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CHAPTER 3

GIBBS PHASE DIAGRAMS OF TERNARY
SYSTEMS

In this chapter we study the phase diagrams of ternary lipid mixtures. In
particular we focus on the mixture of cholesterol, a saturated lipid and an
unsaturated one. The phase diagram of such a lipid mixture exhibits a rich
phase behavior with multiple phase coexistence regimes. Remarkably, phase
separation even occurs when each of the three binary systems consisting of
two of the three components is a uniform mixture. In the model we present
here, we interpret the phase separation of the ternary system as a conse-
quence of an interaction between all three components. For vanishing val-
ues of any of the three concentrations, the model reduces to the well-known
Flory-Huggins model that describes the phase behavior of a binary system.
From the associated Gibbs free energy we calculate phase diagrams, spin-
odals and critical points. Moreover, we use a Van der Waals / Cahn-Hilliard
like construction to derive an expression for the line tension between coex-
isting phases. We show how the line tension depends on the position in the
phase diagram, and give an explicit expression for the concentration profile
at the phase boundary.
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3.1 Introduction

Like any large collection of particles, lipids in a bilayer membrane have differ-
ent levels of ordering dependent on thermodynamic parameters such as the
temperature, and hence exhibit different phases. These phases are not only
a function of thermodynamic variables such as the temperature, but also of
the amount of ordering in the system. As introduced in section 1.2, the most
common phases in which lipids can exist are a liquid-ordered (L,), a liquid-
disordered (Lg4), and a gel phase. A membrane vesicle can have a uniform
phase, but also exhibit coexistence of multiple phases, dependent on its lipid
composition. In this chapter we introduce and review phase coexistence in
lipid membranes with multiple components. We focus in particular on ternary
membranes, which are the main subject of chapters 4, 5 and 6. In recent years,
the phase diagrams of several ternary lipid systems have been determined ex-
perimentally [54, 55]. We use a simple extension of the Flory-Huggins model,
which describes binary systems, to give a qualitative description of the dif-
ferent phase diagrams found in ternary lipid systems. Using the expression for
the Gibbs free energy of this model, we can use a Van der Waals / Cahn-Hilliard
like construction to derive an expression for the line tension between coexist-
ing lipid phases as a function of membrane composition. This construction
allows us to link experimental results on the phase diagrams to experimentally
determined values of the line tension, and get new insights into how those
two properties of the membrane are related to each other. Moreover, the line
tension plays a critical role in the following chapters, as it is a key factor in
determining the overall membrane shape.

3.1.1 Phase coexistence and the Gibbs phase triangle

In general, a phase diagram shows the conditions at which thermodynamical-
ly-distinct phases can occur at equilibrium, as a function of certain macro-
scopic variables like temperature, pressure, and composition. For a simple,
one-component system, any point in a (p, ) phase diagram corresponds to
a possible realization, and setting the pressure and temperature we obtain a
uniform state for the entire system. Already for a bicomponent system this no
longer needs to be the case, and apart from uniform phases we can also get
coexistence of two distinct thermodynamic phases. The maximum number of
phases P that can coexist in a given system is determined by the Gibbs phase
rule [56, Chapter 9]

P=C—-F+2 (3.1)

Here C is the number of components and F' denotes the number of degrees
of freedom, i.e., the number of intensive variables which are independent of
other intensive variables. For a two-component system in which tempera-
ture and pressure are the independent variables, two-phase coexistence is al-
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lowed by equation (3.1). Figure 3.1 shows some schematic phase diagrams
for a binary system as a function of the molar fraction = of one of the com-
ponents and temperature, for a given pressure (please note that the complete
phase diagrams are three-dimensional, with the pressure on the third axis, and
the two-dimensional figures shown are slices through this complete diagram).
Quenching the system below the phase boundary produces phase coexistence.
For two thermodynamically different phases to coexist within one system, the
values of the intrinsic variables must be equal. Here these are the temper-
ature T, pressure p and the chemical potentials ;14 and pp of the two com-
ponents A and B. Therefore the tie lines, which connect the two coexisting
phases in the phase diagram, are in the plane of the figure (same pressure) and
horizontal (same temperature) in figure 3.1.

The proper thermodynamic potential to use for describing this system is
the Gibbs free energy G, which has p, 7' and p as its independent variables, and
is given by

G=E—TS+pV. 3.2)

If we know G for our binary system, we can find the phase boundary by the
condition that the chemical potentials must be equal in the coexisting phases.
They are given as derivatives of G with respect to the number N; of particles of
type i (with N; = N, N» = (1 — 2)N and N the total number of particles in

the system):
0G > ( oG )
- == , == . (3.3)
= <8N1 p,T,No = 8N2 p,T,N1

The Flory-Huggins model (section 3.1.2) gives a phenomenological expression
for G(p, T, x) of a binary system which consists of a mixture of two polymers.

In the case of ternary systems, the Gibbs phase rule allows for coexistence
of up to three different phases. Drawing the full phase diagram as a function
of the two independent molar fractions, temperature and pressure would re-
quire four dimensions, limiting us to two- and three-dimensional slices. Two-
dimensional slices for which both the temperature and pressure are given are
known as Gibbs triangles. In these, each of the corners of the equilateral tri-
angle corresponds to a system consisting solely of the associated component,
the sides correspond to binary systems and the interior points to ternary sys-
tems. Because in an equilateral triangle the sum of the distances from any
interior point to the three sides is equal, any point uniquely corresponds to a
composition given by three molar fractions z, y and z, which sum to unity, see
figure 3.2.

