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Chapter 8

Electrically detected interferometry of
Majorana fermions in a topological insulator

8.1 Introduction

There is growing experimental evidence [171–173] that the 5=2 fractional quantum Hall
effect (FQHE) is described by the Moore-Read state [5]. This state has received much
interest in the context of quantum computation [8], because its quasiparticle excitations
are Majorana bound states. A qubit can be stored nonlocally in a pair of widely separated
Majorana bound states, so that no local source of decoherence can affect it [132]. The
state of the qubit can be read out and changed in a fault-tolerant way by edge state
interferometry [174–176]. This “measurement based topological quantum computation”
[177] combines static quasiparticles within the Hall bar to store the qubits, with mobile
quasiparticles at the edge of the Hall bar to perform logical operations by means of
interferometric measurements.

The electronic correlations in the Moore-Read state involve a pairing of spin-polar-
ized fermions, equivalent to a superconducting pairing with px C ipy orbital symmetry
[6, 139, 178]. Such an exotic pairing might occur naturally in the Sr2RuO4 superconduc-
tor [147], or it might be produced artificially in p-wave superfluids formed by fermionic
cold atoms [148]. Recently, Fu and Kane [130] showed how a conventional s-wave
superconductor might produce Majorana bound states, if brought in proximity to a topo-
logical insulator. This class of insulators has metallic surface states with massless quasi-
particles, as has been demonstrated in BixSb1�x alloys [161] and Bi2Se3 single crystals
[179, 180]. The latter material is particularly promising for applications because it re-
mains a topological insulator at room temperature. The 5=2 FQHE, in contrast, persists
only at temperatures well below 1K [171–173].

While induced superconductivity in a topological insulator seems an attractive al-
ternative to the FQHE for the purpose of quantum computation, one crucial difference
creates a major obstacle: Quasiparticle excitations in the Moore-Read state have charge
˙e=4 (generated by changing the filling fraction of the half-filled Landau level), but in a
superconductor the excitations have charge zero (the charge is screened by the supercon-
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Figure 8.1: Three-dimensional topological insulator in proximity to ferromagnets with
opposite polarization (M" and M#) and to a superconductor (S ). The top panel shows a
single chiral Majorana mode along the edge between superconductor and ferromagnet.
This mode is charge neutral, so it cannot be detected electrically. The Mach-Zehnder
interferometer in the bottom panel converts a charged current along the domain wall into
a neutral current along the superconductor (and vice versa). This allows for electrical
detection of the parity of the number of enclosed vortices, as explained in the text.

ducting condensate). All known schemes [174–176] for edge state interferometry rely
on electrical detection, and this seems impossible if the edge states carry no electrical
current. It is the purpose of this work to propose a way around this obstacle, by showing
how a pair of neutral Majorana fermions can be converted phase coherently and with
unit probability into a charged Dirac fermion.

We first give a qualitative description of the mechanism of electrically detected Ma-
jorana interferometry, and then present a quantitative theory. Our key idea is to combine
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edge channels of opposite chiralities in a single interferometer, by means of a mag-
netic domain wall. The appearance of counterpropagating edge channels in a single
superconducting domain is a special feature of a topological insulator in proximity to
a ferromagnet, where the propagation direction is determined by the way time reversal
symmetry is broken outside of the condensate (hence by the polarization of the ferro-
magnets) — rather than being determined by the order parameter of the condensate (as
in a px ˙ ipy superconductor or FQHE droplet).

Refering to the lower panel of Fig. 8.1, we see that electrons or holes (with Dirac
fermion operators c�a and ca) propagate along the domain wall a until they reach the
superconductor, where they are split into a pair of Majorana fermions b and c of
opposite chirality:

c�a ! b C ic ; ca ! b � ic : (8.1)

(Here we have used that  D �, which is the defining property of a Majorana fermion.)
The Dirac-to-Majorana fermion conversion expressed by Eq. (8.1) relies on the fact

that the electron or hole mode at the domain wall couples to a pair of Majorana modes,
so that the full information encoded by the complex fermion ca is encoded by two real
fermions b and c . This is the essential distinction from the process of electron tun-
neling into a Majorana bound state [151–153, 181], which couples to a single Majorana
fermion and can therefore not transfer the full information.

Upon leaving the superconductor the Majorana fermions recombine into an electron
c
�

d
or hole cd depending on the number nv of superconducting vortices enclosed by the

two arms of the interferometer,

b C .�1/
nv ic ! c

�

d
; b � .�1/

nv ic ! cd : (8.2)

For nv an even integer, no charge is transfered to the superconductor, while for nv odd
a charge ˙2e is absorbed by the superconducting condensate. The conductance G,
measured by application of a voltage between a point on the domain wall and the su-
perconductor, becomes equal (in the zero-temperature, zero-voltage limit) to G D 0 for
nv D even and G D 2e2=h for nv D odd.

