we were able to reproduce the experimental domain size distribution. Finally
we found that the dependence of the interaction strength on distance is con-
sistent with existing theory, which gives a 1/r4 dependence.

Proteins in the membranes of living cells distort their surrounding mem-
brane in the same fashion as lipid domains do. We therefore predict that simi-
lar membrane mediated interaction forces play a significant role in membrane
structuring. Coarse grained simulations show that membrane mediated in-
teractions can lead to the aggregation of membrane inclusions [103]. In our
experiments we do not observe such attracting behavior, which suggests that
our model system is more comparable to larger structures, like protein aggre-
gates. We expect that such aggregates experience repulsive interactions if they
impose a curvature on the membrane. If this curvature exceeds a certain crit-
ical size the aggregates will not be able to grow further, just like the domains
stop growing after reaching a certain size. Moreover, the membrane mediated
interactions have a longer range (1/r4) than Van der Waals interactions (1/r6)
and should therefore be the dominant interaction effect in the absence of elec-
trical charges. We therefore expect this interaction to play an important role in
many biological processes.

5.A Domain growth by aggregation: master
equation description

The traditional starting point for treating aggregation is the infinite set of equa-
tions that describe how the cluster size (or ‘mass’) distribution changes with
time. They are originally due to Smoluchowski, and the master equation below
is the discrete version of Smoluchowski coagulation equation [116]. ‘Discrete’
here refers to the domain sizes (areas), we assume the concentration ck(t) of
domains with size k to be a continuous function, i.e., we assume the number
of domains to be large. We denote the reaction rate of domains with size i and
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j by Kij . The master equation for ck(t) is then given by:

ċk(t) =
1
2

∑
i+j=k

Kijci(t)cj(t)− ck(t)
∞∑

i=1

Kijci(t), (5.19)

where the dot denotes a derivative with respect to time. The first term of (5.19)
describes the gain in the concentration of domains of size k = i + j due to the
coalescence of a domain of size i with a domain of size j. The rate at which this
aggregation process occurs is Kijci(t)cj(t); the product ci(t)cj(t) gives the rate
at which the domains meet, and the reaction kernel Kij is the rate at which
domains actually coalesce when they encounter each other. The second (loss)
term of (5.19) accounts for the loss of domains of size k due to their reaction
with clusters of arbitrary size i. The prefactor of 1/2 in the gain term ensures
the correct counting of their relative contributions.

An important feature of equation (5.19) is that the total mass is conserved:

∑
k

kċk =
∑

k

∑
i+j=k

1
2
Kij(i + j)cicj −

∑
i

∑
k

Kikkcick = 0. (5.20)

In the first term of (5.20), the sum over k causes the sums over i and j to be-
come independent and unrestricted. Thus the gain and loss terms become
identical and the total mass is conserved.

In the literature, exact solutions of (5.19) are known for three different ker-
nels Kij : Kij = constant, Kij = i + j, and Kij = ij, or the constant, sum and
product kernel respectively [116–119]. Here we will give the solution for the
constant kernel (where we set Kij = 2 for convenience). It shows that, when
starting from an initial system of monomers (all domains equal in size), we ar-
rive at an exponential distribution of domain sizes over time. For Kij = 2, the
master equation (5.19) reads

ċk =
∑

i+j=k

cicj − 2ck

∞∑
i=1

≡
∑

i+j=k

cicj − 2ckN, (5.21)

where N is the zeroth moment of the mass distribution

N(t) =
∞∑

i=1

ci(t), (5.22)

i.e., the concentration of clusters of any mass i. The monomer-only initial con-
dition means that we set ck(t = 0) = δk,0. Because the master equation (5.21)
for ck(t) depends only on ci(t) with i ≤ k, we can solve these equations one by
one by starting from i = 1, if we can determine N(t) separately. To do so, we
sum (5.21) over all k and find

Ṅ = −N2, (5.23)
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of which the general solution is given by

N(t) =
N(0)

1 + N(0)t
→ 1

t
as t →∞. (5.24)

Equation (5.24) tells us that N(t) does not depend on the initial concentra-
tion N(0) as t →∞. Moreover, combining equations (5.20) and (5.24), we find
that in this limit the average mass of a domain grows linearly in time.