3.1.2 The Flory-Huggins model for a bicomponent system

Flory-Huggins theory is a mean-field, phenomenological model which descri-
bes the mixing properties of a system containing two types of polymers. Here
we give a short sketch of the 2-component theory, where we assume that the
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Figure 3.1: Schematic two-component phase diagrams, in terms of molar frac-
tion z of component A and temperature 7', for a given pressure. For high tem-
perature, the system is in a uniform state. When we quench the system below
the phase boundary (blue arrow) we obtain a system which exhibits coexis-
tence of two thermodynamically different phases at the same temperature and
pressure, but different compositions. The two coexisting phases are found at
the intersections of the tie line with the phase boundary. Figures (a) and (b)
show the situation in case we have coexistence of a solid and a liquid phase.
Figures (c) and (d) show the coexistence of two liquid phases, which has a crit-
ical point (green dot).

su S S

Figure 3.2: Gibbs phase triangle for a ternary system. The triangle represents
a slice through the phase diagram at a given pressure and temperature. (a)
The sum of the distances from any point in the equilateral triangle to the three
edges equals 1. Every point in the Gibbs triangle corresponds to a compo-
sition of the ternary system with the concentrations corresponding to these
distances to the edges. (b) Example of a phase diagram with a closed-loop
miscibility gap. The two-phase coexistence region in the center has two criti-
cal points (blue dots). (c) Example of a phase diagram with multiple two-phase
(blue) and a single three-phase (pink) coexistence regimes. (d) Possible Gibbs
prism combining several Gibbs triangles.
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monomers of the two species considered are equal in size. A more complete
introduction can be found in many textbooks, e.g. Strobl [57, Chapter 3].

Suppose we prepare a system of polymers of type A and B such that the two
are initially completely demixed and therefore effectively contained in sepa-
rate volumes V4 and V. In the Flory-Huggins model, there are two contri-
butions to the change in Gibbs free energy due to the mixing of this system.
The first is an increase in entropy due to the larger total volume available to a
single monomer of either type. The second contribution is due to individual
monomer-monomer interactions. For uncharged monomers, the dominant
interaction is Van der Waals attraction. Typically equal monomers will attract
each other more strongly than unequal ones, in which case the second contri-
bution to the free energy will oppose mixing.

The change in translational entropy is given by

AS = ky NAlogﬂ—kNBlogﬁ = —kyN [zlogz + ylogy] . (3.4)
Ny Np
Here + = N4/N and y = Np/N are the number fractions of species A and B
respectively, N = N4 + Np is the total number of monomers, and k; Boltz-
mann’s constant. Because of the assumption that the monomers are equal in
size, x and y are also the volume fractions of species A and B.

In a mean-field approach, the probability that a monomer of species A gets
located next to one of species B is given by the product xy. We associate a
free energy penalty yk;T to such a configuration and write for the monomer-
monomer interaction contribution to the Gibbs free energy:

AGioe = ksTxNxy. (3.5)

A negative value of the dimensionless Flory-Huggins parameter x corresponds
to an attractive interaction between monomers of species A and B and drives
mixing, while a positive value of y, which is the typical case, opposes it.

The total change in Gibbs free energy due to mixing is given by

G =—-TAS + AGjpc = kTN [xlogx + ylogy + xxy] . (3.6)
Moreover, by construction, z and y add up to unity
r+y=1, (3.7)

which leaves us with a single-parameter minimization problem. In figure 3.3
we plot G as a function of z for different values of .

From figure 3.3 it is clear that there are two possible scenarios. For small
values of x, G has a single minimum and the system mixes for all values of z, the
single freely adjustable parameter. For larger values of x, G has two minima,
and although it can still be negative for all values of =, we do not get complete
mixing in all cases. This is due to the fact that the system can reduce its Gibbs
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Figure 3.3: Change in Gibbs free energy due to mixing for various values of the
Flory-Huggins parameter y. For y > xit = 2.0, a miscibility gap opens: the
free energy can be lowered by demixing, as illustrated by the two arrows for
X = 2.5.

free energy with respect to the uniform mixture (corresponding to the local
maximum) by segregating into two partially mixed fractions, corresponding to
the two minima. This process is represented by the two arrows in figure 3.3 at
xz = 0.45 and y = 2.5. The long arrow, going down from G = 0 to the graph of G,
represents the free energy gained by mixing the system. The short arrow going
down from the graph to the line connecting the two minima, represents the ad-
ditional free energy gain by segregating the system into domains with fractions
Z1 and z, of species A. This process will occur for any initial value of = between
Z; and Z,. This region is called the miscibility gap and its extremal values z;
and z» are found by equating the chemical potentials (see section 3.2).

The critical value yx. of the Flory-Huggins parameter, which determines
whether or not the system mixes, is given by the point at which the curvature
of G vanishes at = = 0.5 (see section 3.2). A straightforward calculation shows
that this condition holds for . = 2.

3.1.3 Ternary systems

In a ternary system, we have C = 3 and F' = 2 (temperature and pressure)
and hence the Gibbs phase rule (3.1) gives P = 3, so we can have up to three
coexisting phases. In recent years several experimentally determined Gibbs
phase triangles for ternary systems have been published, showing two- and
three-phase coexistence regions [54]. As introduced in section 1.2, the three
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phases that can coexist in ternary lipid membranes are two liquid phases (L,
and L4) and a gel phase. Remarkably, there are also ternary systems for which
each of the three limit binary systems is completely mixed, but for which the
ternary system shows a two-phase coexistence region [55]. The boundary of
the coexistence region in such a system is a closed loop inside the Gibbs phase
triangle. Since phase coexistence is understood to be a consequence of what is
known as a miscibility gap (as explained in section 3.1.2), such phase diagrams
are said to contain a closed-loop miscibility gap.

