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Chapter 11

Theory of non-Abelian Fabry-Perot
interferometry in topological insulators

11.1 Introduction

One of the most promising tools in topological quantum computing [8, 9] is non-Abelian
edge state interferometry [174–176]. Its main idea is that moving a fractional excitation
(anyon) existing at an edge of a topological medium around localized anyons in the
bulk allows to extract information about the state of the latter. The theory of edge state
interferometry was initially developed for Ising anyons in the 5/2 fractional quantum
Hall (FQH) state and p-wave superconductors [174–176, 182], building on earlier work
on FQH systems [5, 6, 231, 232]. Recent experiments [173], which provide evidence
for non-Abelian braiding statistics in the 5/2 FQH state (see the detailed discussion in
Ref. [233]) are using this method, and it is generally considered the most promising way
to measure the state of topological qubits.

We present a theory of non-Abelian edge state interferometry of the Majorana modes
existing at the surface of a 3D topological insulator brought in contact with an s-wave
superconductor and a ferromagnetic insulator [130]. The main difference of an interfer-
ometry setup in this system, as compared with 5/2 FQH interferometer, is the need for an
additional “Dirac to Majorana converter” [144, 145]. This element is required because
unlike in the FQH effect the edge excitations near a superconductor carry no charge and
thus allow no electric readout. This converter initially transforms the charged excitations
injected from a current source into superpositions of two neutral excitations existing at
different edges of the superconductor. Later another converter recombines a pair of neu-
tral excitations exiting the interferometer into a charged particle, either an electron or a
hole, that can be measured as a current pulse. The difference between the two systems
is summarized in Fig. 11.1. The “Dirac to Majorana converter” is not available in chi-
ral p-wave superconductors, since the chirality of the neutral edge modes is then set by
time-reversal symmetry breaking in the condensate, and not by the external region of
the system (magnet). Such a limitation combined with the absence of charged modes
makes electric readout of interferometry experiment much less viable in a chiral p-wave
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superconductor.
The description of the “Dirac to Majorana converter” using single particle formalism

was done in Refs. [144, 145]. The qualitative description of the non-Abelian Fabry-Perot
interferometer was presented in Ref. [145]. In this chapter we use conformal field theory
(CFT) to describe and analyze the non-Abelian excitations following Ref. [182].

An important difference between the systems is the following: In the 5/2 FQH ef-
fect the charge density and accordingly charge current of anyons may be defined locally,
since anyons have charge e=4 or e=2 in this system. Excitation of charge e� has an
energy cost of e�V for being created in the system. This energy cost provides a natural
cutoff for the current, whereas in the superconducting systems due to the absence of
charge in the edge excitations the only cutoff is set by the finite temperature. The neu-
trality of the edge excitations does not only mean that a finite voltage does not provide
a cutoff for the conductance, but also results in a different temperature scaling exponent
of the conductance. In the topological insulator setup the conductance diverges at low
temperatures as � � T �7=4, while in the FQH setup it goes as � � T �3=2.

The experimental requirements for a realization of edge state interferometry in topo-
logical insulators were discussed in Refs. [144] and [145]. An additional requirement
for non-Abelian interferometry is the need for a sufficiently high amplitude of the vortex
tunneling, �� � exp.�

p
EC =EJ /, with EJ the Josephson energy and EC the charging

energy. It is non-negligible only if the superconducting islands in the system have small
capacitive energy EC [183].

The outline of this chapter is as follows: In Sec. 11.2 we introduce the effective
model that we use to describe the fermions that propagate along magnetic domain walls
and the superconducting-magnet domain walls. In particular we introduce the represen-
tation of these fermions in terms of Majorana fields, which we use later. In Sec. 11.3 we
review the linear response formula that we use to calculate the non-local conductance,
the experimentally relevant quantity that we are interested in. In Sec. 11.4 we give a
detailed account of the perturbative calculation of the conductance, and we consider the
most interesting case of vortex tunneling in Sec. 11.5. In Sec. 11.6 we show how the
proposed setup can be used to measure the fermion parity (and hence the topological
charge) of the Majorana qubit that is stored in a pair of bulk vortices. Our conclusions
are to be found in Sec. 11.7. We provide a detailed description of the formalism that we
use to describe the peculiar vortex field in the appendices.

11.2 Chiral fermions

11.2.1 Domain wall fermions

It is known that there exists a single chiral fermion mode on each mass domain wall in
the 2D Dirac equation. This mode is localized near the domain wall but is allowed to
propagate along the domain wall in only one direction (hence the name chiral). This
is most easily seen using an index theorem that relates the difference in a topological
number ( QN3 in the language of Ref. [234]) between the two domains and the difference
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Figure 11.1: Edge state Fabry-Perot interferometer in the 5/2 FQH system (top panel)
and in a topological insulator/s-wave superconductor heterostructure (bottom panel).
The charge is transferred locally at the tunneling point in FQH effect, and is only well-
defined in the ferromagnetic domain walls (i.e. the leads) in the topological insulator
setup. Regions labeled S ,M", andM# denote parts of topological insulator in proximity
of a superconductor and of ferromagnetic insulators with different polarizations. Grey
circles in the middle of the central island are Majorana bound states forming a Majorana
qubit, which can be measured by the interferometer.

in the number of right- and left-moving states that live in the domain wall [234]. In the
ferromagnetic domain wall that we are interested in the change in QN3 across the domain
wall is˙1. If the domain wall is also abrupt enough then only one chiral fermion exists
in the domain wall.

A similar argument can be made using the Dirac-Bogoliubov-de Gennes (BdG)
equation with gaps generated by the superconducting order parameter�. In the case that
we consider (s-wave pairing) QN3 is zero if the gap is dominated by the superconducting
gap j�j and non-zero (˙1) when the gap is of ferromagnetic character. Because of the
double counting of states in the BdG equation this implies that 1

2
of a chiral fermion

state exists on a superconducting-magnetic domain wall. This is exactly the number of
degrees of freedom that is encoded in a chiral Majorana fermion field.