8.2 Scattering matrix approach

Proceeding now to a theoretical description, we recall that the surface of a three-dimen-
sional topological insulator, in the presence of a magnetizationM .r/ and superconduct-
ing order parameter �.r/, is described by the following Hamiltonian [130]:

H D

�
M � � C vFp � � �EF �

�� M � � � vFp � � CEF

�
: (8.3)

Here p D .px ; py ; 0/ is the momentum on the surface, � D .�x ; �y ; �z/ is the vector
of Pauli matrices, vF is the Fermi velocity, and EF the Fermi energy. The two magne-
tizations M" and M# in Fig. 8.1 correspond to M D .0; 0;M0/ and M D .0; 0;�M0/,
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respectively. Particle-hole symmetry is expressed by the anticommutationH„ D �„H
of the Hamiltonian with the operator

„ D

�
0 i�yC

�i�yC 0

�
; (8.4)

with C the operator of complex conjuation.
There is a single chiral Majorana mode with amplitude  (group velocity vm) at a

boundary between a region with a superconducting gap and a region with a magnetic
gap [130]. At a domain wall between two regions with opposite signs of Mz there are
two chiral Dirac fermion modes, an electron mode with amplitude �e and a hole mode
with ampitude �h. The scattering matrix Sin."/ describes scattering at excitation energy
" from electron and hole modes (along edge a) to two Majorana modes (along edges b
and c in Fig. 8.1), according to �

 b
 c

�
D Sin

�
�ea
�ha

�
: (8.5)

Particle-hole symmetry for the scattering matrix is expressed by

Sin."/ D S
�
in.�"/

�
0 1

1 0

�
: (8.6)

At small excitation energies j"j � jMzj; j�j the "-dependence of Sin may be neglected.
(The excitation energy is limited by the largest of voltage V and temperature T .) Then
Eq. (8.6) together with unitarity (S�1in D S

�
in) fully determine the scattering matrix,

Sin D
1
p
2

�
1 1

˙i �i

��
ei˛ 0

0 e�i˛

�
; (8.7)

up to a phase difference ˛ between electron and hole (which will drop out of the conduc-
tance and need not be further specified). The sign ambiguity (matrix elementsCi;�i or
�i;Ci ) likewise does not affect the conductance.

The scattering matrix Sout for the conversion from Majorana modes to electron and
hole modes can be obtained from Sin by time reversal,

Sout.M / D STin .�M / D
1
p
2

�
ei˛
0

0

0 e�i˛
0

��
1 ˙i

1 �i

�
: (8.8)

The phase shift ˛0 may be different from ˛, because of the sign change ofM upon time
reversal, but it will also drop out of the conductance.

The full scattering matrix S of the Mach-Zehnder interferometer in Fig. 8.1 is given
by the matrix product

S �

�
See Seh
She Shh

�
D Sout

�
eiˇb 0

0 eiˇc

�
Sin; (8.9)
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Figure 8.2: Fabry-Perot interferometer, allowing to measure the state of a qubit encoded
in a pair of vortices. Black lines represent electron or hole modes at domain walls, gray
lines represent Majorana modes at magnet-superconductor interface.

where ˇb and ˇc are the phase shifts accumulated by the Majorana modes along edge b
and c, respectively. The relative phase

ˇb � ˇc D "ıL=„vm C � C nv� (8.10)

consists of three terms: A dynamical phase (proportional to the length difference ıL D
Lb �Lc of the two arms of the interferometer), a Berry phase of � from the rotation of
the spin-1=2, and an additional phase shift of � per enclosed vortex.

The differential conductance follows from

G.V / D
2e2

h
jShe.eV /j

2
D
2e2

h
sin2

�
nv�

2
C
eV ıL

2„vm

�
: (8.11)

As announced in the introduction, the linear response conductance G.0/ vanishes if the
number of vortices is even, while it has the maximal value of 2e2=h if the number
is odd. A finite temperature T will obscure the even-odd effect if kBT & „vm=ıL.
By reducing ıL, the thermal smearing can be eliminated — leaving the requirement
kBT � jMzj; j�j as the limiting factor.
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8.3 Fabry-Perot interferometer

The Mach-Zehnder interferometer can distinguish between an even and an odd number
nv of enclosed vortices. The next step towards measurement based topological quan-
tum computation is to distinguish between an even and an odd number nf of enclosed
fermions. If nv is odd, the parity of nf is undefined, but if nv is even, the parity of nf is
a topologically protected quantity that determines the state of a qubit [8]. To electrically
read out the state of a qubit encoded in a pair of charge-neutral vortices, we combine the
Fabry-Perot interferometer of the FQHE [175, 176] with our Dirac-Majorana converter.

