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Chapter 9

Domain wall in a chiral p-wave
superconductor: a pathway for electrical
current

9.1 Introduction

Chiral edge states are gapless excitations at the boundary of a two-dimensional system
that can propagate in only a single direction. They appear prominently in the quantum
Hall effect [185, 186]: The absence of backscattering in a chiral edge state explains
the robustness of the quantization of the Hall conductance against disorder. Analogous
phenomena in a superconductor with broken time reversal symmetry are known as the
spin quantum Hall effect [6, 7, 187] and the thermal quantum Hall effect [188, 189], in
reference to the transport of spin and heat along chiral edge states.

Unlike the original (electrical) quantum Hall effect, both these superconducting ana-
logues have eluded observation, which is understandable since it is so much more diffi-
cult to measure spin and heat transport than electrical transport. Proposals to detect chi-
ral edge states in a superconductor through their equilibrium magnetization are hindered
by screening currents in the bulk, which cancel the magnetic field (Meissner effect)
[190–193].

Here we show that the boundary between domains of opposite chirality (px ˙ ipy)
in a chiral p-wave superconductor forms a one-way channel for electrical charge, in
much the same way as edge states in the quantum Hall effect. This is not an imme-
diate consequence of chirality: Since the charge of excitations in a superconductor is
only conserved modulo the Cooper pair charge of 2e, the absence of backscattering in
a superconducting chiral edge state does not imply conservation of the electrical cur-
rent. Indeed, one chiral edge state within a single domain has zero conductance due
to electron-hole symmetry. We calculate the conductance of the domain wall, measured
between a pair of metal contacts at the two ends (see Fig. 9.1), and find that it is nonzero,
regardless of the separation of the contacts.

Our analysis is generally applicable to so-called class-D topological superconduc-
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Figure 9.1: Superconducting strip divided by a domain wall (dashed line, length W )
into domains with px ˙ ipy symmetry. The edge states ‰L; ‰R of opposite chirality in
the two domains are indicated by red arrows. These unpaired Majorana modes can carry
heat current between contacts NL and NR, but no electrical current. A normal metal
electrode N1 at voltage V1 injects charge into the domain wall, which is detected as an
electrical current I2 at the other end N2. In an alternative measurement configuration
(indicated in blue), contact N2 measures a voltage V2 without drawing a current.

tors [12, 194], characterized by the presence of electron-hole symmetry and the absence
of both time-reversal and spin-rotation symmetry. It can be applied to the various real-
izations of chiral p-wave superconductors proposed in the literature (strontium ruthenate
[193], superfluids of fermionic cold atoms [148, 195], and ferromagnet-superconductor
heterostructures [131, 196]).

9.2 Calculation of transport properties

We start from the Bogoliubov-De Gennes equation,�
H0 �EF �

�� �H�0 CEF

��
u

v

�
D E

�
u

v

�
; (9.1)

for coupled electron and hole excitations u.r/; v.r/ at energy E above the Fermi level
EF . The single-particle Hamiltonian isH0 D .pCeA/2=2mCU , with p D �i„@=@r
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the momentum, A.r/ the vector potential, and U.r/ the electrostatic potential. The
dynamics is two-dimensional, so r D .x; y/, p D .px ; py/. The pair potential � has
the spin-polarized-triplet p-wave form [140]:

� D .2pF /
�1.� � p C p � �/; (9.2)

in terms of a two-component order parameter � D .�x ; �y/. The two chiralities px˙ipy
correspond to �˙ D �0ei�.1;˙i/, with �0 the excitation gap and � the superconduct-
ing phase. Since �� D ���, a solution .u; v/ of Eq. (9.1) at energy E is related to
another solution .v�; u�/ at energy �E (electron-hole symmetry). A domain wall along
x D 0, with a phase difference � between the domains, has order parameter [197, 198]

�x.x/ D �0Œe
�i�=2 cos�.x/C ei�=2 sin�.x/�; (9.3a)

�y.x/ D i�0Œe
�i�=2 cos�.x/ � ei�=2 sin�.x/�; (9.3b)

The function �.x/ increases from 0 to �=2 over a coherence length �0 D „vF =�0
around x D 0.