A number of models for ternary lipid systems have been proposed by sev-
eral groups in recent years. In a 2004 paper, Komura et al. [58] combined a
Flory-Huggins like approach for liquid-liquid phase coexistence with an order
parameter description for the liquid-gel phase transition and presented phase
diagrams for two of the three limiting binary systems of the ternary system
considered here. In a follow-up paper in 2005 [59] they extend this model to
the ternary system, introducing three independent Flory-Huggins parameters
for the three binary interactions and keeping the order parameter description
for the gel phase. This model allows for a qualitative description of some of
the experimentally observed phase diagrams, but fails to reproduce the one
with the closed-loop miscibility gap. In an alternative approach, Radhakrish-
nan and McConnell [60] and McConnell [61] proposed a model in which two
of the three components form a complex which interacts with the third com-
ponent. The resulting phase diagram has some qualitative features which also
appear in the closed-loop experimental one of Veatch et al. [55], but does not
allow for three coexisting phases. Recently Putzel and Schick [62] presented a
refined version of the model of Komura et al. They use two different models
for the system with a closed-loop miscibility gap and the three-phase coexis-
tence region, both depending on a combination of a Flory-Huggins model and
an order-parameter description. Using these models, Putzel and Schick also
studied the effect crosslinking molecules have on the phase diagram [63].

In section 3.3 we present a model for the ternary system based solely on an
extension of the Flory-Huggins model of the binary system, and reducing to
the binary models in each of the limit cases. In this model, we supplement the
binary interactions with an interaction between all three components. This
approach to model a ternary system is well known in the fields of alloys and
of polymer mixtures [64-68], but thus far has not been applied to lipid mix-
tures. We show that the extension with a ternary term is necessary to explain
the phase triangle with a closed-loop miscibility gap found experimentally by
Veatch et al. [55] when the binary interactions are repulsive. The model can
also reproduce the phase triangle with coexisting liquid and gel phases, as well
as a three-phase coexistence region. We use our model to determine the linear
stability of the system and explicitly find the critical points. Using the expres-
sion for the Gibbs free energy given by our model, we can calculate the en-
ergy associated with a boundary between two coexisting phases as a function
of membrane composition (section 3.4). This boundary energy is a line ten-
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sion in two-dimensional lipid membranes, and a key factor for determining
the membrane shape [6, 10,69-71].

3.2 Thermodynamics of mixtures

The appropriate characteristic function for describing phase equilibria in mix-
tures is the Gibbs free energy, which is a function of the particle numbers V;,
pressure p and temperature T

G =G(Niy,...,Nn,p,T). (3.8)

The requirement for two phases to coexist is that all chemical potentials are
equal in both phases, as well as the temperature and pressure (which is why G
is such a useful function for mixtures). The chemical potentials associated
with each of the components are given by:

Y
Hi = aN,’

(3.9

where the partial derivatives are taken with all the other variables constant.
The total number of particles N = N; + --- + N, is constant and taken as the
extensive variable, and we define

G/N =g(x1,...,x,) with z; = N;/N. (3.10)
The number fractions z; have a redundancy, and obey the condition
14+, =1, (3.11)

which will allow us to eliminate one of them below. We can write the chemical
potentials explicitly as functions of g and its derivatives to the z;’s, showing
that they are intensive

dg " dg
=9+ g —;xj—_. (3.12)

These derivatives are unrestricted, in the sense that only the other particle
numbers N, are kept fixed, not e.g. the total particle number N. Summing
all the p;’s, we find that we also have the relation

9= i (3.13)
i=1

Because our system is restricted to the subspace defined by equation (3.11),
we can eliminate one of the number fractions (which we take to be z,,) from
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the problem. Within this subspace, equation (3.12) reads

4 D9 nz_:l % 4 1 (3.14)
i = — — T — 1=1,...,n— .
Hi g all = J (9£Ej

n—1

9g
o= oY 319

Jj=1

where g and its derivatives are now functions of z1, ..., x,,_1.

The formalism given above applies to a system with any number of com-
ponents. For simplicity we will restrict ourselves to ternary systems below. We
will indicate the concentrations of the three components by z, y and z instead
of z1, o and x3. In order to have phase coexistence the chemical potentials of
all three components must be equal in both phases. In our ternary system we
find that phases with number fractions (71, 4;) and (Z», 72 ) can coexist if

p(T1,91) = pi(Z2,92),
pa(T1,91) = p2(Z2,Y2), (3.16)
pus(T1,91) = ps3(Z2,2)-

The system (3.16) gives us three equations for the four unknowns (z1, 71, To,
¥2), which means that in the Gibbs phase triangle there can be a coexistence
region, in accordance with the Gibbs phase rule (3.1). The boundary of the
phase coexistence regime (which consists of pairs of points that satisfy (3.16))
is called the binodal. The phase coexistence region is thus an open subset of
the Gibbs phase triangle. Any point inside this region is connected to two
points on the binodal by a tie line. A system prepared in a composition cor-
responding to such a point will demix into two phases corresponding to the
two endpoints of the tie line it lies on. If the binodal forms a closed loop, the
system has a closed-loop miscibility gap.

Using the identities (3.14, 3.15), we find that there is an equivalent system
of conditions for phase coexistence given by

9:(T1,71) = g2(T2,72),
gy(‘fhgl) = gy(£2752)7 (3'17)
9(Z1, %) _ 9(22,92)
—T192(Z1,91) — 19y (T1, 1) —T292 (T2, U2) — U29y (T2, 72),

where subscripts 2 and y on g(z, y) denote derivatives with respect to = and y.
The first equation of (3.17) is found by subtracting x5 from pu,, the second by
subtracting p3 from po and the third is identical to the third of (3.16).