Alternatively one can argue for the existence of these states by solving the BdG
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equation explicitly for certain simple domain wall profiles or use k �p theory [144]. We
now proceed to a theoretical description of these states. In particular we will see that it
is fruitful to describe both kinds of domain walls in terms of Majorana fields.

11.2.2 Theoretical description

In the leads (ferromagnetic domain walls), where the superconducting order parameter
vanishes, the system consists of a single normal edge state which propagates in only
one direction, i.e. a single chiral charged mode. This can be described by a complex
fermionic field O‰.x/ with Hamiltonian

H.t/ D
1

2�

Z
dx W O‰�.x/Œvpx � �.x; t/� O‰.x/ W : (11.1)

Here W W denotes normal ordering. We use units such that „ D 1 unless specified other-
wise. The kinetic energy operator vpx is defined as

vpx D i

 

@xv.x/ � v.x/
!

@x

2
! �i

p
v.x/

!

@x
p
v.x/; (11.2)

where we have introduced the spatially varying velocity v.x/ in a symmetric way such
that vpx is a Hermitean operator. The stationary (energy E) solution to the time-
dependent Schrödinger equation corresponding to Eq. (11.1) for zero chemical potential
� D 0 is

‰E .x; t/ D

s
v.0/

v.x/
exp

�
iE
hZ x

0

dx0

v.x0/
� t
i�
‰E .0; 0/: (11.3)

This implies that

h O‰.x; t/ O‰�.0; 0/i D
Œv.x/v.0/��1=2

aC i
�
t �

R x
0
dx0=v.x0/

� ; (11.4)

where a is a short time cutoff which should be taken to zero. If the velocity v is constant
the result simplifies to

vh O‰.x; t/ O‰�.0; 0/i D
1

aC i.t � x=v/
�

1

aC iu
: (11.5)

The normalization in Eq. (11.1) is chosen to yield this result without any extra normal-
ization factors. Note that it implies (in the limit a ! 0C) that the anti-commutation
relation for the field is f O‰.x/; O‰�.x0/g D 2�ı.x � x0/.

An important consequence of the chiral nature of the excitations is that the correla-
tion functions only depend on the difference of the Lorentz time u D t�x=v. According
to Eq. (11.4) the same is true also for a spatially varying velocity with the proper inter-
pretation of the length difference. Because of this property we will mostly work with a
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spatially homogeneous velocity that we will set to unity (v D 1) in the following calcu-
lations. It is also useful to go from the Hamiltonian to the corresponding Lagrangian

L D
1

2�

Z
dx W O‰�.x/Œi@t � vpx C �.x; t/� O‰.x/ W; (11.6)

since the coupling to the gauge field is most transparent in this formalism.

11.2.3 Majorana fermion representation

We can decompose O‰.x/ into independent Majorana fields .x/ D  �.x/ and 0�.x/ D
 0.x/ as

O‰.x; t/ D
eiA.x;t/
p
2
Œ .x; t/C i 0.x; t/�: (11.7)

The anti-commutation relations of the Majorana fields are

f .x/;  .x0/g D f 0.x/;  0.x0/g D 2�ı.x � x0/; f .x/;  0.x0/g D 0: (11.8)

In terms of  and  0 the Lagrangian becomes

L D
1

4�

Z
dx
�
W .x/.i@t � vpx/ .x/ W C W 

0.x/.i@t � vpx/ 
0.x/ W

�
C
ie

2�

Z
dxF.x; t/v.x/ 0.x/ .x/; (11.9)

where F.x; t/ depends on the phase A.x; t/, i.e. it is gauge dependent:

� eF.x; t/ D
�.x; t/

v.x/
�

1

v.x/
@tA.x; t/ � @xA.x; t/: (11.10)

Note that this means that a time-independent spatially varying chemical potential can be
gauged away up to possible boundary terms.

One of the most interesting features of the system that we consider is that the two
Majorana fields that appear in this action can becomes spatially separated when a su-
perconducting region is sandwiched in between the two magnetic regions in a magnetic
domain wall as discussed previously. Thus the action in Eq. (11.9) can be used to de-
scribe the setup in Fig. 11.2, in which the two Majorana fields  and  0 are spatially
separated inside of the interferometer. It is important to remember that the coordinate
systems of the two fields are different in this representation.

From the Lagrangian and the coupling to the gauge field we now identify the charge
current operator as

OJ .x/ D
�ev.x/

2�
W O‰�.x/ O‰.x/ WD

ie

2�
v.x/ 0.x/ .x/: (11.11)

This form of the current operator in terms of the Majorana fields is very important for
the following calculations. It is only well-defined if the two Majorana modes are at
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Figure 11.2: Free fermion propagation setup. The two Majorana modes  and  0 are
spatially separated by the superconducting region. Thus the effective propagation length
from in to out can be different for the two modes, i.e. L0 ¤ L.

the same position in space, hence there is no coupling to the electric field inside of
the interferometer where the two Majorana wires are spatially separated. This is also an
important difference between the FQH setup where local charge current operators can be
defined at the tunneling point contacts. This simplifies the calculation because the local
charge transfer is directly related to the measurements done far away. In our system we
don’t have this luxury and must consider the leads explicitly.

