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Chapter 3

Detection of valley polarization in graphene by
a superconducting contact

3.1 Introduction

The quantized Hall conductance in graphene exhibits the half-integer quantizationGH D

.nC 1
2
/.4e2=h/ characteristic of massless Dirac fermions [30, 31]. The lowest plateau

at 2e2=h extends to zero carrier density because there is no gap between conduction
and valence bands, and it has only a twofold spin degeneracy because it lacks the valley
degeneracy of the higher plateaus. The valley degeneracy of the lowest Landau level is
removed at the edge of the carbon monolayer, where the current-carrying states at the
Fermi level are located. Depending on the crystallographic orientation of the edge, the
edge states may lie fully within a single valley, or they may be a linear combination of
states from both valleys [32, 33]. The type of valley polarization remains hidden in the
Hall conductance, which is insensitive to edge properties.

Here we propose a method to detect the valley polarization of quantum Hall edge
states, using a superconducting contact as a probe. In the past, experimental [34–37]
and theoretical [38–42] studies of the quantum Hall effect with superconducting con-
tacts have been carried out in the context of semiconductor two-dimensional electron
gases. The valley degree of freedom has not appeared in that context. In graphene,
the existence of two valleys related by time-reversal symmetry plays a key role in the
process of Andreev reflection at the normal-superconducting (NS) interface [43]. A
nonzero subgap current through the NS interface requires the conversion of an electron
approaching in one valley into a hole leaving in the other valley. This is suppressed if
the edge states at the Fermi level lie exclusively in a single valley, creating a sensitivity
of the conductance of the NS interface to the valley polarization.

Allowing for a general type of valley polarization, we calculate that the two-terminal
conductanceGNS (measured between the superconductor and a normal-metal contact) is
given by

GNS D
2e2

h
.1 � cos‚/; (3.1)
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Figure 3.1: Three diagrams of a graphene sheet contacted by one normal-metal (N) and
one superconducting (S) electrode. Edge states approaching and leaving the supercon-
ductor are indicated by arrows. The solid line represents an electron state (green: isospin
�1; blue: isospin �2), and the dashed line represents a hole state (red: isospin ��2).

when the Hall conductanceGH D 2e
2=h is on the lowest plateau. 1 Here cos‚ D �1 ��2

is the cosine of the angle between the valley isospins �1; �2 of the states along the two
graphene edges connected by the superconductor (see Fig. 3.1). If the superconductor
covers a single edge (Fig. 3.1a), then ‚ D 0 ) GNS D 0 — no current can enter
into the superconductor without intervalley relaxation. If the superconductor connects
different edges (Figs. 3.1b,c) then GNS can vary from 0 to 4e2=h — depending on the
relative orientation of the valley isospins along the two edges.

1The edge channels responsible for Eq. (3.1) were not considered in an earlier study ofGNS in a magnetic
field by Ref. [44].
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3.2 Dispersion of the edge states

We start our analysis from the Dirac-Bogoliubov-De Gennes (DBdG) equation [43]�
H � � �

�� � � THT �1

�
‰ D "‰; (3.2)

with H the Dirac Hamiltonian, � the superconducting pair potential, and T the time
reversal operator. The excitation energy " is measured relative to the Fermi energy �.
Each of the four blocks in Eq. (3.2) represents a 4 � 4 matrix, acting on 2 sublattice
and 2 valley degrees of freedom. The wave function ‰ D .‰e; ‰h/ contains a pair of
4-dimensional vectors ‰e and ‰h that represent, respectively, electron and hole excita-
tions.

