
Structure, shape and dynamics of biological membranes.
Idema, T.

Citation
Idema, T. (2009, November 19). Structure, shape and dynamics of biological
membranes. Retrieved from https://hdl.handle.net/1887/14370
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/14370
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/14370


C H A P T E R 4

MEMBRANE SHAPES

In this chapter we study the shape of biomimetic ternary membranes. We
find that in their ground state, vesicles which exhibit domains of two differ-
ent phases fully phase-separate. The resulting shape is a trade-off between
two competing effects: an elastic term, which wants the membrane to be as
smooth as possible, and a boundary term, which wants to minimize the do-
main boundary length. The resulting minimal shape resembles a peanut or
a snowman. We study the fluctuations of the membrane around this equi-
librium shape. Moreover, we derive an analytical expression for the shape of
the ground state. Fitting both the fluctuation spectrum and the equilibrium
shape, we can extract the membrane’s elastic (bending) modulus and the en-
ergy associated to the domain boundary (the line tension). The numbers we
obtain can be used to give estimates and limits for the size and stability of
nanodomains in the plasma membrane of living cells.
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4.1 Introduction

In chapter 3 we studied the phase separation of biomimetic ternary membra-
nes into liquid ordered (Lo) and liquid disordered (Ld) domains. Once phase
separation starts, the domains have different physical parameters due to their
unequal compositions. Moreover, a line tension associated to their boundaries
emerges, as studied in section 3.4. The line tension contribution to the energy
causes the domains to be circular in shape, minimizing their circumference
for a given area. It also drives a coarsening process, since merging domains
into larger ones reduces the total domain boundary length. Not surprisingly,
the ground state is therefore a complete phase separation: a vesicle containing
one Lo and one Ld domain.

There is an additional mechanism by which the line tension energy can
be reduced: deformation of the vesicle. A uniform vesicle typically assumes
a spherical shape, because that shape minimizes its bending energy (see sec-
tion 2.3.5). If the total area and enclosed volume of the vesicle are fixed, it will
always remain a sphere. However, over long timescales water can permeate the
lipid bilayer membrane and the enclosed volume can be reduced. Using this
degree of freedom, the energy associated with the line tension on the domain
boundary can be reduced as well: by contracting the boundary, the vesicle can
create a neck. If the line tension is large enough, the neck can be completely
contracted and the vesicle can split in two, one part containing (mostly) a Ld

membrane, the other a Lo one [6, 69, 82, 83]. The reason why this does not al-
ways happen is that this budding process is countered by the bending energy:
the creation of the neck increases the total curvature of the vesicle. For moder-
ate values of the line tension, the resulting stable shape therefore is a balance
between the bending energy and the line tension energy, and resembles the
‘snowman’ of figure 2.1b. An example of an experimentally obtained picture of
such a ‘snowman’ vesicle is shown in figure 4.1.

In this chapter we derive an analytical expression for the shape of a fully
phase-separated vesicle. We verify the expression found by comparing it to the
numerical shape obtained by minimizing the full energy functional. Moreover,
we fit this model to experimental data to obtain numbers for the line tension τ
and difference in Gaussian moduli of the phases Δκ̄. Finally, we compare these
numbers to existing models for living systems and use them to speculate on
the existence and size of domains in the plasma membrane of cells.

The results reported in this chapter again apply to ternary vesicles, con-
taining cholesterol, a low melting temperature lipid, and a high melting tem-
perature lipid. In the experimental data presented here the low melting
temperature lipid is DOPC and the high melting temperature lipid is (brain)
sphingomyelin (SM). Alternatively, several other groups have used DPPC as
the high melting temperature lipid and a great variety of low melting tem-
perature lipids in their experiments, giving qualitatively similar results, see
e.g. [2, 4–6, 54, 55, 79, 84–87]. Typically the Lo domains are rich in both sat-
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urated tail lipids and cholesterol, whereas Ld domains are rich in lipids with
unsaturated tails, see chapter 3.

The experimental data presented in this chapter was obtained by S. Semrau
from the Leiden experimental biophysics group, and is used with permission.
The experimental setup and procedure are briefly sketched in appendix 4.A; a
more detailed overview can be found in [43].
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Figure 4.1: Equilibrium shape of a tricomponent vesicle which exhibits phase
separation into aLo and aLd phase. The two phases have approximately equal
surface area and the vesicle has been allowed to equilibrate for several weeks,
allowing it to adjust its volume by transport of water molecules through the
membrane. The resulting ‘snowman’ shape is the result of a balance between
the bending energy and the line tension. The left figure shows the fluorescence
raw data, with the Lo domain in red and the Ld domain in green; the contour
is superimposed in blue. The insets on the right illustrate the principle of con-
tour fitting. (a) Intensity profile normal to the vesicle contour (taken along the
dashed line in the main image); (b) first derivative of the profile with linear fit
around the vesicle edge (red line). The red point marks the vesicle edge.
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4.2 Energy functional and shape equation