The binodal separates the region in the phase diagrams in which our sys-
tem is in a homogeneous phase from those in which it separates into two or
three coexisting phases. However, in this simple Van der Waals type of phase
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coexistence, the appearance of an unstable regime in the Gibbs phase triangle
is a prerequisite. We therefore study the linear stability of our system at such a
point (z,y) in a ternary system. We can vary both number fractions indepen-
dently, and find for the variation in Gibbs free energy per particle

1 Oz Uz )(6a:>
8g = =(0x,6 Y 03 3.18
g Q(x y)<gxy Iyy oy +0B) (5.18)

where O(3) refers to third order terms in 6z and dy. For the second order term
in (3.18) to vanish the determinant of the matrix (g;;) of second order deriva-
tives of ¢ must be equal to zero. This condition also holds for systems with
more than three components, and in general we find that the system becomes
linearly unstable when

det(g,-j) =0. (319)

We call the set of solutions of (3.19) the spinodal, because it marks the
boundary between two types of demixing. Linearly stable systems demix by
nucleation and growth and linearly unstable ones by spinodal decomposi-
tion [57, 72]. They are qualitatively different: in the case of nucleation and
growth there is a nucleation barrier for the system to overcome before phase
separation can take place, which is absent in the case of spinodal decompo-
sition. Binary polymer systems, described by similar two-component Flory-
Huggins models, also exhibit distinctly different patterning in the binodal (nu-
cleated) and spinodal regimes [57, Chapter 3].

Equation (3.19) is equivalent with the condition that (g;;) must have a zero
eigenvalue, and if (3.19) holds the eigenvalue equation

2
Zgij rj =0, (3.20)
j=1

has a solution in spinodal points. The eigenvector ¥ = (r1,r2), belonging to
the eigenvalue 0, is a direction in which all the thermodynamic potentials
are stationary. To prove this statement, we consider a small displacement
(dz,dy) = (r1,72)ds along 7 from a point on the spinodal. Taking the derivative
of the chemical potential j:; along 7 we find
Opi _ Opi Oz Op,; Oy
ds Oz Os + dy ds
(9i1 — 2911 — yg21)r1 + (gi2 — TG12 — Yga2)72
= (ginr1 + gi2r2) — (g11r1 + g1272)T — (g2171 + g2272)Y
=0 3.21)

where the expressions in brackets in the third line of (3.21) all vanish because
of (3.20). In general the direction (r1,72) will intersect with the spinodal. In
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special (critical) points the direction (r,7) will be tangent to the spinodal.
There two neighboring points will have the same thermodynamic potentials
according to (3.21) and are thus also coexisting. In the critical points the spin-
odal and binodal therefore touch, and the length of the tie lines goes to zero.
Critical points are hence the limiting points of coexistence.

We can use equation (3.20) to find the critical points in a ternary system.
We first note that equation (3.20) implies that the second derivative of g in the
direction (r1, ) vanishes:

2
> gijriry =0. (3.22)
i,j=1
Equation (3.22) follows from (3.20) by multiplication with r; and summing over
i as well as j. In the critical point, where 77 = (r1, r2) is tangent to the spinodal,
the determinant is stationary (remaining zero), so we have

2
> gigrririmi =0, (3.23)
i, k=1

which means that the third derivative of g in the direction of 7 vanishes. Com-
bined, equations (3.22) and (3.23) give the conditions for a critical point.

A final question concerns the disappearance of the instability region from
composition space. Then the derivative of the determinant will be zero in all
directions. Equivalently, using equation (3.23) for the independent = and y
directions, we have

Gezz = Gyyy = 0. (3.24)

Together with equation (3.19), equation (3.24) determines what we will call a
ternary critical point, or the onset of phase separation. Such a ternary critical
point usually does not occur in a Gibbs phase triangle, but if we add an addi-
tional axis (e.g. for temperature), the resulting three-dimensional phase prism
will have such a point.

3.3 Model for ternary lipid mixtures

We denote the volume fractions of the saturated lipids, unsaturated lipids and
cholesterol by z, y and z respectively. Analogously to the Flory-Huggins model,
we take the fully demixed state as our reference state, and consider the change
in Gibbs free energy due to mixing

G =—-TAS + AGjqc. (3.25)

The change in entropy by the increase in available volume when going from a
demixed state to a mixed state is —k; V; log x; for each of the three components
(where log indicates the natural logarithm, z; as before the number fraction
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of the ith component and N; its total number of molecules). In our ternary
system we have

AS = —kyN [zlogx + ylogy + zlog 2] . (3.26)

For each of the three binary mixtures we introduce a Flory-Huggins like local
energy term. We assume that the volume is extensive, i.e., scales linearly with
the total number of particles NV in the system, and therefore z; is also the vol-
ume fraction of the ith component. The probability for two different molecules
to encounter each other scales with both their volume fractions. The differ-
ence in interaction energy between two identical and two different nearest-
neighbor molecules is given by the dimensionless parameter x [57]. The lo-
cal interaction term for a mixture of « and y is therefore given by kTN yzy.
Below we will show that a model with just three binary interaction terms can
not reproduce the experimentally observed phase diagrams. We therefore add
another term, which depends on all three volume fractions [64, 68]. This ad-
dition supposes a significant contribution from a third-order term to the total
free energy. There are two reasons why such a third-order term may occur.
The first is if one of the components (here the cholesterol) acts as a line active
agent for the phase separation of the other two [73, 74]. In that case all three
need to come together at a single point in space, and hence a third-order term
emerges. The second option is essentially the one suggested by Radhakrishnan
and McConnell [60,61], which is supported both by numerical studies [75-77]
as well as some tentative experimental data [78, 79]. It supposes that the satu-
rated lipids and the cholesterol form complexes, which subsequently interact
with the unsaturated lipids. The difference between the model of Radhakrish-
nan and McConnell and the one proposed here, is that we simply look at the
individual components, reflecting the fact that binary complexes are short-
lived and continually form and dissociate, as is also seen in simulations [80]. A
third order term emerges by combining the probabilities of a two-component
complex to form and it meeting up with the third component.
Combining all contributions, we postulate for the local interaction term

