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Chapter 6

Topological quantum computation away from
the ground state with Majorana fermions

6.1 Introduction

Topological quantum computation is manipulation of the wave function within a degen-
erate many-body ground state of many nonabelian anyons. Interchanging the anyons
applies a unitary transformation to the ground state wave function. The simplest of the
nonabelian anyons useful for topological quantum computation are Majorana fermions.
These are expected to exist in 5/2 fractional quantum Hall effect [5] and in certain ex-
otic superconductors [6, 129–131]. In 5/2 fractional quantum Hall effect the Majo-
rana fermions are charge e/4 quasiholes, and in superconductors Majorana fermions are
zero energy single particle states either trapped in vortex cores or other inhomogeneities
[129, 132–134].

Superconducting implementations of Majorana fermions potentially allow for a larger
bulk gap of a few Kelvin as compared with 500 mK for fractional quantum Hall effect.
One significant difference between the superconductors and the fractional quantum Hall
effect is that Majorana fermions in superconductors appear where the superconducting
gap in excitation spectrum closes. This means that Majorana fermions would not be iso-
lated from other excitations by the bulk gap, but coexisting with a lot of bound fermionic
states with level spacing of the order of the minigap �2=EF , where � � 1 K is the su-
perconducting gap and EF the fermi energy [135]. If EF � 1 eV, minigap is at least
a thousand times smaller than the bulk gap, so coupling between Majorana states and
excited states is unavoidable with existing experimental methods. Already detection of
Majorana fermions becomes problematic in this regime and requires ballistic samples
and spatial resolution of density of states on the scale of Fermi wave length [136]. This
is why there is research aimed at increasing the minigap [137].

We adopt a different strategy and show that coupling to excited states does not re-
move the topological protection as long as different Majorana fermions stay decoupled.
The topological protection persists because coupling to excited states has to preserve
the global fermion parity. Using only the conservation of the global fermion parity and
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the fact that different Majorana fermions are well separated we identify new Majorana
operators, which are protected even if the original Majorana fermions coexist with many
excited states. We also check that the braiding rules for the new Majorana operators are
the same as for original ones.

6.2 Fermion parity protection

We start from a brief introduction to Majorana fermions, for more information see e.g.
Ref. [8]. A single Majorana fermion is described by a fermionic annihilation operator 

which is equal to the creation operator


 D 
�: (6.1)

Due to this defining property of Majorana fermions they are also called “real fermions”
or “particles equal to their own antiparticles”. Substituting Eq. 6.1 into the fermion
anticommutation relation we get

f
; 
�g D 2
2 D 2
�
 D 1: (6.2)

The last equality is a manifestation of the fact that a single Majorana fermion is pinned
to the fermi level and accordingly is always half-filled. Additionally it is not possible
to add a perturbation to the Hamiltonian, which would move a single Majorana level
away from fermi level, at least two Majorana fermions are required. The only possible
coupling term between two Majorana fermions has the form

H
 D i"
1
2: (6.3)

The perturbationH
 hybridizes two Majorana states into a single complex fermion state
at energy " and with creation and annihilation operators
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: (6.4)

If Majorana fermions are well separated, the coupling between them decays exponen-
tially with the distance between them [6, 136]. Additionally if the superconductor is
grounded, the charging energy also vanishes, leaving the Majorana fermions completely
decoupled [138]. In the limit when coupling between Majorana fermions " is negligibly
small, H
 has two zero energy eigenstates which differ by fermion parity

.1 � 2a
�
12a12/ D 2i
1
2: (6.5)

If the system has N decoupled Majorana fermions, the ground state has 2N=2 degener-
acy and it is spanned by fermionic operators with the form (6.4). Braiding Majorana
fermions performs unitary rotations in the ground state space and makes the basis for
topological quantum computation.
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To understand how coupling with excited states gives nontrivial evolution to the
wave function of Majorana fermions we begin from a simple example. We consider a
toy model containing only two Majorana fermions 
1 and 
2 and a complex fermion a
bound in the same vortex as 
1. At t D 0 we turn on the coupling between 
1 and a
with Hamiltonian

Ha1 D i".aC a
�/
1: (6.6)

At t D �„=" we turn off Ha1 and give finite energy to the fermion by a term "a�a. We
denote by j0i the state where two Majorana fermions share no fermion, so an eigenstate
of 2i
1
2 with eigenvalue 1, and by j1i the eigenstate of 2i
1
2 with eigenvalue �1.
If the system begins from a state j0i, then it evolves into an excited state a�j1i, so the
Majorana qubit flips. This seems to destroy the topological protection, however there is
one interesting detail: since there are two degenerate ground states j0i and j1i, there are
also two degenerate excited states: a�j0i and a�j1i. So while j0i changes into a�j1i, j1i
changes into a�j0i. The two end states differ by total fermion parity, which is the actual
topologically protected quantity. In the following we identify the degrees of freedom
which are protected by nonlocality of Majorana fermions and do not rely on the system
staying in the ground state.