The free energy of the fully phase-separated vesicle with two domains (indi-
cated by subscripts 1 and 2) is given by equation (2.102):

E =
2∑

i=1

∫
Mi

(κi

2
(2H)2 + κ̄iK + σi

)
dS + p

∫
dV + τ

∮
∂M

dl. (4.1)

where the κi and κ̄i are the bending and Gaussian moduli of the two domains,
respectively, the σi are their surface tensions, τ is the line tension on their
boundary and p is the pressure difference across the membrane. In the equi-
librated shapes considered here, the force of the internal Laplace pressure is
compensated by the surface tensions; consequently, both contributions drop
out of the shape equations [48, 51]. As was shown in section 2.3.4, the Gauss-
Bonnet Theorem allows us to integrate the Gaussian curvature term to a con-
stant contribution on the bulk of each domain plus a boundary term. Within
the bulk of each domain, the only relevant contribution to the energy is there-
fore giving by the bending term. Exploiting the fact that the vesicle is axisym-
metric, and using the same notation as in section 2.3.5, we find that the shape
of each bulk part is given by the following differential equation:

ψ̈ cosψ = −1
2
ψ̇2 sinψ − cos2 ψ

r
ψ̇ +

cos2 ψ + 1
2r2

sinψ. (4.2)

where ψ(s) is the tangent angle to the membrane, s the arc length measured
along the vesicle contour and dots denote derivatives with respect to the arc
length (see figure 2.1b). The vesicle’s coordinates r(s) and z(s) are related
to the tangent angle via the geometrical relations given by equations (2.88)
and (2.89):

ṙ =
dr
ds

= cosψ(s), (4.3)

ż =
dz
ds

= − sinψ(s). (4.4)

We put the boundary between the two domains at z = 0 and also define s = 0
at this point. Of course r and ψ must be continuous at the boundary. As we
derived in section 2.3.5, the variational derivation of equation (4.2) gives two
more boundary conditions on ψ̇ and ψ̈ [52]:

lim
ε↓0

(κ2ψ̇(ε)− κ1ψ̇(−ε)) = −(Δκ+ Δκ̄)
sinψ0

r0
, (4.5)

lim
ε↓0

(
κ2ψ̈(ε)− κ1ψ̈(−ε)) =

(
2Δκ+ Δκ̄

)cosψ0 sinψ0

r20
+

sinψ0

r0
τ, (4.6)

where Δκ = κ2 − κ1, Δκ̄ = κ̄2 − κ̄1, and r0 = r(0) and ψ0 = ψ(0), are the radial
coordinate and contact angle at the domain boundary.
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4.3 Neck and bulk solutions

Far away from the domain boundary, the influence of the line tension at the
boundary on the membrane shape is small. We therefore expect the mem-
brane bending term to dominate the shape in the bulk of each domain. The
optimal solution is then the least curved one, which is a sphere. Indeed the
sphere is a solution of equation (4.2), and in the experimental pictures we
clearly see that around the poles of the vesicle (putting the domain boundary
at the equator) the shape becomes approximately spherical. We can therefore
use the sphere as a first ansatz for the shape far from the domain boundary.
Expanding around this ansatz, we can find corrections to the spherical shape
from the shape equation (4.2). Close to the domain boundary, this approach
breaks down, as the shape around the boundary is determined by the line ten-
sion, through the boundary conditions (4.5) and (4.6). We therefore split each
of the domains into a bulk and a neck regime, where respectively the bending
energy and the line tension dominate the shape.

As before, we put the domain boundary at s = 0. We denote the total arc
length of the top domain by sb and that of the bottom domain by se. The arc
length coordinate s therefore has negative values in the top domain and pos-
itive values in the bottom domain, and runs over (−sb, se). The boundaries
between the neck and bulk regimes in both domains are located at s = −s1
and s = s2 and the radii of the asymptotically approached spheres in both
domains are given by R1 and R2.

