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C H A P T E R 2

DIFFERENTIAL GEOMETRY

Differential geometry is the branch of mathematics that studies geometrical
objects in an analytical way, using differential and integral calculus. In this
chapter we introduce the differential geometry of curves and surfaces, and
apply them to biopolymers and biomembranes. We discuss Gauss’s Theo-
rema Egregium and the Gauss-Bonnet Theorem and their implications. We
also introduce the Canham-Helfrich free energy which will allow us to calcu-
late the minimal-energy shapes of biomembranes.
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2.1 Manifolds

Differential geometry is the branch of mathematics that studies geometrical
objects in an analytical way, using differential and integral calculus. Its tech-
niques and results are applicable to many problems in biophysics, and it is
particularly suited to describe the behavior of polymers and membranes in
three-dimensional space. In the language of differential geometry, we will
consider these as one- and two-dimensional manifolds embedded in two- or
three-dimensional flat Euclidean space. A manifold is a mathematical object
that has the property that around any of its points it is locally flat, although it
may be curved and close upon itself on large scales. Locally, an n-dimensional
manifold therefore looks like R

n, and we can parametrize it in a local coordi-
nate system {xi}i=1,...,n. If there is another point nearby, with another coordi-
nate system {yi}i=1,...,n, then there is a continuous bijection between the two
in the region where they overlap. On a smooth manifold all such bijections are
smooth maps (i.e., if both the map itself and its inverse are infinitely differen-
tiable).

In this chapter we will introduce the differential geometry of curves and
surfaces. Both biopolymers and biomembranes have a sufficiently large as-
pect ratio that they can effectively be described as one- and two-dimensional
objects respectively. Unlike for example a soap film, another example of an
effectively two-dimensional object, the molecular structure of the polymers
and lipid bilayers does have an effect on the total energy of the manifolds. In
particular there will be effects on the bending of the manifolds, which are re-
flected in the curvature energy. It is not known whether biological membranes
are smooth or not, or in other words whether nature ‘allows kinks’ or not. How-
ever, there are clearly possibilities to induce kinks, for example by the inclusion
of wedge-shaped proteins. Boundaries within the membrane where the phys-
ical parameters change are another example. We will consider the membrane
to be a smooth manifold within any region for which the physical parameters
are the same, and pay particular attention to such boundaries and inclusions.

Although manifolds are mathematical objects by themselves that can ex-
ist and be described without the need of any embedding space, in our three-
dimensional reality the embedding space does play a role. Some properties of
the manifold are intrinsic and therefore the same whichever embedding space
we choose, but unfortunately the curvature does not satisfy that condition. We
need to make explicit reference to the space in which we see the manifold, and
therefore we distinguish between curves in R

2 and curves in R
3. In the case of

the membrane there are two different curvatures, one of which is intrinsic, but
the other one is not. As we will see in section 2.3.5, for creatures like cells living
in the embedding space, the most important curvature in terms of energy con-
tributions will be the extrinsic one, defined only in the larger Euclidean space
that is its home.

There is a vast literature on differential geometry, both in the context of
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pure mathematics and in the connection with physics. For a thorough in-
troduction into manifolds, including proofs of the theorems in sections 2.3.3
and 2.3.4, see e.g. Millman and Parker [33], Spivak [34] or Do Carmo [35].
For an excellent overview of applications of differential geometry to biopoly-
mers and biomembranes, of which many results are used in this chapter, see
Kamien [36].

2.2 Differential geometry of curves

2.2.1 Curves in the plane

Since a curve is a one-dimensional object, we can label its points by a single
parameter t, running over a real interval [a, b]. If we choose a coordinate sys-
tem for the embedding space R

2, the coordinates of the point labelled by a
given value of t can be written as �r(t). If our curve represents a polymer, and
we are interested in the spatial conformation of that polymer, we will want to
associate an energy with every possible conformation. As mentioned above,
that requires that we consider the curvature of the polymer. In principle we
could do that with the description in terms of �r(t), but our calculations will be
significantly simplified by choosing the arc length s as the parameter to mea-
sure the length along the curve. The arc length will run from 0 at �r(a) to L, the
length of the curve, at �r(b). To find an expression for the arc length, we there-
fore first need to calculate the total length L of the curve. For an infinitesimal
parameter step dt, the length of the curve between t and t+ dt is given by∣∣∣∣

∣∣∣∣ limdt→0

�r(t+ dt)− �r(t)
dt

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣d�r(t)dt

∣∣∣∣
∣∣∣∣ , (2.1)

so we can findL by integrating the norm of the tangent vector d�r(t)
dt to the curve

over the interval [a, b]:

L =
∫ b

a

√
d�r(t)
dt

· d�r(t)
dt

dt. (2.2)

Since the arc length measures distance along the curve, we can simply calcu-
late it from the arbitrary parametrization �r(t) by calculating the distance from
the starting point:

s(t) =
∫ t

a

√
d�r(u)
du

· d�r(u)
du

du. (2.3)

Alternatively, by invoking the fundamental theorem of calculus, we also have
the relation

ds
dt

=
∣∣∣∣
∣∣∣∣d�r(t)dt

∣∣∣∣
∣∣∣∣ . (2.4)
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One reason why the arc length is an easy measure to work with, is that the
tangent vector expressed in units of arc length becomes a unit vector. To see
that this is true, we rewrite the expression (2.2) for the length of the curve in
terms of the arc length:

L =
∫ L

0

√
d�r(s)
ds

· d�r(s)
ds

ds. (2.5)

Differentiating both sides of (2.5) with respect to L we find∣∣∣∣
∣∣∣∣d�r(s)ds

∣∣∣∣
∣∣∣∣ = 1. (2.6)

The tangent vector is a useful enough quantity to give it its own symbol:

ês =
d�r(s)
ds

, (2.7)

where we use the hat to indicate that ês is a unit vector. By associating a tan-
gent vector to every point of the curve we obtain a direction field on the curve.
Intuitively it makes sense to associate the curvature of the curve with the rate
of change of that direction field as we travel along the curve. A straight line
then has zero curvature, whereas the curvature of a sharp bend is large. Split-
ting that rate of change in a magnitude and direction factor, we can write

dês

ds
= κ(s)n̂(s), (2.8)

where n̂ is another unit vector. In fact, n̂(s) is perpendicular to ês, because the
derivative of any unit vector x̂(s) is perpendicular to itself:

d
ds

[x̂(s) · x̂(s)] =
d
ds

[1]

2x̂(s) · dx̂(s)
ds

= 0. (2.9)

The vector n̂(s) is called the unit normal of the curve and κ(s) the curvature.
By taking n̂(s) to be positive, the sign of κ(s) tells us in which direction the
curve is bent, whereas its magnitude tells us how sharp the bend is. Any energy
functional we want to construct on the curve when relating it to a polymer
should be independent of the direction in which we bend, and therefore can
contain only even powers of κ. The most commonly used curvature energy is
just the lowest (quadratic) power of κ integrated over the entire curve:

Ecurv =
A

2

∫ L

0

κ(s)2 ds. (2.10)
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Here A is a physical parameter, known as the bending modulus of the curve.
Based on the energy (2.10) we can apply the toolbox of statistical physics on
the ensemble of possible curves. Later on, we will develop a similar expression
for the curvature energy of membranes.

Before we continue, there are two more observations to make about more
intuitive definitions of the curvature. In colloquial talks and elementary cour-
ses the curvature is often defined as the inverse radius of the osculating circle
at any point along the curve. That definition is completely equivalent to the
one given here, although one loses the information stored in the sign of κ. To
see that this is true, we express the magnitude of κ in terms of the original
parametrization �r(t):

|κ(t)| = ||�r ′(t)× �r ′′(t)||
||�r ′(t)||3 , (2.11)

where primes denote derivatives with respect to t. If the osculating circle at
�r(t) has radius a, it is parametrized by a(cos t, sin t). From equation (2.11), we
immediately find that its curvature, and therefore that of the curve, is indeed
1/a.

