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Chapter 7

Splitting of a Cooper pair by a pair of
Majorana bound states

7.1 Introduction

Majorana bound states are coherent superpositions of electron and hole excitations of
zero energy, trapped in the middle of the superconducting energy gap by a nonuniformity
in the pair potential. Two Majorana bound states nonlocally encode a single qubit (see
Fig. 7.1, top panel). If the bound states are widely separated, the qubit is robust against
local sources of decoherence and provides a building block for topological quantum
computation [8, 132].

While Majorana bound states have not yet been demonstrated experimentally, there
is now a variety of candidate systems. In an s-wave superconductor, zero-point motion
prevents the formation of bound states at zero energy. Early proposals for Majorana
bound states therefore considered p-wave superconductors [6, 139], with Sr2RuO4 as a
candidate material [147], or p-wave superfluids formed by fermionic cold atoms [148].
More recently, it was discovered [130, 149, 150] that Majorana bound states can be
induced by s-wave superconductivity in a metal with a Dirac spectrum (such as graphene
or the boundary of a topological insulator). Several tunneling experiments have been
proposed [151–153] to search for the Majorana bound states predicted to occur in these
systems.

Here we show that crossed Andreev reflection [154–156] by a pair of Majorana
bound states is a direct probe of the nonlocality. Crossed Andreev reflection is the
nonlocal conversion of an electron excitation into a hole excitation, each in a separate
lead. Local Andreev reflection, in contrast, converts an electron into a hole in the same
lead. Equivalently, local Andreev reflection injects a Cooper pair in a single lead, while
crossed Andreev reflection splits a Cooper pair over two leads. We have found that
at sufficiently low excitation energies, local Andreev reflection by a pair of Majorana
bound states is fully suppressed in favor of crossed Andreev reflection.

The suppression is not a property of the leads dispersion relation (as in Refs. [157,
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Figure 7.1: Top panel: Energy diagram of two Majorana bound states (levels at zero en-
ergy), which split into a pair of levels at ˙EM upon coupling. Whether the upper level
is excited or not determines the states j1i and j0i of a qubit. Crossed Andreev reflection
probes the nonlocality of this Majorana qubit. Lower panel: Detection of crossed An-
dreev reflection by correlating the currents I1 and I2 that flow into a superconductor via
two Majorana bound states.

158]), but directly probes the Majorana character of the Hamiltonian [8]:

HM D iEM12; (7.1)

of the pair of weakly coupled bound states (labeled 1 and 2). The i ’s are Majorana
operators, defined by i D 

�
i , ij C j i D 2ıij . The coupling energy EM splits the

two zero-energy levels into a doublet at ˙EM . The suppression of local Andreev re-
flection happens when the width �M of the levels in the doublet (which is finite because
of leakage into the leads) and the excitation energy E are both � EM . (The relative
magnitude of �M and E does not matter.)

Our theoretical analysis is particularly timely in view of recent advances in the ex-
perimental realization of topological insulators in two-dimensional (2D) HgTe quantum
wells [159, 160] and 3D BiSb crystals [161]. Topological insulators are characterized
by an inverted band gap, which produces metallic states at the interface with vacuum or
any material with a normal (noninverted) band gap [162–164]. The metallic states are
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2D surface states if the insulator is 3D, while if the insulator is 2D the metallic states are
1D edge states.

These recent experiments [159–161] used nonsuperconducting electrodes. A super-
conducting proximity effect between Nb and BiSb was reported in earlier work [165], so
that we expect a search for the predicted [130] Majorana bound states to be carried out
in the near future. Anticipating these developments, we will identify observable conse-
quences of the suppression of local Andreev reflection, by calculating the shot noise in
a 2D topological insulator with a superconducting electrode (Fig. 7.1, lower panel). A
similar calculation can be done for the 3D case, and indeed our conclusions are quite
general — as we will now demonstrate by showing that the Majorana Hamiltonian (7.1)
directly implies the suppression of local Andreev reflection.