For the bulk domains, we perform an analysis of small perturbations inψ(s)
from the spherical ansatz. Due to the fact that we use an angular coordinate,
there is a singularity at the poles of the vesicle, which translates into a diver-
gence in the perturbative correction term. This divergence is unphysical and
purely a consequence of the choice of coordinates. We should therefore restrict
the perturbation to a region in which our chosen coordinate system has no
singularities. The easiest choice is to calculate the perturbation for the region
from ψ = π/2 to the domain boundary for the top domain, and analogously
for the bottom domain. The details of the derivation of the bulk solution are
given in appendix 4.C, the resulting shape is given by:

ψbulk(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s+sb

R1
−sb ≤ s ≤ −sb + πR1/2

s+sb

R1
+ A1R2

1
2 δψ

(
s+sb

R1

)
−sb + πR1/2 ≤ s ≤ −s1

π + s−se

R2
+ A2R2

2
2 δψ

(
π + s−se

R2

)
s2 ≤ s ≤ se − πR2/2

π + s−se

R2
se − πR2/2 ≤ s ≤ se

(4.7)
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with

δψ(x) =
1

sin(x)
+ x log

(
tan

(x
2

))
+i

[
Li2

(
i tan

(x
2

))
− Li2

(
−i tan

(x
2

))]
− (1− 2K), (4.8)

where A1 and A2 are integration constants, K is Catalan’s constant, with nu-
merical value ∼ 0.91596559, and Lin(z) the polylogarithm or Jonquière’s func-
tion, defined as

Lin(z) =
∞∑

k=1

zk

kn
, (4.9)

for z ∈ C. The term containing the two polylogarithms in (4.8) is real for our
region of interest (−π < x < π).

Near the domain boundary, ψ must have a local extremum in each of the
phases and we can expand it as

ψneck(s) =

{
ψ

(1)
0 + ψ̇

(1)
0 s+ 1

2 ψ̈
(1)
0 s2 −s1 ≤ s ≤ 0

ψ
(2)
0 + ψ̇

(2)
0 s+ 1

2 ψ̈
(2)
0 s2 0 ≤ s ≤ s2

(4.10)

Because of the local extremum, the expansion for ψneck should be at least to
second order. Because the boundary condition on ψ̈ tells us that due to the
presence of a line tension at the domain boundary, ψ̈ will be discontinuous at
that boundary, so we can not go beyond second order without putting in ad-
ditional information. The Canham-Helfrich energy functional (4.1) used here
does not give that information; in order to refine the model we would need
to use an energy functional that goes to at least fourth (instead of second) or-
der in the local curvature (see section 2.3.5). For the model presented here, an
expansion to second order for ψneck is therefore the appropriate one to use.

At the boundaries s = −s1 and s = s2 between the bulk and neck regimes,
their respective solutions (4.7) and (4.10) should match smoothly. That means
that ψ, as well as ψ̇ and ψ̈ must be continuous at these points. Because we find
r(s) by integrating cosψ(s), continuity of ψ(s) implies continuity of r(s) and no
additional conditions are imposed at the regime boundaries. At the domain
boundary (s = 0), the solution needs to satisfy the boundary conditions (4.5)
and (4.6), as well as continuity of ψ(s). Finally, there is a boundary condition
on r(s), which is that it must vanish at either pole (at s = −sb and s = se) to
produce a closed vesicle. Equivalently, we can set r(−sb) = r(se) = 0 and find
r0 = r(0) by integration over each domain, giving the condition that r(s) must
be continuous at the domain boundary. In total, we have 10 conditions for the
10 unknowns {Ai, si, ψ

(i)
0 , ψ̇

(i)
0 , ψ̈

(i)
0 }i=1,2.

Combined, the neck and bulk components of ψ give a vesicle solution for
specified values of the material parameters {κi,Δκ̄, τ}. This solution com-
pares extremely well to numerically determined shapes (obtained using the
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Figure 4.2: Numerically determined shape of a fully phase-separated vesicle
with two domains of equal size. The shape was found by minimizing the free
energy (4.1) by means of relaxation steps, using the software package Surface
Evolver by Brakke [44]. TheLo phase is shown in red, theLd phase in green. (a)
Plot of contact angle ψ versus contour length s. The blue and black line shows
the best fit of the model given by equations (4.7) and (4.10). The dashed lines
mark the transition points between the neck and bulk regimes. (b) 3D repre-
sentation of the entire vesicle. The optimal fit is again shown as a blue/black
line.

Surface Evolver package [44], see figure 4.2). Moreover, for the symmetric case
of domains with identical values of κ, we can compare to earlier modeling in
Ref. [82]. The vesicle can then be described by a single dimensionless param-
eter λ = R0/ξ, where 4πR2

0 equals the vesicle area, and ξ = κ/τ is known as
the invagination length. The budding transition (where the broad neck desta-
bilizes in favor of a small neck) is numerically found in Ref. [82] to occur at
λ = 4.5 for equally sized domains; the model presented here gives a value of
λ = 4.63.

