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Chapter 13

Anyonic interferometry without anyons: How a
flux qubit can read out a topological qubit

13.1 Introduction

A topological quantum computer makes use of a nonlocal way of storing quantum infor-
mation in order to protect it from errors [8, 9]. One promising way to realize the nonlo-
cality is to store the information inside the Abrikosov vortices that form when magnetic
field lines penetrate a superconductor. Abrikosov vortices can trap quasiparticles within
their normal core [135], which in special cases are anyons having non-Abelian statistics
[6, 139]. For this to happen, the vortex should have a midgap state of zero excitation
energy, known as a Majorana bound state. While vortices in a conventional s-wave su-
perconductor lack Majorana bound states, they are expected to appear [129–131, 257]
in the chiral p-wave superconductors that are currently being realized using topological
states of matter.

The method of choice to read out a nonlocally encoded qubit is interferometry
[175, 176]. A mobile anyon is split into a pair of partial waves upon tunneling, which
interfere after encircling an even number of stationary anyons. (There is no interference
if the number is odd.) The state of the qubit encoded in the stationary anyons can be read
out by measuring whether the interference is constructive or destructive. The supercon-
ducting implementation of this anyonic interferometry has been analyzed in different
setups [144–146, 261], which suffer from one and the same impediment: Abrikosov
vortices are massive objects that do not readily tunnel or split into partial waves.

The mass of an Abrikosov vortex is much larger than the bare electron mass because
it traps a large number of quasiparticles. (The enhancement factor is k3F �

2d , with d
the thickness of the superconductor along the vortex, � the superconducting coherence
length, and kF the Fermi wave vector [271].) There exist other ways to make Majorana
bound states in a superconductor (at the end-points of a semiconducting wire or elec-
trostatic line defect [132, 134, 207, 208]), but these also involve intrinsically classical
objects. If indeed Majorana bound states and classical motion go hand in hand, it would
seem that anyonic interferometry in a superconductor is ruled out — which would be
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bad news indeed.
Here we propose an alternative way to perform the interferometric read out, using

quantum Josephson vortices instead of classical Abrikosov vortices as the mobile parti-
cles. A Josephson vortex is a 2� twist of the phase of the order parameter, at constant
amplitude. Unlike an Abrikosov vortex, a Josephson vortex has no normal core so it
does not trap quasiparticles. Its mass is determined by the electrostatic charging energy
and is typically less than 1% of the electron mass [272]. Quantum tunneling and inter-
ference of Josephson vortices have been demonstrated experimentally [273, 274]. This
looks promising for anyonic interferometry, but since the Josephson vortex itself is not
an anyon (it lacks a Majorana bound state), one might object that we are attempting
anyonic interferometry without anyons. Let us see how this can be achieved, essentially
by using a non-topological flux qubit [275, 276] to read out the topological qubit.

We consider a Josephson junction circuit (see Fig. 13.1) which can exist in two
degenerate states jLi, jRi, distinguished by the phases �Li , �Ri of the order parameter
on the islands. The supercurrent flows to the left or to the right in state jLi and jRi,
so the circuit forms a flux qubit (or persistent current qubit). This is a non-topological
qubit.

13.2 Analysis of the setup

The topological qubit is formed by a pair of non-Abelian anyons in a superconducting
island, for example the midgap states in the core of a pair of Abrikosov vortices. The
two states j0i, j1i of the topological qubit are distinguished by the parity of the number
np of particles in the island. For np odd there is a zero-energy quasiparticle excitation
shared by the two midgap states. This qubit is called topological because it is insensitive
to local sources of decoherence (since a single vortex cannot tell whether its zero-energy
state is filled or empty).

To measure the parity of np , and hence read out the topological qubit, we make use of
the suppression of macroscopic quantum tunneling by the Aharonov-Casher (AC) effect
[276, 277]. Tunneling from jLi to jRi requires quantum phase slips. If the tunneling can
proceed along two path ways, distinguished by a 2� difference in the value of �R1 , then
the difference between the two tunneling paths amounts to the circulation of a Josephson
vortex around the island containing the topological qubit (dashed arrows in Fig. 13.1).