7.2 Calculation of noise correlators

For this purpose write the unitary scattering matrix S.E/ in a model-independent form,

S.E/ D 1C 2�iW �.HM �E � i�WW
�/�1W; (7.2)

with W the matrix that describes the coupling of the scatterer (Hamiltonian HM ) to the
leads. In our case, we have

W D

�
w1 0 w�1 0

0 w2 0 w�2

�
; HM D

�
0 iEM

�iEM 0

�
: (7.3)

The expression for HM is Eq. (7.1) in the basis fˆ1; ˆ2g of the two Majorana bound
states, while W is the coupling matrix in the basis fˆe;1; ˆe;2; ˆh;1; ˆh;2g of propagat-
ing electron and hole modes in leads 1 and 2. We have assumed that lead 1 is coupled
only to bound state 1 and lead 2 only to bound state 2, and we have also assumed that
the energy dependence of the coupling amplitudes wi can be neglected. (In the exact
calculation given later on for a specific model, neither assumption will be made.) With-
out loss of generality we can choose the wi ’s to be purely real numbers by adjusting the
phases of the basis states in the leads.

Substitution of Eq. (7.3) into Eq. (7.2) gives the electron and hole blocks of the
scattering matrix,

S �

�
see seh

she shh

�
D

�
1C A A

A 1C A

�
; (7.4)

which turn out to depend on a single 2 � 2 matrix A with elements

A D Z�1
�
i�1.E C i�2/ �EM

p
�1�2

EM
p
�1�2 i�2.E C i�1/

�
: (7.5)

We have abbreviated

Z D E2M � .E C i�1/.E C i�2/; �i D 2�w
2
i : (7.6)
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(The width �M introduced earlier equals �1 C �2.) Unitarity of S is guaranteed by the
identity

AC A� C 2AA� D 0: (7.7)

In the limit of low excitation energies and weak coupling to the leads, this simplifies
to

A �

p
�1�2

EM

�
0 �1

1 0

�
; for E;�i � EM : (7.8)

The scattering matrix she D A that describes Andreev reflection of an electron into
a hole has therefore only off-diagonal elements in this limit, so only crossed Andreev
reflection remains. More specifically, an electron incident in lead 1 is transferred to the
other lead 2 either as an electron or as a hole, with equal probabilities p D �1�2=E

2
M .

The probability for local Andreev reflection is smaller than the probability p for crossed
Andreev reflection by a factor .�1=�2/.E2=E2M C �

2
2=E

2
M /� 1.

Because the probabilities to transfer to the other lead as an electron or as a hole are
the same, crossed Andreev reflection cannot be detected in the time averaged current
NIi in lead i , but requires measurement of the current fluctuations ıIi .t/ D Ii .t/ �
NIi . We consider the case that both leads are biased equally at voltage V , while the
superconductor is grounded. At low temperatures T � eV=kB the current fluctuations
are dominated by shot noise. In the regime p � 1 of interest, this noise consists of
independent current pulses with Poisson statistics [166]. The Fano factor (ratio of noise
power and mean current) measures the charge transferred in a current pulse.

The total (zero frequency) noise power P D
P
ij Pij , with

Pij D

Z 1
�1

dt ıIi .0/ıIj .t/; (7.9)

has Fano factor F D P=e NI (with NI D
P
i
NIi ) equal to 2 rather than equal to 1 because

the superconductor can only absorb electrons in pairs [167]. As we will now show, the
suppression of local Andreev reflection by the pair of Majorana bound states produces a
characteristic signature in the individual noise correlators Pij .