4.4 Bending moduli and line tensions

The model for the shape of a fully phase-separated vesicle given by equations
(4.7) and (4.10) has the bending moduli κi of the two domains, the line ten-
sion τ between them and the difference Δκ̄ between their Gaussian moduli as
input parameters. Moreover, the radiiRi of the two bulk spheres, and the sizes
sb and se of the domains, are also free parameters in the model and should be
obtained from experiment. A direct fit of the model to an actual vesicle shape
would therefore have many fit parameters and thus give unreliable results.
Fortunately, the experimental data available provides us with more informa-
tion than just the equilibrium shape of the vesicles. Using advanced detection
techniques (see figure 4.1), it is possible to determine the membrane position
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with an accuracy of 20 nm, sufficient to determine the fluctuation spectrum,
because thermal fluctuations occur on the scale of 50− 100 nm [70]. From the
vesicle shape we can directly obtain the radii and domain sizes. The bending
moduli can subsequently be found from the fluctuation spectra, and the fit of
the analytical model given by equations (4.7) and (4.10) finally gives the line
tension and difference in Gaussian modulus.

We determined the bulk sphere radii Ri from the ensemble averaged radii
of circles fitted to those parts of the contours that were nearly circular, i.e., far
away from the neck domain. We similarly found the domain sizes as the en-
semble averaged total arc length of the equilibrium shape. We subsequently
obtained spectra of the shape fluctuations for the nearly circular parts of the
contour. We determined the fluctuations u(s) for each single contour as the
difference between the local radius r and the ensemble averaged radius Ri:
u(s) = r(s)−Ri, with s again the arc length, see figure 4.3. Expanding fluctua-
tions of the Canham-Helfrich free energy (2.78) in Fourier modes and invoking
the Equipartition Theorem, we find an expression for the fluctuation spectrum
in terms of the bending modulus κ and surface tension σ (see appendix 4.B).
Taking into account the finite patch size [88] and following the spectral anal-
ysis of a closed vesicle shell developed by Pécréaux et al. [89], we find for the
power spectrum for the vesicle fluctuation u(s):

〈|uk|2〉 =
∑
qx

(
sin((k − qx)a

2 )
(k − qx)a

2

)2
kBT

4πηL

∫ ∞

−∞
dqy

τq
|�q |

τ2
q

t2

(
t

τq
+ e−t/τq − 1

)
.

(4.11)
Here �q = (qx, qy) = 2π

L (m,n) with m and n non-zero integers, L = 2πRi,
and η is the bulk viscosity of the surrounding medium. The overline indi-
cates averaging over the illumination time, and the brackets denote the en-
semble average. Fitting equation (4.11) to the measured fluctuation spec-
tra (figure 4.3), we can extract the bending moduli and the surface tensions
of both domains simultaneously. The numbers for five different vesicles of
the same composition are listed in table 4.1. As can be seen from this table,
the measured bending moduli κo = 8.0 ± 0.7 · 10−19 J = 2.0 ± 0.2 · 102 kBT
and κd = 1.9 ± 0.5 · 10−19 J = 50 ± 13 kBT of the Lo and Ld domains are the
same for all five vesicles, confirming that these are a property of the mem-
brane composition. In contrast, the values found for the surface tensions vary
for the five vesicles measured, reflecting the fact that they depend on the exact
preparation procedure and in particular the (small) pressure difference across
the membrane. Using the values found from the fluctuation analysis, we have
only two free parameters left in our model: the line tension τ and difference in
Gaussian moduli Δκ̄. We fitted the model given by equations (4.7) and (4.10)
to the measured equilibrium shape in two ways to obtain the values of these
parameters. The first method we used is a two-parameter fit, allowing the
shape to optimize as a function of both parameters. The second method was
to assume continuity of ψ̇ across the domain boundary. This additional as-
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sumption gives a direct relation between τ and Δκ̄, leaving us with a single
fit parameter. Both methods yield the same values for τ and Δκ̄, which are
listed in table 4.1 along with the bending moduli and surface tensions. As we
would expect, the line tension depends on composition only, and for our spe-
cific choice has the value of 1.2 ± 0.3 pN, which is in the same range as that
estimated by Baumgart et al. [6]. For the difference in Gaussian moduli we
find 3± 1 · 10−19 J = 8± 3 · 101 kBT , in accordance with the earlier established
upper bound (κ̄ ≤ −0.83κ) reported by Siegel and Kozlov [90]. An example fit
is given in figure 4.4.
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Figure 4.3: Fluctuation spectra of the ordered (red circles) and disordered
(green circles) domains. The corresponding best fits of equation (4.11) are
shown in blue and black respectively. Inset: Typical real-space fluctuations
along the vesicle perimeter. Figure taken from [70].