The other more intuitive definition is related to a quadratic expansion of
the curve around a local minimum. Since our choice of coordinates of the em-
bedding space R

2 is arbitrary, we can always choose coordinates such that the
origin is at the point of interest on the curve and that this point is also a local
minimum in the coordinates chosen. Moreover, we can locally parametrize the
curve by �r(t) = (t, y(t)). Since �r(t) is a local minimum, the lowest order in the
expansion of y(t) is quadratic, and given by 1

2κt
2. The factor κ that multiplies

the quadratic term is indeed the curvature as defined in equation (2.8), as is
readily found by substituting the local expression for �r(t) in equation (2.11) or
alternatively equations (2.7) and (2.8). The interpretation of the curvature as
the coefficient of the quadratic term in an expansion around a local minimum
will be quite helpful later on when we consider the curvature of surfaces.

2.2.2 Curves in space

Curves in R
3 enjoy an additional degree of freedom compared to their coun-

terparts in R
2. That means that at any point along the curve we now need

three vectors as a basis for the space in which it lives, and that we can no
longer describe the curve in that basis with a single parameter κ(s). Instead
we will need two parameters, the curvature κ(s) (defined analogously to the
two-dimensional case) and the torsion τ(s), which is related to the curve’s chi-
rality.

Like in two dimensions, we can parametrize a space curve using the arc
length s and describe it in an arbitrary coordinate system by a vector �r(s). The
unit tangent vector ês and normal n̂(s) now are three-dimensional vectors, but
still defined by equations (2.7) and (2.8). The definition of the curvature κ(s)
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is still given by equation (2.8) as well. Moreover, since the result (2.9) on the
derivative of a unit vector holds in any number of dimensions, the unit tangent
and unit normal vector are still orthonormal. To construct a basis for R

3 at �r(s)
all we need to do is find a third vector which is perpendicular to both. That
vector is given by their cross product and is known as the binormal

b̂(s) = ês(s)× n̂(s). (2.12)

Analogously to the definition of the curvature (2.8), we express the derivative
of n̂(s) in terms of the basis (ês, n̂, b̂):

dn̂(s)
ds

= α(s)ês + τ(s)b̂(s). (2.13)

The quantity τ(s) is the torsion of the curve. The geometrical interpretation of
the torsion is the rate of change of the osculating plane, the plane spanned by
ês and n̂. The sign of the torsion is related to the curve’s chirality: a left-handed
curve has negative torsion, and the torsion of a right-handed curve is positive.
The quantity α(s) in equation (2.16) is just the negative of κ(s); to see that this
is true we differentiate the relation ês · n̂ = 0 expressing the orthogonality of ês

and n̂:

0 =
dês

ds
· n̂+ ês · dn̂ds = κ(s) + α(s). (2.14)

By also considering the derivative of b̂(s) we can find an easier expression for
the torsion. We have

db̂(s)
ds

=
dês

ds
× n̂+ ês × dn̂

ds
= κn̂× n̂+ ês × (−κês + τ b̂) (2.15)

= −τ n̂(s)
so

τ(s) = −db̂(s)
ds

· n̂(s). (2.16)

Like the curvature in the two-dimensional case, the combination of the curva-
ture and the torsion at any point along the curve tells us the trajectory of the
curve through space. That statement can be neatly summarized by combin-
ing the three-dimensional versions of equations (2.8), (2.13), and (2.15) into a
single expression

d
ds

⎛
⎝ ês(s)

n̂(s)
b̂(s)

⎞
⎠ =

⎛
⎝ 0 κ(s) 0
−κ(s) 0 τ(s)
0 −τ(s) 0

⎞
⎠

⎛
⎝ ês(s)

n̂(s)
b̂(s)

⎞
⎠ . (2.17)

Equations (2.17) are known as the Frenet-Serret equations. They beautifully
illustrate the symmetry between κ and τ : κ(s) is the rate of rotation of ês(s)
around b̂(s) and τ(s) that of n̂(s) around ês(s).
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Much of the biophysical theory of polymers relies on the differential ge-
ometry of curves introduced in this section. Since our main focus is on mem-
branes, those theories lie outside the scope of this text. For a further introduc-
tion see e.g. De Gennes [37] and Kamien [36].

2.3 Differential geometry of surfaces

2.3.1 Coordinate system and area element

Just like the curves in the previous section, a surface in three-dimensional
space can be described in terms of the coordinates of that embedding space.
Because the surface itself is two-dimensional, we will need two local coordi-
nates to parametrize it. As was already alluded to in the introduction of this
chapter, a particular choice of these coordinates may be valid only locally and
not cover the entire surface, however, there will always a continuous bijection
to another set of coordinates with which we can carry on. We will make use
of this freedom of coordinate choice to choose a system best adapted to the
particular problem at hand later on. For now we will take a set of two arbi-
trary coordinates (x1, x2) and write our mathematics in terms of them, making
sure along the way that the results are independent of the particular choice we
make here.

The first major difference with the curve is that on a surface there is no
natural choice of coordinates like the arc length. Moreover, not only do we
now need two numbers to characterize the curvature, there will actually be two
ways of defining a proper coordinate independent curvature on the surface.
One of them, the Gaussian curvature, will turn out to be intrinsic, which means
it is not only independent of the coordinates chosen but also of the space in
which we embed the surface. Moreover, the Gaussian curvature will be related
to the topology of the surface. The other (extrinsic) curvature, known as the
mean curvature, will play a role very similar to the curvature of the curve in
the previous section.

Having chosen a coordinate system on the surface, we can associate a point
in R

3 with every point of the surfaceM and write

M = {�r(x1, x2) |x1, x2 ∈ U}, (2.18)

whereU ⊂ R
2 is the set of points over which x1 and x2 run. Similarly to the case

of the curve, we can define tangent vectors to the surface by taking derivatives
with respect to the parameters:

�e1 =
∂�r(x1, x2)

∂x1
, (2.19)

�e2 =
∂�r(x1, x2)

∂x2
. (2.20)
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Lacking a natural length scale, we get tangent vectors which are neither nec-
essarily normalized nor necessarily perpendicular to each other. Nonethe-
less, they do span a two-dimensional plane which is tangent to the surface
at �r(x1, x2). In order to construct a third vector which is perpendicular to both
tangent vectors (so that the three of them span R

3) we only need to calculate
their cross product

n̂ =
�e1 × �e2
||�e1 × �e2|| , (2.21)

where we have normalized this time to get a proper surface normal. By in-
troducing the surface normal field on M (i.e., by assigning a surface normal
to each point of M), we can classify the manifold as being orientable or non-
orientable. The surface is orientable if at every point of the manifold we can
consistently orient the tangent vectors �e1 and �e2 with respect to the normal n̂,
e.g. in such a way that using the right hand rule we can define a clockwise di-
rection for every loop in the surface. For a surface which is both orientable
and closed, we can use the normal vector field to define an inside and an out-
side of the manifold. Well-known examples of orientable, closed manifolds are
the two-dimensional sphere and torus embedded in R

3, and an example of a
closed but non-orientable manifold is the Klein bottle. We will assume our
manifolds to be closed and orientable from now on, and choose the direction
of the normal vector such that it points outwards. We will also typically choose
the coordinate system on R

3 which we use to describe M such that its origin
lies inside the space enclosed by the surface.

Using the tangent vectors defined above, we can calculate the infinitesimal
area element at each point of the surface, and by integrating over U find the
total surface area. The infinitesimal area element at �r(x1, x2) is simply the area
of the parallelogram spanned by the two tangent vectors, which in turn is given
by the magnitude of their cross product:

ΔS = ||�e1 × �e2||
=

√
(�e1 × �e2)2

=
√
||�e1||2||�e2||2 − (�e1 · �e2)2.