The general expressions for NIi and Pij in terms of the scattering matrix elements are
[168]:

NIi D
e

h

Z eV

0

dE
�
1 �Reei i CR

hh
ii

�
; (7.10)

Pij D
e2

h

Z eV

0

dE P ij .E/; (7.11)

with the definitions

P ij .E/ D ıijR
ee
i i C ıijR

hh
ii �R

ee
ij R

ee
j i �R

hh
ij R

hh
ji

CRehij R
he
ji CR

he
ij R

eh
ji ; (7.12)

R
xy
ij .E/ D

X
k

sxeik .E/Œs
ye

jk
.E/��; x; y 2 fe; hg: (7.13)
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Substitution of the special form (7.4) of S for the pair of Majorana bound states, results
in

NIi D
2e

h

Z eV

0

dE .AA�/i i ; (7.14)

Pij D e NIiıij C
2e2

h

Z eV

0

dE
�
jAij C .AA

�/ij j
2
� j.AA�/ij j

2
�
; (7.15)

where we have used the identity (7.7).
We now take the low energy and weak coupling limit, where A becomes the off-

diagonal matrix (7.8). Then we obtain the remarkably simple result

Pij D e NI1 D e NI2 D
e NI

2
; for eV; �i � EM : (7.16)

The total noise power P �
P
ij Pij D 2e NI has Fano factor two, as it should be for

transfer of Cooper pairs into a superconductor [167], but the noise power of the separate
leads has unit Fano factor: Fi � Pi i=e NIi D 1. Because local Andreev reflection is
suppressed, the current pulses in a single lead transfer charge e rather than 2e into the
superconductor. The positive cross-correlation of the current pulses in the two leads
ensures that the total transferred charge is 2e. This “splitting” of a Cooper pair is a
highly characteristic signature of a Majorana qubit, reminiscent of the h=e (instead of
h=2e) flux periodicity of the Josephson effect [132, 133, 169].

Notice that for any stochastic process the cross-correlator is bounded by the auto-
correlator,

jP12j �
1
2
.P11 C P22/: (7.17)

The positive cross-correlation (7.16) is therefore maximally large. This is a special
property of the low energy, weak coupling limit. There is no inconsistency with the
conclusion of Bolech and Demler [152], that the currents into two Majorana bound
states fluctuate independently, because that conclusion applies to the regime eV � EM .
The duration „=eV of the current pulses is then shorter than the time „=EM needed to
transfer charge between the bound states, so no cross-correlations can develop. In this
high-voltage regime the two Majorana bound states behave as independent Andreev
resonances, for which the noise correlators are known [170],

Pi i D e NIi ; P12 D 0; for eV � EM ; �i : (7.18)

While the Fano factors of the individual leads Fi D 1 remain the same, the total noise
power P �

P
ij Pij D e NI has Fano factor F D 1 rather than F D 2 when the cross-

correlator P12 vanishes in the high-voltage regime.
As a specific model that can be solved exactly and is experimentally relevant, we

consider a 2D topological insulator contacted at the edge by one superconducting elec-
trode in between a pair of magnets (Fig. 7.1, bottom panel). As discoverd by Fu and
Kane [130], a Majorana bound state appears at the intersection of the interface between
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a magnet and a superconductor with the edge of the insulator. The four-component wave
function ‰ D .‰e"; ‰e#; ‰h"; ‰h#/ of the edge state satisfies [130]:�

m � � C vp�z �EF �

�� m � � � vp�z CEF

�
‰ D E‰: (7.19)

Here p D �i„@=@x is the momentum operator, EF the Fermi energy, v the Fermi
velocity, � the superconducting pair potential, m the magnetization vector, and � D
.�x ; �y ; �z/ the vector of Pauli matrices (acting in the space of right and left movers
";#).

We set�.x/ D 0 everywhere except� D �0 for 0 < x < l0. We also setm.x/ D 0
everywhere except m D .m0; 0; 0/ for �l1 < x < 0 and m D .m0 cos�;m0 sin�; 0/
for l0 < x < l0 C l2. We assume that jm0j > jEF j, so that the Fermi level lies in a
gap in the magnets as well as in the superconductor. The decay length in the supercon-
ductor is the coherence length �0 D „v=�0, while the decay length in the magnets is
given by �0 D „v.m20 � E