4.5 Biological implications

Ultimately, we are interested in the membrane’s elastic parameters because
their precise magnitude has important consequences for the morphology and
dynamics of cells. The literature is replete with theoretical speculations which
depend strongly on, among others, the line tension. While the values we report
apply to reconstituted vesicles, we can nonetheless use them in some of these
models to explore possible implications for cellular membranes. The major-
ity of the investigated vesicles finally evolved into the fully phase separated
state. This finding is in agreement with previous work by Frolov et al. [91],



76 Membrane shapes

-5.0-10.0 5.0 10.00.0

4

�

�

s [ m]�

�

2

�

4

3 �

Figure 4.4: Example of an experimentally obtained ψ(s) plot (red: Lo phase,
green: Ld phase) together with the best fit of the model given by equations (4.7)
and (4.10) in blue and black. The dashed lines mark the transition points be-
tween the neck and bulk regimes.

which predicts, for line tensions larger than 0.4 pN, complete phase separa-
tion for systems in equilibrium. It should be noted that the line tension found
is also smaller than the critical line tension leading to budding: recent results
by Liu et al. [92] show that for endocytosis by means of membrane budding
both high line tensions (> 10 pN) and large domains are necessary. Therefore
nanodomains will be stable and will not bud off.

In cells, however, additional mechanisms must be considered. To explain
the absence of large domains in vivo, Turner et al. [93] make use of a continu-
ous membrane recycling mechanism. For the membrane parameters we have
determined such a mechanism predicts asymptotic domains of ∼ 10 nm in
diameter. Our results, in combination with active membrane recycling, there-
fore support a minimal physical mechanism as a stabilizer for nanodomains
in cells. Domains continually nucleate and grow by coalescence, but are also
continually removed from the (plasma) membrane by recycling processes.

A separate effect, purely based on the elastic properties of membranes may
further stabilize smaller domains in vivo. Domains that are not flat within the
environment of the surrounding membrane may interact via membrane de-
formations. Such interactions are studied in the next chapter.
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σd κd σo κo τ Δκ̄
(10−7 N/m) (10−19 J) (10−7 N/m) (10−19 J) (pN) (10−19 J)

1 2.8± 0.2 2.2± 0.1 0.3± 0.3 8.0± 1.3 1.5± 0.3 2.5± 2
2 5.8± 0.5 1.8± 0.2 2.1± 0.4 8.2± 1.5 1.2± 0.4 2.0± 2
3 3.5± 0.3 2.0± 0.1 2.0± 0.5 8.2± 1.4 1.2± 0.3 2.5± 2
4 2.8± 0.2 1.9± 0.1 2.5± 0.5 8.3± 1.2 1.2± 0.4 4.0± 2
5 2.3± 0.1 1.6± 0.1 0.6± 0.3 8.0± 1.6 1.1± 0.5 4.0± 3

Table 4.1: Values of the material parameters for five different vesicles. The sur-
face tensions and bending moduli of theLd andLo phase are determined from
the fluctuation spectrum; the line tension and difference in Gaussian moduli
are subsequently determined using the analytical shape model given by equa-
tions (4.7) and (4.10).

4.A Experiments

The experimental data given in chapters 4, 5, and 6 were obtained by S. Sem-
rau from the Leiden experimental biophysics group, and are used here with
permission. In this appendix we briefly sketch the experimental procedure for
obtaining the experimental data shown in figures 1.3, 4.1, 4.3, 4.4, 5.1, 5.2, 5.3,
5.6, 5.7, 5.8, 5.9 and 6.3. More details can be found in [43] and [71].

Giant unilamellar vesicles (GUVs) were produced from a mixture of 30 %
DOPC, 50 % brain sphingomyelin, and 20 % cholesterol at 55◦C. The Ld phase
was stained by a small amount of Rhodamine-DOPE (0.2 % − 0.4 %), the Lo

phase with a small amount (0.2 % − 0.4 %) of perylene. In the experimen-
tal results of chapter 4, the osmotic pressure on the inside and the outside of
the GUVs was identical. In chapters 5 and 6, the partial budding of domains
was stimulated by increasing the osmolarity on the outside of the vesicles by
40 − 50 mM. In both cases, lowering the temperature to 20◦C resulted in the
spontaneous nucleation of Lo domains in a Ld matrix. We observed that un-
budded domains quickly merged to large ones, resulting in a vesicle exhibiting
complete phase separation. An example of the raw data of such a vesicle is
shown in figure 4.1. In contrast, partially budded domains posses long term
stability (time scale of hours). A typical example of the dynamics of these do-
mains is given in movie S1 of [71].