11.3 Linear response formalism for the conductance

If we write the Lagrangian in Eq. (11.9) as L D L0 �H 0.t/, where the term on the last
line is

H 0.t/ D �

Z
dx OJ .x; t/F.x; t/; (11.12)

we are in the position to use the standard linear response Kubo formula [235], to calcu-
late the conductance tensor � . Following Ref. [236] we introduce an AC chemical po-
tential localized in the source lead, which we take to have coordinates x < 0. We choose
a constant gauge A.x; t/ D A so that F.x; t/ D �‚.�x/ cos.�t/e�ıjt jV=v.x/.1 The
conductance � is defined as the magnitude of the in-phase current divided by the applied
voltage difference V . Following the usual steps, with the current operator in Eq. (11.11)
and assuming that the two Majorana modes are independent, we obtain the formula

� D
e2

�h
lim

�;ı!0C

Z 1
0

dt 0
Z 1
0

dt ImŒG>jiG
>
j 0i 0 � cos.�t/e�ıt : (11.13)

1Other gauges are also commonly used. Another choice, used e.g. in Refs. [237] and [238], is to use a
source that is localized in the region of space where the potential is changing.
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Here we have reintroduced the correct units of conductance e2=h. We have also used
the fact that in a chiral system the response in the region x > 0 to a spatially uniform
extended source x � 0 at a particular time t 0 D 0 is equivalent to the response to a
point source at x D 0 that is on for t 0 � 0. The important quantities to calculate are the
Green’s functions

G>ji � h .y; t/ .0; t 0/i � h j i i; (11.14a)

G>j 0i 0 � h 0.y0; t / 0.00; t 0/i � h 0j 0 
0
i 0i: (11.14b)

Here the indexes i and j are shorthands for the coordinates of the source .0; t 0/ and cur-
rent measurement .y; t/. Similarly for the primed coordinate system, which is typically
not the same in the setups that we consider as discussed previously.

Because the correlation functions only depends on t � t 0 it is possible to perform the
integral over t C t 0 in Eq. (11.13) explicitly, the resulting expression is

� D �
e2

�h

Z 1
0

dt ImŒG>jiG
>
j 0i 0 �t; (11.15)

where it is understood that the source term is taken at t 0 D 0. Here we have also used
the fact that the correct limit is to take ı ! 0C first and then � ! 0. Because we are
interested in the finite temperature result the cut-off provided by the thermal length is
enough to render the expression convergent. This is the master formula that we will use
to calculate the conductance in the following.

If both Majorana modes propagates freely (the setup is sketched in Fig. 11.2) we can
use the finite temperature propagator

G>j 0i 0 D
1

zj 0i 0
�

�T

sin�T ŒaC iuj 0i 0 �
D

a!0C
�ı.uj 0i 0/ � iP

�T

sinh.�T uj 0i 0/
; (11.16)

where uj 0i 0 D t � L0. The Green’s function of the other edge G>ji is given by the same
expression with L (the effective length of propagation) instead of L0. Substituting the
expressions for the Green’s functions into Eq. (11.15) we obtain

� D
e2

h

�T .L � L0/

sinhŒ�T .L � L0/�
; (11.17)

in the limit a! 0C. This formula agrees with the linear response limit of the the result
obtained with the scattering formalism in Ref. [144], and shows how the path difference
enters in the finite temperature case.

To obtain the response in the source lead we take the limit L0 ! L with the result
that

� D
e2

h
: (11.18)

This is the expected (and correct) result for a system with one propagating channel. If
L0 ¤ L we also obtain Eq. (11.18) as long as T jL � L0j � 1, in the zero temperature
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limit the result is thus independent of the path length difference. The Eq. (11.18) agrees
with the limit V ! 0 of the previous results [144, 145], which were based on the
scattering formalism.

This calculation explicitly demonstrates how the “Dirac to Majorana converter”
operates. The most intuitive way to understand it is to study the current operator in
Eq. (11.11). In the usual (Dirac) picture it corresponds to the creation of an electron-
hole pair. It can also be interpreted as the creation of a pair of Majorana excitations
in the normal wire. When these excitations approach the superconductor they become
spatially separated, as demonstrated in Fig. 11.2, but they can only be measured by
simultaneously annihilating them in the drain lead.

In the following two sections we will keep one of the Majorana wires as a “reference
Majorana” that propagates freely along one edge. The other “active Majorana” will have
to tunnel through the bulk to go to the drain and contribute to the current. Tunneling can
take place either as a fermion (Sec. 11.4) or as a pair of vortices (Sec. 11.5).

11.4 Perturbative formulation

In tunneling problems we want to calculate the Green’s function G>ji D h j i i, where
 i and  j live on different edges of the sample, in the presence of a perturbation ıH
that couples the two edges. Assuming that the system is in a known state at time t0, we
may express the expectation value in the interaction picture as

G>ji D hU.t0; t / j .t/U.t; 0/ i .0/U.0; t0/i: (11.19)

Here U.t; t 0/ is the time evolution operator in the interaction picture. For t � t 0 it is
given by the familiar time-ordered exponential U.t; t 0/ D T expŒ�i

R t
t 0
dsıH.s/�.

In the following we will assume that the average at t D t0 is a thermal one at
temperature T . A perturbative expansion is obtained by expanding the time-ordered and
anti-time-ordered exponentials in this expression in powers of ıH . This procedure is
equivalent to the Schwinger-Keldysh formalism, which in addition provides a scheme
to keep track of whether one is propagating forward or backward in time. We will also
assume that the perturbation was turned on in the infinite past, i.e. we set t0 D �1.