As stated, we can now progressively find ck(t) from (5.21) by substituting
N(t) from (5.24) and ci(t) for i < k and integrating directly. Doing so, we find
c1(t) = 1/(1 + t)2 and c2(t) = t/(1 + t)3. However, we can also solve for all ck(t)
at once by rescaling (5.21). To do so, we write

ċk + 2ckN =
∑

i+j=k

cicj . (5.25)

We introduce the integrating factor

I = exp
[
2

∫ t

N(t′) dt′
]

= (1 + t)2, (5.26)

and define φk = ckI. We also define a rescaled time variable by dx = dt/I(t),
or explicitly

x =
∫ t

0

dt

(1 + t)2
=

t

1 + t
. (5.27)

Writing (5.25) in terms of φk(x), we get the simple expression

φ′x =
∑

i+j=k

φiφj , (5.28)

where the prime denotes a derivative with respect to the new time variable x.
Effectively we have rewritten (5.21) such that there are only gain terms. The
solutions of (5.28) are given by φk = xk−1 up to a scaling factor. From the
explicit solutions of N(t) and c1(t) we find φ1 = 1. Using (5.26) and (5.27), we
find the exact solution of (5.21)

ck(t) =
tk−1

(1 + t)k+1
→ 1

t2
e−k/t as t →∞. (5.29)

The solution (5.29) decays very quickly over time for any k, and all ck(t) in
fact approach a common limit that decays as 1/t2 as t → ∞. Moreover, for
fixed time, we find that the distribution of domains decays exponentially with
their size k.
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5.B Monte Carlo simulations of the domain size
distribution

In this appendix we study domain growth by aggregation using Monte Carlo
simulations. We simulate both the case described in appendix 5.A, where do-
mains fuse upon encounter, and the case in which the fusion rate depends
on the domain sizes (or masses). For the size-independent fusion rate, equa-
tion (5.29) gives the exact solution for ck(t), the concentration of domains of
size k at time t, assuming we start with a monodisperse set of domains of size
1. The exponential decay of ck(t) with k for fixed t is reproduced by the Monte
Carlo simulations. When we introduce a size dependence in the fusion rate,
we find that the decay time becomes much longer, and that the distribution for
small sizes deviates from the exponential distribution. Since both are found in
experiments, they are a clear indication that an interaction is present.

Like in appendix 5.A, we assume that the rate ki,j for the fusion of two do-
mains of size (i.e., area) i and j can be written as the product of two factors: the
rate for random encounter by diffusion kdiff({ck}), which may depend on the
distribution of domain sizes {ck}, and the probability p

merge
i,j for domain merger

if the domains are close to each other:

ki,j = p
merge
i,j kdiff({ck}). (5.30)

In our simulations we start with 1/ε domains of size ε. During the simulation
the domains are fused randomly with the rates ki,j given by (5.30). The fusion
rate is converted to a fusion probability pi,j by multiplication with a small time
step Δt. Since there are 1

2n(n− 1) possible pairings of n domains we write the
fusion probability pi,j as:

pi,j = ki,jΔt =
1

1
2N(N − 1)

p
merge
i,j

(
1
2
N(N − 1)

)
kdiff({ck})Δt, (5.31)

where the total number of domains is given by N(t) =
∑

k ck(t). If the time

step Δt is chosen to be Δt =
[
( 1
2N(N − 1))kdiff({ck})

]−1
, the fusion probability

becomes

pi,j =
1

1
2N(N − 1)

p
merge
i,j . (5.32)

The Monte Carlo algorithm we use is detailed in [120]. Briefly, in each
Monte Carlo step, first a pair of domains is chosen randomly and the Monte
Carlo time is increased by Δt. With a probability of p

merge
i,j the domain fusion is

executed.
In agreement with our experimental observations we do not allow for scis-

sion events, i.e., the fission of a domain into two smaller domains. Due to the
high line tension such events never occur in our experiments.
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In order to take the spatial distribution and diffusion of domains into con-
sideration, we adopt the scaling argument used in [93] and [106]. The time τdiff

for two domains to encounter each other at random due to diffusion scales
like τdiff ∝ 〈r2〉/D(r), with r the domain radius and D(r) the diffusion con-
stant. Since we observe only a weak dependence of the diffusion coefficient
on domain size (D(r) ≈ D, see inset of figure 5.7), we set kdiff({ck}) = π/〈A〉
with the average domain area 〈A〉 = 1