AGioc = kTN [Xxyxy + XazZ2 + Xy2Y2 + )nyz] , (3.27)
and for the total change in Gibbs free energy we have

1
Nk T

G =zlogz + ylogy + 210g 2 + Xay2yY + Xa2T2 + Xy-Y2 + XTyz, (3.28)

with (as before, by definition)
r+y+z=1. (3.29)

Putting one of the three number fractions equal to zero in equation (3.28),
we get the Flory-Huggins model for a binary system, as given by equation (3.6).
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A straightforward calculation which can be found in many textbooks (see for
example Strobl [57]), tells us that if the corresponding Flory-Huggins parame-
ter y is less than 2 the entropy term wins and the system is in a single homo-
geneous phase. If x > 2 a miscibility gap opens up and the free energy can be
lowered by demixing into two coexisting phases.

The ternary term in (3.27) is the only ternary term we can add without
changing the underlying binary systems, which is why we do not add any other
ternary terms (e.g. an xzzy term). As we will show below, the ternary term is
necessary to explain the existence of a closed loop miscibility gap in systems
where the interactions between any pair of the three components are repulsive
(i.e., their y parameters are positive). If there are attractive interactions instead
(e.g. because one of the components is a solvent for one or both of the others),
a closed loop miscibility gap can be described in a system with just the binary
interactions [64]. In that case, the closed-loop immiscibility gap results from
an asymmetry in the interaction parameters between the three pairs, which is
called a Ax-effect [66].

Substituting the free energy given by equation (3.28) in the equations of
section 3.2, we can calculate Gibbs phase triangles for given values of x4y, Xz,
Xyz» and x, and find the binodals, spinodals and critical points. If x,,, x.. and
Xy- are all less than 2, the corresponding binary systems are homogeneous,
but for y above a critical value the ternary system can still exhibit phase co-
existence. An example of a phase diagram with such a closed-loop miscibility
gap is given in figure 3.4. The figure shows the binodal and tie lines, which we
determine by numerically solving the system given by (3.16). It also shows the
spinodal (the solution of equation (3.19)), which in the model given by (3.28)
is an algebraic expression in = and y, and the two critical points. We find both
the spinodal and the critical points by numerically solving their respective al-
gebraic expressions.

Of course, we can also set the Flory-Huggins parameter of one of the bi-
nary mixtures above its critical value 2. If we do so with only one of them, we
get a phase diagram with only one critical point, because the immiscibility re-
gion continues all the way to the edge of the Gibbs triangle (figure 3.7). In the
case that two of the binary parameters allow for binary demixing, we can get
more interesting phase diagrams. For certain combinations of the four param-
eters Xy, Xz2, Xy- and x there are three points in the phase triangle for which
the chemical potentials match. These points are the vertices of a three-phase
coexistence region. Inside there are no tie lines: any system corresponding to
any of the points in the three-phase coexistence region will demix in the same
fashion. The three-phase coexistence region is bordered by three two-phase
coexistence regions, which we can identify as either liquid-liquid or liquid-gel
by their densities. An example of such a phase diagram is shown in figure 3.5.

Finally, we use equations (3.19) and (3.24) to find the conditions for having
a ternary critical point. Differentiating g(«, y) three times, we find (reintroduc-
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ing z to show the symmetry)

11

Ozaz(T,y) = S E 0, (3.30)
11

gyyy(x’y) = 2 ? = 0. (3.31)

The system consisting of equations (3.29), (3.30) and (3.31) has a single solu-
tion: z = y = z = 1/3, which means that in our third-order theory a ternary
critical point can only occur in the center of the Gibbs phase triangle. Substi-
tuting this point into equation (3.19), we find a condition on the parameters
Xazy» Xzz» Xy and  for a ternary critical point to exist

27— 6(Xacy + Xaz + Xyz) + Q(Xxmez + XzyXyz + szXyz) - Xiy - X?cz - X?;z

_ 2 1_
=X (6 - g(XTy + Xaz + Xyz) - 3X) . (3.32)

If we do not include the third order interaction term in (3.28), the right hand
side of equation (3.32) vanishes. In that case there are no solutions for x, Xz~
and y,. all in the interval [0, 2]. Hence a ternary critical point can only exist if
at least one of the underlying binary systems exhibits demixing (with x > 2)
or has an attractive interaction between its components (x < 0). A system
with repulsive interactions between all components can therefore only exhibit
a closed loop miscibility gap if xy > 0. Given x,,(T), xz-(T) and x,.(7T") from
the underlying binary systems, equation (3.32) gives us the critical value of ¥,
or equivalently the critical temperature of our ternary system.

3.4 Phaseboundary and line tension

Invoking Van der Waals / Cahn-Hilliard theory, we can use our explicit form
of the free energy (3.28) to calculate the energy penalty for having a phase
boundary. In our two-dimensional membrane system this boundary energy
translates to a line tension between domains of different phases. For a de-
tailed introduction into the scheme used here to derive an expression for the
line tension, in particular equations (3.35) and (3.36) for a general Gibbs free
energy, see Fisk and Widom [81].

