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Chapter 2

Boundary conditions for Dirac fermions on a
terminated honeycomb lattice

2.1 Introduction

The electronic properties of graphene can be described by a difference equation (repre-
senting a tight-binding model on a honeycomb lattice) or by a differential equation (the
two-dimensional Dirac equation) [1, 17]. The two descriptions are equivalent at large
length scales and low energies, provided the Dirac equation is supplemented by bound-
ary conditions consistent with the tight-binding model. These boundary conditions de-
pend on a variety of microscopic properties, determined by atomistic calculations [18].

For a general theoretical description, it is useful to know what boundary conditions
on the Dirac equation are allowed by the basic physical principles of current conser-
vation and (presence or absence of) time reversal symmetry — independently of any
specific microscopic input. This problem was solved in Refs. [19, 20]. The general
boundary condition depends on one mixing angle ƒ (which vanishes if the boundary
does not break time reversal symmetry), one three-dimensional unit vector n perpendic-
ular to the normal to the boundary, and one three-dimensional unit vector � on the Bloch
sphere of valley isospins. Altogether, four real parameters fix the boundary condition.

In this chapter we investigate how the boundary condition depends on the crystallo-
graphic orientation of the boundary. As the orientation is incremented by 30ı the bound-
ary configuration switches from armchair (parallel to one-third of the carbon-carbon
bonds) to zigzag (perpendicular to another one-third of the bonds). The boundary con-
ditions for the armchair and zigzag orientations are known [21]. Here we show that the
boundary condition for intermediate orientations remains of the zigzag form, so that the
armchair boundary condition is only reached for a discrete set of orientations.

Since the zigzag boundary condition does not open up a gap in the excitation spec-
trum [21], the implication of our result (not noticed in earlier studies [22]) is that a ter-
minated honeycomb lattice of arbitrary orientation is metallic rather than insulating. We
present tight-binding model calculations to confirm that the gap � / expŒ�f .'/W=a�
in a nanoribbon at crystallographic orientation ' vanishes exponentially when its width
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W becomes large compared to the lattice constant a, characteristic of metallic behavior.
The � / 1=W dependence characteristic of insulating behavior requires the special
armchair orientation (' a multiple of 60ı), at which the decay rate f .'/ vanishes.

Confinement by a mass term in the Dirac equation does produce an excitation gap
regardless of the orientation of the boundary. We show how the infinite-mass boundary
condition of Ref. [23] can be approached starting from the zigzag boundary condition, by
introducing a local potential difference on the two sublattices in the tight-binding model.
Such a staggered potential follows from atomistic calculations [18] and may well be
the origin of the insulating behavior observed experimentally in graphene nanoribbons
[24, 25].

The outline of this chapter is as follows. In Sec. 2.2 we formulate, following Refs.
[19, 20], the general boundary condition of the Dirac equation on which our analysis
is based. In Sec. 2.3 we derive from the tight-binding model the boundary condition
corresponding to an arbitrary direction of lattice termination. In Sec. 2.4 we analyze
the effect of a staggered boundary potential on the boundary condition. In Sec. 2.5 we
calculate the dispersion relation for a graphene nanoribbon with arbitrary boundary con-
ditions. We identify dispersive (= propagating) edge states which generalize the known
dispersionless (= localized) edge states at a zigzag boundary [26]. The exponential de-
pendence of the gap� on the nanoribbon width is calculated in Sec. 2.6 both analytically
and numerically. We conclude in Sec. 2.7.

2.2 General boundary condition

The long-wavelength and low-energy electronic excitations in graphene are described
by the Dirac equation

H‰ D "‰ (2.1)

with Hamiltonian
H D v�0 ˝ .� � p/ (2.2)

acting on a four-component spinor wave function ‰. Here v is the Fermi velocity and
p D �i„r is the momentum operator. Matrices �i ; �i are Pauli matrices in valley space
and sublattice space, respectively (with unit matrices �0; �0). The current operator in the
direction n is n � J D v�0 ˝ .� � n/.

The HamiltonianH is written in the valley isotropic representation of Ref. [20]. The
alternative representation H 0 D v�z ˝ .� � p/ of Ref. [19] is obtained by the unitary
transformation

H 0 D UHU �; U D 1
2
.�0 C �z/˝ �0 C

1
2
.�0 � �z/˝ �z : (2.3)

As described in Ref. [19], the general energy-independent boundary condition has
the form of a local linear restriction on the components of the spinor wave function at
the boundary:

‰ DM‰: (2.4)
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The 4 � 4 matrix M has eigenvalue 1 in a two-dimensional subspace containing ‰, and
without loss of generality we may assume that M has eigenvalue �1 in the orthogo-
nal two-dimensional subspace. This means that M may be chosen as a Hermitian and
unitary matrix,