As a warm-up for the vortex tunneling calculation we will now consider the simpler
case of fermion tunneling, described by a tunneling term H .t1/ D i�  2 1=.2�/ as
in Ref. [182]. Here  1 ( 2) is located at the tunneling point at the upper (lower) edge.
The system and the coordinate convention we use are sketched in Fig. 11.3. The leading
contribution to conductance comes at first order in the tunneling amplitude � . After a
straightforward expansion and collection of terms we obtain

G>ji D
� 

2�

Z t

�1

dt1f j ;  2gh 1 i i�
� 

2�

Z 0

�1

dt1f i ;  1gh j 2iCO.�2 /: (11.20)

Here we have used the fact that the two groups of fermions on different edges, i.e
( j , 2) and ( i , 1), are independent. It is straightforward to evaluate this expression
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using Eq. (11.16) together with f i ;  1g D 2�ı.u1i /, and f j ;  2g D 2�ı.u2j /, where
u1i D t1�Ltop and u2j D t1� t CLbottom. Because of the geometry of the problem the
second term on the right hand side of Eq. (11.20) vanishes due to causality (the Lorentz
time arguments never coincide). The Green’s function G>ji to leading order in tunneling
strength is therefore

G>ji D � 
�T

sin�T ŒaC i.t � L/�
; (11.21)

where L D Ltop C Lbottom is the effective propagation length of the Majorana fermion.
Using the result of Sec. 11.3 we then find that the conductance of this setup is

� D � 
e2

h
; (11.22)

at T D 0. Once again this result agrees with the zero frequency, zero voltage limit of
the results obtained with the scattering method in previous work [144, 145].

Figure 11.3: Top panel: fermion tunneling setup. The coordinate conventions used in
Sec. 11.4 are shown in the bottom panel.

11.5 Vortex tunneling

The main focus of this chapter is to study how the tunneling of a pair of vortices can ef-
fectively transfer a fermion, and hence give a contribution to the conductance. Schemat-
ically the vortex tunneling term can be written as

H� D ���b.x/�t .x
0/; (11.23)
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where the index t (b) denotes the top (bottom) edge. As it stands this term is not well-
defined without more information about the two spin fields � , this is discussed in great
detail in Ref. [182]. We provide a detailed description of the formalism that we use to
deal with this issue in the appendixes.

11.5.1 Coordinate conventions

To have a well-defined prescription for the commutation relation of fields on different
edges we will treat the two edges as spatially separated parts of the same edge. This
reasoning has been employed in a number of works studying tunneling in the FQH effect,
see for example Refs. [239] and [240]. This approach leaves a gauge ambiguity: should
we choose the bottom edge to have spatial coordinates smaller or larger than that of the
top edge? The correct choice is fixed by noting that the current operator at the source
should commute with the vortex tunneling term at equal times because of the locality
and gauge invariance. A similar argument can be made considering the current operator
at the measurement position before the information about the tunneling event has had
time to reach it. Since we want the vortex tunneling event to commute with fermions
on the reference edge at all times we are forced to use the coordinate convention shown
in Fig. 11.4 in which the spatial coordinates on bottom edge are always larger than
those on top edge.2 The vortex tunneling then corresponds to changing the phase of
the superconducting order parameter by ˙2� to the right of the tunneling point in the
figure.

Figure 11.4: Top panel: independent coordinate system for the two edges. Bottom panel:
coordinate system in which the two edges are treated as spatially separated parts of the
same edge. This allows us to correctly capture the commutation relations of the fields
on different edges in the relevant limit �L!1.

2Other gauges choices are possible, but are more cumbersome to use in the calculation.
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In addition it is convenient to introduce an even more compact notation. We denote
 t .0;�Lt / �  i ,  b.t; �LC Lb/ �  j , �t .t1;�xt / � �1, �b.t1; �LC xb/ � �2,
�t .t2; xt / � �3, �b.t2; �L � xb/ � �4. The two tunneling terms in the Hamiltonian
are then written as ��T12 and ��T34. The modification needed to allow for different
tunneling amplitudes ��L and ��R at the left and right tunneling points (see Fig. 11.1)
is straightforward. The “Lorentz times” u for right-movers are u � t � x. We use
additional short-hand notations u˛ˇ � u˛ � uˇ and s˛ˇ � sign.u˛ � uˇ /. The Lorentz
times of the six operators used in the calculation are

ui D Lt

u1 D t1 C xt

u3 D t2 � xt (11.24)

uj D t � Lb ��L

u2 D t1 � xb ��L

u4 D t2 C xb ��L:

Taking the limit of large spatial separation �L ! C1 we see that sij D 1. Accord-
ingly, in this limit also skl D 1 for any k 2 fi; 1; 3g and l 2 fj; 2; 4g.

In the following perturbative treatment we will assume that t2 � t1. This means
that to calculate the full Green’s function G>ji we should sum over the four processes
for which the first and the second vortex tunneling events happen at the right or the left
tunneling point. The amplitudes of the two processes in which vortex tunneling events
occur at different points are related by changing xt ! �xt and xb ! �xb . Likewise
the amplitudes of the processes in which both evens occur at the same tunneling point
can be obtained from the amplitude of the process with vortex tunneling at different
points by setting xt D xb D 0 and setting Lt ! Lt ˙ xt and Lb ! Lb ˙ xb .

11.5.2 Perturbative calculation of G>

In the appendices we demonstrate how one can evaluate the averages of the contribu-
tions to the integrands generated in the perturbative expansion of G>ji . The technically
simplest way of performing the calculation is to use the commutation relation between
fermions and tunneling terms [see Eq. (11.69)]

T12 3 D s13s23 3T12; (11.25)

to transform the correlation functions into one of the two forms in Eq. (11.70). The limit
of large spatial separation �L ! 1 can then be taken using Eq. (11.71). Finally we
use the functional form of the correlation function of a  and two � ’s that is fixed by
conformal invariance [241]:

h�1�3 i i D
z
3=8
13

p
2z
1=2
1i z

1=2
3i

: (11.26)
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The result of this calculation is the same as the limit�L!1 of the full six-point func-
tion that can also be calculated using bosonization and a doubling trick, see App. 11.A.