At energies E below�0 the excitations are nondegenerate chiral edge states‰L and
‰R circulating in opposite directions in the two domains [190, 199–201]. (See Fig. 9.1.)
At the domain wall the two states mix, so that an excitation entering the domain wall in
the state ‰in

L or ‰in
R can exit in either of the two states ‰out

L and ‰out
R . We first analyze

this edge state scattering problem between contacts NL and NR, and then introduce the
contacts N1 and N2 to the domain wall.

The edge state excitations have creation operators �.E/ D
�

�
L.E/; 

�
R.E/

�
, which

satisfy the electron-hole symmetry relation

.E/ D �.�E/: (9.4)

At zero energy one has  D �, so these are Majorana fermions [140]. The unitary scat-
tering matrix S.E/ relates incoming and outgoing operators, out.E/ D S.E/ in.E/.
Electron-hole symmetry for both  in and out requires S.E/ in.E/ D  in.E/S�.�E/,
hence S.E/ D S�.�E/. The zero-energy scattering matrix S.0/ � Sdw of the domain
wall is therefore a real unitary, or orthogonal, matrix. We may parametrize it by

Sdw D

�
cos sin 

.�1/pC1 sin .�1/p cos 

�
D �pz e

i �y ; (9.5)

in terms of a mixing angle  and a parity index p 2 f0; 1g.
The mixing angle  D kyW is determined by the phase accumulated by the pair

of chiral Majorana modes, as they propagate with wave number ˙ky along the domain
wall of length W . The dispersion relation E.ky/ of the Majorana modes was calculated
in Ref. [200], for a step function order parameter at x D 0, including also the effect of
a tunnel barrier U D U0ı.x/ (tunnel probability D, zero magnetic field). By equating
E.ky/ D 0 and solving for ky we obtain the mixing angle

 D kFW
p
D cos.�=2/: (9.6)
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The mixing angle can in principle be measured through thermal transport between con-
tacts NL and NR, since the heat current through the domain wall is / sin2  . In what
follows we consider instead a purely electrical measurement of transport along the do-
main wall, that (as we shall see) is independent of the degree of mixing of the Majorana
modes.

The measurement that we propose consists of the injection of electrons from con-
tact N1 at voltage V1 (relative to the superconductor) and the detection at contact N2.
We consider two detection schemes: In the first scheme contact N2 is kept at the same
potential as the superconductor and measures a current I2, leading to the nonlocal con-
ductance G12 D I2=V1. In the second scheme contact N2 is a voltage probe drawing
no net current and measuring a voltage V2. The ratio R12 D V2=I1, with I1 the current
entering the superconductor through contact N1, is the nonlocal resistance. The two
nonlocal quantities are related by R12 D G12=G1G2, with Gi D jIi=Vi j the contact
conductance of electrode Ni (measured with the other contact grounded).

We take the zero-temperature and zero-voltage limit, so that we can use the zero-
energy scattering matrix to calculate the various conductances. The scattering problem
at contact N1 involves, in addition to the Majorana operators  D .L; R/, the electron
and hole annihilation operators an and bn in mode n D 1; 2; : : : N . These are related by
bn.E/ D a

�
n.�E/. The even and odd combinations ˙n , defined by�

Cn
�n

�
D u

�
an
bn

�
; u D

r
1

2

�
1 1

�i i

�
; (9.7)

satisfy the same electron-hole symmetry relation (9.4) as L; R, and therefore represent
Majorana fermions at E D 0. We denote n D .Cn ; 

�
n / and collect these operators

in the vector � D .1;2; : : :N /. The scattering matrix S1 of contact N1 relates
incoming and outgoing operators,�



�

�
out

D S1

�


�

�
in

; S1 D

�
r1 t1
t 01 r 01

�
: (9.8)

Electron-hole symmetry implies that S1 is .2N C 2/ � .2N C 2/ orthogonal matrix at
zero energy. Similarly, the zero-energy scattering matrix S2 of contact N2 is a .2N 0 C
2/ � .2N 0 C 2/ orthogonal matrix. (The number of modes is N;N 0 in contacts N1; N2
respectively.)