We consider a system with N vortices or other defects trapping Majorana fermions
with operators 
i , where i is the number of the vortex. Additionally every vortex has
a set of mi excited complex fermion states with creation operators aij , with j � mi
the number of the excited state. We first consider the excitation spectrum of the system
when the vortices are not moving and show that it is possible to define new Majorana
operators which are protected by fermion parity conservation even when there are ad-
ditional fermions in the vortex cores. Parity of all the Majorana fermions is given by
.2i/n=2

QN
iD1 
i , so the total fermion parity of N vortices, which is a fundamentally

preserved quantity, is then equal to
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This form of parity operator suggests to introduce new Majorana operators according to

�i D

miY
jD1

Œ1 � 2a
�
ijaij �
i : (6.8)

It is easy to verify that �i satisfy the fermionic anticommutation relations and the Majo-
rana reality condition (6.1). The total fermion parity written in terms of �i mimics the
fermion parity without excited states in the vortices

P D .2i/n=2
NY
iD1

�i ; (6.9)

so the operators .2i/1=2�i can be identified as the local part of the fermion parity oper-
ator belonging to a single vortex. We now show that the operators �i are protected from
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local perturbations. Let the evolution of system be described by evolution operator

U D U1 ˝ U2 ˝ � � � ˝ Un; (6.10)

with Ui evolution operators in i -th vortex. The system evolution must necessarily pre-
serve the full fermion parity

P D U �PU; (6.11)

and hence
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This equation should hold for any set of allowed Ui . Taking Ui D 1 for all i ¤ j we
come to

U
�
j �jUj D �j ; (6.13)

for any Uj . In other words, the new Majorana operators �j are indeed not changed by
any possible local perturbations.

We now need to show that the protected Majorana operators �i follow the same
braiding rules [139] as the original ones. The abelian part of braiding, namely the Berry
phase [140, 141], is not protected from inelastic scattering in vortices, so it will be com-
pletely washed out. The non-abelian part of the braiding rules is completely described
by the action of the elementary exchange of two neighboring vortices T on the Majo-
rana operators. As shown in Ref. [139], exchanging Majorana fermions 
i and 
j is

described by 
i ! 
j , 
j ! �
i . The fermion parity operators .1 � 2a�ijaij / have
trivial exchange statistics as any number operators. Applying these rules to exchange of
two vortices containing excited states gives
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This finishes the proof that braiding rules are the same for �i .

6.3 Discussion

Our proof of protection of Majorana fermions and their braiding properties from con-
servation of fermion parity only relies on particle statistics of Majorana and complex
fermions. Consequently it fully applies to the Moore-Read state of 5/2 fractional quan-
tum Hall effect, p-wave superfluids of cold atoms [142], or any other implementation
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of Majorana fermions. Part of this proof can be reproduced using topological consid-
erations in the following manner. If a perturbation is added to the Hamiltonian and
additional excitations are created in a vortex, the fusion outcome of all these excitations
cannot change unless these excitations are braided or interchanged with those from other
vortices. So if a system is prepared in a certain state, then excitations are created in vor-
tices, braiding is performed and finally the excitations are removed, the result has to be
the same as if there were no excitations. Our proof using parity conservation, however,
allows additionally to identify which part of the Hilbert space stays protected when ex-
citations are present. Since removing the low energy excitations does not seem feasible,
this identification is very important. It allows a more detailed analysis of particular im-
plementations of the quantum computation with Majorana fermions. For example we
conclude that implementation of the phase gate using charging energy, as described in
Ref. [143], does not suffer from temperature being larger than the minigap since it relies
on fermion parity, not on the wave function structure.

Since all the existing readout schemes of a Majorana qubit [9, 130, 144–146] are
measuring the full fermion parity of two vortices, and not just the parity of the fermion
shared by two Majorana fermions, all these methods also work if Majorana fermions
coexist with excited states. The signal strength however is reduced significantly when
the temperature is comparable with the minigap due to dephasing of the internal degrees
of freedom of vortices. Using interferometry of Josephson vortices [143], which do not
trap low energy excitations allows to avoid this problem.

In conclusion, we have shown that topological quantum computation with Majorana
fermions is not sensitive to presence of additional localized states coexisting with Ma-
jorana fermions in superconducting vortices. This significantly relaxes the requirements
on the temperature needed to achieve topological protection of Majorana fermions.
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