According to the Aharonov-Casher (AC) effect, a vortex encircling a superconduct-
ing island picks up a phase increment  AC D �q=e determined by the total charge q
coupled capacitively to the superconductor [278]. (The charge may be on the super-
conducting island itself, or on a nearby gate electrode.) If q is an odd multiple of the
electron charge e, the two tunneling paths interfere destructively, so the tunnel splitting
vanishes, while for an even multiple the interference is constructive and the tunnel split-
ting is maximal. A microwave measurement of the splitting of the flux qubit thus reads
out the topological qubit.

Since we only need to distinguish maximal from minimal tunnel splitting, the flux
qubit does not need to have a large quality factor (limited by 1=f charge noise from
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Figure 13.1: Circuit of three Josephson junctions a; b; c, two superconducting islands
1; 2, and a superconducting ring (enclosing a flux ˆ). A persistent current can flow
clockwise or counterclockwise. This flux qubit can read out the state of a topological
qubit stored in one of the two islands (white discs). Dashed arrows indicate the Joseph-
son vortex tunneling events that couple the two states of the flux qubit, leading to a
tunnel splitting that depends on the state of the topological qubit.

the gate electrodes). Moreover, the read out is insensitive to sub-gap excitations in the
superconductor — since these do not change the fermion parity np and therefore do not
couple to the flux qubit. This parity protection against sub-gap excitations is the key
advantage of flux qubit read-out [279].

Following Ref. [276] we assume that the ring is sufficiently small that the flux gen-
erated by the supercurrent can be neglected, so the enclosed fluxˆ equals the externally
applied flux. Junctions a and c are assumed to have the same critical current Icrit, while
junction b has critical current ˛Icrit. Because the phase differences across the three junc-
tions a; b; c sum to ı�a C ı�b C ı�c D 2�ˆ=ˆ0 (with ˆ0 D h=2e the flux quantum),
we may take ı�a and ı�c as independent variables. The charging energy EC D e2=2C
of the islands (with capacitance C ) is assumed to be small compared to the Josephson
coupling energy EJ D ˆ0Icrit=2� , to ensure that the phases are good quantum vari-
ables. The phase on the ring is pinned by grounding it, while the phases on the islands
can change by Josephson vortex tunneling events (quantum phase slips).

The superconducting energy of the ring equals

UJ D �EJ Œcos ı�a C cos ı�c
C ˛ cos.2�ˆ=ˆ0 � ı�a � ı�c/�: (13.1)

The states jLi and jRi correspond in the potential energy landscape of Fig. 13.2 to the
minima indicated by red and blue dots, respectively. Because phases that differ by 2�
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Figure 13.2: Contour plot of the potential energy (13.1) of the flux qubit for ˛ D 1:3

andˆ D ˆ0=2 (white is high potential, black is low potential). The red and blue dots in-
dicate the minima of clockwise or counterclockwise persistent current. All red dots and
all blue dots are equivalent, because the phase differences ı�a; ı�c across the Josephson
junctions are defined modulo 2� . Tunneling between two inequivalent minima occurs
predominantly along the two pathways indicated by the arrows.

are equivalent, all red dots represent equivalent states and so do all blue dots. For ˛ > 1
the minima are connected by two tunneling paths (arrows), differing by an increment of
C2� in ı�a and �2� in ı�c . The difference amounts to the circulation of a Josephson
vortex around both islands 1 and 2. The two interfering tunneling paths have the same
amplitude, because of the left-right symmetry of the circuit. Their phase difference is
 AC D �q=e, with q D

P
iD1;2

�
en
.i/
p C q

.i/
ext

�
the total charge on islands and gate

capacitors.
The interference produces an oscillatory tunnel splitting of the two levels˙1

2
�E of

the flux qubit,
�E D Etunnel

ˇ̌
cos. AC=2/

ˇ̌
: (13.2)

Tiwari and Stroud [276] have calculated Etunnel � 100�eV ' 1K for parameter
values representative of experimentally realized flux qubits [275] (EJ D 800�eV,
EC D 10�eV). They conclude that the tunnel splitting should be readily observable by
microwave absorption at temperatures in the 100mK range.