N

∑
k kck. This rate should give the cor-

rect time scale for domain fusion apart from a constant prefactor. To gauge
the simulations with real experimental time scales, we let the system evolve
to complete phase separation for non-interacting domains (pmerge

i,j = 1) and
compare the resulting Monte Carlo time to measured time scales. In the case
of (flat) domains, which are free to fuse, the time needed for complete sepa-
ration was determined experimentally (see [106], normal coarsening) and is
about 1-10 minutes. The corresponding Monte Carlo time in our simulations
is TMC ≈ 2. Figure 5.4b shows intermediate domain size distributions for four
different Monte Carlo times. Clearly, the exponential behavior is conserved in
the presence of diffusion and the typical lengthscale of that distribution (i.e.,
domain size) increases over time.

In the kinetic hindrance model for budded domains the probability for
merger of two neighboring domains decreases with domain size. Since we do
not attempt to obtain quantitative agreement with the experimental results,
we can use any probability that decreases monotonically with domain size. We
have performed simulations with both p

merge
i,j = c/

√
i ∗ j and p

merge
i,j = c/(i ∗ j).

The results are presented in figure 5.4c and d respectively, showing interme-
diate domain size distributions for 4 different Monte Carlo times. The simula-
tions reproduce the two qualitative features observed in experiments: the local
maximum and the exponential tail, see figure 5.3. We find that for TMC > 100
phase separation is still not complete. The process thus takes much longer
than the time we found for complete phase separation in the case without in-
teractions (TMC ≈ 2). The Monte Carlo simulations therefore show that mi-
crophase separation is a quasistatic state, confirming the result of section 5.3
(see also figure 5.5f).

5.C Interaction potential

For two conical inclusions (with spherical cross section), the membrane-me-
diated interaction potential (5.14) was first calculated by Goulian, Bruinsma,
and Pincus [97], using variational calculus. Here we follow a construction by
Dommersnes and Fournier [99], using an expansion in small deformations and
a Green’s function description, to get the potential for an arbitrary number of
inclusions.

In this calculation, we assume the membrane to be infinitely large and
asymptotically flat. We also assume the membrane to be uniform and tension-
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less, such that the only contribution to the energy is the mean curvature term
of the Canham-Helfrich energy (2.78). We assume there are only small devi-
ations u(x, y) from the (x, y) plane, and there are no overhangs, i.e., u(x, y) is
well-defined for any point (x, y). These assumptions allow us to use the Monge
gauge, in which we write �r = (x, y, u(x, y)). The free energy then reads in terms
of u:

E =
κ

2

∫ (∇2u
)2 dxdy, (5.33)

where κ as usual is the bending modulus of the membrane, and �∇ = (∂x, ∂y)
the differential operator on R

2. We next put our N inclusions in the membrane
at positions which we label �rk, with k = 1, . . . , N . The task at hand is to min-
imize (5.33) given the boundary conditions we thus impose at the points �rk.
These boundary conditions fix the local curvature tensor at �rk. In the small
deformation limit, the elements of that tensor are given by the second deriva-
tives of the membrane shape, so by ∂xxu(�r), ∂xyu(�r) and ∂yyu(�r). We fix the
curvature constraints using 3N Lagrange multipliers Λk

ij . The Euler-Lagrange
equations for the constrained minimization of (5.33) then read:

∇2∇2u(�r ) =
N∑

k=1

[
Λk

xx∂xxδ(�r−�rk)+Λk
xy∂xyδ(�r−�rk)+Λk

yy∂yyδ(�r−�rk)
]
, (5.34)

with δ(�r ) the two-dimensional Dirac delta function. Because equation (5.34) is
linear, we can write the general solution as a linear combination of derivatives
of the Green’s function of the operator∇2∇2. The solution is given by

u(�r ) =
3N∑

m=1

ΛmΓm(�r ), (5.35)

with

Λ =

⎛
⎜⎜⎜⎜⎜⎝

Λ1
xx

Λ1
xy

Λ1
yy

Λ2
xx
...

⎞
⎟⎟⎟⎟⎟⎠

, Γ(�r) =

⎛
⎜⎜⎜⎜⎜⎝

∂xxG(�r − �r1)
∂xyG(�r − �r1)
∂yyG(�r − �r1)
∂xxG(�r − �r2)

...