The pair potential� is isotropic in both the sublattice and valley degrees of freedom.
It is convenient to choose a “valley isotropic” basis such that the Hamiltonian H is
isotropic in the valley degree of freedom, 2

H D v

�
.p C eA/ � � 0

0 .p C eA/ � �

�
D v�0 ˝ .p C eA/ � � ; (3.3)

with v the Fermi velocity, p D .„=i/.@=@x; @=@y/ the canonical momentum operator
in the x-y plane of the graphene layer and A the vector potential corresponding to a
perpendicular magnetic field B . The Pauli matrices �i and �i act on the sublattice and
valley degree of freedom, respectively (with �0 and �0 representing the 2�2 unit matrix).
The time reversal operator in the valley isotropic basis reads

T D

�
0 i�y
�i�y 0

�
C D �.�y ˝ �y/C ; (3.4)

with C the operator of complex conjugation. For later use we note that the particle
current operator J D .Je;Jh/ has electron and hole components

J D v.�0 ˝ � ;��0 ˝ � /: (3.5)

Substitution of Eqs. (3.3) and (3.4) into Eq. (3.2) gives the DBdG equation in the
valley isotropic form �

HC � � �

�� � �H�

�
‰ D "‰; (3.6)

H˙ D v�0 ˝ .p ˙ eA/ � � : (3.7)

We seek a solution in the normal region (where� � 0), at energies below the excitation
gap �0 in the superconductor. Electron and hole excitations cannot propagate into the

2The operators (3.3) and (3.4) in the valley isotropic basis are related to their counterparts in Ref. [43] by
the unitary transformationH ! UHU �, T ! UTU �, withU D 1

2
.�0C�z/˝�0C

1
2
.�0��z/˝�x .

Since� is a scalar, it remains unchanged by this transformation.
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superconductor at subgap energies, and the magnetic field confines them in the normal
region to within a magnetic length lm D

p
„=eB of the edge. We consider separately

the edge states along the insulating edge of the graphene layer and along the interface
with the superconductor.

The edges are assumed to be smooth on the scale of lm (� 25 nm atB D 1T), so that
they may be treated locally as a straight line with a homogeneous boundary condition.
The magnetic field should be less than the critical field of the superconductor. (Ref. [37]
used Nb, with a critical field of 2.6 T, to maintain superconductivity in the quantum Hall
effect regime.)

The edge states at the insulating and superconducting boundaries are different be-
cause of the different boundary conditions. Using only the condition of particle current
conservation, these have the general form [19]

‰ DM‰; (3.8)

with M a unitary and Hermitian matrix that anticommutes with the particle current
operator:

M DM �; M 2
D 1; M.n � J /C .n � J /M D 0: (3.9)

The unit vector n lies in the x-y plane, perpendicular to the boundary and pointing
outward.

At the NS interface the matrix M is given by [45]

M D

�
0 MNS

M
�
NS 0

�
; MNS D �0 ˝ e

i�Ciˇn�� ; (3.10)

with ˇ D arccos."=�0/ 2 .0; �/ determined by the order parameter � D �0ei� in the
superconductor.

The insulating (I) edge does not mix electrons and holes, so M is block-diagonal
with electron block MI and hole block TMIT

�1. The boundary condition is determined
by confinement on the scale of the lattice constant a � lm, so it should preserve time-
reversal symmetry. This implies that MI should commute with T . The most general
matrix that also satisfies Eq. (3.9) is given by 3

M D

�
MI 0

0 MI

�
; MI D .� � �/˝ .n? � � /; (3.11)

parameterized by a pair of three-dimensional unit vectors � and n?. The vector n?
should be orthogonal to n but � is not so constrained. Three common types of confine-
ment are the zigzag edge, with � D ˙Oz, n? D Oz; the armchair edge, with � � Oz D 0,
n? � Oz D 0; and infinite mass confinement, with � D Oz, n? � Oz D 0.

To determine the edge states we consider a local coordinate system such that the
boundary is along the y-axis (so n D � Ox), and we choose a local gauge such that

3Without the restriction to time-reversal symmetry the most general form of MI is MI D �0 ˝
�
.n? �

n/ ��
�

cos˛C .� ��/˝ .n? �� / sin˛. This four-parameter family of boundary conditions is more general
than the three-parameter family of Ref. [19].
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Figure 3.2: Dispersion relation of edge states in graphene along the normal-
superconducting interface, calculated from Eq. (3.15) for j"j � �0. The dotted lines
are for � D 0, the solid lines for � D 0:4 „v=lm.