The first non-vanishing contribution to the fermion propagator G> comes at second
order in the vortex tunneling term. It is then convenient to divide the intermediate time
integrals into different regions. We will use the following labeling conventions: (a)
t1 < t2 < 0, (b) t1 < 0 < t2 < t , and (c) 0 < t1 < t2 < t . We now calculate the
contribution to the integrand from each region separately.

Let us first consider the interval t1 < t2 < 0. By straightforward expansion, and
using the exchange algebra we obtain the integrand in this region

I.a/ D h j iT34T12i C hT12T34 j i i

� hT34 j iT12i � hT12 j iT34i

D si1si2.si3si4 � s3j s4j /h jT34T12 i i

� s1j s2j .si3si4 � s3j s4j /h jT12T34 i i: (11.27)

The minus signs are generated when the two tunneling terms are on different Keldysh
branches, i.e. when one comes from evolving forward in time and one backwards. We
can simplify this expression further by noting that because of the geometry we always
have si3 D si1 D 1 in this region. Thus

I.a/ � I
>
D .1C sj4/.h jT34T12 i i C sj2h jT12T34 i i/: (11.28)

Let us now consider the interval t1 < 0 < t2 < t . We denote the contribution to the
integrand in this region by I.b/. Expanding we get

I.b/ D hT12T34 j i i C h jT34 iT12i

� hT12 jT34 i i � hT34 j iT12i D : : : D I
>: (11.29)

To see that we get the same expression as in region (a) we have used the fact that si1 D 1
in this region. Performing the same calculation as in regions (a) and (b) for the interval
0 < t1 < t2 < t we find that also in this region

I.c/ D I
>; (11.30)

and hence we can use I> throughout all regions. Using cluster decomposition (i.e.
taking the limit of spatial separation) and the explicit correlation functions we get the
expression for the integrand. Putting back the integrals and the strength of the tunneling
term we obtain the leading term in the perturbative expansion of the Green’s function

G> D
�2�

23=2

Z t

�1

dt1

Z t

t1

dt2
.1C sj4/

.jzj2jjzj4j/1=2.z3iz1i /1=2

Œ.1C sj2/Re.z3=831 z
3=8
42 / � .1 � sj2/ Im.z3=831 z

3=8
42 /�: (11.31)

Note that this expression is a short form that includes a sum of many terms, it is valid for
real times only and the analytic structure of the the Green’s function is not apparent. It
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is useful to shift the time-coordinates tj D t �Lb � xb � sj for j D 1; 2. The resulting
expression is

G> D
�2�
p
2

Z 1
0

ds1

Z s1

0

ds2
1

.jzj2jjzj4j/1=2.z3iz1i /1=2

Œ.1C sj2/Re.z3=831 z
3=8
42 / � .1 � sj2/ Im.z3=831 z

3=8
42 /�; (11.32)

where

uj2 D 2xb C s1

uj4 D s2

u1i D Qt C xt � xb � s1

u3i D Qt � xt � xb � s2 (11.33)

u31 D s1 � s2 � 2xt

u42 D s1 � s2 C 2xb

Qt D t � Lt � Lb :

Note that the dependence on the parameters t , Lt , andLb only enters in the combination
Qt . The analytic structure is much more transparent in this equation. For tunneling at the
same point, i.e. xt D xb D 0, we always have sj2 D 1 and the result simplifies to

G>xbDxtD0 D �
2
�

p
2 cos

�3�
8

� Z 1
0

ds1

Z s1

0

ds2
jz31j

3=4

.jzj2jjzj4j/1=2.z3iz1i /1=2
: (11.34)

From this expression we see that ReŒG>� ¤ 0 only for times such that t � Lt C Lb .
Since ReŒG>� is proportional to the retarded Green function GR, this is a reflection of
the causality of the theory: information has to have time to propagate through the system
for GR to be non-zero.

The Green’s function G> has a singular part that is given by

G> � �2�T
�3=4Œ�i log j�j C �‚.�/�; (11.35)

with ‚.x/ the Heaviside step function and

� D T .t � Lt � Lb � xt � xb/� 1: (11.36)

11.5.3 Conductance

Substituting the propagator in Eq. (11.16) for the reference edge into the expression for
conductance in Eq. (11.15) we obtain

�

e2=h
D �L0 ImŒG>�tDL0 C

Z 1
0

dtP
T t

sinh.�T uj 0i 0/
ReŒG>�: (11.37)
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Together with Eq. (11.32) this expression provides a closed expression determining the
contribution from each process to the conductance, which may be directly evaluated
numerically. Since G> only has a logarithmic divergence, the short distance cutoff a
may be directly set to zero in this expression. By substituting the singular part of G>

into Eq. (11.37) one can see that the conductance contribution is a continuous function
of all the parameters of the problem. It may be written as

�LR D
e2

h

�2�F ŒxtT; xbT; .Lt C Lb/T; L
0T �

T 7=4
; (11.38)

with F a universal continuous function. In the low temperature limit, when all of the
arguments of F are small, the contributions to conductance from vortex tunneling at
different points �LL, �RR, �LR, and �RL are all equal to each other and to

�0 D
e2

h

�2�F.0; 0; 0; 0/

T 7=4
; (11.39)

with F.0; 0; 0; 0/ � 1:5. In the other limit, when either jxt C xbjT � 1 or jLt C
Lb � L

0jT � 1 the function F is exponentially small, or in other words conductance
is suppressed due to thermal averaging. We have evaluated the conductance of a single
point contact due to vortex tunneling numerically with the result shown in Fig. 11.5.
At low temperatures � � T 7=4 ! constant as expected, and at high temperatures � �
exp.�T jL0 � Lt � Lbj/.
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Figure 11.5: Normalized conductance F Œ0; 0; .Lt C Lb/T; L0T � � .h=e2/�T 7=4=�2�
of a single quantum point contact due to vortex tunneling as a function of temperature.
The parameters of the setup are Lt D Lb D L0.