M DM �; M 2
D 1: (2.5)

The requirement of absence of current normal to the boundary,

h‰jnB � J j‰i D 0; (2.6)

with nB a unit vector normal to the boundary and pointing outwards, is equivalent to the
requirement of anticommutation of the matrix M with the current operator,

fM;nB � J g D 0: (2.7)

That Eq. (2.7) implies Eq. (2.6) follows from h‰jnB � J j‰i D h‰jM.nB � J /M j‰i D
�h‰jnB � J j‰i. The converse is proven in App. 2.A.

we are now faced with the problem of determining the most general 4� 4 matrix M
that satisfies Eqs. (2.5) and (2.7). Ref. [19] obtained two families of two-parameter so-
lutions and two more families of three-parameter solutions. These solutions are subsets
of the single four-parameter family of solutions obtained in Ref. [20],

M D sinƒ �0 ˝ .n1 � � /C cosƒ .� � �/˝ .n2 � � /; (2.8)

where �;n1;n2 are three-dimensional unit vectors, such that n1 and n2 are mutually
orthogonal and also orthogonal to nB . A proof that (2.8) is indeed the most general
solution is given in App. 2.A. One can also check that the solutions of Ref. [19] are
subsets of M 0 D UMU �.

In this work we will restrict ourselves to boundary conditions that do not break time
reversal symmetry. The time reversal operator in the valley isotropic representation is

T D �.�y ˝ �y/C ; (2.9)

with C the operator of complex conjugation. The boundary condition preserves time
reversal symmetry if M commutes with T . This implies that the mixing angle ƒ D 0,
so that M is restricted to a three-parameter family,

M D .� � �/˝ .n � � /; n ? nB : (2.10)

2.3 Lattice termination boundary

The honeycomb lattice of a carbon monolayer is a triangular lattice (lattice constant a)
with two atoms per unit cell, referred to as A and B atoms (see Fig. 2.1a). The A and B
atoms separately form two triangular sublattices. The A atoms are connected only to B
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atoms, and vice versa. The tight-binding equations on the honeycomb lattice are given
by

" A.r/ D t Œ B.r/C  B.r �R1/C  B.r �R2/�;

" B.r/ D t Œ A.r/C  A.r CR1/C  A.r CR2/�:
(2.11)

Here t is the hopping energy,  A.r/ and  B.r/ are the electron wave functions on A
and B atoms belonging to the same unit cell at a discrete coordinate r , while R1 D
.a
p
3=2;�a=2/, R2 D .a

p
3=2; a=2/ are lattice vectors as shown in Fig. 2.1a.

regardless of how the lattice is terminated, Eq. (2.11) has the electron-hole symmetry
 B ! � B , "! �". For the long-wavelength Dirac Hamiltonian (2.2) this symmetry
is translated into the anticommutation relation

H�z ˝ �z C �z ˝ �zH D 0: (2.12)

Electron-hole symmetry further restricts the boundary matrix M in Eq. (2.10) to two
classes: zigzag-like (� D ˙Oz, n D Oz) and armchair-like (�z D nz D 0). In this
section we will show that the zigzag-like boundary condition applies generically to an
arbitrary orientation of the lattice termination. The armchair-like boundary condition is
only reached for special orientations.

2.3.1 Characterization of the boundary

A terminated honeycomb lattice consists of sites with three neighbors in the interior
and sites with only one or two neighbors at the boundary. The absent neighboring sites
are indicated by open circles in Fig. 2.1 and the dangling bonds by thin line segments.
The tight-binding model demands that the wave function vanishes on the set of absent
sites, so the first step in our analysis is the characterization of this set. We assume
that the absent sites form a one-dimensional superlattice, consisting of a supercell of N
empty sites, translated over multiples of a superlattice vector T . Since the boundary
superlattice is part of the honeycomb lattice, we may write T D nR1CmR2 with n and
m non-negative integers. For example, in Fig. 2.1 we have n D 1, m D 4. Without loss
of generality, and for later convenience, we may assume that m � n D 0 .modulo 3/.

The angle ' between T and the armchair orientation (the x-axis in Fig. 2.1) is given
by

' D arctan

�
1
p
3

n �m

nCm

�
; �

�

6
� ' �

�

6
: (2.13)

The armchair orientation corresponds to ' D 0, while ' D ˙�=6 corresponds to the
zigzag orientation. (Because of the �=3 periodicity we only need to consider j'j �
�=6.)