A D Bx Oy . The wave number q along the boundary is then a good quantum number.
In order to simplify the notation we measure energies in units of „v=lm and lengths in
units of lm. (Units will be reinstated in the final results.) Eigenstates of Eq. (3.6) that
decay for x !1 have the form

‰.x; y/ D eiqy
�
Ce ˝ˆe.x C q/

Ch ˝ˆh.x � q/

�
; (3.12)

ˆe.�/ D e
�
1
2
�2
�
�i.�C "/H.�C"/2=2�1.�/

H.�C"/2=2.�/

�
; (3.13)

ˆh.�/ D e
�
1
2
�2
�

H.��"/2=2.�/

�i.� � "/H.��"/2=2�1.�/

�
; (3.14)

in the region x > 0 (where � � 0). The function H˛.x/ is the Hermite function. The
two-component spinors Ce and Ch determine the valley isospin of the electron and hole
components, respectively.

The dispersion relation between energy " and momentum q follows by substitution
of the state (3.12) into the boundary condition (3.8). At the NS interface we take Eq.
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Figure 3.3: Cyclotron orbits of Andreev reflected electrons and holes.

(3.10) for the boundary condition and obtain

f�C".q/ � f��".�q/ D
"Œf�C".q/f��".�q/C 1�q

�20 � "
2

;

f˛.q/ D
H˛2=2.q/

˛H˛2=2�1.q/
: (3.15)

The solutions "n.q/, numbered by a mode index n D 0;˙1;˙2; : : :, are plotted in Fig.
3.2. Notice that the dispersion relation has the inversion symmetry ".q/ D �".�q/.
Each mode has a twofold valley degeneracy, because the boundary condition (3.10)
is isotropic in the valley isospin �. The two degenerate eigenstates (labeled ˙) have
C˙e D cej ˙ �i, C

˙
h
D chj ˙ �i, with j ˙ �i eigenstates of � � �. 4

The expectation value vn D „�1d"n=dq of the velocity along the boundary in the
n-th mode is determined by the derivative of the dispersion relation. We see from Fig.
3.2 that the edge states all propagate in the same direction, dictated by the sign of B
and �. The velocity vanishes for jqj ! 1, as the NS edge states evolve into the usual
dispersionless Landau levels deep in the normal region. For q ! �1 the Landau levels
contain electron excitations at energy "n D

p
2.„v=lm/ sign .n/

p
jnj � �, while for

q ! 1 they contain hole excitations with "n D
p
2.„v=lm/ sign .n/

p
jnj C �. For

� D 0 the NS edge states have zero velocity at any q for j"j � �0. As illustrated in
Fig. 3.3, the localization of the edge states as �! 0 happens because for j"j > j�j the
electron and hole excitations move in opposite directions along the boundary, while for
j"j < j�j they move in the same direction.

Turning now to the insulating edge, we take the boundary condition (3.11). For
an edge along the y-axis we have n? D .0; sin �; cos �/. The valley degeneracy is
broken in general, with different dispersion relations for the two eigenstates j ˙ �i of
� ��. The dispersion relations for electrons and holes are related by "˙

h
.q/ D �"�e .�q/.

For sufficiently small � there is one electron and one hole state at the Fermi level, of
opposite isospins. (Note that electrons and holes from the same valley have opposite
isospins.) We fix the sign of � such that j C �i is the electron eigenstate and j � �i the
hole eigenstate. We find that "Ce .q/ is determined by the equation

f�C".q/ D tan.�=2/; (3.16)

4The coefficients ce;h are given by ce=ch D .� � "/H.��"/2=2�1.�q/=.iH.�C"/2=2.q/ cosˇ C
i.�C "/H."C�/2=2�1.q/ sinˇ ).
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Figure 3.4: Dispersion relation of states along the insulating edge, calculated from Eqs.
(3.16) and (3.17) for � D 0:4 „v=lm and � D �=2. The solid lines are the electron
states (blue "Ce , red "�e ), the dashed lines are the hole states (blue "C

h
, red "�

h
).

while "�e .q/ is determined by

f�C".q/ D �cotan .�=2/: (3.17)

The dispersion relations plotted in Fig. 3.4 are for the case � D �=2 of an armchair
edge. The case � D 0 of a zigzag edge contains additional dispersionless states away
from the Fermi level [32], but these play no role in the electrical conduction.