The scaling exponent of conductance �7=4 is different from �3=2, the exponent
of tunneling conductance in the 5/2 FQH effect. This naturally follows from the very
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different mechanisms of conduction in the two systems: current is carried by charged
modes in 5/2 FQH system, while “Dirac to Majorana converter” forms current in topo-
logical insulators. This difference is reflected in the existence of a charge operator for
each edge in the quantum Hall setup that allows the definition of a current operator that
measures the current that flows between the two edges [231]. This current operator is
defined locally at the tunneling point contact and can be used directly in the perturbative
calculation of the current. In the FQH setup the leading contribution therefore involves
a four-point function of the � ’s. In the topological insulator setup the processes that
contribute to the current correlations have to transfer a  between the two edges, which
means that the six-point function of four � ’s and two  ’s gives the leading contribution.
Bare vortex tunneling given by the four-point function of � ’s does not transfer Majorana
fermions and is therefore irrelevant for the current in the topological insulator setup.

11.6 Quasiclassical approach and fermion parity mea-
surement

The most interesting application of the interferometer setup with vortex tunneling is that
it allows for the detection of the fermion parity of the superconducting island between
the two point contacts [174–176]. This is possible because vortices acquire a phase of
� when they are moved around an odd number of fermions [139]. In the simplest case,
when there are only two bulk vortices in the central region, as shown in Fig. 11.1, the
interferometric signal reads out the state of the qubit formed by the bulk vortices.

Without loss of generality we consider the case of two bulk vortices that are sit-
uated in between the left and the right tunneling regions. From the point of view of
the electronic excitations the bulk vortices can be described by two localized Majorana
bound states [130], with corresponding operators a and b . To describe the action of
the vortex tunneling term on these excitations we include, following Ref. [242], an extra
term OPab D iab in the left tunneling operator. This operator captures the property
that upon changing the phase of the order parameter in the superconductor by ˙2� the
Majorana modes localized in the vortex cores gains a minus sign.

In the absence of bulk-edge coupling the fermion parity of the vortex pair is a good
quantum number that does not change with time. In that case the extra term that is
added to the left tunneling term OPab measures the fermion parity of the qubit defined
by a and b . This means that we can replace OPab ! .�1/nf , where nf is the number
of fermions in the two vortices. In the second order calculation this factor enters only
in the contributions where one vortex tunnels at the left tunneling point and one at the
right, so the total conductance is equal to

� D �LL C �RR C .�1/
nf .�LR C �RL/: (11.40)

The expressions for the �’s were calculated in the previous section. The effect of bulk-
edge coupling is presumably similar to the case of the 5=2 FQH effect that has been
studied in great detail recently [242–245].
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The phenomenological picture of the non-Abelian interferometry, as introduced in
Ref. [145], can be summarized in the following way. First an incoming electron is split
into two Majorana fermions when it approaches the superconductor. Next one of these
Majorana fermions is further split into two edge vortices, or � excitations. The edge vor-
tices tunnel at either of the two point contacts, and recombine into a Majorana fermion
again. Finally two Majorana fermions combine into electron or a hole as they leave the
superconductor. At zero voltage any dynamic phases are prohibited by electron-hole
symmetry, so the outgoing current may be written as

I D
e2

h
V
�
Q�2�L C

Q�2�R C 2.�1/
nf Q��L Q��R

�
; (11.41)

where Q��a (with a D L;R) is an effective vortex tunneling amplitude (here we allow
for different vortex tunneling amplitudes at the left and right tunneling points).

Comparing Eqs. (11.39)-(11.40) with Eq. (11.41) we see that at low temperatures
the effective vortex tunneling amplitude is equal to

Q��a D ��aT
�7=8

p
F.0; 0; 0; 0/: (11.42)

Once this identification is done, the quasiclassical picture is directly applicable given
that 1=T is much larger than the characteristic length of the system and the second order
perturbation theory still holds ( Q��a � 1).

11.7 Conclusions

In this chapter we have introduced a theory for a non-Abelian interferometer on the
surface state of a 3D topological insulator brought in proximity to an s-wave supercon-
ductor. This theory uses CFT to describe the vortex field following Ref. [182], and is an
extension of the earlier qualitative discussion in Ref. [145]. In particular we showed that
if the temperature is low and tunneling is sufficiently weak, it is possible to introduce
an effective tunneling amplitude of vortices according to Eq. (11.42). This justifies the
simple quasiclassical description of vortex tunneling used in Ref. [145].

Because the vortex tunneling term is a relevant operator, the perturbative treatment
is only valid at high enough temperatures. This statement is reflected in the divergence
of conductance � � T �7=4. The scaling exponent �7=4 is different from the tunneling
conductance scaling exponent �3=2 of the 5/2 FQH setup in the linear response regime
due to the different structure of current operators in the two systems.

11.A Vortex tunneling term

In this appendix we show how one can calculate the amplitude for transferring a fermion
between the two edges in terms of two vortex tunneling events using bosonization with
the help of a doubling trick. This is an old technique that goes back to the seventies
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[246], which is now textbook material [241, 247]. In the appendices we use the con-
densed coordinate conventions introduced in Sec. 11.5.1, but we’ll keep the gauge choice
implied by the sign of sij unspecified.