The 2N 0 � 2N transmission matrix

t21 D t
0
2Sdw t1 D t

0
2�
p
z e

i �y t1 (9.9)

from contact N1 to N2 is the product of the 2 � 2N submatrix t1 of S1 (transmission
from N1 to the domain wall), the 2 � 2 scattering matrix Sdw (transmission along the
domain wall), and the 2N 0 � 2 submatrix t 02 of S2 (transmission from the domain wall
to N2).

The total transmission probability Tee , summed over all modes, of an electron at
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contact N1 to an electron at contact N2 is given by

Tee D
1
4

TrU �t�21U.1C†z/U
�t21U.1C†z/ (9.10)

D
1
4

Tr t�21.1 �†y/t21.1 �†y/; (9.11)

where we have defined the direct sums U D u ˚ u � � � ˚ u, †i D �i ˚ �i � � � ˚ �i
and we have used that u�zu� D ��y . Similarly, the total electron-to-hole transmission
probability The reads

The D
1
4

Tr t�21.1C†y/t21.1 �†y/: (9.12)

Since I2 D .e2=h/V1.Tee � The/, the nonlocal conductance takes the form

G12 D .e
2=h/1

2
Tr tT21†y t21†y : (9.13)

We have used that t�21 D tT21 and Tr tT21†y t21 D 0 (being the trace of an antisymmetric
matrix). The nonlocal resistance can be written in a similar form upon division by the
contact conductances,

R12 D
G12

G1G2
; Gi D .e

2=h/1
2

Tr .1 �†yr
0T
i †yr

0
i /: (9.14)

We will henceforth set e2=h to unity in most equations.
Substitution of Eq. (9.9) into Eq. (9.13) gives the conductance

G12 D
1
2

TrT 1S
T
dwT 2Sdw ; (9.15)

in terms of the 2 � 2 matrices T 1 D t1†y tT1 , T 2 D t 0
T
2†y t

0
2. We now use the identity

TrA1A2 D 1
2

�
TrA1�y

� �
TrA2�y

�
; (9.16)

valid for any pair of 2 � 2 antisymmetric matrices A1; A2. Taking A1 D T 1, A2 D
ST
dw
T 2Sdw we arrive at

G12 D .�1/
p˛1˛2; ˛i D

1
2

TrT i�y ; (9.17a)

R12 D .�1/
pˇ1ˇ2; ˇi D ˛i=Gi ; (9.17b)

since TrST
dw
T 2Sdw�y D .�1/

pTrT 2�y in view of Eq. (9.5).
Eq. (9.17) expresses the nonlocal conductance and resistance in terms of the scat-

tering matrices S1; S2 of the two contacts N1; N2. The scattering matrix Sdw of the
domain wall enters only through the parity index p, and not through the mixing angle
 . That the transferred charge depends only on a parity index is a generic feature of
a single-mode scattering problem with class D symmetry [144, 145, 202–204]. Quite
generally, p counts the number (modulo 2) of zero-energy bound states, which in our
case would be trapped in vortices in the domain wall.
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A measurement of the domain wall conductance would have several characteristic
features: Most prominently, the conductance is zero unless both contacts N1 and N2
are at the domain wall; if at least one contact is moved away from the domain wall, the
conductance vanishes because a single Majorana edge mode cannot carry an electrical
current at the Fermi level.1 This feature would distinguish chiral p-wave superconduc-
tors (symmetry class D) from chiral d-wave superconductors (symmetry class C), where
the Majorana edge modes come in pairs and can carry a current. The chirality itself can
be detected by interchanging the injecting and detecting contacts: only one choice can
give a nonzero conductance. While vortices trapped in the domain wall can change the
sign of the conductance (through the parity index p), other properties of the domain wall
have no effect on G12. In particular, there is no dependence on the length W .