4.B Membrane fluctuations

In this appendix we use the Canham-Helfrich free energy functional (2.78) in-
troduced in chapter 2 to derive the general expression for the fluctuations of
a membrane patch based. We subsequently sketch how to obtain the expres-
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sion for the fluctuation spectrum (4.11) of our phase-separated vesicle from
this general expression. A detailed derivation of equation (4.11) can be found
in [43, Chapter 2].

4.B.1 Fluctuations of a periodic membrane patch

From the Canham-Helfrich energy functional (2.78) introduced in chapter 2
it is a straightforward exercise to calculate the fluctuations of a flat piece of
fluid membrane. This calculation is originally due to Helfrich [94] and can
be found in detail in many textbooks, for instance Boal [95] or Chaikin and
Lubensky [72]. We parametrize our flat piece of membrane using the Monge
gauge introduced in section 2.3.1 and write �r = (x, y, h(x, y)), with h(x, y) the
height function in the z-coordinate. To lowest order in derivatives of h we can
then calculate the mean curvature H and metric determinant det(g):

H = −1
2
∇2
⊥h, (4.12)

det(g) = 1 + (∇⊥h)2, (4.13)

where ∇⊥ denotes the two-dimensional gradient operator. Because we are
only looking at fluctuations, the topology is constant and hence the contri-
bution of the Gaussian curvature to the energy can be ignored. The energy of a
membrane with surface tension σ and bending modulus κ to quadratic order
in derivatives of h is then given by:

E =
∫

S

(κ
2
(2H)2 + σ

)
dA =

1
2

∫
S

(
κ(∇2

⊥h)
2 + σ(∇⊥h)2

)
dxdy. (4.14)

We proceed by expanding h in Fourier modes, on a square piece of membrane
of size L× L with periodic boundary conditions:

h(�x) =
∑

�q

h�q e
i�q·�x, (4.15)

where �x = (x, y), �q = (qx, qy) = 2π
L (lx, ly) with lx, ly ∈ Z, and

h�q =
1
L2

∫ L/2

−L/2

dx
∫ L/2

−L/2

dyh(�x)e−i�q·�x. (4.16)

Substitution of the Fourier expansion (4.15) in the expression (4.14) for the en-
ergy gives:

E =
L2

2

∑
�q

[
κ(�q · �q )2 + σ(�q · �q )

]
h�qh

∗
�q , (4.17)
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where the star denotes complex conjugation. Invoking the equipartition theo-
rem we now immediately find for the static correlation function

〈
h�qh

∗
�q

〉
=

1
L2

kBT

κ(�q · �q )2 + σ(�q · �q )
, (4.18)

where the brackets denote the ensemble average, kB Boltzmann’s constant and
T the temperature.

4.B.2 Fluctuations of a membrane patch on a real vesicle

There are several differences between the actual situation when measuring
membrane fluctuations on a real vesicle and the assumptions behind the cal-
culation of the fluctuation spectrum (4.18). First, because with the microscope
we observe an (optical) section of the membrane (the xz-plane, see figure 4.5),
we cannot measure h(x, y) but only h(x, 0).

x

y

z

R

u(s)

s

Figure 4.5: Optical section along the xz-plane, as measured in experimental
observations of our vesicles. The ensemble-averaged radius is denoted byR, s
is the contour length and u(s) the deviation from R at s.
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The Fourier components of the observable membrane profile h(x, 0) are
given by

hqx =
1
L

∫ L/2

−L/2

dxh(x, 0)e−iqx·x =
∑
q′

y

h(qx,q′
y). (4.19)

We can obtain the fluctuation spectrum of hqx from that of h�q if we convert the
sum of equation (4.19) into an integral. A straightforward calculation gives:

〈
hqxh

∗
qx

〉
=

kBT

2πL

∫ ∞

−∞
dqy

1
(q2x + q2y)((σ + κq2x) + κq2y)

=
kBT

2σL

(
1
qx
− 1√

σ
κ + q2x

)
. (4.20)

For tensionless membranes (σ = 0) or in the bending regime (q2x >> σ/κ), the
expression for the spectrum simplifies to

〈
hqxh

∗
qx

〉
=
kBT

4L
1
κq3x

. (4.21)

The magnitude of short wavelength fluctuations thus only depends on the
bending rigidity κ.