To read out the topological qubit one would first calibrate the charge q.1/ext C q
.2/
ext

on the two gate capacitors to zero, by maximizing the tunnel splitting in the absence of
vortices in the islands. A vortex pair in island 1 can bind a quasiparticle in the midgap
state, allowing for a nonzero n.1/p (while n.2/p remains zero without vortices in island
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Figure 13.3: Register of topological qubits, read out by a flux qubit in a superconducting
ring. The topological qubit is encoded in a pair of Majorana bound states (white dots)
at the interface between a topologically trivial (blue) and a topologically nontrivial (red)
section of an InAs wire. The flux qubit is encoded in the clockwise or counterclockwise
persistent current in the ring. Gate electrodes (grey) can be used to move the Majorana
bound states along the wire.

2). A measurement of the tunnel splitting then determines the parity of n.1/p (vanishing

when n.1/p is odd), and hence reads out the topological qubit.

13.3 Discussion

To implement this read-out scheme the absence of low-energy excitations near the Joseph-
son junction is desirable in order to minimize decoherence of the Josephson vortex as
it passes along the junction. The metallic edge states of a topological superconductor
are a source of low-energy excitations that one would like to keep away from the junc-
tion. So for the flux qubit we would choose a conventional (non-topological) s-wave
superconductor such as Al or Nb.

Since a vortex in a non-topological superconductor has no Majorana bound states,
we turn to one of the vortex-free alternatives [132, 134, 207, 208]. The “Majorana wire”
[207, 208] seems particularly suitable: A single-mode semiconducting InAs nanowire
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in a weak (0.1 T) parallel magnetic field is driven into a chiral p-wave superconducting
state by the interplay of spin-orbit coupling, Zeeman effect, and the proximity to an s-
wave superconductor. A pair of Majorana bound states is formed at the end points of
the wire, provided it is long compared to �. For that reason Nb (� . 40 nm) is to be
preferred over Al as superconducting substrate.

A long InAs wire running through a Josephson junction circuit could conveniently
form a register of topological qubits, as illustrated in Fig. 13.3. Gate electrodes (grey)
deplete sections of the wire (blue) such that they enter a topologically trivial phase,
producing a pair of Majorana bound states (white dots) at the end points of the topolog-
ically nontrivial sections (red). Each pair encodes one topological qubit, which can be
reversibly moved back and forth along the wire by adjusting, the gate voltage. (The wire
is not interrupted by the tunnel barriers, of thickness� �.) Once inside the circuit, the
tunnel splitting of the flux qubit measures the state of the topological qubit.

For a universal quantum computation the flux qubit read-out discussed here should
be combined with the ability to exchange adjacent Majorana bound states, using two
parallel registers [210]. This is the topologically protected part of the computation. In
addition, one needs to perform single-qubit rotations, which as a matter of principle lack
topological protection [8]. In the Appendix we show how the flux qubit can be used
for parity protected single-qubit rotations (by slowly increasing the flux through the ring
from zero to a value close to ˆ0=2 and back to zero).

In comparison with existing read-out schemes [9, 130, 144–146, 261, 280], there are
two key differences with the flux qubit read-out proposed here. Firstly, unlike proposals
based on the fusion of vortices, our scheme is nondestructive — meaning that the topo-
logical qubit remains available after the measurement (necessary for the realization of a
two-qubit cnot gate, see the Appendix).

Secondly, our use of coreless vortices to perform the interferometry provides protec-
tion against subgap excitations. This parity protection is essential because the operating
temperature would otherwise be restricted to unrealistically small values (below 0:1mK
for a typical Abrikosov vortex [135]). The characteristic temperature scale for flux qubit
read-out is larger by up to three orders of magnitude.

13.A How a flux qubit enables parity-protected quan-
tum computation with topological qubits

13.A.1 Overview

In the main text we discussed the read out of a topological qubit by coupling it to a flux
qubit through the Aharonov-Casher effect. This read out is nondestructive (the topologi-
cal qubit remains available after the read out) and insensitive to subgap excitations (since
these do not change the fermion parity). In this Appendix we show, in Sec. 13.A.3, how
flux qubit read-out supplemented by braiding operations [210] provides the topologi-
cally protected part of a quantum computation (in the form of a cnot gate acting on a
pair of qubits).
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For a universal quantum computer, one needs additionally to be able to perform
single qubit rotations of the form

j0i C j1i 7! e�i�=2j0i C ei�=2j1i: (13.3)

(Such a rotation over an angle � is also called a �=2 phase gate.) In general (for � not
equal to a multiple of �=2), this part of the quantum computation is not topologically
protected. A more limited protection against subgap excitations, which do not change
the fermion parity, is still possible [279]. We will show in Sec. 13.A.4 how the flux qubit
provides a way to perform parity-protected rotations.