To illustrate these features in a model calculation, we consider the case of two single-
mode contacts (N D N 0 D 1) coupled to the domain wall through a disordered inter-
face. We model the effect of disorder using random contact scattering matrices S1 and
S2, drawn independently with a uniform distribution from the ensemble of 4 � 4 or-
thogonal matrices. In the context of random-matrix theory [121], uniformly distributed
ensembles of unitary matrices are called “circular”, so our ensemble could be called
the “circular real ensemble” (CRE) — to distinguish it from the usual circular unitary
ensemble (CUE) of complex unitary matrices.2

Using the expression for the uniform measure on the orthogonal group [204] (see
also App. 9.A), we obtain the distributions of the parameters ˛i and ˇi characterizing
contact Ni :

P.˛/ D 1 � j˛j; P.ˇ/ D .1C jˇj/�2; j˛j; jˇj � 1: (9.18)

The distribution of the nonlocal conductance G12 D .�1/p˛1˛2, plotted in Fig. 9.2,
then follows from

P.G12/ D

Z 1

�1

d˛1

Z 1

�1

d˛2 ı.G12 � ˛1˛2/P.˛1/P.˛2/

D 4jG12j � 4 � 2.1C jG12j/ ln jG12j; jG12j < 1: (9.19)

(There is no dependence on the parity index p because P is symmetric around zero.)
The distribution of the nonlocal resistance R12 D .�1/pˇ1ˇ2 follows similarly and as
we can see in Fig. 9.2 it lies close to P.G12/.

The difference between the two quantities G12 and R12 becomes important if the
contacts between the metal and the superconductor contain a tunnel barrier. A tunnel
barrier suppresses G12 but has no effect on R12. More precisely (for more details see
App. 9.B), any series resistance in the single-mode contacts N1 and N2 which does not

1That the nonlocal conductance vanishes if one of the two contacts couples only to a single domain, can be
seen directly from Eq. (9.17): If, say, contact 1 couples only to the right domain, then only the 2; 2 element
of T 1 can be nonzero, but since this matrix is antisymmetric the 2; 2 element must also vanish and T 1 must
be zero identically. This implies ˛1 D 0, henceG12 D 0.

2The name “circular orthogonal ensemble” (COE) might be more appropriate for the ensemble of uni-
formly distributed orthogonal matrices, but this name is already in use for the ensemble of unitary symmetric
matrices.
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Figure 9.2: Solid curves: probability distributions of the nonlocal conductance G12 (in
units of e2=h) and nonlocal resistance R12 (in units of h=e2). These are results for a
random distribution of the 4 � 4 orthogonal scattering matrices S1 and S2. The dashed
curve shows the narrowing effect on P.G12/ of a tunnel barrier in both contacts (tunnel
probability � D 0:1). In contrast, P.R12/ is not affected by a tunnel barrier.

couple electrons and holes drops out of the nonlocal resistance R12. This remarkable
fact is again a consequence of the product rule (9.16), which allows to factor a series
conductance into a product of conductances. A tunnel barrier in contact i then appears
as a multiplicative factor in ˛i and Gi , and thus drops out of the ratio ˇi D ˛i=Gi
determining R12.

To demonstrate the effect of a tunnel barrier (tunnel probability � ), we have calcu-
lated the distribution of ˛ using the Poisson kernel of the CRE [205], with the result

P.˛; �/ D
�2

Œ� C .1 � �/j˛j�3
�

�2j˛j

Œ� C .1 � �/˛2�2
: (9.20)

The distribution of ˇ remains given by Eq. (9.18), independent of � . The dashed curves
in Fig. 9.2 show how the resulting distribution of the nonlocal conductance becomes
narrowly peaked around zero for small � , in contrast to the distribution of the nonlocal
resistance.

9.3 Discussion

Among the various candidate systems for chiral p-wave superconductivity, the recent
proposal [131] based on the proximity effect in a semiconducting two-dimensional elec-
tron gas seems particularly promising for our purpose. Split-gate quantum point con-
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tacts (fabricated with well-established technology) could serve as single-mode injector
and detector of electrical current. The chirality of the superconducting domains is deter-
mined by the polarity of an insulating magnetic substrate, so the location of the domain
wall could be manipulated magnetically. The appearance of a nonlocal signal between
the two point contacts would detect the domain wall and the disappearance upon inter-
change of injector and detector would demonstrate the chirality.

As a direction for further research, we note that domains of opposite chirality are
formed spontaneously in disordered samples. Since, as we have shown here, domain
walls may carry electric current, a network of domain walls contributes to the conduc-
tivity and may well play a role in the anomalous (parity violating) current-voltage char-
acteristic reported recently [206].

