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Chapter 10

Quantized conductance at the Majorana
phase transition in a disordered
superconducting wire

10.1 Introduction

It has been predicted theoretically [207, 208] that the s-wave proximity effect of a su-
perconducting substrate can drive a spin-polarized and spin-orbit coupled semiconduc-
tor nanowire into a topological phase [6, 132, 209], with a Majorana fermion trapped at
each end of the wire. There exists now a variety of proposals [143, 210, 211] for topo-
logical quantum computing in nanowires that hope to benefit from the long coherence
time expected for Majorana fermions. A superconducting proximity effect in InAs wires
(which have the required strong spin-orbit coupling) has already been demonstrated in
zero magnetic field [212], and now the experimental challenge is to drive the system
through the Majorana phase transition in a parallel field.

Proposals to detect the topological phase have focused on the detection of the Majo-
rana bound states at the end points of the wire, through their effect on the current-voltage
characteristic [203, 213] or the AC Josephson effect [133, 200]. These signatures of the
topological phase would stand out in a clean single-mode wire, but the multiple modes
and potential fluctuations in a realistic system are expected to produce a chain of coupled
Majorana’s [214, 215], which would form a band of low-lying excitations that would be
difficult to distinguish from ordinary fermionic bound states [216].

Here we propose an altogether different detection strategy: Rather than trying to
detect the Majorana bound states inside the topological phase, we propose to detect the
phase transition itself. A topological phase transition is characterized by a change in the
topological quantum number Q. The value of Q D .�1/m is determined by the parity
of the number m of Majorana bound states at each end of the wire, with Q D �1 in the
topological phase [217, 218].

In accord with earlier work [219], we relate the topological quantum number to the
determinant of the matrix r of quasiparticle reflection amplitudes, which crosses zero at
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the phase transition. This immediately implies a unit transmission eigenvalue at the tran-
sition. Disorder may shift the position of the transition but it cannot affect the unit height
of the transmission peak. We propose experiments to measure the transmission peak in
both thermal and electrical transport properties, and support our analytical predictions
by computer simulations.

10.2 Topological charge

We consider a two-terminal transport geometry, consisting of a disordered supercon-
ducting wire of length L, connected by clean normal-metal leads to reservoirs in ther-
mal equilibrium (temperature �0). The leads support 2N right-moving modes and 2N
left-moving modes at the Fermi level, with mode amplitudes  C and  �, respectively.
The spin degree of freedom is included in the number N , while the factor of two counts
the electron and hole degree of freedom.

The 4N � 4N unitary scattering matrix S relates incoming and outgoing mode am-
plitudes, �

 �;L
 C;R

�
D S

�
 C;L
 �;R

�
; S D

�
r t 0

t r 0

�
; (10.1)

where the labels L and R distinguish modes in the left and right lead. The four blocks of
S define the 2N � 2N reflection matrices r; r 0 and transmission matrices t; t 0.

Time-reversal symmetry and spin-rotation symmetry are broken in the superconduc-
tor, but electron-hole symmetry remains. At the Fermi energy electron-hole symmetry
implies that if .u; v/ is an electron-hole eigenstate, then also .v�; u�/. Using this sym-
metry we can choose a basis such that all modes have purely real amplitudes. In this so-
called Majorana basis S is a real orthogonal matrix, S t

D S� D S�1. (The superscript
t indicates the transpose of a matrix.) More specifically, since detS D 1 the scattering
matrix is an element of the special orthogonal group SO.4N /. This is symmetry class D
[220–225].1

The scattering matrix in class D has the polar decomposition

S D

�
O1 0

0 O2

��
tanhƒ .coshƒ/�1

.coshƒ/�1 � tanhƒ

��
O3 0

0 O4

�
; (10.2)

in terms of four orthogonal matrices Op 2 SO.2N / and a diagonal real matrix ƒ with
diagonal elements �n 2 .�1;1/. The absolute value j�nj is called a Lyapunov ex-
ponent, related to the transmission eigenvalue Tn 2 Œ0; 1� by Tn D 1= cosh2 �n. We
identify

Q D signQ; Q D Det r D Det r 0 D
2NY
nD1

tanh�n: (10.3)

1There exist, in addition to class D, four more symmetry classes with a topological phase transition in a
wire geometry. The quantized conductance at the transition point appears generically. This is a manifestation
of the “super-universality” of Ref. [224].
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This relation expresses the fact that reflection from a Majorana bound state contributes
a scattering phase shift of � , so a phase factor of �1. The sign of

Q
n tanh�n thus

equals the parity of the number m of Majorana bound states at one end of the wire (see
App. 10.A). (It makes no difference which end, and indeed r and r 0 give the same Q.)