The number N of empty sites per period T can be arbitrarily large, but it cannot be
smaller than nC m. Likewise, the number N

0

of dangling bonds per period cannot be
smaller than nCm. We call the boundary minimal if N D N

0

D nCm. For example,
the boundary in Fig. 2.1d is minimal (N D N

0

D 5), while the boundaries in Figs. 2.1b
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Figure 2.1: (a) Honeycomb latice constructed from a unit cell (grey rhombus) containing
two atoms (labeled A and B), translated over lattice vectors R1 and R2. Panels b,c,d
show three different periodic boundaries with the same period T D nR1CmR2. Atoms
on the boundary (connected by thick solid lines) have dangling bonds (thin dotted line
segments) to empty neighboring sites (open circles). The numberN of missing sites and
N 0 of dangling bonds per period is � n C m. Panel d shows a minimal boundary, for
which N D N 0 D nCm.

and 2.1c are not minimal (N D 7;N
0

D 9 and N D 5;N
0

D 7, respectively). In what
follows we will restrict our considerations to minimal boundaries, both for reasons of
analytical simplicity 1 and for physical reasons (it is natural to expect that the minimal
boundary is energetically most favorable for a given orientation).

We conclude this subsection with a property of minimal boundaries that we will
need later on. The N empty sites per period can be divided into NA empty sites on
sublattice A and NB empty sites on sublattice B . A minimal boundary is constructed
from n translations overR1, each contributing one emptyA site, andm translations over
R2, each contributing one empty B site. Hence, NA D n and NB D m for a minimal
boundary.

2.3.2 Boundary modes

The boundary breaks the two-dimensional translational invariance overR1 andR2, but a
one-dimensional translational invariance over T D nR1CmR2 remains. The quasimo-

1The method described in this section can be generalized to boundaries with N 0 > n C m such as the
“strongly disordered zigzag boundary” of Ref. [27]. For these non-minimal boundaries the zigzag boundary
condition is still generic.
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mentum p along the boundary is therefore a good quantum number. The corresponding
Bloch state satisfies

 .r C T / D exp.ik/ .r/; (2.14)

with „k D p � T . While the continuous quantum number k 2 .0; 2�/ describes the
propagation along the boundary, a second (discrete) quantum number � describes how
these boundary modes decay away from the boundary. We select � by demanding that
the Bloch wave (2.14) is also a solution of

 .r CR3/ D � .r/: (2.15)

The lattice vector R3 D R1 �R2 has a nonzero component a cos' > a
p
3=2 perpen-

dicular to T . We need j�j � 1 to prevent  .r/ from diverging in the interior of the
lattice. The decay length ldecay in the direction perpendicular to T is given by

ldecay D
�a cos'

ln j�j
: (2.16)

The boundary modes satisfying Eqs. (2.14) and (2.15) are calculated in App. 2.B
from the tight-binding model. In the low-energy regime of interest (energies " small
compared to t ) there is an independent set of modes on each sublattice. On sublattice A
the quantum numbers � and k are related by

.�1 � �/mCn D exp.ik/�n (2.17a)

and on sublattice B they are related by

.�1 � �/mCn D exp.ik/�m: (2.17b)

For a given k there are NA roots �p of Eq. (2.17a) having absolute value � 1,
with corresponding boundary modes  p . We sort these modes according to their decay
lengths from short to long, ldecay.�p/ � ldecay.�pC1/, or j�pj � j�pC1j. The wave
function on sublattice A is a superposition of these modes

 .A/ D

NAX
pD1

p̨ p; (2.18)

with coefficients p̨ such that  .A/ vanishes on the NA missing A sites. Similarly there
are NB roots �

0

p of Eq. (2.17b) with j�
0

pj � 1, j�
0

pj � j�
0

pC1j. The corresponding
boundary modes form the wave function on sublattice B ,

 .B/ D

NBX
pD1

˛
0

p 
0

p; (2.19)

with ˛
0

p such that  .B/ vanishes on the NB missing B sites.
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2.3.3 Derivation of the boundary condition

To derive the boundary condition for the Dirac equation it is sufficient to consider the
boundary modes in the k ! 0 limit. The characteristic equations (2.17) for k D 0

each have a pair of solutions �˙ D exp.˙2i�=3/ that do not depend on n and m.
Since j�˙j D 1, these modes do not decay as one moves away from the boundary.
The corresponding eigenstate exp.˙iK � r/ is a plane wave with wave vector K D
.4=3/�R3=a

2. One readily checks that this Bloch state also satisfies Eq. (2.14) with
k D 0 [since K � T D 2�.n �m/=3 D 0 .modulo 2�/].

The wave functions (2.18) and (2.19) on sublattices A and B in the limit k ! 0 take
the form

 .A/ D ‰1e
iK �r
C‰4e

�iK �r
C

NA�2X
pD1

p̨ p; (2.20a)

 .B/ D ‰2e
iK �r
C‰3e

�iK �r
C

NB�2X
pD1

˛
0

p 
0

p: (2.20b)

The four amplitudes (‰1, �i‰2, i‰3, �‰4) � ‰ form the four-component spinor ‰
in the Dirac equation (2.1). The remaining NA� 2 and NB � 2 terms describe decaying
boundary modes of the tight-binding model that are not included in the Dirac equation.