In order to make this Appendix self-contained, we first summarize in Sec. 13.A.2
some background information on topological quantum computation with Majorana fer-
mions [8]. Then we discuss the topologically protected cnot gate and the parity-
protected single-qubit rotation.

13.A.2 Background information

Encoding of a qubit in four Majorana fermions

In the main text we considered a qubit formed out of a pair of Majorana bound states.
The two states j0i and j1i of this elementary qubit differ by fermion parity, which pre-
vents the creation of a coherent superposition. For a quantum computation we combine
two elementary qubits into a single logical qubit, consisting of four Majorana bound
states. Without loss of generality we can assume that the joint fermion parity is even.
The two states of the logical qubit are then encoded as j00i and j11i. These two states
have the same fermion parity, so coherent superpositions are allowed.

The four Majorana operators i (i D 1; 2; 3; 4) satisfy �i D i , 2i D
1
2

, and
the anticommutation relation fi ; j g D ıij . They can be combined into two complex
fermion operators,

a1 D
1 C i2
p
2

; a2 D
3 C i4
p
2

; (13.4)

which satisfy fai ; a
�
j g D ıij . The fermion parity operator

2a
�
1a1 � 1 D 2i12 (13.5)

has eigenvalues �1 andC1 in states j0i and j1i, respectively.
Pauli operators in the computational basis j00i; j11i can be constructed as usual from

the a; a� operators, and then expressed in terms of the  operators as follows:

�x D �2i23; �y D 2i13; �z D �2i12: (13.6)

Measurement in the computational basis

An arbitrary state j i of the logical qubit has the form

j i D ˛j00i C ˇj11i; j˛j2 C jˇj2 D 1: (13.7)
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A measurement in the computational basis projects j i on the states j00i or j11i. This
is a fermion parity measurement of one of the two fundamental qubits that encode the
logical qubit.

Referring to the geometry of Fig. 13.3, one would perform such a nondestructive
projective measurement (called a quantum nondemolition measurement) by moving the
Majorana fermions 1; 2 along the InAs wire into the Josephson junction circuit, while
keeping the Majorana fermions 3; 4 outside of the circuit. Read out of the flux qubit
would then measure the fermion parity of the first fundamental qubit, thereby projecting
the logical qubit onto the states j00i or j11i.

Braiding of Majorana fermions

The Majorana bound states in the geometry of Fig. 13.3 are separated by insulating
regions on a single InAs wire, so they cannot be exchanged. The exchange of Majorana
fermions, called “braiding” is needed to demonstrate their non-Abelian statistics. It is
also an essential ingredient of a topologically protected quantum computation. In order
to be able to exchange the Majorana bound states one can use a second InAs wire,
running parallel to the first and connected to it by side branches. Braiding of Majorana
fermions in this “railroad track” geometry has been studied recently by Alicea et al.
[210]. We refer to their paper for the details of this implementation and in the following
just assume that adjacent Majorana bound states can be exchanged as needed.

The counterclockwise exchange of Majorana fermions j < j 0 implements the oper-
ator [6, 139]

�jj 0 D 2
�1=2.1 � 2j j 0/ D e

.i�=4/.2ij j 0 /: (13.8)

Using Eq. (13.6), we conclude that braiding generates the operations expŒ˙.i�=4/�k �
(k D x; y; z). These �=2 rotations (or �=4 phase gates) are the only single-qubit oper-
ations that can be generated in a topologically protected way [8].

13.A.3 Topologically protected CNOT gate

The controlled-not (cnot) two-qubit gate can be carried out in a topologically protected
way by the combination of braiding and fermion parity measurements, along the lines
set out by Bravyi and Kitaev [281].

The computational basis, constructed from the first logical qubit formed by Majorana
operators 1; 2; 3; 4 and the second logical qubit 5; 6; 7; 8, consists of the four
states

j00ij00i; j00ij11i; j11ij00i; j11ij11i: (13.9)

The first and second kets represent the first and second logical qubits, respectively, and
the two states within each ket represent the two fundamental qubits. In this basis, the



13.A How a flux qubit enables Parity-protected quantum computation. . . 185

cnot gate has the matrix form

cnot D

0BB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1CCA : (13.10)

In words, the second logical qubit (the target) is flipped if the first logical qubit (the
control) is in the state j11i, otherwise it is left unchanged.