11.A.1 Non-chiral extension of the system

The logic of the procedure can be motivated as follows (see also the construction in
Ref. [242]). We are interested in the tunneling of a chiral Majorana fermion between
two edges of a sample (cf. Fig. 11.4). Because of the fermion doubling feature it is
convenient to enlarge the system by adding an additional counter-propagating chiral
Majorana fermion. These two copies can then be described as the continuum limit of a
lattice model of local Majorana fermions (described by lattice operators �

l
D l ) that

are allowed to hop to their nearest neighbors:

H D �t

2NX
lD1

illC1: (11.43)

The fermion parity operator is then OP �
Q2N
lD1 e

i�=4l . This system is known to map
onto the (quantum) Ising chain in a transverse field at criticality (see e.g. Ref. [247]),
which is also equivalent to the classical 2D Ising model at its critical point. In the Ising
model there are spin and disorder fields that are non-local in terms of the lattice fermions.
It is easy to write down explicit expressions for the spin and disorder operators in terms
of a string of Majorana fermions on the lattice, for example

�2iC1�2jC1 D

2jY
lD2iC1

ei�=4l ; (11.44a)

�2i�2j D

2j�1Y
lD2i

ei�=4l ; (11.44b)

�2iC1�2j D e�i�=4
2j�1Y
lD2iC1

ei�=4l : (11.44c)

It is clear from these expressions that a �� term changes the fermion parity of the system
whereas �� and �� do not.

Now we are not interested in the lattice theory itself but rather the low-energy theory
which is obtained in the continuum limit of the lattice model. This limit is known to
map onto the Ising CFT. This is a thoroughly studied system and we can hence rely on
results from the large literature on this topic.

In particular, on the lattice we know that a vortex tunneling term has to be of the
form �1�2 or �1�2, otherwise the fermion parity is changed. Furthermore, from the
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operator product expansion of the Ising CFT [241, 248]:

�1�2 �
1

.z12 Nz12/1=8
C
1

2
.z12 Nz12/

3=8i 2 N 2; (11.45a)

�1�2 �
1

.z12 Nz12/1=8
�
1

2
.z12 Nz12/

3=8i 2 N 2; (11.45b)

we see that a pair of � ’s (or a pair of �’s) can change the parity of right-movers. Since
our tunneling term is not allowed to do this we take the tunneling term in the non-chiral
system to be QT12 / �1�2 C �1�2. Clearly the parity-changing term is canceled with
this choice. Another way of putting this is to say that this combination enforces the
tunneling term to be in the identity channel.

It is known that two independent copies of the Ising model can be bosonized using
Abelian bosonization [241, 246]. It is then a straightforward calculation (using for ex-
ample the explicit expressions in the appendix of Ref. [248]) to show that the doubled
tunneling term can be bosonized as

eT 12eT 012 D cos
��1 � �2

2

�
cos
� N�1 � N�2

2

�
: (11.46)

It is important to note that the primed system is an independent copy of the system in
this expression, and that it is introduced as a trick to allow for a simple calculation of
various correlation functions.

11.A.2 From non-chiral back to chiral

Since we are only interested in the right-moving part of the tunneling term we would
like to get rid of the left-moving part in the last equation. Because of the factorization
of the right- and left-moving parts we are allowed to use

T12T
0
12 D cos

��1 � �2
2

�
; (11.47)

as the doubled tunneling term in the chiral system. Here the cosines are to be understood
as shorthands for cos.a � b/ D .eiae�ib C e�iaeib/=2. The exponentials in these
expressions are actually dimensionful vertex operators, see e.g. Ref. [249] for a detailed
discussion. With this representation together with the bosonized representation of the
Majorana fermion in the unprimed system

 i D
p
2 cos.�i /; (11.48)

and the standard bosonization formula (which holds if
PN
iD1 ˛i D 0, otherwise the

expectation value vanishes)

hei˛1�1ei˛2�2 � � � ei˛N�N i D
Y

1�i<j�N

z
˛i j̨
ij ; (11.49)



11.A Vortex tunneling term 143

with

zij D
sinŒ�T .aC iuij /�

�T
; (11.50)

we can in principle calculate any correlation function using the bosonization formalism.
In particular we can calculate the full six-point function including two  ’s and two
tunneling terms. This will be done in the next subsection, but let us first check that the
representation reproduces known results for the 2-, 3- and 4-point functions.

Let us first consider the vortex 2-point function. This is calculated via

hT12i
2
D hT12T

0
12i D

1

z
1=4
12

: (11.51)

Taking the square root we obtain the correct result for a field with dimension 1
16

hT12i D
1

z
1=8
12

: (11.52)

Similarly the fermion two-point function is h i j i D z�1ij . The vortex 4-point function
can be computed from

hT12T34i
2
D
1

2

h� z13z24

z12z23z34z14

�1=4
C

� z14z23

z13z24z12z34

�1=4i
: (11.53)

Taking the square root of this expression we get the known correlation function of four
� ’s for which �1 and �2 fuse to the identity [250–252]. Now we use the conventions
from the main part of the chapter and take the limit �L!1. In this case only one of
the terms in Eq. (11.53) survives and

hT12T34i D
�L!1

1
p
2

� z14z23

z13z24z12z34

�1=8
: (11.54)

We also have
h iT12i D 0; (11.55)

which is consistent with the notion that the tunneling of a vortex cannot create a fermion
(or equivalently change the fermion parity). It is also straightforward to show that

h i jT12i D
�L!1

0; (11.56)

which means that a single vortex tunneling event is not enough to be able to transfer a
fermion between the two edges.