To determine the conductance GNS we need to calculate the transmission matrix t
of the edge states at the Fermi level. Edge states approach the superconductor along
the insulating edge I1 (with parameters �1; �1), then propagate along the NS interface,
and finally return along the insulating edge I2 (with parameters �2; �2). At sufficiently
small � each insulating edge Ip supports only two propagating modes, one electron
mode / j C �pi and one hole mode / j � �pi. The NS interface also supports two
propagating modes at small �, of mixed electron-hole character and valley degenerate.
The conductance is given by [46]

GNS D
2e2

h
.1 � Tee C The/ D

4e2

h
The; (3.18)

with Tee D jtCCj2 the probability that an electron incident along I1 returns along I2 as
an electron and The D jt�Cj2 the probability that the electron returns as a hole. Because
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electrons and holes cannot enter into the superconductor, these two probabilities must
add up to unity — hence the second equality in Eq. (3.18). (The factor of two accounts
for the spin degeneracy.)

3.3 Calculation of the conductance

Since the unidirectional motion of the edge states prevents reflections, the transmission
matrix t from I1 to I2 is the product of the transmission matrices t1 from I1 to NS and
t2 from NS to I2. Each of the matrices tp is a 2 � 2 unitary matrix, diagonal in the basis
j ˙ �pi:

tp D e
i�p j C �pihC�pj C e

i�0p j � �pih��pj: (3.19)

The phase shifts �p; �0p need not be determined. Using jh�1j ˙ �2ij2 D 1
2
.1˙ �1 � �2/,

we obtain from t D t2t1 the required transmission probabilities

The D 1 � Tee D
1
2
.1 � �1 � �2/: (3.20)

Substitution into Eq. (3.18) gives our central result (3.1).
Referring to Fig. 3.1, we see that GNS D 0 in the case (a) of a superconducting

contact to a single edge (�1 D �2) — regardless of whether the edge is zigzag or arm-
chair. In the case (c) of a contact between a zigzag and an armchair edge we have
�1 � �2 D 0 ) GNS D 2e2=h. The case (b) of a contact between two opposite edges
has �1 D ��2 ) GNS D 4e2=h if both edges are zigzag; the same holds if both
edges are armchair separated by a multiple of three hexagons (as in the figure); if the
number of hexagons separating the two armchair edges is not a multiple of three, then
�1 � �2 D 1=2) GNS D e

2=h.
Intervalley relaxation at a rate � tends to equalize the populations of the two degener-

ate modes propagating along the NS interface. This becomes appreciable if �L=v0 & 1,
with L the length of the NS interface and v0 D „�1d"0=dq ' min.v=2;

p
2�lm=„/

the velocity along the interface. The density matrix � D �0.1 � e��L=v0/C �1e��L=v0

then contains a valley isotropic part �0 / �0 with Tee D Teh D 1=2 and a nonequilib-
rium part �0 / j�1ih�1j with Tee; Teh given by Eq. (3.20). The conductance then takes
the form

GNS D
2e2

h

�
1 � e��L=v0 cos‚

�
: (3.21)

A nonzero conductance when the supercurrent covers a single edge (‚ D 0) is thus a
direct measure of the intervalley relaxation.

3.4 Conclusion

In conclusion, we have shown that the valley structure of quantum Hall edge states
in graphene, which remains hidden in the Hall conductance, can be extracted from the
current that flows through a superconducting contact. Since such contacts have now been
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fabricated succesfully [47, 48], we expect that this method to detect valley polarization
can be tested in the near future.
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