For a topologically protected implementation one needs an extra pair of Majorana
fermions 9; 10 (ancilla’s), that can be measured jointly with the Majorana fermions
1; : : : 8. The cnot gate can be constructed from �=2 rotations (performed by braid-
ing), together with measurements of the fermion parity operator .2iij /.2ikl / of
sets of four Majorana fermions [281]. Because the measurements include Majorana
fermions from the computational set 1; : : : 8 (not just the ancilla’s), it is essential that
they are nondestructive.

Referring to Fig. 13.3, such a nondestructive joint parity measurement can be per-
formed by moving the four Majorana bound states i; j; k; l into the Josephson junction
circuit. (The double wire geometry of Ref. [210] would be used to bring the bound states
in the required order.) Read out of the flux qubit then projects the system onto the two
eigenstates of .2iij /.2ikl / of definite joint parity.

13.A.4 Parity-protected single-qubit rotation

From topological protection to parity protection

There is a relatively small set of unitary operations that one needs in order to be able to
perform an arbitrary quantum computation. One needs the cnot two-qubit gate, which
can be done in a topologically protected way by braiding and read out as discussed in
Sec. 13.A.3. One needs �=2 single-qubit rotations (�=4 phase gates), which can also
be done with topological protection by braiding (Sec. 13.A.2). These socalled Clifford
gates can be efficiently simulated on a classical computer, and are therefore not suffi-
cient.

One more gate is needed for a quantum computer, the �=4 single-qubit rotation
(�=8 phase gate). This operation cannot be performed by braiding and read out — at
least not without changing the topology of the system during the operation [282, 283]
and incurring both technological and fundamental obstacles1 [284]. As an alternative to
full topological protection, we propose here a parity-protected �=4 rotation.

Braiding and read out are topologically protected operations, which means firstly
that they are insensitive to local sources of decoherence and secondly that they can be

1As first shown by Bravyi and Kitaev (2001, unpublished) in an abstract formulation, a topologically
protected �=4 rotation of a single qubit can be performed in higher genus topologies (like a torus). To use this
approach in condensed matter systems is problematic for obvious technological reasons, but also because of a
more subtle and fundamental obstacle: Topolgical superconductors and Moore-Read quantum Hall phases of
a higher genus lack a degenerate ground state [284].
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carried out exactly. (As discussed in Sec. 13.A.2, exchange of two Majorana fermions
rotates the qubit by exactly �=2.) The �=4 rotation lacks the second benefit of topo-
logical protection, so it is an approximate operation, but the first benefit can remain to
a large extent if we use a flux qubit to perform the rotation in a parity protected way,
insensitive to subgap excitations.

The straightforward approach to single-qubit rotations is partial fusion, which lacks
parity protection: One would bring two vortices close together for a short time t , and let
the tunnel splitting ıE impose a phase difference � D tıE=„ between the two states j0i
and j1i. The result is the rotation (13.3), but only if the vortices remain in the ground
state. The minigap in a vortex core is smaller than the bulk superconducting gap�0 by a
large factor kF �, so this is a severe restriction (although there might be ways to increase
the minigap2 [137, 285]). An alternative to partial fusion using edge state interferometry
has been suggested [286] in the context of the Moore-Read state of the � D 5=2 quantum
Hall effect [5], where parity protection may be less urgent.

Like the parity-protected read-out discussed in the main text, our parity-protected
�=4 rotation uses the coupling of a flux qubit to the topological qubit. The coupling
results from the Aharonov-Casher effect, so it is insensitive to any any other degree of
freedom of the topological qubit than its fermion parity. The operation lacks topological
protection and is therefore not exact (the rotation angle is not exactly �=4). It can be
combined with the distillation protocol of Bravyi and Kitaev [287, 288], which allows
for error correction with a relatively large tolerance (error rates as large as 10% are
permitted).