11.A.3 The six-point function

To calculate the contribution from a tunneling of two vortices we need the six-point
function of two  ’s and four � ’s. This correlation function is a special case of the more
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general one that was first calculated in Ref. [253] with a similar method. To calculate
the six-point function we use

h i jT12T34ihT
0
12T

0
34i D 2

D
cos.�i / cos.�j / cos

��1 � �2
2

�
cos
��3 � �4

2

�E
:

D
1

4zij .z12z34/1=4
�

nh�zi1zi3zj2zj4
zi2zi4zj1zj3

�1=2
C .i $ j /

i�z13z24
z14z23

�1=4
C

h�zi1zi4zj2zj3
zi2zi3zj1zj4

�1=2
C .i $ j /

i�z14z23
z13z24

�1=4o
: (11.57)

Dividing this with the square root of Eq. (11.53) the result agrees with that of Ref. [253].
We now take the limit of spatial separation �L!1, the only one term that remains is

h i jT12T34ihT
0
12T

0
34i D

�L!1

.z13z24/
1=4

4.zi1zi3zj2zj4/1=2
�

.zi2zi4zj1zj3/
1=2

zij .z12z34z14z23/1=4
: (11.58)

Combining this with Eq. (11.54) we find

h i jT12T34i D
.z13z24/

3=8

23=2.zi1zi3zj2zj4/1=2
�
.zi2zi4zj1zj3/

1=2

zij .z14z23/1=2
; (11.59)

To get this result we have removed the phases associated with z�1=812 and z�1=834 . These
phases are canceled when one makes sure that the tunneling term is described by a
Hermitean term in the Hamiltonian. This is exactly the phase of hT12i in Eq. (11.52).

Other orderings of the fermions and the tunneling terms are obtained by exchanging
the indexes, for example

h iT12 jT34i D
.z13z24/

3=8

23=2.zi1zi3z2j zj4/1=2
�
.zi2zi4z1j zj3/

1=2

zij .z14z23/1=2
: (11.60)

The indexes on the z’s should have the same order as they appear in in the original
expression. This prescription was used in e.g. Ref. [243] and is equivalent to the Keldysh
formalism for chiral bosons which is reviewed in e.g. Refs. [254] and [240]. In the limit
of spatial separation the last term gives a phase factor that depends on the order of the
tunneling terms and the fermions according to

ei˛p D �isij

8̂<̂
:
1; p D ij1234; 1234ij; 12ij 34

�1; p D i1234j

isij ; p D i12j 34; 12i34j:

(11.61)

11.B Exchange algebra

An alternative formalism is provided by the exchange algebra of Ref. [255]. In this
formalism the action of the spin field is described by two types of operators a and b
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and their conjugates. a creates an excitation with dimension 1
16

when acting on the
vacuum, which is denoted by the shorthand aj0i D j 1

16
i. The conjugate a� interpolates

in the opposite direction: a�j 1
16
i D j0i. Similarly b and b� interpolates between states

of dimensions 1
16

and 1
2

according to bj 1
16
i D j

1
2
i and b�j1

2
i D j

1
16
i. The exchange

algebra is described by the following relations 
a1a

�
2

b
�
1b2

!
D
eis12

�
8
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2

�
1 e�is12

�
2

e�is12
�
2 1

� 
a2a

�
1

b
�
2b1

!
; (11.62)

a
�
1a2 D e�is12

�
8 a

�
2a1; (11.63a)

b1b
�
2 D e�is12

�
8 b2b

�
1; (11.63b)

b1a2 D e�is12
�
8 eis12

�
2 b2a1; (11.63c)

a
�
1b
�
2 D e�is12

�
8 eis12

�
2 a

�
2b
�
1: (11.63d)

The tunneling operator, e.g. T12, consists of a product of two � ’s in the identity channel,
which we denote Œ�1�2�I . When acting on states with dimension 0 or 1

2
this implies that

we are allowed to use the representations

Œ�1�2�I !

(
a
�
1a2; j0i ! j0i

b1b
�
2; j

1
2
i ! j

1
2
i

: (11.64)

Another important point is that the tunneling term should be represented by a Hermitean
term in the Hamiltonian. This can be achieved by explicitly adding the Hermitean con-
jugate in the definition of the tunneling term:

T12 / Œ�1�2 C �2�1�I D

(
.1C e�is12

�
8 /Œ�2�1�I

.1C eis12
�
8 /Œ�1�2�I

: (11.65)

In the last step we used Eqs. (11.64) and (11.63). By adjusting the amplitude to conform
with the result of the previous section [see discussion below Eq. (11.59)] we define

T12 D e
�is12

�
16 Œ�2�1�I D e

is12
�
16 Œ�1�2�I ; (11.66)

which is Hermitean.
Similarly we can represent the fermion field in terms of a’s and b’s with coinciding

arguments3

 1 /

(
b1a1; j0i ! j

1
2
i

a
�
1b
�
1; j

1
2
i ! j0i

: (11.67)

3The correct expression is obtained in the properly scaled limit of coinciding coordinates. For example, to
go from j 1

2
i ! j0i we may use  .u/ D limı!0C Cı

�3=8a�.uC ı/b�.u/. Here C is a constant that
can be determined by fixing the normalization, but this is not necessary to derive the commutation relations.
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Using Eqs. (11.67) and (11.64) together with the exchange algebra of Eqs. (11.62) and
(11.63) it is straightforward to show that in all cases we have the following commutation
relations

Œ�1�2�I 3 D s13s23 3Œ�1�2�I ; (11.68)

which immediately implies the commutation relation between a tunneling term and a
fermion is

T12 3 D s13s23 3T12: (11.69)

With this very important relation we can always transform the correlation functions that
we want to calculate (see Sec. 11.5.2) into one of two different forms:

h jT12T34 i i; (11.70a)

h jT34T12 i i: (11.70b)

Using the exchange algebra we can cluster decompose the last two expressions, in the
limit of spatial separation we are left with

h jT12T34 i i D
�L!1

e�is12
�
2

p
2
h j b2a4iha

�
1b
�
3 i i; (11.71a)

h jT34T12 i i D
�L!1

e�is12
�
2

p
2
h j b4a2iha

�
3b
�
1 i i: (11.71b)

We have checked that the result of the formalism in this appendix gives identical
results to those of the formalism in App. 11.A. Although the exchange algebra is derived
at T D 0 it also holds at finite temperatures.