To put this expression forQ into context, we first note that it may be written equiva-
lently asQ D DetO1O3 if we restrict the �n’s to non-negative values and allow DetOp
to equal either C1 or �1. The sign of Q then corresponds to the topological classifica-
tion of a class-D network model derived by Merz and Chalker [219]. We also note that
Q can be written equivalently in terms of the Pfaffian of lnMM � (with M the transfer
matrix in a suitable basis), as described in App. 10.A. A Pfaffian relation for the topo-
logical quantum number Qclean in class D has been derived by Kitaev [132] for a clean,
translationally invariant system. We will verify later on that Q and Qclean agree for a
clean system.

10.3 Transport properties at the phase transition

An immediate consequence of Eq. (10.3) is that at the topological phase transition one of
the �n’s vanishes [219, 223, 224], so the corresponding transmission eigenvalue Tn D 1
at the transition point. The sign change of Q ensures that Tn fully reaches its maxi-
mal value of unity, it cannot stop short of it without introducing a discontinuity in Q.
Generically there will be only a single unit transmission eigenvalue at the transition,
the others being exponentially suppressed by the superconducting gap. The thermal
conductance Gth D G0

P
n Tn of the wire will then show a peak of quantized height

G0 D �
2k2B�0=6h at the transition.

Our claim of a quantized conductance at the transition point is consistent with earlier
work [221–225] on class D ensembles. There a broad distribution of the conductance
was found in the large-L limit, but the key difference is that we are considering a single
disordered sample of finite length, and the value of the control parameter at which the
conductance is quantized is sample specific. We will now demonstrate how the peak of
quantized conductance arises, first for a simple analytically solvable model, then for a
more complete microscopic Hamiltonian that we solve numerically.

The analytically solvable model is the effective low-energy Hamiltonian of a class-D
superconductor with a random gap, which for a single mode in the Majorana basis has
the form

H D �i„vF �z@=@x C�.x/�y : (10.4)

We have assumed, for simplicity, that right-movers and left-movers have the same veloc-
ity vF , but otherwise this is the generic form to linear order in momentum, constrained
by the electron-hole symmetry requirementH D �H�. An eigenstate‰ ofH at energy
zero satisfies

‰.x/ D exp

�
�

1

„vF
�x

Z x

0

�.x0/dx0
�
‰.0/: (10.5)
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By substituting ‰.0/ D .1; r/, ‰.L/ D .t; 0/ we obtain the reflection amplitude

r D tanh.L N�=„vF /; N� D L
�1

Z L

0

�.x/dx: (10.6)

In this simple model, a change of sign of the spatially averaged gap N� is the signature
of a topological phase transition.2

If N� is varied by some external control parameter, the thermal conductance Gth D

G0 cosh�2.L N�=„vF / has a peak at the transition point N� D 0, of height G0 and width
„vF =L (Thouless energy). The 1= cosh2 line shape is the same as for a thermally broad-
ened tunneling resonance, but the quantized peak height (irrespective of any asymmetry
in the coupling to the left and right lead) is highly distinctive.