By putting back in the definitions of the tangent vectors we find the differential
area element to be

dS =
√
(∂1�r(x1, x2))2(∂2�r(x1, x2))2 − (∂1�r(x1, x2) · ∂2�r(x1, x2))2 dx1 dx2,

(2.22)
where ∂i = ∂

∂xi
. The expression under the square root in equation (2.22) is ex-

actly the determinant of the induced metric (or first fundamental form). The
induced metric of an n-dimensional manifold with tangent vectors �ei is an
(n, n) tensor given in component form by gij = �ei ·�ej ; for our two-dimensional
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manifoldM it is given by

g(x1, x2) =

⎛
⎝ �e1(x1, x2) · �e1(x1, x2) �e1(x1, x2) · �e2(x1, x2)

�e2(x1, x2) · �e1(x1, x2) �e2(x1, x2) · �e2(x1, x2)

⎞
⎠ . (2.23)

For the total area of the manifold we can now write the elegant formula

A =
∫
U

√
det g(x1, x2) dx1 dx2. (2.24)

Although the expression (2.24) for A makes explicit use of a parametrization
U of M, the resulting area is independent of the parametrization chosen. To
prove that statement, we consider a change of parametrization from a set of
coordinates (x1, x2) that runs over U to another set (y1, y2) that runs over V .
Applying the chain rule, we find

�exi =
∂�r

∂xi
=

∂�r

∂yk

∂yk

∂xi
=
∂yk

∂xi
�eyk

, (2.25)

where we implicitly sum over the repeated index k. Applying the transforma-
tion (2.25) to the metric, we find

gij(x1, x2) =
∂yk

∂xi

∂ym

∂xj
g̃km(y1, y2), (2.26)

where g̃ is the metric in the coordinate system (y1, y2). If we now define the
transformation matrix X by Xik = ∂yk

∂xi
, then we can rewrite equation (2.26)

in matrix form as g = XT g̃X. Returning to the expression (2.24) for the total
membrane area, we find that a parameter transform does indeed not change
the value ofA:

A =
∫
U

√
det g(x1, x2) dx1 dx2

=
∫
U

√
det(XT g̃(x1, x2)X) dx1 dx2

=
∫
U

√
det g̃(x1, x2)|detX|dx1 dx2

=
∫
V

√
det g̃(y1, y2) dy1 dy2,

where the last equality holds because |detX| is exactly the Jacobian for the
coordinate transformation from (x1, x2) to (y1, y2).

A parametrization that is often used is the Monge gauge, in which the mem-
brane surface S is described as a height function h(x, y) above R

2 (parametri-
zed by x and y). In that case we have �r = (x, y, h(x, y)) and the expression for
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the total area reduces to

A =
∫
U

√
1 +

(
∂h

∂x

)2

+
(
∂h

∂y

)2

dxdy. (2.27)

For objects such as soap films, which have no bending resistance, the only
contribution to the total energy scales with the surface area

Earea = σA, (2.28)

where σ is the surface tension. A well-known example of a surface which min-
imizes the ‘area energy’ (2.28) is the shape of a soap film in between two rings,
called a catenoid.

2.3.2 Curvature of surfaces

Even though biomembranes are fluid in their lateral direction and therefore,
like the soap film, do not have any internal structure in that direction, their
energy is not given by the simple expression (2.28). The membrane does have
a characteristic bilayer structure in the direction normal to its surface, which
means that bending the membrane will deform that structure and therefore
carry an energy penalty. To construct a proper energy functional that describes
the membrane shape we should therefore include curvature contributions.

As observed above, we will need two numbers at each point of the surface
to characterize the curvature at that point. There is a straightforward way of
getting two such numbers using the machinery we have already developed.
Each of the combinations (�e1, n̂) and (�e2, n̂) of a tangent vector and the surface
normal spans a plane which intersects S at our point of interest. The inter-
sections are curves in R

2, and the curvature of these curves in those planes
are given by equation (2.8). Clearly these two curvatures of intersection lines
depend on the particular choice of coordinates (x1, x2) we made. We get dif-
ferent values by rotating our coordinate axes, where any orientation (except
parallel) of them with respect to each other is valid. By virtue of the surface be-
ing smooth these rotations will give us a maximum c1 and minimum c2 value
of the intersection line curvatures. The numbers c1 and c2 are called the prin-
cipal curvatures of the surface at (x1, x2), and their associated directions the
principal directions (see figure 2.1a). By construction, the principal curvatures
are independent of the choice of coordinates. They are however not the easi-
est quantities to work with. Instead, we use two combinations of them, known
as the mean and Gaussian curvatures, which are defined as the average and
product of the principal curvatures:

H =
1
2
(c1 + c2), (2.29)

K = c1c2. (2.30)
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Figure 2.1: Curved surfaces. (a) A saddle point on a two-dimensional surface
embedded in R

3. The thick red lines indicate the principal directions. If the
positive and negative curvatures are equal, the mean curvature at the saddle
point is zero. If the surface extends to infinity, its Gaussian curvature is nega-
tive. (b) Coordinate system on an axisymmetric vesicle. The z-axis coincides
with the axis of symmetry. The vesicle is parametrized using the arc length s
along the contour. The radial coordinate r gives the distance from the sym-
metry axis and the coordinate z the distance along that axis. The shape of the
vesicle be given as r(z), r(s), or in terms of the contact angle ψ of the contour
as a function of either s or r. The geometric relations between r, z and ψ are
given in equations (2.88) and (2.89).
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Similar to the case of curves in R
2, the principal curvatures c1 and c2 are

the inverse of the radii of the osculating circles along their respective inter-
section curves. The definitions given in equations (2.29) and (2.30) are thus
consistent with the intuitive, colloquial definitions of the previous section,
but they are not easy to handle. Both in order to prove that H and K are
indeed coordinate-independent, and for easier use in calculations involving
the curvature energy later on, we will first formalize the definitions (2.29) and
(2.30). In order to do that, we make use of the other, colloquial interpretation
of curvature at the end of section 2.2.1. We choose a coordinate system on
the embedding space R

3 such that the origin is located at the point of interest
�r(x1, x2) and is a stationary point in the coordinates chosen. We can then ex-
press �r(x1, x2) in the Monge gauge introduced at the end of section 2.3.1, and
write �r(x1, x2) = (x1, x2, z(x1, x2)). Proceeding as before, we expand z(x1, x2)
around the minimum and find that the lowest-order term is quadratic in the
coordinates:

z(x1, x2)− zmin =
1
2
�xTC�x+ h.o.t. (2.31)

where �x = (x1, x2)T and C is a symmetric matrix which is called the curvature
matrix. Not surprisingly, we will find that c1 and c2 are the eigenvalues of C,
and the corresponding eigenvectors are the principal directions.

Comparing equation (2.31) with the Taylor expansion of z(x1, x2), we find
for the coefficients of C (i, j ∈ {1, 2}):

Cij =
∂2z(x1, x2)
∂xi∂xj

=
∂2�r(x1, x2)
∂xi∂xj

· n̂(x1, x2), (2.32)

so the components of C are the projections of the second derivatives of �r onto
the surface normal n̂. There are two (coordinate) invariants we can construct
from the curvature matrix C: its trace and its determinant. They are directly
related to the mean and Gaussian curvatures:

H =
1
2

Tr C =
1
2
gijCij , (2.33)

K =
detC
det g

. (2.34)

Here the gij are elements of the inverse of the metric tensor g and we once
again sum over repeated indices.