We consider two coexisting liquid phases with compositions (z1, 71, 1) and
(Z2, 2, Z2), where we eliminate z as usual. The concentrations do not make a
jump at the domain boundary but rather have a smooth transition when we
go from one domain to the other. We introduce a new variable s, which we use
to parametrize the ‘position’ between the two phases: for s — —oo we are in
phase 1 and for s — oo we are in phase 2. The origin s = 0 is determined as the
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Figure 3.4: Gibbs phase triangle showing phase separation in the ternary sys-
tem when there is none in any of the binary ones. The thick black line is the
binodal, which marks the boundary of the immiscibility region. Any compo-
sition corresponding to a point inside the immiscibility region will result in
demixing into two states, which are at the ends of the corresponding tie lines
(thin black lines). The gray line inside the immiscibility region is the linear
instability line (sometimes called the spinodal): points inside the region bor-
dered by the gray line correspond to compositions that will demix by spin-
odal decomposition, points outside it will demix by nucleation and growth.
The thick gray dots indicate the critical points. Parameters used: x,, = 1.5,
Xy> = 1.25, X4z = 0.75, ¥ = 5.0.
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Figure 3.5: Gibbs phase triangle showing separation into two phases (the re-
gions with the thin black and gray lines, which represent tie lines) and three
phases (inside the black triangle; the compositions of the three phases cor-
respond to the vertices of the triangle). The regions with black tie lines corre-
spond to the coexistence of a gel and a liquid phase; the region with the gray tie
lines corresponds to liquid-liquid coexistence, with a critical point indicated
by the thick gray dot. The system is in a homogeneous gel phase in the lower
right-hand region and in a homogeneous liquid phase in the left-hand region.
Parameters used: x5y = 2.2, Xz = 1.95, xy. = 2.15, ¥ = 4.0.
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Figure 3.6: Gibbs phase triangle showing phase separation in the ternary sys-
tem when there is none in any of the binary ones, but one of the binary interac-
tions is attractive. The thick black line is the binodal, which marks the bound-
ary of the immiscibility region. Any composition corresponding to a point in-
side the immiscibility region will result in demixing into two states, which are
at the ends of the corresponding tie lines (thin black lines). The thick gray dots
indicate the critical points. In this case, we find numerically that the coexis-
tence region vanishes if the value of the ternary interaction parameter y is set
to 0. Parameters used: x,, = 1.5, xy> = 1.0, Xz = —0.5, x = 5.0.
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Figure 3.7: Gibbs phase triangle showing phase separation in the ternary sys-
tem, when one of the underlying binary systems also exhibits phase separa-
tion. The thick black line is the binodal, which marks the boundary of the
immiscibility region. Any composition corresponding to a point inside the im-
miscibility region will result in demixing into two states, which are at the ends
of the corresponding tie lines (thin black lines). The thick gray dot indicates
the critical point. Parameters used: x,, = 2.05, x,. = 1.25, x,. = 0.75, x = 5.0.
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location of the Gibbs dividing surface

0 = [ Pt a0 A - )] s

—00

b [ [ulols) = 72 0 ul) — )] s, 639

0

with A\, and )\, to be determined. The line tension is then given by the integral
of the free energy density ¥(z, y) (to be defined below):

T = /0 {\If(rv(S)»y(S))*‘I’(fl’gl)}ds

— 00

+/OOO [\Ij(x(g)7y(3)) - \I/(i‘%gg)} ds. (3.34)

The key assumption of the Van der Waals / Cahn-Hilliard theory is that ¥ ex-
ists for all values of s, and is given by the Gibbs free energy per particle g(z, y)
plus a quadratic gradient that accounts for the inhomogeneity in the transition
region:

W(a(5),y(s)) = 9(a(s).uls)) + 5 (5 +37) 3.3

where dots denote derivatives with respect to s. Here we make the simplifying
assumption that the y-component of the ‘kinetic energy’ term has the same
‘mass’ A as the z-component. We can combine the expression for the line ten-
sion with the condition (3.33) into a single functional, where X, and A, play
the role of Lagrange multipliers:

r= [ o) - gt g 4 )
—As(@(s) — Z12) — Ay(y(s) — H12)] ds, (3.36)

where g, means g(Z1, 71) for s < 0 and g(Zs, §») for s > 0 with corresponding
definitions for Z;5 and g;12. Considering the integrand of (3.36) as a Lagrangian,
we can invoke the Euler-Lagrange equations and find that for a stable interface
(607 = 0) we must have

0 = AZ— gu(z(s),y(s)) + Au, (3.37)
0 = Aj— gylals)yls) + A 5.39

Because the derivatives of z(s) and y(s) must vanish for s — 400, we find from
equations (3.37) and (3.38) for the values of A, and \,:

Ao = Go(T1,71) = 92(T2,72), (3.39)
Ay = 9y(T1,71) = g9y(T2, ). (3.40)
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Equations (3.39) and (3.40) are identical to the first and second condition of
system (3.17) which determines the binodal. Equations (3.37) and (3.38) are
the equations giving Newton’s law of motion in the = and y direction of a par-
ticle with mass A that experiences a potential V' (z, y) given by

V(z,y) = —g(x,y) + Aot + Ayy. (3.41)

Moreover, since s does not explicitly appear in the Lagrangian, there is a con-
served quantity. In mechanics, this property corresponds to translational in-
variance, and the conserved quantity is equivalent to the energy of the particle
system:

E:é@h@%+w%w. (3.42)

Again taking the limits s — 400 we find for E:

E = —g(Z1,71) + 92(%1,51)T1 + 9y (T1, 51) 11
= —g(Z2,72) + 92(Z2, Y2) T2 + 9y (T2, Y2) Y2, (3.43)

which is identical to the third condition of (3.17).