⎞
⎟⎟⎟⎟⎟⎠

. (5.36)

The Green’s function is given by

G(�r ) =
1

16π
r2 log r2, (5.37)

with r = |�r |, satisfying ∇2∇2G(�r ) = δ(�r ). We group the values of the 3N
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constraints in a column matrix K:

K =

⎛
⎜⎜⎜⎜⎜⎝

∂xxu(�r1)
∂xyu(�r1)
∂yyu(�r1)
∂xxu(�r2)

...

⎞
⎟⎟⎟⎟⎟⎠

. (5.38)

The values of the Lagrange multipliers are set by the constraints in the 3N
equations

3N∑
n=1

MmnΛn = Km, (5.39)

where M is the 3N × 3N matrix

M =

⎛
⎜⎜⎜⎜⎝

m11 m12 · · · m1N

m21 m22

...
...

. . .
...

mN1 · · · · · · mNN

⎞
⎟⎟⎟⎟⎠ , (5.40)

in which the mij ’s are the 3× 3 matrices given by

mij =

⎛
⎝ ∂xxxxG(�rij) ∂xxxyG(�rij) ∂xxyyG(�rij)

∂xxxyG(�rij) ∂xxyyG(�rij) ∂xyyyG(�rij)
∂xxyyG(�rij) ∂xyyyG(�rij) ∂yyyyG(�rij)

⎞
⎠ , (5.41)

with �rij = �ri − �rj . Integrating equation (5.33) by parts, while taking into ac-
count the constraints (5.38), gives for the elastic energy

E =
κ

2
KT M−1K, (5.42)

where KT is the transpose of K. From equations (5.35) and (5.39) we find for
the equilibrium shape of the membrane

u(�r ) = KT M−1Γ(�r ). (5.43)

To get explicit expressions, we write

�rij = �ri − �rj = rij(cos θij x̂ + sin θij ŷ), (5.44)

which gives for mij in case i �= j

mij =
1

4πr2
ij

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(4θij)

−2 cos(2θij)

sin(2θij)

·(2 cos(2θij)−1)

− cos(4θij)

sin(2θij)

·(2 cos(2θij)−1)

− cos(4θij) − sin(4θij)

− sin(2θij)

− cos(4θij) − sin(4θij)

− sin(2θij)

cos(4θij)

+2 cos(2θij)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.45)
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For i = j, the expression (5.45) for mij diverges. This divergence is due to the
fact that the energy (5.33) is a coarse-grained description which is only valid
for distances r ≤ r0, with r0 the membrane thickness. We should therefore
introduce a cutoff in the theory at high wavevector of order 1/r0, which will
allow us to calculate mij for i = j. To do so, we consider the derivatives of the
Green’s function (5.37) in Fourier space; for example

∂xxxxG(�r ) =
1

(2π)2

∫
q4
x

q4
ei�q·�r d2q, (5.46)

where �q = (qx, qy) and q = |�q |. Introducing the high wavevector cutoff, we find

∂xxxxG(�0 ) =
1

(2π)2

∫ 1/r0

0

q dq

∫ 2π

0

cos4 θ dθ =
3

32πr2
0

, (5.47)

and similarly for the other matrix elements of (5.41). The entire matrix mii is
given by

mii =
1

32πr2
0

⎛
⎝ 3 0 1

0 1 0
1 0 3

⎞
⎠ . (5.48)

To recover the result by Goulian et al., we consider two identical isotropic in-
clusions, each prescribing the curvature c. The matrix of constraints then reads

KT = (c, 0, c, c, 0, c). (5.49)

The elastic energy is now given by equation (5.42)

E =
512πκ(r0c)2(

R
r0

)4

+ 8
(

R
r0

)2

− 32
, (5.50)

where R = r12 and we have discarded a constant term. Setting r0 = a/2, and
making an expansion around R = ∞, we find

E = 8πκ(ac)2
( a

R

)4

+O
(

1
R

)6

, (5.51)

which is the result of Goulian et al. [97]. Using this formalism we can find the
energy for any number of inclusions. The only limitation is that we have to
invert the 3N × 3N matrix Mij . As Dommersnes and Fournier showed by an
explicit calculation for a three particle system [99], the potential is not pairwise
additive, however the dependence

V = C̄κa4
N∑

i=1

α2
0 + α2

i

r4
0i

, (5.52)

given by equation (5.15) holds, and the constant C̄ can be determined numer-
ically.
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