It remains to show that the definitions (2.33) and (2.34) indeed are iden-
tical to the colloquial definitions (2.29) and (2.30) and that they are coordi-
nate independent. To do so, we observe that since the matrix C is symmetric,
it is diagonalizable by a orthonormal transformation T , C = TDT−1, where
D = diag(d1, d2) with d1 and d2 the real eigenvalues of C. Moreover, if d1 �= d2,
then the corresponding eigenvectors are orthonormal, i.e., they are unit vec-
tors and perpendicular [38, Proposition 6.2]. If d1 = d2 then all directions are
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principal directions, and we can choose any set of two orthonormal vectors
that span the tangent plane. We denote these orthonormal vectors by ê1 and
ê2 and, because D is just C expressed in the new basis (ê1, ê2), we have

di =
(
∂iêi

) · n̂ (i = 1, 2), (2.35)

where ∂i as usual denotes the derivative along êi, and the unit vector n̂ has
not changed. In the new orthonormal basis, the metric is given by the identity
matrix, so we find

H =
1
2
(
(∂1ê1) · n̂+ (∂2ê2) · n̂

)
. (2.36)

Invoking equation (2.8) for the curvature of a line, this reduces to

H =
1
2
(κ1 + κ2) (2.37)

with κi the curvature along êi. Since these were the principal directions, equa-
tion (2.37) is identical to equation (2.29).

There is an alternative expression for H in terms of the gradient of the
surface normal, which immediately shows that it is coordinate-independent.
Making use of the orthonormality of the basis (ê1, ê2, n̂) and the Weingarten
equations (2.55) derived in the next section, we can rewrite each of the terms
of equation (2.36) in terms of derivatives of the unit normal:

(∂iêj) · n̂ = êj · −∂in̂. (2.38)

For the mean curvature we then find:

H = −1
2
(
ê1 · ∂1n̂+ ê2 · ∂2n̂

)
= −1

2
�∇ · n̂. (2.39)

Equation (2.39) agrees with our intuitive understanding of curvature like equa-
tion (2.8) did: for a flat surface, the unit normal is constant and the mean cur-
vature is zero. Once the surface gets bent, the unit normal changes and the ab-
solute value of the mean curvature increases. Moreover, the expression given
for H in equation (2.39) is indeed coordinate independent.

Relating the Gaussian curvature to the principle curvatures goes complete-
ly analogous to the mean curvature:

K =
detC
det g

=
detD
1

= d1d2 = κ1κ2. (2.40)

To show that the Gaussian curvature is coordinate independent, it is easiest to
use the definition in terms of the ratio of determinants given by (2.34). Apply-
ing a coordinate transformation (2.25) which we again write in matrix form as
X, we have C = XT C̃X, g = XT g̃X and readily obtain:

K =
detC
det g

=
det(XT C̃X)
det(XT g̃X)

=
detXT

detXT

det C̃
det g̃

detX
detX

=
det C̃
det g̃

. (2.41)
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Alternatively, as we will see in section 2.3.4, the Gaussian curvature can be ex-
pressed as the inner product of the surface normal n̂ with the curl of a vector
field (equation (2.70), a form which is clearly coordinate independent.

2.3.3 Gauss’s Theorema Egregium

The mean and Gaussian curvatures defined in the previous section are the in-
variants we will use to construct an energy functional for the membrane shape
later on. To do so, there is no need to further develop the mathematical ap-
paratus of surfaces. However, after we have defined that energy functional, we
will make use of the Gauss-Bonnet theorem, which relates the integral of the
Gaussian curvature to a topological boundary term, to simplify the expression
significantly. In this section we will prove the earlier claim that the Gaussian
curvature is an intrinsic property of the surface and in the next section we will
derive the Gauss-Bonnet theorem. Before we can do that, we need to take a
closer look at the metric and curvatures, and derive several useful identities.
The proving technique for each of them is indicated here, but not always writ-
ten out explicitly. For more details see e.g. Millman and Parker [33], Spivak [34]
or Do Carmo [35].

In section 2.3.1, we defined the metric using the tangent vectors �ei, which
span the tangent plane TpM to the point p ∈ M . We already used the metric
to calculate the area of our manifold in equation (2.24), and here we will show
that we can use it to calculate lengths and angles as well. Lines in the mani-
fold have tangent vectors that lie in the tangent plane to the membrane at the
point of interest. For an observer restricted to the manifold, components of
vectors which lie along the manifold’s surface normal n̂ can not be measured,
but components in the tangent plane can, because the manifold is locally flat.
Quantities that can be expressed in terms of the tangent plane are therefore
intrinsic to the manifold, the restricted observer can measure them without
being aware of any embedding space. Due to the fact that the Gaussian curva-
ture is intrinsic, this will allow the observer to determine that curvature from
measurements that can be made within the manifold. To show that the earth
is a sphere, it is therefore not necessary to go into space and take pictures from
outside the manifold that is earth’s surface; we could in principle prove this
statement from ground measurements alone.

If we have a vector �v tangent to M at p, we can express it in terms of the
basis (�e1, �e2) and write:

�v = vi�ei, (2.42)

where once again we sum over repeated indices (which we continue to do
throughout this chapter). The length of �v, and the angle θ between �v and an-
other vector �w ∈ TpM can now be expressed in terms of the components of
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the metric:

||�v ||2 = �v · �v = vi�ei · vj�ej = vivjgij (2.43)

||�v || · ||�w || cos θ = �v · �w = viwjgij (2.44)

From measurements of lengths and angles of vectors within the manifold, we
can determine the components of metric tensor g using equations (2.43) and
(2.44). The metric is therefore an intrinsic property of the manifold, and any
quantity that can be expressed in terms of the components of the metric is
intrinsic as well.

In section 2.3.1 we introduced not only the metric, with components gij ,
but also its inverse, with components gij . The inverse metric has a geometri-
cal interpretation of its own, due to the fact that there is an alternative way to
define a basis for the tangent space TpM at a point p ∈M . We defined the ba-
sis vectors �ei as the derivatives of the manifold parametrization �r(x1, x2) along
the parameter xi. We could equally well have taken the normals within TpM
to curves of constant xi in the parametrization �r(x1, x2) of M. We choose the
positive direction along that of increasing xi, and denote these basis vectors by
�e i. By construction, we have

�e1 · �e 2 = �e2 · �e 1 = 0. (2.45)

We now fix the length of the basis vectors �e i by imposing

�e1 · �e 1 = �e2 · �e 2 = 1. (2.46)

Combining equations (2.45) and (2.46) we have �ei ·�e j = δj
i . The metric with re-

spect to the basis (�e1, �e2) now has components gij = �e i ·�e j . To prove the claim
that gij is the inverse of gij , we rewrite the vector �v ∈ TpM of equation (2.42)
in terms of the basis (�e 1, �e 2):

�v = vi�e
i. (2.47)

The numbers vi are called the contravariant components of �v (with respect to
the contravariant basis (�e1, �e2)) and the vi are the covariant components (and
(�e 1, �e 2) the covariant basis). Analogously to (2.44) we can express the inner
product of two vectors �v, �w ∈ TpM in terms of their covariant components
and the covariant metric as �v · �w = gijviwj . Moreover, we can also mix the two
bases and write

�v · �w = vi�e
i · wj�ej = viw

jδj
i = viw

j (2.48)

so we now have four equivalent ways to write the inner product:

�v · �w = gijv
iwj = gijviwj = viw

i = viwi. (2.49)

Equation (2.49) tells us that we can use gij and gij to translate between the two
basis representations. Because �w is arbitrary, we get from equality of respec-
tively the second and fourth and third and fifth expressions in (2.49):

gijv
i = vj and gijvi = vj (2.50)
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Colloquially we say that we can use the metric to raise and lower indices. Com-
bining the two equalities in (2.50) we find for any vector �v ∈ TpM:

vi = gijv
j = gijg

jkvk (2.51)

so by uniqueness of the representation of �v in any basis

gijg
jk = δk

i (2.52)

and the metric of the contravariant and covariant representations are indeed
each others inverse.