For a more realistic microscopic description of the quantized conductance peak, we
have performed a numerical simulation of the model [207, 208] of a semiconductor
nanowire on a superconducting substrate. The Bogoliubov-De Gennes Hamiltonian

H D

�
HR �EF �

�� EF � �yH
�
R�y

�
(10.7)

couples electron and hole excitations near the Fermi energy EF through an s-wave su-
perconducting order parameter �. Electron-hole symmetry is expressed by

�y�yH
��y�y D �H; (10.8)

where the Pauli matrices �y and �y act, respectively, on the spin and the electron-hole
degree of freedom. The excitations are confined to a wire of width W and length L in
the x � y plane of the semiconductor surface inversion layer, where their dynamics is
governed by the Rashba Hamiltonian

HR D
p2

2meff
C U.r/C

˛so

„
.�xpy � �ypx/C

1
2
geff�BB�x : (10.9)

The spin is coupled to the momentum p D �i„@=@r by the Rashba effect, and polarized
through the Zeeman effect by a magnetic field B parallel to the wire (in the x-direction).
Characteristic length and energy scales are lso D „

2=meff˛so and Eso D meff˛
2
so=„

2.
Typical values in InAs are lso D 100 nm, Eso D 0:1meV, geff�B D 2meV=T.

We have solved the scattering problem numerically [226] by discretizing the Hamil-
tonian (10.7) on a square lattice (lattice constant a), with a short-range electrostatic
disorder potential U.x; y/ that varies randomly from site to site, distributed uniformly
in the interval .�U0; U0/. (Equivalent results are obtained for long-range disorder, as
shown in App. 10.B.) The disordered superconducting wire (S) is connected at the two
ends to clean metal leads (N1;N2), obtained by setting U � 0,� � 0 for x < 0, x > L.

2We need an even number of modes to calculate Q without any sign ambiguity, so the single disordered
mode described by the Hamiltonian (10.4) is supplemented by a second clean mode in a topologically trivial
phase (uniform�0 > 0). The sign ofQ is then completely determined by the sign of r in Eq. (10.6).
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Figure 10.1: Thermal conductance and determinant of reflection matrix of a disor-
dered multimode superconducting wire as a function of Fermi energy. The curves are
calculated numerically from the Hamiltonian (10.7)–(10.9) on a square lattice (lattice
constant a D lso=20), for parameter values W D lso, L D 10 lso, � D 10Eso,
geff�BB D 21Eso, and three different disorder strengths U0. The arrows indicate the
expected position of the topological phase transition in an infinite clean wire (U0 D 0,
L ! 1), calculated from Eq. (10.10). Disorder reduces the topologically nontrivial
interval (where Det r < 0), and may even remove it completely, but the conductance
quantization remains unaffected as long as the phase transition persists.

Results for the thermal conductance and topological quantum number are shown in Fig.
10.1, as a function of the Fermi energy (corresponding to a variation in gate voltage).
For the parameters listed in the caption the number N of modes in the normal leads
increases from 1 to 2 at EF =Eso � 10 and from 2 to 3 at EF =Eso � 15. We emphasize
that Fig. 10.1 shows raw data, without any averaging over disorder.

For a clean system (U0 D 0, black curves) the results are entirely as expected: A
topologically nontrivial phase (with Det r < 0) may appear for odd N while there is no
topological phase for N even [134, 227, 228]. The topological quantum number of an
infinitely long clean wire (when the component px of momentum along the wire is a
good quantum number) can be calculated from the Hamiltonian H.px/ using Kitaev’s
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Pfaffian formula [132, 227],

Qclean D sign
�
Pf Œ�y�yH.0/�Pf Œ�y�yH.�=a/�

�
: (10.10)

(The multiplication by �y�y ensures that the Pfaffian is calculated of an antisymmetric
matrix.) The arrows in Fig. 10.1 indicate where Qclean changes sign, in good agreement
with the sign change of Q calculated from Eq. (10.3). (The agreement is not exact
because L is finite.)

Upon adding disorder Qclean can no longer be used (because px is no longer con-
served), and we rely on a sign change of Q to locate the topological phase transition.
Fig. 10.1 shows that disorder moves the peaks closer together, until they merge and the
topological phase disappears for sufficiently strong disorder. We have also observed the
inverse process, a disorder-induced splitting of a peak and the appearance of a topolog-
ical phase, in a different parameter regime than shown in Fig. 10.1. Our key point is
that, as long as the phase transition persists, disorder has no effect on the height of the
conductance peak, which remains precisely quantized — without any finite-size effects.