So far we have expressed both z(s) and y(s) in s independently, but in order
to find an expression of the line tension as an integral over the concentration
x, we now express y(s) in x, and write

E = g(l + 9/ (2)?)a? + V(z,y(x)), (3.44)

where the prime denotes a derivative with respect to . Equation (3.44) gives
us an expression for i:

J;;;;;ﬁ
¢ E—Viz,y( (3.45)

1+y

Using equations (3.41), (3.44) and (3.45) we can rewrite the expression for the
line tension (3.36) as

roeoaf aeyerias

—00

A[%(l o (@)?)i da

1

_ F/ VIt y@?2VE — Ve, y(@)) dz (3.46)

Equation (3.46) again gives a functional expression for the line tension, for
which we can again write down the Euler-Lagrange equations to get a differ-
ential equation for the optimal path y(z). Because the integrand in (3.46) de-
pends explicitly on z, there is no conserved quantity in this system. Performing
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the variational analysis, we find after some algebra

vy 1+y(x)? WV (z,y)  WV(zy) ,
V0= s (e e @) e

It seems straightforward to determine the optimal path from (z1, 41 ) to (Z2, §2)
by direct integration of the second-order differential equation (3.47). Unfor-
tunately, there are two complications. The first is that both endpoints are sin-
gular points because y”(x) tends to diverge close to the endpoints due to the
factor E — V(z,y(x)) in the denominator of equation (3.47). The second com-
plication is that the integration of the entire path is highly unstable. To avoid
these complications we optimize 7 by making a guess for y(z), and compare
the guess to equation (3.47). The most obvious guess is a straight line, i.e., y(x)
follows the tie line that connects (Z1, §;) with (Z5, 72), which gives us an upper
bound for the value of 7. However, a better guess can be made by assuming a
quadratic profile which has a free parameter that we can optimize (i.e., tune it
such that we find the lowest possible value of 7, or the ‘best’ solution of equa-
tion (3.47)). We notice that, according to this numerical approximation, the
direction of y(z) at the points at which it intersects the spinodal, coincides
with that of the eigenvector i associated with the zero eigenvalue of (g;;), (i.e.,
the unstable direction, see figure 3.8). Although these quadratic profiles do not
exactly solve equation (3.47), the deviation is small and only significant close
to the endpoints. Because there the factor /E — V(z,y(x)) in the expression
for  vanishes, the estimate for = using the quadratic profile is a reliable one.
In appendix 3.A we show how to turn the first complication into an advantage,
by which we can improve the guess, using a quartic profile. However, as we
also show, the improvement of the estimate of 7 using this quartic profile is
negligible with respect to the optimal parabola.

3.5 Summary and discussion

In this chapter we have introduced phase diagrams of ternary mixtures. We
have briefly reviewed the thermodynamics of mixtures, and the Flory-Huggins
model which describes binary systems. Moreover, we have reviewed the mod-
els currently available in the literature to describe the phase diagrams at given
temperature and pressure (Gibbs triangles) of ternary mixtures. None of these
models succeed in capturing both the existence of a 3-phase coexistence re-
gion and (at different temperatures) a closed-loop miscibility gap. We have
shown that using a simple extension of the Flory-Huggins model, namely the
introduction of a third order interaction term, already well known in the fields
of alloys and of polymer mixtures, is capable of capturing both effects in a sin-
gle model. Moreover, we have shown that simply adding the three binary inter-
actions without a third order term is insufficient to reproduce the closed-loop
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0.2 0.3 04 , 05

Figure 3.8: Line tension estimates using an optimized quadratic profile for
y(x) in equation (3.46). (a) Gibbs phase triangle showing the binodal (thick
black line), tie lines (thin black lines), spinodal (blue line) and critical points
(red dots). Some optimal quadratic paths connecting coexisting phases are
shown (in red and green), as well as the directions of the eigenvectors of the
zero eigenvalues of (g;;) at the spinodal (in green). (b) Estimated values of
7/+/2A determined using the optimal quadratic profiles shown in the left fig-
ure, as a function of ‘position’ between the critical points (the z-coordinate of
the center of the corresponding tie line). The figure shows both the estimates
determined using the optimal quadratic profiles shown in the left figure (big
blue dots), as well as those determined using the optimal fourth-order profile
as given in the appendix (small black dots); the positions of the points are in-
distinguishable in the plot. The line tension vanishes at both critical points
and has a maximum when the optimal quadratic profile is a straight line, con-
necting the points on the binodal with the largest separation (green line in left
figure). Parameters used: x,, = 1.5, Xy, = 1.25, x4, = 0.75, ¥ = 5.0.
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miscibility gap if all binary interactions are repulsive, and even if one of them
is weakly attractive.

Physically the ternary term we have added can be interpreted in at least
two ways: the cholesterol may act as a line active agent at the phase bound-
ary of the other two lipids, or alternatively, it may form a dynamic complex
with one of the two other lipids which subsequently interacts with the remain-
ing one. Since both the experimentally determined and the predicted tie-lines
in the Gibbs triangles exhibiting liquid-liquid phase coexistence suggest that
cholesterol is unequally distributed between the two liquid phases, we con-
sider the second scenario to be the most probable one. However, in order to
unambiguously distinguish between these two scenarios one should perform
an experiment in which the cholesterol is labeled and its location determined
in a (partially) phase separated lipid membrane vesicle.

In contrast to some of the other available models, the model we use does
not take the effect of ordering into account. It is well known that the three
different phases (Lq4, L, and gel) have different amounts of ordering, but it re-
mains an open question whether this is a cause or a consequence of phase
separation. We interpret the phase separation as the consequence of individ-
ual binary or ternary molecule-molecule interactions, but other approaches
are certainly possible.

Using the ternary model given by equation (3.28) we have calculated the
stability properties of the various phase diagrams, and determined the stability
lines or spinodals, as well as the critical points. We have also derived an expres-
sion for the line tension between two coexisting phases in a lipid membrane
system, as a function of the position in the phase diagram. This approach di-
rectly couples the line tension between coexisting domains, a key factor in the
determination of the shape of lipid membrane vesicles, to the composition of
the membrane.