From the metric or first fundamental form, we now turn to the curvature
matrix, which is also known as the second fundamental form or Weingarten
map. Most differential geometry texts do not introduce it using the curvature
of a paraboloid around a stationary point on the surface, but just define it using
equation (2.32). This form is therefore a 2×2 matrix whose components are
given by

Lij = (∂i�ej) · n̂, (2.53)

where we follow convention and use the symbol L from now on. The compo-
nents of the second fundamental form are thus the projections of the deriva-
tives of the tangent vectors on the surface normals. Likewise, the Christoffel
symbols are defined to be the projections on the surface tangents, and given
by the equations

∂i�ej = Γk
ij�ek + Lij n̂. (2.54)

Because n̂ is a unit vector, we know that its derivative must be perpendicular
to n̂ (equation (2.9)). We can therefore write ∂in̂ as a linear combination of the
two tangent vectors. A straightforward calculation gives:

∂in̂ = −Lijg
jk�ek. (2.55)

Equations (2.55) are known as the Weingarten equations. We can use them to
derive equation (2.38):

�em · ∂in̂ = −Lijg
jk�em · �ek

= −Lijg
jkgmk

= −Lijδ
j
m

= −Lim

= −(∂i�em) · n̂.
From equation (2.54) we can also find explicit expressions for the Christof-

fel symbols. By taking the dot product with �el on both sides and subsequently
multiplying with glm we find

Γk
ij = (∂i�ej) · �elg

lk. (2.56)
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Because ∂i�ej =
∂2�r(x1,x2)

∂xi∂xj
= ∂2�r(x1,x2)

∂xj∂xi
= ∂j�ei we have (∂i�ej) · �el = 1

2∂i(�ej · �el)
and by cyclically permutating indices in the last expression, we can rewrite Γk

ij

as

Γk
ij =

1
2
gkl(∂jgil − ∂lgij + ∂iglj). (2.57)

Equation (2.57) shows that the Christoffel symbols can be written in terms of
the components of the metric tensors and its derivatives in the tangent plane.
Hence the Christoffel symbols are intrinsic properties of the manifold.

Before we are ready to prove that the Gaussian curvature K is also intrin-
sic, we need one more mathematical object: the (Riemann) curvature tensor.
It is defined in terms of the Christoffel symbols and thus reflects an intrinsic
property of the manifold:

Rl
ijk = ∂jΓl

ik − ∂kΓl
ij + Γm

ikΓ
l
mj − Γn

ijΓ
l
nk. (2.58)

Unlike the Christoffel symbols themselves, the Riemann tensor is an actual
tensor, which means that under a change of coordinates it transforms as the
four-parameter version of equation (2.25). We can express the Riemann curva-
ture tensor in terms of the (extrinsic) components of the second fundamental
form as

Rl
ijk = LikLjmg

ml − LijLkmg
ml. (2.59)

The 24 different equations expressed by (2.59) are known as Gauss’s equations.
The proof of (2.59) simultaneously provides us with another set of identities
known as the Codazzi-Mainardi equations:

∂kLij − ∂jLik = Γl
ikLjl − Γl

ijLkl. (2.60)

The proof of equations (2.59) and (2.60) follows from the observation that

∂k(∂j�ei) = ∂j(∂k�ei).

Expanding both sides using equations (2.54) and (2.55), we find that the tan-
gential part of the resulting equality reproduces (2.59) and the normal compo-
nent gives (2.60).

Gauss’s equations allow us to express the Gaussian curvature

K = detL/det g

in terms of the Riemann curvature tensor. By equation (2.59) we have

glnR
l
ijk = (LikLjmg

ml − LijLkmg
ml)gln = LikLjn − LijLkn, (2.61)

because gmlgln = δm
n . Now taking the special case that i = k = 1, j = m = 2,

we find:
gl2R

l
121 = (L11L22 − L12L12) = detL = K det g (2.62)

so we can express K in terms of the intrinsic tensors R and g, which means
that K itself is intrinsic. We have therefore proven what is known as Gauss’s
Theorema Egregium:



28 Differential geometry

Theorem 2.1 (Theorema Egregium) The Gaussian curvature K of a manifold
M is an intrinsic property of that manifold.

Theorem 2.1 tells us that we can measure the curvature of the manifold we
live in without having to refer to a larger embedding space. That means we
can establish the fact that the earth is an object with positive curvature with-
out having to go to space - we could suffice with measuring the local metric
coefficients. Similarly, the theory of general relativity uses this technique to
determine the local curvature of the four-dimensional spacetime manifold on
which the universe lives [39]. The fact that this is possible lead Gauss to la-
bel this theorem ‘egregium’, or remarkable. Originally, it was actually not this
exact statement that Gauss called the theorema egregium, but an equivalent
one, which relates the Gaussian curvature of two different surfaces if they are
locally isometric.

Two two-dimensional manifolds (or surfaces)M andN are called isomet-
ric if there is an isometry between them. An isometry between M and N is a
function f : M → N which is bijective, differentiable and preserves lengths,
i.e., for any curve γ : [c, d] ⊂ R → M the length of γ equals that of f ◦ γ.
The weaker condition thatM andN are locally isometric is that for each point
p ∈M there exists an open subsetM′ ⊂M for which there is an isometry with
an open subset N ′ ⊂ N . By considering the behavior of coordinate curves
(curves obtained from a parametrization �r(x1, x2) of M by keeping all except
one of the coordinates fixed), it readily follows that if a local isometry exists,
then the components of the metric in the open subsets M′ and N ′ are iden-
tical (for a written out version of the proof of that statement, see [33, Propo-
sition 10.5]). Because by Theorem 2.1 the Gaussian curvature K is completely
determined by the components of the metric, we have the following corollary:

Corollary 2.2 If two surfaces are locally isometric, then their Gaussian curva-
tures at corresponding points are equal.

2.3.4 The Gauss-Bonnet Theorem

The Theorema Egregium tells us that the Gaussian curvature can be measured
using only the intrinsic properties of the surface it is defined on. The Gauss-
Bonnet theorem will give us an easy method to do just that. Moreover, it will
relate two properties of the surface which do not seem to have any connection
at all: its geometry and its topology. In fact, we will find that the integrated
Gaussian curvature over a closed surface is a constant dependent only on the
genus of the surface, and that the Gaussian curvature of a patch of surface is
related to the in-surface (or geodesic) curvature of its boundary. Boundaries
of patches of surfaces are curves in the embedding space R

3, which we have
already studied in section 2.2.2. For a curve constrained to a surface we can of
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course use the properties of both, and will indeed do so. To avoid confusion,
we need to distinguish between the basis vectors defined using the surface and
those defined using the curve. We will keep the notation of this section and
denote the basis vectors of the surface by (�e1, �e2, n̂). The tangent, normal and
binormal vectors defined on the three-dimensional space curve we will denote
using capital letters: (T̂ (s) = ês, N̂(s), B̂(s)), where s is the arc length along the
curve. By construction T̂ is tangent to both the curve and the surface, but in
general N̂ and B̂ have components both tangent and normal to the surface.

For simplicity we make a change of basis from (�e1, �e2, n̂) to an orthonormal
system, for example by taking by taking ê1 = �e1/||�e1|| and ê2 =

�e2−(�e2·ê1)ê1
||�e2−(�e2·ê1)ê1|| .