Since electrical conduction is somewhat easier to measure than thermal conduction,
we now discuss two alternative signatures of the topological phase transition which are
purely electrical. An electrical current I1 is injected into the superconducting wire from
the normal metal contact N1, which is at a voltage V1 relative to the grounded supercon-
ductor. An electrical current I2 is transmitted as quasiparticles into the grounded contact
N2, the difference I1� I2 being drained to ground as Cooper pairs via the superconduc-
tor. The nonlocal conductance G D NI2=V1 is determined by the time averaged current
NI2, while the correlator of the time dependent fluctuations ıI2 determines the shot noise
power P D

R1
�1

dt hıI2.0/ıI2.t/i (in the regime kB�0 � eV1 where thermal noise can
be neglected).

These two electrical transport properties are given in terms of the N � N transmis-
sion matrices tee and the (from electron to electron and from electron to hole) by the
expressions [168]

G D .e2=h/TrT �; P D .e
3V1=h/Tr

�
TC � T

2
�

�
; (10.11)

T˙ D t
�
eetee ˙ t

�

he
t
he
: (10.12)

Electron-hole symmetry relates tee D t�
hh

and the D t�
eh

. This directly implies that
TrTC D 1

2
Tr t t� D 1

2

P
n Tn. If in addition we assume that at most one of the Tn’s

is nonzero we find that T � vanishes (see App. 10.C). We conclude that G remains zero
across the topological phase transition, while P=V1 peaks at the quantized value e3=2h.
This is the second signature of the phase transition.3

The third signature is in the electrical conductance. Since G D 0 for a single open
transmission channel, we add (topologically trivial) open channels by means of a paral-
lel normal metal conductor in a ring geometry. A magnetic flux ˆ through the ring pro-
duces Aharonov-Bohm oscillations with a periodicity�ˆ D h=e�. The effective charge

3We do not plot the quantized shot noise peak in a separate figure, because our numerical simulation shows
that P in units of e3V1=2h is indistinguishable on the scale of Fig. 10.1 fromGth in units ofG0.
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Figure 10.2: Fourier amplitude with flux periodicity h=e of the magnetoconductance
oscillations, calculated numerically from the Hamiltonian (10.7)–(10.9) for a single dis-
order strength U0 D 50Eso and seven different temperatures �0. The inset shows the
Aharonov-Bohm ring geometry. The parameters of the superconducting segment of the
ring (S) are the same as in Fig. 10.1, with N D 1 in this range of Fermi energies.
The normal part of the ring has N D 8 propagating modes to avoid localization by the
disorder (which has the same strength throughout the ring).

e� D e if electrons or holes can be transmitted individually through the superconducting
arm of the ring, while e� D 2e if only Cooper pairs can be transmitted [229, 230]. We
thus expect a period doubling from h=2e to h=e of the magnetoconductance oscillations
at the phase transition, which is indeed observed in the computer simulations (Fig. 10.2).
To show the relative robustness of the effect to thermal averaging, we repeated the cal-
culation at several different temperatures �0. For Eso ' 0:1meV the characteristic peak
at the phase transition remains visible for temperatures in the readily accessible range of
100–500 mK.

10.4 Conclusion

In conclusion, our analytical considerations and numerical simulations of a model Hamil-
tonian [207, 208] of a disordered InAs wire on a superconducting substrate show three
signatures of the transition into the topological phase (Figs. 10.1 and 10.2): A quantized
thermal conductance and electrical shot noise, and a period doubling of the magnetocon-
ductance oscillations. These unique signatures of the Majorana phase transition provide
alternatives to the detection of Majorana bound states [133, 200, 203, 213, 214, 216],
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which are fundamentally insensitive to the obscuring effects of disorder in a multimode
wire.

10.A Derivation of the scattering formula for the topo-
logical quantum number

10.A.1 Pfaean form of the topological quantum number

The topological quantum numberQ of a disordered wire is given in Eq. (10.3) as the sign
of the determinant of the reflection matrix. That is the form which is most convenient
for computations. In order to derive this relationship and also to compare it with results
in the literature for translationally invariant systems [132], it is convenient to rewrite it
in terms of the transfer matrix M . It then takes the form of a Pfaffian, rather than a
determinantal, relation.