Method

As explained in Sec. 13.A.2, we start from a logical qubit encoded as j00i, j11i in the
four Majorana fermions 1; 2; 3; 4. We bring the Majorana bound states 1 and 2 into
the Josephson junction circuit, keeping 3 and 4 outside. The effective Hamiltonian of
the Josephson junction circuit is

H D �1
2
" �z C

1
2
�E �x ; (13.11)

with energy levels

E˙ D ˙
1
2

p
"2 C�E2: (13.12)

The Pauli matrices �i act on the two states jLi, jRi of the flux qubit (states of clock-
wise and counterclockwise circulating persistent current). In the absence of tunnel-
ing between these two states, their energy difference " D "0.ˆ=ˆ0 � 1=2/ (with
"0 D 4�EJ

p
1 � 1=4˛2) vanishes when the flux ˆ through the ring equals half a flux

quantum ˆ0 D h=2e. Tunneling leads to a splitting �E given by Eq. (13.2).

2In a semiconductor-superconductor multilayer there may be ways to increase the minigap, if one can
somehow control the strength of the proximity effect and the work function difference between the semicon-
ductor and the superconductor [137]. In p-wave superfluids the minigap may be increased by going to the
regime of small chemical potential, near the transition to a strongly paired phase [285].
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Parity protection means that the Majorana bound states 1 and 2 appear in H only
through their fermion parity np , which determines �E D �E.np/ through the Ahar-
onov-Casher phase. Subgap excitations preserve fermion parity, so they do not enter
into H and cannot cause errors.

To perform the single-qubit rotation, we start at time t D 0 from a flux ˆ far from
ˆ0=2, when j"j � �E. Then the state jLi is the ground state of the flux qubit and
the coupling to the topological qubit is switched off. The flux ˆ.t/ is changed slowly to
values close toˆ0=2 at t D tf =2 and then brought back to its initial value at time t D tf .
The variation of ˆ should be sufficiently slow (adiabatic) that the flux qubit remains in
the ground state, so its final state is jLi times a dynamical phase ei'.np/ dependent on
the fermion parity of the first of the two topological qubits that encode the logical qubit.

The initial state j‰i i D .˛j00i C ˇj11i/jLi of flux qubit and logical qubit is there-
fore transformed into

j‰i i 7! j‰f i D
�
ei'.0/˛j00i C ei'.1/ˇj11i

�
jLi: (13.13)

By adjusting the variation of ˆ.t/ we can ensure that '.1/ � '.0/ D �=8, thereby
realizing the desired �=4 rotation.

Example

As an example, we vary the flux linearly in time according to

ˆ.t/

ˆ0
�
1

2
D �

E0 C �jt � tf =2j

"0
; (13.14)

) E˙ D ˙
1
2

q
.E0 C �jt � tf =2j/2 C�E2: (13.15)

We assume qext D 0, so �E.1/ D 0 and �E.0/ D Etunnel. We take E0 � Etunnel, for
weak coupling between flux qubit and topological qubit. The condition for the adiabatic
approximation [289] then takes the formˇ̌̌̌

„

2E2�

dE�

dt

ˇ̌̌̌
tDtf =2

�
„�

E20
� 1: (13.16)

From time t D 0 to t D tf , the flux qubit accumulates the dynamical phase factor

'.np/ D „
�1

Z tf

0

dt E�.t; np/: (13.17)

To leading order in the small parameter Etunnel=E0 we find

�.1/ � �.0/ D
E2tunnel

2„�
ln.1C �tf =2E0/: (13.18)

By choosing

tf D
2E0

�

�
exp

�
1
4
�„�=E2tunnel

�
� 1

�
(13.19)
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we implement a �=4 rotation.
In order to maximally decouple the flux qubit from the topological qubit at the start

and at the end of the operation, we take ˆ.t/ D 0 at t D 0 and t D tf . In view of Eq.
(13.14), this requires �tf D "0 � 2E0. Substitution into Eq. (13.19) gives the desired
optimal value of �,

�opt D .4=�„/E
2
tunnel ln."0=2E0/; (13.20)

still consistent with the adiabaticity requirement (13.16). For Etunnel � E0 � "0 the
entire operation then has a duration of order „"0=E2tunnel, up to a logarithmic factor.
The quality factor of the flux qubit should thus be larger than ."0=Etunnel/

2 ' EJ =EC
(typically' 102).