We consider a curve γ on the surfaceM ⊂ R
3, and denote these basis vectors

at the point γ(s) = �r(x1, x2) ∈ M by (ê1(s), ê2(s), n̂(s)). Because the tangent
vector T̂ (s) to γ is tangent toM as well, we can write

T̂ (s) = cos(θ(s))ê1(s) + sin(θ(s))ê2(s). (2.63)

As we travel along γ, the basis (ê1(s), ê2(s), n̂(s)) changes orientation in space,
and γ itself may change orientation within M. Both effects are accounted for
in equation (2.63), but it will be useful to separate the two. To do so, we con-
sider a vector field �P (s) defined on γ with the conditions that �P (s) lies in the
plane spanned by (ê1, ê2) and all vectors �P are parallel in the embedding space
R

3, or d�P/ds = 0. By expressing �P in terms of (ê1, ê2) like in equation (2.63),
we will be able to determine the effect of the change of orientation of the basis
alone. However, we first need to verify that such a vector field �P indeed ex-
ists. A straightforward expansion of the condition d�P

ds · êj = 0 in contravariant
components P k of �P shows that they satisfy the coupled differential equations

dP k

ds
= −Γk

ijP
i dγ

j

ds
. (2.64)

By the Picard-Lindelöf Theorem (see e.g. [40]), the system of ordinary dif-
ferential equations (2.64) has a unique solution for a given initial condition
�P (s = 0) = �P0, so the vector field we need does indeed exist. Using the fact
that s = s(�x) = s(x1, x2) and expressing �P in the basis (ê1, ê2), we have

�P (�x) = cos(θ0(�x))ê1(�x) + sin(θ0(�x))ê2(�x). (2.65)

Taking derivatives of �P along ê1 and ê2, we can relate variations of the basis to
variations of θ0:

0 = ê1(�x) · ∂i
�P (�x) = − sin(θ0(�x))

(
∂iθ0(�x)− ê1(�x) · ∂iê2(�x)

)
(2.66)

0 = ê2(�x) · ∂i
�P (�x) = cos(θ0(�x))

(
∂iθ0(�x) + ê2(�x) · ∂iê1(�x)

)
= cos(θ0(�x))

(
∂iθ0(�x)− ê1(�x) · ∂iê2(�x)

)
(2.67)
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where we used the orthogonality of ê1 and ê2 in the final equality. We can com-
bine equations (2.66) and (2.67) in a single expression:

�∇θ0(�x) = ê1(�x) · �∇ê2(�x) ≡ �Ω(�x), (2.68)

where the vector field �Ω is known as the spin connection. Equation (2.68) tells
us how the basis (ê1(s), ê2(s)) changes as we move along γ; to find the change
of T̂ due to changes in orientation of γ, we should look at the gradient of θ(�x)−
θ0(�x). The ‘true change’ in T̂ is therefore given by the covariant derivative of
θ(�x):

�Dθ(�x) ≡ �∇θ(x)− �Ω(�x). (2.69)

The spin connection �Ω is defined using gradients of the basis vectors êi. We
encountered those before, in the definition of the Gaussian curvatureK, using
the determinant of the second fundamental form L. The components of that
form were the projections of the derivatives of the basis vectors �ei on the sur-
face normal n̂. Not surprisingly, the spin connection and Gaussian curvature
are related. Expanding the curl of �Ω and the determinant of L in components
of the basis (ê1, ê2, n̂), we readily obtain the identity [36]

K = n̂ · (�∇× �Ω). (2.70)

We are now ready to face the task set at the beginning of this section: the
calculation of the integral of the Gaussian curvature over a surface patch M
with boundary γ = ∂M. As observed before, the tangent vector T̂ (s) to γ is
also tangent to M, but the curve normal N̂(s) is not necessarily tangent to
M as well. An observer living on the surface M can therefore not measure
the curvature κ(s) of γ, since by equation (2.8) that requires knowledge of the
component of N̂ normal toM. However, the component of the curvature of γ
in M can be measured. This component is known as the geodesic curvature1

and is given by the projection of T̂ ′(s) on the tangent plane ofM:

κg(s) = T̂ ′(s) · (n̂(s)× T̂ (s))
= n̂(s) · (T̂ (s)× T̂ ′(s)) (2.71)

= ∂sθ(s)− ê1(s) · ∂sê2(s)

where we expressed T̂ in terms of the basis (ê1, ê2)using (2.63) again. Rewriting
equation (2.71) in terms of the parametrization (x1, x2), we find that we can
express the geodesic curvature as the projection of the covariant derivative of
θ on the tangent T̂ :

κg(s(�x)) =
(
�D(θ(�x))

) · T̂ (�x). (2.72)

1 The projection of T̂ ′(s) on n̂(s) is known as the normal curvature κn(s), and the total curva-
ture satisfies κ2 = κ2

g + κ2
n.
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Using Stokes’ Theorem to relate the surface integral over the curl of �Ω to the
line integral over the surface boundary of Ω, we have:∫

M

(
�∇× �Ω(�x)

) · d�S =
∮

∂M
�Ω(�x) · d�r, (2.73)

where d�S = n̂dS and d�r = T̂ ds. The surface integral over the Gaussian cur-
vature K and the line integral over the geodesic curvature κg thus add up to a
simple expression:∫

M
K dS +

∮
∂M

κg(s) ds =
∫
M
�∇× �Ω(�x) · d�S

+
∮

∂M

(
�∇θ(�x)− �Ω(�x)

) · d�r
=

∮
∂M

dθ(s)
ds

ds. (2.74)

If the boundary curve is smooth and does not intersect itself, it makes a sin-
gle closed loop, and the tangent vector T̂ rotates around the surface normal n̂
exactly once, so the integral over dθ/ds equals 2π. There could be kinks in the
boundary curve γ = ∂M, in which case we get 2π −∑

i(π −Δθi), with Δθi the
interior angle of the ith kink. Equation (2.74) is known as the Gauss-Bonnet
formula. It allows us to calculate the integral overK for a closed surface of any
genus (i.e., with any number of holes), by cutting it up into regular patches for
which equation (2.74) holds. Using such a decomposition, it readily follows
that for any regionR on an oriented surfaceM the following theorem is true.

Theorem 2.3 (Gauss-Bonnet) LetR be a region on an oriented surfaceM⊂ R
3

with piecewise continuous boundary γ. Then∫
R
K dS +

∮
γ

κg ds+
∑

i

(π −Δθi) = 2πχ(R), (2.75)

where the Δθi are the interior angles of γ and χ(R) is the Euler characteristic of
R. In particular, for a closed compact surfaceM of genus g we have∫

M
K dS = 2πχ = 4π(1− g). (2.76)

The proof of Theorem 2.3 sketched here is from Kamien [36]. An alterna-
tive proof using geodesic coordinate patches can be found in Millman and
Parker [33].

2.3.5 The Canham-Helfrich free energy functional

In this final section we return to the biological membrane and apply the re-
sults of this chapter to find a mathematical description for them. We derive
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an expression for the energy of a membrane and evaluate it for a few special
cases. We also give the general shape equation for a uniform membrane. For
nonuniform membranes, we apply the formalism to find both the equations
for uniform domains as well as their boundary conditions.