The 4N � 4N transfer matrix M relates the mode amplitudes to the right (R) and to
the left (L) of the disordered wire,�

 C;R
 �;R

�
DM

�
 C;L
 �;L

�
; M D

�
mCC mC�
m�C m��

�
: (10.13)

The condition of particle current conservation is �zM ��z D M�1, where the Pauli
matrix �z acts on the block structure indicated in Eq. (10.13). In the Majorana basis of
real mode amplitudes M is a real matrix, hence

�zM
t�z DM

�1: (10.14)

The transfer matrix has the polar decomposition

M D

�
O2 0

0 O t
4

��
coshƒ � sinhƒ
� sinhƒ coshƒ

��
O3 0

0 O t
1

�
D

�
O2 0

0 O t
4

�
exp.�ƒ�x/

�
O3 0

0 O t
1

�
; (10.15)

where the matrices Op 2 SO.2N / and ƒ D diag .�1; �2 : : : ; �2N / are the same as in
the polar decomposition (10.2) for the scattering matrix. One readily checks that Eq.
(10.14) is satisfied.

The polar decomposition (10.15) allows us to compute

�z ln.MM �/ D �

�
0 �2ƒ

2ƒ 0

�
�t; � D

�
O2 0

0 O t
4

�
: (10.16)

This is an antisymmetric matrix, so it has a Pfaffian,

Pf
�
�z lnMM �

�
D

2NY
nD1

2�n: (10.17)
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We have used the identity

PfBAB t
D DetB PfA; (10.18)

with Det� D 1.
We conclude that the topological quantum number (10.3) can equivalently be written

as

Q D sign
h
Pf
�
�z lnMM �

�i
: (10.19)

10.A.2 How to count Majorana bound states

To determine the topological quantum number of the disordered superconducting wire
we seek the number of Majorana bound states. Particle-hole symmetry ensures that any
bound state at zero energy is a Majorana fermion (since the creation and annihilation op-
erators are related by �.E/ D .�E/ and therefore are identical at E D 0). However,
we cannot directly search for zero-energy eigenstates: Even if the Majorana fermions
are maximally separated by the entire length L of the wire they will still have a nonzero
tunnel coupling which splits their energies apart, away from zero.

The issue here is how to distinguish strongly coupled from weakly coupled Majorana
fermions. Any ordinary fermionic excitation, with distinct creation and annihilation
operators a� ¤ a, can be described by a pair of strongly coupled Majorana fermion
operators 1 D a C a�, 2 D i.a � a�/. In contrast, the Majorana bound states at
opposite ends of the wire are weakly coupled Majorana fermions.

Our geometry of a disordered wire connected at the ends to metal contacts allows for
a natural distinction of weak versus strong coupling: We call a pair of Majorana bound
states “strongly coupled” if they are more strongly coupled to each other than to one
of the ends of the wire. Conversely, weakly coupled Majorana bound states are more
strongly coupled to one end of the wire than to any other Majorana. The topological
quantum number counts only weakly coupled Majorana’s.

This distinction between weak and strong coupling can be made operational by
means of the thought experiment illustrated in Fig. 10.3: We close the wire into a ring
by connecting the two ends through a superconductor which is in a topologically trivial
phase (with a uniform positive gap �0). Destructive interference in the two arms of
the ring can eliminate the tunnel splitting between a pair of Majorana bound states and
produce two-fold degenerate zero-energy eigenstates, if the coupling between the two
Majorana’s through each arm of the ring is of comparable strength.

So we vary �0 (allowing also for mode mixing at the junction between the two
arms of the ring) and find that a number m of two-fold degenerate states appear at zero
energy. This means that the disordered wire contains m pairs of Majorana’s which are
more strongly coupled to the ends of the wire than to each other (otherwise the couplings
through the two arms of the ring could not have been equalized by varying �0). The
number m thus counts the number of weakly coupled Majorana bound states, which
gives the topological quantum number Q D .�1/m.



122 Chapter 10. Majorana phase transition

Figure 10.3: Procedure to count weakly coupled Majorana bound states in a disordered
superconducting wire. Majorana fermions at the two ends of the wire (light blue) are
weakly coupled, so their energy is not exactly zero and we need a way to distinguish
them from an ordinary fermionic excitation (dark blue). To that end we close the wire
into a ring through a topologically trivial superconductor and ask whether destructive
interference of the tunnel splitting in the two arms of the ring can produce a pair of
two-fold degenerate zero-energy states.