The model for the fluctuation spectrum of a flat membrane has to be adap-
ted in two ways for the case of phase separated GUVs. We assume, as detailed
above, that the vesicle is approximately spherical far away from the interface.
As Pécréaux et al. [89] showed, for higher modes the fluctuation spectrum of a
flat membrane with periodicity L = 2πR is (numerically) the same as that of a
sphere with radiusR. Thus for fluctuations with short wavelengths (i.e., higher
modes) it does not matter that the membrane is curved on a length scale that
is big compared to their wavelength. Therefore, we can in principle use the
spectrum derived above, if we discard the lowest modes. However, the spher-
ical part of the phase separated GUVs is not closed. Consequently, we have to
derive the form of the spectrum for a finite membrane patch. Following [89]
we choose L = 2πR as the periodic interval and consider a patch of length
a. For simplicity we choose a such that L is an integer multiple of a. We now
denote the fluctuations of the contour with respect to the circle of radius R by
u(s), with s the arc length along the contour (see figure 4.5). Expanding u(s) in
Fourier modes, we have

u(s) = h(s, 0)−R =
∑

k

uke
ik·s, (4.22)

with k = n · 2π
a = n ·m · 2π

L , n ∈ Z, m ∈ N, and

uk =
1
a

∫ a/2

−a/2

ds u(s)e−ik·s. (4.23)
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Following Mutz and Helfrich [88], we find for the spectrum of uk:

〈uku
∗
k〉 =

kBT

2σL

∑
q

(
1
q
− 1√

σ
κ + q2

)[
sin

(
(k − q)a

2

)
(k − q)a

2

]2

. (4.24)

The factor in square brackets in (4.24) goes to δk,q in the limit a → L, so for
a = L we recover the fluctuation spectrum (4.18) of a closed sphere.

An experimental detail which further complicates the comparison of the
calculated fluctuation spectrum with the experimental data, is that membrane
contours are averaged over the camera integration time t (which equals the
illumination time). Consequently, we observe time averaged fluctuations:

u(s) =
1
t

∫ t

0

dt′u(s, t′). (4.25)

To determine the influence of time averaging on the spectrum we need to
know the correlation times of the fluctuation modes [89, 96]:〈

h�q(t1)h∗�q(t2)
〉

=
〈
h�qh

∗
�q

〉
exp

(
−|t1 − t2|

τq

)
, (4.26)

where τq is the correlation time, given by

τq =
4η|�q |

κ(�q · �q )2 + σ(�q · �q )
, (4.27)

and η is the bulk viscosity of the medium surrounding the membrane. For the
time-averaged spectrum we find〈

h�qh
∗
�q

〉
=

1
t2

∫ t

0

dt1
∫ t

0

dt2
〈
h�q(t1)h∗�q(t2)

〉
=

kBT

2η|�q |L2

τ3
q

t2

(
t

τq
+ e−t/τq − 1

)
. (4.28)

Combining equations (4.24) and (4.28), we find for the time averaged fluctua-
tion spectrum of a finite membrane patch

〈|uk|2〉 =
∑
qx

(
sin((k − qx)a

2 )
(k − qx)a

2

)2
kBT

4πηL

∫ ∞

−∞
dqy

τq
|�q |

τ2
q

t2

(
t

τq
+ e−t/τq − 1

)
.

(4.29)

4.C Finding the bulk solution

The shape of a vesicle of which the membrane is uniform in composition, and
the volume is unconstrained, is given by the shape equation (4.2)

ψ̈ cosψ = −1
2
ψ̇2 sinψ − cos2 ψ

r
ψ̇ +

cos2 ψ + 1
2r2

sinψ. (4.30)
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If there are no boundary conditions, the solution of equation (4.30) is a sphere.
Its tangent angle and radial coordinate are given by

ψ(s) =
s

R
, (4.31)

r(s) = R sin(ψ(s)) = R sin
( s
R

)
, (4.32)

where R is the radius of the sphere and s the arc length measured along the
sphere. As explained in section 4.3, the sphere is a good approximation for
those parts of a two-domain, ‘snowman’-shaped vesicle which are far away
from the domain boundary. However, the line tension associated with the do-
main boundary may cause deformations which carry into the bulk regime. To
find the correct shape for the bulk part of the vesicle we should therefore allow
for a perturbation of the spherical shape given by equations (4.31) and (4.32).
We do so by adding a perturbation δψ to the tangent angle and write

ψ(s) =
s

R
+ δψ(s). (4.33)

We assume δψ(s) to be small compared to ψ, and moreover, that the deriva-
tives of δψ(s) with respect to s are also small, i.e., of the same magnitude as
δψ(s) itself. Because the shape equation (4.30) does not only contain deriva-
tives of ψ(s), but also its integral r(s), we need to know how the perturbation
affects r(s) as well. To do so, we integrate the geometric relation given by (4.3):
ṙ = cosψ(s), and find:

r(s) = R sin(s/R)−
∫ s

s0

δψ(s′) sin(s′/R) ds′ +O(δψ2)

= R sin(s/R) +R
[
δψ(s′) cos(s′/R)

]s′=s

s′=s0

−R
∫ s

s0

δψ̇(s′) cos(s′/R) ds′ +O(δψ2)