The Canham-Helfrich free energy functional describes the contribution to
the total free energy of a membrane due to the curvature of that membrane. A
special case was introduced by Canham in 1970 when studying the biconcave
shape of red blood cells [41]. The general expression was given by Helfrich in
1973 [42]. Of course the curvature energy must be coordinate invariant, which
means it must be expressed in terms of the principal curvatures introduced in
section 2.3.2, or equivalently in terms of the mean H and Gaussian K curva-
tures. The Canham-Helfrich curvature energy contains all possible linear and
quadratic terms in the principal curvatures, and is given by

Ecurv =
∫
M

(κ
2
(2H − C0)2 + κ̄K

)
dS. (2.77)

Here the physical parameters κ and κ̄ are the bending and Gaussian moduli
respectively. For a biological or biomimetic membrane consisting of various
types of lipids, they can be uniform throughout the membrane if the lipids are
well mixed, but they can also vary if the lipids separate into domains. The pa-
rameterC0 is the spontaneous curvature. The only term in (2.77) which is linear
in the principle curvatures scales with C0. The spontaneous curvature reflects
the possibility of an asymmetry between the two leaflets of the membrane.
For C0 = 0, all terms in (2.77) are quadratic in the principal curvatures and the
energy of a membrane patch is symmetric under reflections. Putting C0 �= 0
breaks this symmetry. We assume the spontaneous curvature to vanish in our
description of the experiments involving phase separation in biomimetic vesi-
cles, because there is no reason to assume an asymmetry between the leaflets
is introduced when making these vesicles by means of electroformation (see
appendix 4.A and [43] for details on the experimental procedures). Moreover,
in the experiments we use the membrane leaflets have had ample time to relax
any asymmetries that may still have formed by flipping lipids from one leaflet
to the other. Finally, the descriptions of the membrane shapes we obtain with
C0 = 0 give accurate fits to the experimental data, confirming that assum-
ing the spontaneous curvature to vanish in this case is justified. In contrast,
when the membrane contains proteins which have a nonsymmetric (typically
cone-like) shape, spontaneous curvature plays an important role and should
be included.

For vanishingC0, the Canham-Helfrich curvature energy (2.77) takes on the
simple form

Ecurv =
∫
M

(κ
2
(2H)2 + κ̄K

)
dS. (2.78)

In the case of a uniform and closed membrane without holes (i.e., with the
topology of a sphere), like that of a red blood cell, the Gauss-Bonnet theorem
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tells us that the integral over K is a constant, which we can simply subtract
from the total energy. In many papers, including the original one by Canham,
this term is therefore left out. For a membrane with piecewise constant com-
position (i.e., with patches in which the physical parameters are uniform), the
Gauss-Bonnet theorem tells us that the integral ofK over such a uniform patch
of membrane is related to a boundary term. Within the patch the only contri-
bution to the curvature energy is therefore given by the mean curvatureH .

Of course a membrane still has an area energy (2.28) like the soap films in
section 2.3.1 did. We can consider the area energy from two viewpoints: either
we take the total area of the membrane to be fixed (in which case we have a
constraint on the shape, and the area energy Earea is constant) or we use the
surface tension σ as a Lagrange multiplier for the membrane area A. In the
latter case, the total energy of a closed, single-component membrane without
holes can be written as

E = Ecurv + Earea =
∫
M

(κ
2
(2H)2 + σ

)
dS, (2.79)

where we have left out the constant contribution of the Gaussian curvature.
The shape that minimizes (2.79) for a given membrane surface area A is the
one that minimizes the overall mean curvature. It is a straightforward result
that that shape is the most regular one possible, namely the sphere of radius
R =

√A/4π. Interestingly, the curvature energy of such a sphere is indepen-
dent of its radius:

Ecurv =
κ

2

∫
M
(2H)2 dS =

κ

2

∫
M

(
1
R
+

1
R

)2

R2 dΩ = 8πκ. (2.80)

To get more interesting shapes, we should apply additional conditions. One
such condition is to actively perturb the membrane by exerting a point force on
a large spherical membrane vesicle. Experimental results show that applying
such a force on a ‘giant’ unilamellar vesicle (or GUV, with a radius of 10−50 μm)
results in the extraction of a cylindrical membrane tube with uniform cross
section [45]. In this case the total energy of the system is given by

E =
∫
M

(κ
2
(2H)2 + σ

)
dS − fL, (2.81)

where f is the applied force and L is the displacement of the point where the
force is attached in the direction of that force. Specifically, for a cylindrical
tube of radius R and length L equation (2.81) reads

Etube =
(
κ

2
1
R2

+ σ

)
2πRL− fL. (2.82)

Equation (2.82) shows a competition between two effects: the bending rigidity
term tries to increase the tube radius, whereas the surface tension term tries to
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Figure 2.2: Shape of red blood cells. (a) Micrograph of human red blood cells,
showing their distinct biconcave shape. Image courtesy of the National Insti-
tutes of Health (U.S.A.), scalebar 5 μm. (b) Numerically obtained shape of a
red blood cell, from the minimization of the bending energy (2.78), for a fixed
enclosed volume and membrane area. The calculations were performed using
the Surface Evolver software package by Brakke [44].

reduce it. A stable solution for an applied force f0 can be obtained by choosing
the proper radius R0 such that the two effects exactly cancel. The values of
f0 and R0 for given κ and σ are found from the stability condition that the
derivatives of Etube with respect to R and L should vanish. They give [46, 47]:

R0 =
√

κ

2σ
, (2.83)

f0 = 2π
√
2κσ. (2.84)

For typical values of κ ≈ 40 pN nm and σ = 0.05 pN/nm we get R0 ≈ 20 nm
and f0 ≈ 13 pN. The tube radius is thus several orders of magnitude smaller
than that of an experimental vesicle, which means that the implicit assump-
tions that any surface and volume constraints on the tube could be ignored,
were justified. In chapter 7 we study such tubes as they are extracted not by an
experimentally applied force, but by molecular motors.

An alternative additional condition is to fix the volume enclosed by the
membrane. The sphere is the shape that encloses the maximal volume given
its area; by forcing the volume to be less than that of a sphere we therefore cre-
ate some ‘excess area’. One particular such shape is the biconcave one of the
red blood cell, where the enclosed volume is about half that of the sphere with
the same area. Analytical expressions for such shapes are not easy to obtain,
but numerically minimizing the curvature energy of a uniform closed mem-
brane given an enclosed volume and total membrane area is a tractable task.
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The software package Surface Evolver by Brakke [44] does just that. Figure 2.2
shows an example numerical result, where we begin with an arbitrary shape
with the set amount of enclosed volume and surface area, and allow the curva-
ture energy to relax. In our numerical calculations, independent of the original
shape, we invariably retrieved the biconcave shape of the red blood cell.

In general, a differential equation for the mean curvature of a closed uni-
form vesicle with specified area and enclosed volume can be obtained through
variation analysis. The energy is in this case given by the (mean) curvature en-
ergy with two Lagrange multiplier terms, one for the area (where the multiplier
is the surface tension) and one for the volume (where the multiplier is the pres-
sure difference across the membrane):

E =
∫
M

(κ
2
(2H)2 + σ

)
dS + p

∫
dV (2.85)

The calculation of the first variation of this energy is lengthy but straightfor-
ward and was first performed by Ou-Yang and Helfrich [48]. The condition
that this variation should vanish for an equilibrium shape results in the shape
equation

p− 2σH + 4κH(H2 −K) + 2κΔH = 0, (2.86)

where

Δ =
1√
det g

∂i

(
gij

√
det g∂j

)
(2.87)

is the Laplace-Beltrami differential operator on the membrane surfaceM.