2
F /
�1=2. For �0 . �0 the only bound state at the magnet–

superconductor interface is the zero-energy Majorana state.
We have calculated the scattering states for this model by matching the ‰’s at the

opposite sides of the four interfaces x D �l1; 0; l0; l0 C l2. The resulting scattering
matrix is then substituted in the general expressions (7.10–7.13) to obtain the zero-
temperature, zero-frequency noise correlators as a function of the applied voltage V .
Representative results are shown in Fig. 7.2 (data points). At low voltages we con-
firm the unit Fano factor and maximal cross-correlation of Eq. (7.16), obtained from
the model-independent scattering matrix (7.2). Also the crossover to the conventional
high-voltage regime (7.18) of independent resonances is clearly visible.

For a quantitative comparison of the two calculations we need the splitting and
broadening of the Majorana bound states in the tunneling regime l1; l2 � �0, l0 � �0.
We find

EM D e
�l0=�0 cos

h�
2
C
EF l0

„v
C arctan

�EF �0
„v

�i 2„v

�0 C �0
; (7.20)

�i D e
�2li=�0.1 �E2F =m

2
0/

2„v

�0 C �0
: (7.21)

Notice that the level splitting can be controlled by varying the angle � between the
magnetizations at the two sides of the superconductor.1 In Fig. 7.2 we use these pa-
rameters to compare the model-independent calculation based on the scattering matrix
(7.2) (curves) with the results from the model Hamiltonian (7.19) (data points), and find
excellent agreement.

The setup sketched in Fig. 7.1 might be realized in a HgTe quantum well [159,
160]. The relevant parameters for this material are as follows. The gap in the bulk
insulator is of the order of 20 meV and the magnetic gap can be as large as 3 meV at

1With respect to the level splitting, the angle � between the magnetizations plays the same role as the
superconducting phase difference in the Josephson junction of Ref. [133]. One can indeed derive an exact
duality relation for the Hamiltonian (7.19) under the interchange .mx ;my ;mz/$ .Re�; Im�;EF /
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Figure 7.2: Data points: Auto-correlator P11 (circles) and cross-correlator P12 (dia-
monds) of the current fluctuations for the model Hamiltonian (7.19). The parameters
chosen are EF D 0, � D 0, m0=�0 D 1, l0 D 2:3 �0, l1 D l2 D 3 �0. The correla-
tors are normalized by e NI1, to demonstrate the low- and high-voltage limits (7.16) and
(7.18). The dashed and solid curves result from the model-independent scattering matrix
(7.2), with the parameters given by Eqs. (7.20) and (7.21). The dotted curve is the cor-
responding result for the total noise power P D

P
ij Pij , normalized by e NI D e

P
i
NIi .

a magnetic field of 1 T. The smallest energy scale is therefore the gap induced by the
superconductor, estimated [133] at �0 D 0:1meV. With „v D 0:36meV � �m this
gives a superconducting coherence length of �0 D 3:6�m, comparable to the magnetic
penetration length �0 at a field of 0.03 T. For the calculation in Fig. 7.2 we took �0 D �0
and then took the length l0 of the superconducting contact equal to 2:3 �0 ' 8�m, and
the lengths l1; l2 of the magnets both equal to 3 �0 ' 11�m. The level splitting is then
EM D 0:1�0 D 10�eV Š 100mK. At a temperature of the order of 10 mK we would
then have a sufficiently broad range of voltages where kBT < eV < EM .

7.3 Conclusion

In conclusion, we have demonstrated the suppression of local Andreev reflection by
a pair of Majorana bound states at low excitation energies. The remaining crossed An-
dreev reflection amounts to the splitting of a Cooper pair over the two spatially separated
halves of the Majorana qubit. This nonlocal scattering process has a characteristic sig-
nature in the maximal positive cross-correlation (P12 D P11 D P22) of the current
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fluctuations. The splitting of a Cooper pair by the Majorana qubit produces a pair of ex-
citations in the two leads that are maximally entangled in the momentum (rather than the
spin) degree of freedom, and might be used as “flying qubits” in quantum information
processing.