The geometry is shown in Fig. 8.2. Electrons are injected in the upper left arm a

of the interferometer (biased at a voltage V ) and the current I is measured in the upper
right arm e (which is grounded). The electron at a is split into a pair of Majorana
fermions  b and  c , according to the scattering matrix Sin. A pair of constrictions
allows tunneling from  c to  d , with amplitude tdc . Finally, the Majorana fermions  d
and  b are recombined into an electron or hole at e, according to the scattering matrix
Sout. The resulting net current I D .e2=h/V .jT eej

2 � jT hej
2/ (electron current minus

hole current) is obtained from the transfer matrix

T D Sout

�
eiˇb 0

0 tdc

�
Sin ) I D

e2

h
V Re

�
e�iˇb tdc

�
: (8.12)

Notice that the current is proportional to the tunnel amplitude, rather than to the tunnel
probability. In the low-voltage limit, to which we will restrict ourselves in what follows,
the phase shift ˇb vanishes and tdc is real (because of electron-hole symmetry) — so I
directly measures the tunnel amplitude.

In general, two types of tunnel processes across a constriction contribute to tdc :
A Majorana fermion at the edge of the superconductor can tunnel through the super-
conducting gap to the opposite edge of the constriction either directly as a fermion
or indirectly via vortex tunneling [182]. Fermion tunneling typically dominates over
vortex tunneling, although quantum phase slips (and the associated vortex tunneling)
might become appreciable in constrictions with a small capacitance [183] or in super-
conductors with a short coherence length [184]. Only vortex tunneling is sensitive to the
fermion parity nf , through the phase factor .�1/nf acquired by a vortex that encircles
nf fermions. Because of this sensitivity, vortex tunneling is potentially distinguishable
on the background of more frequent fermion tunneling events.

The contribution to tdc from fermion tunneling is simply tf;1C .�1/nv tf;2, to lowest
order in the fermion tunnel amplitudes tf;1 and tf;2 at the first and second constriction.
There is no dependence on nf , so we need not consider it further.

To calculate the contribution to tdc from vortex tunneling, we apply the vortex tunnel
Hamiltonian [182] Hi D vi�i�

0
i , where i D 1; 2 labels the two constrictions and vi is

the tunnel coupling. The operators �i and � 0i create a vortex at the left and right end of
constriction i , respectively. The lowest order contribution to tdc is of second order in
the tunnel Hamiltonian, because two vortices need to tunnel in order to transfer a single
Majorana fermion. The calculation of tdc will be presented elsewhere, but the nv and
nf dependence can be obtained without any calculation, as follows.
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Three terms can contribute to second order in Hi , depending on whether both vor-
tices tunnel at constriction number 1 (amplitude t21 ), both at constriction number 2 (am-
plitude t22 ), or one at constriction number 1 and the other at constriction number 2 (am-
plitude 2t1t2). The resulting expression for tdc is

tdc D t
2
1 C t

2
2 C .�1/

nf 2t1t2; if nv is even: (8.13)

We see that if the two constrictions are (nearly) identical, so t1 � t2 � t , the tunnel
amplitude tdc and hence the current Ivortex due to vortex tunneling vanish if the fermion
parity is odd, while Ivortex D .e

2=h/V � 4t2 if the fermion parity is even.1

8.4 Conclusion

In summary, we have proposed a method to convert a charged Dirac fermion into a
pair of neutral Majorana fermions, encoding the charge degree of freedom in the rela-
tive phase of the two Majorana’s. The conversion can be realized on the surface of a
topological insulator at a junction between a magnetic domain wall (supporting a chiral
charged mode) and two magnet-superconductor interfaces (each supporting a Majorana
mode). We found that at low voltages the Dirac-Majorana conversion is geometry inde-
pendent and fully determined by the electron-hole symmetry. It allows for the electrical
read-out of a qubit encoded nonlocally in a pair of vortices, providing a building block
for measurement based topological quantum computation.

Much experimental progress is needed to be able to perform Majorana interferom-
etry in any system, and the topological insulators considered here are no exception.
Induced superconductivity with critical temperature Tc > 4K has been demonstrated in
BiSb [165]. It is likely that the same could be achieved in Bi2Se3 (the most promising
realization of a three-dimensional topological insulator [179, 180]). The even-odd vor-
tex number effect of Eq. (8.11) would then be measurable at temperatures T well below
Tc — if the arms of the interferometer can be balanced to eliminate thermal smearing
(ıL < „vm=kBT ). This would be the first experimental mile stone, reachable with cur-
rent technology. The even-odd fermion number effect of Eq. (8.13) requires coherent
vortex tunneling, which is a more long-term experimental challenge [183, 184].

1Eq. (8.13) assumes that the number nv of bulk vortices in between the two constrictions is even, so that
nf is well-defined. When nv is odd, a vortex tunneling at constriction number 2 exchanges a fermion with the
bulk vortices [139]. If both vortices tunnel at constriction number 2, the two fermion exchanges compensate
with a phase factor of �1, but if one vortex tunnels at constriction 1 and the other at constriction 2, then the
single fermion exchange prevents the transfer of a Majorana fermion across the superconductor. The resulting
expression for tdc therefore contains only two terms, tdc D t

2
1 � t

2
2 , if nv is odd.
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