9.A Averages over the circular real ensemble

To calculate the distributions (9.18) of the parameters ˛i and ˇi we need the probability
distribution of the 4 � 4 scattering matrix Si of contact i D 1; 2 in the CRE. We may
either work in the basis of electron and hole states, as in Ref. [204], or in the basis of
Majorana states. Here we give a derivation of Eq. (9.18) using the latter basis (which is
the basis we used in the main text).

A 4 � 4 orthogonal scattering matrix has the polar decomposition

S D

�
ei�1�y 0

0 ei�2�y

��
S C

.�1/pC1C .�1/pS

��
ei�3�y 0

0 ei�4�y

�
; (9.21)

C D

�
cos 1 0

0 cos 2

�
; S D

�
sin 1 0

0 sin 2

�
; (9.22)

in terms of six real angles. We need the uniform measure on the orthogonal group, which
defines the probability distribution in the circular real ensemble (CRE). This calculation
proceeds along the same lines as in Ref. [204] (where a different parametrization, in the
electron-hole basis, was used). The result is that the angles �1; �2; �3; �4 are uniformly
distributed in .0; 2�/, while the angles  1;  2 have the distribution

P. 1;  2/ D
1
4
j cos2  1 � cos2  2j; 0 <  1;  2 < �: (9.23)

We can now obtain the joint distribution P.˛i ; Gi / of the injection (or detection)
efficiency ˛i and the (dimensionless) contact conductance Gi of contact i . (We drop the
label i for ease of notation.) By definition,

˛ D 1
2

Tr t�y t
T �y D cos 1 cos 2; (9.24)

G D 1 � 1
2

Tr r�yr
T �y D 1 � sin 1 sin 2: (9.25)

Notice the trigonometric inequality

0 � j˛j � G � 2 � j˛j: (9.26)
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Figure 9.3: Probability distributions of the parameters ˛i and ˇi D ˛i=Gi that char-
acterize a single-mode contact in the CRE, given by Eqs. (9.28) and (9.30). The dis-
tribution (9.29) of Gi � 1 is the same as that of ˛i , but these two quantities are not
independent because of the inequality (9.26).

By averaging over the CRE we find, remarkably enough, that the joint distribution of ˛
and G is uniform when constrained by this inequality,

P.˛;G/ D

Z �

0

d 1

Z �

0

d 2 P. 1;  2/

� ı.˛ � cos 1 cos 2/ı.G � 1C sin 1 sin 2/

D

�
1=2 if 0 � j˛j � G � 2 � j˛j;
0 elsewise:

(9.27)

The marginal distributions of ˛, G, and ˇ D ˛=G now follow by integration over
P.˛;G/,

P.˛/ D 1 � j˛j; j˛j < 1; (9.28)

PG.G/ D 1 � jG � 1j; 0 < G < 2; (9.29)

P.ˇ/ D .1C jˇj/�2; jˇj < 1; (9.30)

in accord with Eq. (9.18). We have plotted these distributions in Fig. 9.3.
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9.B Proof that the tunnel resistance drops out of the
nonlocal resistance

According to Eq. (9.17), the nonlocal conductance G12 is determined by the product
of the injection efficiency ˛1 of contact N1 and the detection efficiency ˛2 of contact
N2. A tunnel barrier between the metal electrode and the superconductor suppresses the
injection/detection efficiencies and thereby suppresses the nonlocal conductance.

The nonlocal resistance R12 is determined by the ratio ˛i=Gi of the injection/detec-
tion efficiency and the contact conductance Gi . Since both ˛i and Gi are suppressed by
a tunnel barrier, one might hope that R12 would remain of order e2=h. In this Appendix
we investigate the effect of a tunnel barrier on the nonlocal resistance, and demonstrate
that it drops out identically for a single-mode contact between the normal metal and the
superconductor.