Equation (2.86) becomes a lot more tractable if we apply it to axisymmetric
vesicles. Such vesicles are completely specified by giving the contour shape
in a plane which contains the axis of rotation. Typically the axes of this plane
are labelled r (horizontal) and z (vertical), where the z-axis is the axis of ro-
tation. Because the contour is a curve in R

2 we can parametrize it using the
arc length along the contour from an arbitrary starting point, typically the top-
most point of the contour. The coordinates r(s) and z(s) of any point on the
contour are then related via the contact angle ψ(s) on any point of the contour
(see figure 2.1b):

ṙ =
dr
ds

= cosψ(s), (2.88)

ż =
dz
ds

= − sinψ(s). (2.89)

We can also express the mean and Gaussian curvatures and the Laplace-Bel-
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trami operator in terms of ψ(s) and r(s):

H = −1
2

(
ψ̇ +

sinψ(s)
r(s)

)
(2.90)

K =
sinψ(s)
r(s)

ψ̇ (2.91)

Δ =
∂2

∂s2
+
ṙ

r

∂

∂s
+

1
r2

∂2

∂φ2
− ṙ

r3
∂

∂φ
(2.92)

where φ is the polar angle, which runs from 0 to 2π. Substituting the axisym-
metric expressions in the shape equation (2.86) we obtain the third-order dif-
ferential equation for ψ(s) [49]:

...
ψ = −2 cosψ

r
ψ̈ − 1

2
ψ̇3 +

3 sinψ
2r

ψ̇2 +
3 cos2 ψ − 1

2r2
ψ̇

+
σ

κ
ψ̇ − cos2 ψ + 1

2r3
sinψ +

σ

κ

sinψ
r

− p

κ
. (2.93)

As was shown by Zheng and Liu [50], equation (2.93) can be written as a total
derivative, which can be integrated to give an equivalent second order differ-
ential equation for ψ(s):

ψ̈ cosψ = −1
2
sinψψ̇2 − cos2 ψ

r
ψ̇

+
cos2 ψ + 1

2r2
sinψ +

σ

κ
sinψ − p

κ
r. (2.94)

There is an alternative way of deriving the differential equations (2.93) and
(2.94), by writing the energy (2.85) as an action, or an integral over a Lagrangian
L = L(ψ, ψ̇, r, ṙ, z, ż). This approach has the advantage that it gives us the
proper differential equation for each axisymmetric patch of the vesicle sur-
face, and also the conditions at their boundaries [51, 52]. For a patch that runs
from s = s1 to s = s2 we have

E = 2πκ
∫ s2

s1

Lds, (2.95)

with

L =
r

2

(
ψ̇ +

sinψ
r

)2

+
σ

κ
r +

p

2κ
r2 sinψ

+γ(ṙ − cosψ) + η(ż + sinψ). (2.96)

In equation (2.96) we used (2.90) to express H in terms of ψ and added two
additional Lagrange multipliers γ and η to enforce the geometrical relations
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(2.88) and (2.89). Variation of the functional E with respect to the variables
ψ, r, z, γ and η gives their respective Euler-Lagrange equations, which for any
variable x read

d
ds
∂L
∂ẋ

− ∂L
∂x

= 0. (2.97)

From the variations with respect to the Lagrange multipliers γ and ηwe recover
(2.88) and (2.89). The other three Euler-Lagrange equations give the following
equations for the bulk of the patch:

ψ̈ =
cosψ sinψ

r2
− cosψ

r
ψ̇ +

p

2κ
r cosψ

γ

r
sinψ +

η

r
cosψ, (2.98)

γ̇ =
1
2
ψ̇2 − sin2 ψ

2r2
+
σ

κ
+
p

κ
r sinψ, (2.99)

η̇ = 0. (2.100)

There is an additional constraint which has to be taken into account, namely
that the variation of E with respect to variations in the contour length, or
equivalently the endpoints s1 and s2, should vanish. This condition is ac-
counted for by demanding that the HamiltonianH (defined below) should sat-
isfyH(s1) = H(s2) = 0. Because the Lagrangian L does not depend directly on
the arc length s, this implies that H should vanish everywhere. We therefore
get an additional equation:

H ≡ −L+ ψ̇
∂L
∂ψ̇

+ ṙ
∂L
∂ṙ

+ ż
∂L
∂ż

=
r

2

[
ψ̇2 −

(
sinψ
r

)2
]
− σ

κ
r − p

2κ
r2 sinψ (2.101)

+γ cosψ − η sinψ
= 0.

We can combine equations (2.98, 2.99, 2.100) and (2.101) to reproduce equa-
tion (2.93). First we rewrite (2.101) to obtain η, which we substitute in (2.98)
to get an expression for γ in terms of ψ. Differentiating that expression with
respect to s and relating it to (2.99) we find (2.93).

A large part of this thesis is dedicated to vesicles with multiple domains.
For such a vesicle, the energy given by equation (2.85) is incorrect, since it ig-
nores the Gaussian curvature, which by the Gauss-Bonnet theorem will give a
contribution at the domain boundary. The description of a phase separated
(i.e., containing multiple domains) vesicle is therefore more difficult but also
more interesting than that of a uniform vesicle. Moreover, as we study in detail
in chapter 3, phase separation into domains within the lipid membrane results
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in a line tension on the boundaries of those domains. We therefore add an ad-
ditional energy term which penalizes domain boundaries. The total energy of
an axisymmetric vesicle with two domains is then given by

E =
2∑

i=1

∫
Mi

(κi

2
(2H)2 + κ̄iK + σi

)
dS + p

∫
dV + τ

∮
∂M

dl, (2.102)

where the line tension τ on the boundary line between M1 and M2 plays a
role similar to that of the surface tension σ on the membrane area. Together,
M1 and M2 still form a closed surface. If we locate the boundary at s = 0,
the energy of each of the bulk parts is given by equation (2.95), but we get
additional contributions at the boundary due to the presence of a line tension
and a difference in Gaussian modulus. Using the Lagrangian formulation and
translating the Gaussian modulus term into a constant contribution (which we
ignore) plus a boundary term, we find

E = 2π
[
κ1

∫ 0

−sb

L1 ds+ κ2

∫ se

0

L2 ds+ τr0 +Δκ̄ cosψ0

]
. (2.103)

Here r0 and ψ0 are the vesicle radius and tangent angle at the domain bound-
ary (s = 0) respectively, Δκ̄ = κ̄2 − κ̄1 and the two domains run over (−sb, 0)
and (0, se). Colloquially we can refer to the domain boundary as the vesicle’s
equator and the extrema (at s = −sb and s = se) as its poles. The differential
equation describing the vesicle shape in each of the bulk domains is still given
by (2.94), as follows again readily from the Euler-Lagrange equations. Variation
of the free energy (2.103) also gives us the boundary conditions at the domain
boundary. By stationarity of E with respect to variations in r0 and ψ0 we obtain
the conditions [52]:

lim
ε↓0

∂L2

∂r
(ε)− lim

ε↑0
∂L1

∂r
(ε) = τ, (2.104)

lim
ε↓0

∂L2

∂ψ
(ε)− lim

ε↑0
∂L1

∂ψ
(ε) = −Δκ̄1 sinψ0, (2.105)

which translate into

lim
ε↓0

(γ(ε)− γ(−ε)) = τ, (2.106)

lim
ε↓0

(κ2ψ̇(ε)− κ1ψ̇(−ε)) = −(Δκ+Δκ̄)
sinψ0

r0
, (2.107)

where Δκ = κ2 − κ1. The boundary condition (2.106) combines with equa-
tion (2.98) to give a condition on the second derivative of ψ:

lim
ε↓0

(
κ2ψ̈(ε)− κ1ψ̈(−ε)

)
=

(
2Δκ+Δκ̄

)cosψ0 sinψ0

r20
+
sinψ0

r0
τ. (2.108)
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Alternatively, these boundary conditions can be derived by considering force
and torque balance [53]. Equations (2.107) and (2.108) tell us that there can
be discontinuities in ψ̈ and even ψ̇ at a membrane domain boundary if there
is a line tension τ between the domains or the bending or Gaussian moduli
are not equal in the different domains. These boundary conditions will play a
vital role in determining the shape of completely phase-separated membrane
vesicles in chapter 4. Their influence on the vesicle shape will provide us with
a tool with which we can measure the physical parameters τ and Δκ̄.

Apart from the possibly discontinuous boundary conditions on ψ̇ and ψ̈,
there are also conditions on r(s∗) andψ(s∗). Both should be continuous. If r(s)
is not continuous at s∗ there is a hole in the membrane; if ψ(s) is not continu-
ous there is a sharp kink which carries infinite curvature and therefore infinite
energy.
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