Although the model we use qualitatively reproduces the experimentally ob-
served features listed above, there is as yet no quantitative comparison to ex-
periment. In principle such a comparison would be possible. The model for
the Gibbs free energy has four free parameters, of which three are determined
by the underlying binary systems and can be obtained from measurements
on those. The fourth parameter (y) can be determined experimentally using
e.g. equation (3.32) for the ternary critical point. Given the values of these
parameters, the value of the line tension can be calculated up to the overall
proportionality factor A, which corresponds to a correlation length, and can
in principle be determined independently. Experimental data with which this
procedure can be carried out is currently not available. It might be possible to
obtain such data with careful experiments, but they would be hard to carry out:
the temperature, pressure and composition in all experimental systems should
be controlled with high accuracy. Moreover, for each point in the phase dia-
gram a new membrane has to be constructed, so the experiments would also
be time-consuming. Apart from experimental difficulties, there is an impor-
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tant assumption in this procedure which can not be checked directly, namely
that the values of the binary interaction parameters remain unchanged in the
ternary system. These parameters represent individual molecule-molecule in-
teractions, for which we thus assume that the environment does not play an
important role. Finally, in the derivation of the expression for the line ten-
sion 7, the expression for the free energy density ¥ given by (3.35) assumes
that variations in the cholesterol concentration z are small, and that the scale
factor A is identical for all lipids. Especially this last point is not necessarily
true, and could affect estimates for 7 using the calculations presented here.

In the next chapters, we will study the shape of (meta-)stable phase sepa-
rated vesicles. The line tension on the boundaries will play an important role,
both in the coarsening process (the merging of domains of the same phase)
and in determining the shape. In chapter 4 we develop a model for the shape
of a completely phase separated vesicle, based on the differential geometry
techniques introduced in chapter 2, which we use to obtain the value of the
line tension from experiments. In chapters 5 and 6 we study vesicles which
are trapped in a kinetically arrested state. Their phase diagrams resemble the
one given in figure 3.4. They are prepared at high temperature (such that their
membrane is a uniform mixture), and subsequently quenched such that they
end up in the liquid-liquid phase coexistence regime. They quickly nucleate
domains, typically L, domains in a L4 background. However, the domains do
not all immediately merge, but remain stable for a long time, due to membrane
deformations which are a result of the interplay between the line tension and
the membrane’s elastic bending energy. We study the patterns which emerge
and sorting on the scale of the domains themselves.

3.A Optimal concentration profile

Close to the binodal, the factors (E — V(z,y(x))), 0V (x,y)/0y and 0V (z,y)/0x
in equation (3.47) all vanish. However, as we will show below, the first one van-
ishes quadratically with z, whereas the second and third only vanish linearly
with z. Because the numerator and denominator of equation (3.47) should
vanish equally fast as we approach the binodal in order for the second deriva-
tive of y(z) to be well-defined, this allows us to find an expression for the first
derivative of y(z) at both ends of the interval. Those values we can use to im-
prove our estimate of the concentration profile: since we now know both the
endpoints and the derivatives at those endpoints, we have four set parame-
ters and can optimize a fourth-order, instead of a quadratic, profile with a sin-
gle optimization parameter. We will show that the fourth-order profile gives
a marginal improvement in the estimate of the line tension 7, indicating that
indeed the quadratic profile used in the main text gives a reliable estimate.
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We rewrite equation (3.47) as an expression without fractions as

ov ov
2B~ V(e (@) = (1 + /(@) (- 22D VD ) - gag)
Jy ox
We reparametrize such that the origin is at the point around which we make
our expansion (either (Z1,g;) or (Z2,y2)). We expand y(z) around this origin
and write

y(x) = a1z + asx® + azx® + agxt + ... (3.49)
We also define
_ OV(z,y)
Ve = p (0,0) (3.50)
oV (z,y)
= —_— . 1
Vy y (0,0) (3.51)

and likewise for higher-order derivatives. For the left-hand side of (3.48) we
then find
2(E — V(z,y)y" (z) = a2 (aiVyy + 2a1Vay + Via) 2° + O (2°) (3.52)

where we have left out all terms which are zero by virtue of equations (3.39),
(3.40) and (3.43). The expansion of the right-hand side of (3.48) gives (again
leaving out terms which are zero):

(o @) (-2 2D ) ) =
-1+ a%) [(1 - a%)me + a1 (Vyy — wa)] €T

+ [ — 2ay (14 5a2)Vyy + a1(1 — 7a2)Vay — 2(1 + 3a2) Vi)
+(1+ a%) (_G%Vyyy —a1(2— a?)way

—(1= 20} Vaay + 01Vis) |22 + O (27) . (353)

1
2

The lowest-order term of the left-hand side of equation (3.48) thus goes as x2,
whereas the lowest-order term of the right-hand side goes as x. The coeffi-
cient of = should therefore vanish for equation (3.47) to be well-defined at the
binodal, which gives the condition:

Viyy — Va::r
af — H——"a, —1=0, (3.54)
Vey

at both endpoints. Using condition (3.54) to calculate y'(x) at Z; and Z, we
have four conditions on y(z). We use those to fix four of the five parame-
ters in a fourth-order polynomial approximation of y(x), leaving a single pa-
rameter which we use to optimize 7 in the same fashion as we did with the
quadratic approximation. Figure 3.8 shows the values of = we obtain from both
the quadratic and fourth-order profiles, illustrating that they are virtually the
same and showing that the quadratic approximation suffices.



66

Gibbs phase diagrams of ternary systems