The key identity that we will use to prove this cancellation, is the product rule (9.16)
and two corollaries:

1
2

Tr
�Y
i

Mi

�
�y
�Y
i

Mi

�T
�y D

Y
i

�
1
2

TrMi�yM
T
i �y

�
; (9.31a)

1
2

Tr .M�yM
T �y/

�1
D
�
1
2

TrM�yM
T �y

��1
; (9.31b)

valid for arbitrary 2 � 2 matrices Mi .
Considering any one of the two contacts, we assume that its scattering matrix S0

is modified by a tunnel barrier with scattering matrix ıS . Transmission and reflection
submatrices are defined as in Eq. (9.8),

S0 D

�
r0 t0
t 00 r 00

�
; ıS D

�
ır ıt

ıt 0 ır 0

�
: (9.32)

For a single-mode contact, each submatrix has dimension 2 � 2. Both S0 and ıS are
real orthogonal matrices at zero energy (in the basis of Majorana fermions). The tunnel
barrier does not couple electrons and holes, which means that the submatrices of ıS
must commute with �y ,

Œ�y ; ır� D Œ�y ; ır
0� D Œ�y ; ıt � D Œ�y ; ıt

0� D 0: (9.33)

The submatrices of S0 are not so constrained.
The total scattering matrix S of the contact is constructed from S0 and ıS , according

to the composition rule for scattering matrices. The transmission and reflection subma-
trices of S take the form

t D t0.1 � ırr
0
0/
�1ıt; (9.34a)

t 0 D ıt 0.1 � r 00ır/
�1t 00; (9.34b)

r 0 D ır 0 C ıt 0r 00.1 � ırr
0
0/
�1ıt; (9.34c)

r D r0 C t0ır.1 � r
0
0ır/

�1t 00: (9.34d)
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The injection efficiency ˛ and detection efficiency ˛0 are defined by

˛ D 1
2

Tr t�y t
T �y ; ˛

0
D

1
2

Tr t 0�y t
0T �y : (9.35)

Using the identities (9.31a) and (9.31b) we can factor these quantities,

˛ D ˛0ı˛=X; ˛
0
D ˛00ı˛

0=X; (9.36)

into the product of the injection/detection efficiencies ˛0; ˛00 without the tunnel barrier
and terms containing the effect of the tunnel barrier:

˛0 D
1
2

Tr t0�y t
T
0 �y ; ˛

0
0 D

1
2

Tr t 00�y t
0T
0 �y ; (9.37a)

ı˛ D 1
2

Tr ıt�yıt
T �y ; ı˛

0
D

1
2

Tr ıt 0�yıt
0T �y ; (9.37b)

X D 1
2

Tr .1 � ırr 00/�y.1 � ırr
0
0/
T �y : (9.37c)

Since ıt and ıt 0 commute with �y , the terms ı˛, ı˛0 simplify to

ı˛ D ı˛0 D 1
2

Tr ıtıtT ; (9.38)

where we have used the orthogonality condition, ıST ıS D ıSıST D 1, to equate the
traces of ıtıtT and ıt 0ıt 0T . The term X can similarly be reduced to

X D 1C .1 � ı˛/.1 �G0/ � Tr ırr 00; (9.39)

where G0 is the contact conductance (in units of e2=h) in the absence of the tunnel
barrier:

G0 D
1
2

Tr .1 � r 00�yr
0T
0 �y/: (9.40)

We now turn to the contact conductances Gi , in order to show that the effect of the
tunnel barrier is contained in the same factor ı˛=X (which will then cancel out of the
ratio ˇi D ˛i=Gi ). Considering again a single contact, and dropping the index i for ease
of notation, we start from the definition of the contact conductance (in units of e2=h):

G D 1
2

Tr .1 � r 0�yr
0T �y/: (9.41)

We substitute Eq. (9.34c), and try to factor out the terms containing the transmission and
reflection matrices of the tunnel barrier.

It is helpful to first combine the two terms in Eq. (9.34c) into a single term, using the
orthogonality of ıS :

r 0 D �.ıt 0
T
/�1ırT ıt C ıt 0r 00.1 � ırr

0
0/
�1ıt

D .ıt 0
T
/�1.r 00 � ır

T /.1 � ırr 00/
�1ıt: (9.42)

We now substitute Eq. (9.42) into Eq. (9.13) and use the identities (9.31) to factor the
trace,

G D 1 �X�1 1
2

Tr .r 00 � ır
T /�y.r

0T
0 � ır/�y

D 1 �X�1.2 � ı˛ �G0 � Tr ırr 00/; (9.43)
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where we also used the commutation relations (9.33). The remaining trace of ırr 00 can
be eliminated with the help of Eq. (9.39), and so we finally arrive at the desired result:

G D G0ı˛=X: (9.44)