10.A.3 Topological quantum number of a disordered wire

Now that we have an operational definition of the topological quantum number of a
finite system, our next step is to relate this to the scattering parameters �n in Eq. (10.3).
For this purpose it is easiest to work with the transfer matrix, rather than the scattering
matrix. An eigenstate ‰ of the ring must be single-valued as we go around the ring, so
in terms of the transfer matrices M and M 0 of the two arms of the ring we have the
condition M 0M‰ D ‰. This leads to the determinantal condition

Det .1 �M 0M/ D 0: (10.20)

We choose to work in a basis where the orthogonal matrices Op in Eq. (10.15) are
equal to the unit matrix. Each of the n D 1; 2; : : : 2N eigenchannels of the disordered
wire can then be treated separately, with 2 � 2 transfer matrices Mn D exp.��x�n/ at
zero energy. The topologically trivial arm of the ring (of lengthL0 and coherence length
�0 D „vF =�0 > 0, without any disorder) has transfer matrix M0 D exp.��xL0=�0/.
The condition for an eigenstate at zero energy reads

Det .1 � e��xL0=�0e��x�n/ D 0; (10.21)

which has a twofold degenerate solution if the ratio L0=�0 is tuned to the value ��n.
This is the pair of weakly coupled Majorana bound states in the n-th eigenchannel that
we are searching for. Because �0 > 0, by definition in a topologically trivial phase, the
pair exists only if �n < 0.
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We conclude that the number of pairs m of weakly coupled Majorana bound states
equals the number of negative �n’s, hence

Q D .�1/m D sign

 
2NY
nD1

�n

!
; (10.22)

as announced in Eq. (10.3).

10.B Numerical simulations for long-range disorder

Fig. 10.1 in the main text demonstrates that the quantized thermal conductance at the
Majorana phase transition is insensitive to short-range disorder (correlation length � of
the order of the lattice constant a). Here we show that long-range disorder similarly has
no effect on the quantization. (The stability of Majorana bound states against short-range
and long-range disorder was investigated in Ref. [227].)

As before, we solve the scattering problem numerically by discretizing the Hamilto-
nian (10.7) on a square lattice (with a total number ofNtot lattice points in the disordered
region). The disorder is modeled as a superposition of impurities with a Gaussian pro-
file,

U.r/ D

NimpX
iD1

Ui exp

�
�
.r � ri /

2

2�2

�
; (10.23)

where Nimp is the number of impurities. (We fixed the impurity concentration nimp D

Nimp=Ntot at 5%.) The strength Ui of an individual impurity is randomly distributed in
the interval .�U0; U0/, and the impurity positions ri are chosen randomly from the Ntot

lattice points.
The results of the calculation are shown in Fig. 10.4, for different values of the corre-

lation length � . In all cases, we observe as before that the thermal conductance remains
quantized as long as the topological phase persists. For sufficiently strong disorder, the
merging of two peaks signals the disappearance of the topological phase and a break-
down of the conductance quantization.

10.C Electrical conductance and shot noise at the topo-
logical phase transition

The expression (10.11) for the nonlocal electrical conductance and shot noise of the
superconducting wire can be evaluated further if there is only a single open transmission
channel. The 2N � 2N transmission matrix

t D

�
tee teh
the thh

�
(10.24)
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Figure 10.4: Same as Fig. 10.1, for an impurity potential with correlation length � D 2 a
(upper panel) and � D 10 a (lower panel.

is then of rank 1, which means that the N � N submatrices tee; thh; the; teh have the
dyadic form

tee D juRihuLj; thh D jvRihvLj;

the D jvRihuLj; teh D juRihvLj: (10.25)

The matrix T˙ then becomes

T˙ D juLihuLj
�
huRjuRi ˙ hvRjvRi

�
: (10.26)

Electron-hole symmetry requires jvRi D ju
�
Ri, hence T � D 0, TC D 1

2
Tr t t�, and thus

G D 0, P D .e3V1=2h/Tr t t�.