= R sin(s/R) +R cos(s/R)δψ(s)

−R
∫ s

s0

δψ̇(s′) cos(s′/R) ds′ +O(δψ2), (4.34)

where δψ̇(s) = dψ(s)/ds and s0 is an appropriately chosen reference point.
When going from the second to the third line in (4.34), we assumed δψ van-
ishes at s0, which will set s0 later on. Unfortunately, equation (4.34) can not
be substituted directly in the shape equation (4.30) because of the integral ex-
pression. We therefore use another approach: we isolate r(s) from (4.30), dif-
ferentiate once with respect to s, and use (4.3) for ṙ. The resulting differential
equation will give us an explicit expression for δψ̇(s), which we can use in (4.34)
to find the explicit dependence of r(s) on δψ(s). Rewriting (4.30), and dropping
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the explicit dependencies on s, we have

r2(2ψ̈ cosψ + ψ̇2 sinψ) + r(2 cos2 ψψ̇)− (cos2 ψ + 1) sinψ = 0, (4.35)

from which we get two solutions for r(s):

r(s) =
1

2ψ̈ + ψ̇2 tanψ

(
− cosψψ̇ ±

√
ψ̇2 sec2 ψ + 2ψ̈ tanψ(1 + cos2 ψ)

)
. (4.36)

We can differentiate both sides of (4.36) with respect to s. We then substi-
tute (4.3), and expand of ψ as given in (4.31). When taking the plus sign in
equation (4.36), this procedure gives:

cos(s/R)− sin(s/R)δψ

= R
d
ds

[
sin(s/R) + cos(s/R)δψ −R sin(s/R)δψ̇

−R2 sin2(s/R) cos(s/R)δψ̈
]

= cos(s/R)− sin(s/R)δψ − 3R2 sin(s/R) cos2(s/R)δψ̈
−R3 sin2(s/R) cos(s/R)δ

...
ψ (4.37)

so
0 = 3 cos(s/R)δψ̈ +R sin(s/R)δ

...
ψ. (4.38)

For the minus sign in (4.36), we find

0 = 2
sin(s/R) cos(s/R)

1 + cos2(s/R)
− 2 sin(s/R)δψ −R2 cos2(s/R)(4 + 3 sin2(s/R))δψ̈

+R3 sin(s/R) cos(s/R)(1 + cos2(s/R))δ
...
ψ. (4.39)

Equation (4.39) we will not attempt to solve analytically; a numeric solution
shows that the solution grows quickly and can not be considered a small per-
turbation to the sphere. Equation (4.38) can be integrated directly, resulting in
an expression for δψ̈:

δψ̈(s) = A csc3
( s
R

)
, (4.40)

with A an integration constant which has dimension 1/R2. Integrating again,
we get

δψ̇(s) =
AR

2
log

[
tan

( s

2R

)]
− AR

2
cos(s/R)
sin2(s/R)

+ b, (4.41)

where b is another integration constant. Because the integral of b gives a term
that scales with s, it gives a constant contribution to the term s/R in ψ(s); we
therefore set b = 0. A final integration gives us δψ(s):

δψ(s) =
AR2

2

[
1

sin(s/R)
+
s

R
log

(
tan

( s
R

))
+ i

(
Li2

(
i tan

( s

2R

))
− Li2

(
−i tan

( s

2R

)))]
+ d, (4.42)
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with d another integration constant and Lin(z) the polylogarithm (also known
as Jonquière’s function), defined as

Lin(z) =
∞∑

k=1

zk

kn
, (4.43)

for z ∈ C. The combination of the two polylogarithms in (4.42) is real for our
region of interest (−πR < s < πR). We should choose d such that δψ(s0) = 0,
which gives

d = −AR
2

2
(1− 2K) (4.44)

where K is Catalan’s constant, with numerical value∼ 0.91596559.
Having found expressions for δψ(s) and δψ̇(s), we can use (4.34) to find r(s).

Using equation (4.41), the integral in (4.34) can be evaluated exactly:

r(s) = R sin(s/R) +R cos(s/R)δψ(s)

−AR
3

2

[
cot(s/R) + log

(
tan

( s

2R

))
sin(s/R)

]
. (4.45)

Because we work with an angular coordinate, there is a coordinate singu-
larity at the poles of the vesicle, causing a divergence in δψ(s). This divergence
is unphysical, and can be avoided by choosing s0 at any point away from the
pole. The easiest choice is to take ψ(s0) = π/2 (top domain), i.e., at the equa-
tor of the domain, and analogously for the bottom domain. Continuity of r(s),
ψ(s) and ψ̇(s) at s = s0 then hold for the expressions given by (4.45), (4.42)
and (4.41).