We are now ready to determine what restriction on ‰ is imposed by the boundary
condition on  .A/ and  .B/. This restriction is the required boundary condition for the
Dirac equation. In App. 2.B we calculate that, for k D 0,

NA D n � .n �m/=3C 1; (2.21)

NB D m � .m � n/=3C 1; (2.22)

so that NA C NB D n C m C 2 is the total number of unknown amplitudes in Eqs.
(2.18) and (2.19). These have to be chosen such that  .A/ and  .B/ vanish on NA and
NB lattice sites respectively. For the minimal boundary under consideration we have
NA D n equations to determine NA unknowns and NB D m equations to determine
NB unknowns.

Three cases can be distinguished [in each case n �m D 0 .modulo 3/]:

1. If n > m then NA � n and NB � mC 2, so ‰1 D ‰4 D 0, while ‰2 and ‰3 are
undetermined.

2. If n < m then NB � n and NA � mC 2, so ‰2 D ‰3 D 0, while ‰1 and ‰4 are
undetermined.

3. If n D m then NA D nC 1 and NB D mC 1, so j‰1j D j‰4j and j‰2j D j‰3j.

In each case the boundary condition is of the canonical form ‰ D .� � �/ ˝ .n � � /‰

with
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1. � D �Oz, n D Oz if n > m (zigzag-type boundary condition).

2. � D Oz, n D Oz if n < m (zigzag-type boundary condition).

3. � � Oz D 0, n � Oz D 0 if n D m (armchair-type boundary condition).

We conclude that the boundary condition is of zigzag-type for any orientation T of the
boundary, unless T is parallel to the bonds [so that n D m and ' D 0 .modulo �=3/].

2.3.4 Precision of the boundary condition

At a perfect zigzag or armchair edge the four components of the Dirac spinor ‰ are
sufficient to meet the boundary condition. Near the boundaries with larger period and
more complicated structure the wave function (2.20) also necessarily contains several
boundary modes  p;  

0

p that decay away from the boundary. The decay length ı of the
slowest decaying mode is the distance at which the boundary is indistinguishable from
a perfect armchair or zigzag edge. At distances smaller than ı the boundary condition
breaks down.

In the case of an armchair-like boundary (with n D m), all the coefficients p̨ and ˛
0

p

in Eqs. (2.20) must be nonzero to satisfy the boundary condition. The maximal decay
length ı is then equal to the decay length of the boundary mode  n�1 which has the
largest j�j. It can be estimated from the characteristic equations (2.17) that ı � jT j.
Hence the larger the period of an armchair-like boundary, the larger the distance from
the boundary at which the boundary condition breaks down.

For the zigzag-like boundary the situation is different. On one sublattice there are
more boundary modes than conditions imposed by the presence of the boundary and
on the other sublattice there are less boundary modes than conditions. Let us assume
that sublattice A has more modes than conditions (which happens if n < m). The
quickest decaying set of boundary modes sufficient to satisfy the tight-binding boundary
condition contains n modes  p with p � n. The distance ı from the boundary within
which the boundary condition breaks down is then equal to the decay length of the
slowest decaying mode  n in this set and is given by

ı D ldecay.�n/ D �a cos'= ln j�nj: (2.23)

[See Eq. (2.16).]
As derived in App. 2.B for the case of large periods jT j � a, the quantum number

�n satisfies the following system of equations:

j1C �nj
mCn
D j�nj

n; (2.24a)

arg.1C �n/ �
n

nCm
arg.��n/ D

n

nCm
�: (2.24b)

The solution �n of this equation and hence the decay length ı do not depend on the
length jT j of the period, but only on the ratio n=.n C m/ D .1 �

p
3 tan'/=2, which

is a function of the angle ' between T and the armchair orientation [see Eq. (2.13)]. In
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Figure 2.2: Dependence on the orientation ' of the distance ı from the boundary within
which the zigzag-type boundary condition breaks down. The curve is calculated from
formula (2.24) valid in the limit jT j � a of large periods. The boundary condition
becomes precise upon approaching the zigzag orientation ' D �=6.

the case n > m when sublattice B has more modes than conditions, the largest decay
length ı follows upon interchanging n and m.

As seen from Fig. 2.2, the resulting distance ı within which the zigzag-type bound-
ary condition breaks down is zero for the zigzag orientation (' D �=6) and tends to
infinity as the orientation of the boundary approaches the armchair orientation (' D 0).
(For finite periods the divergence is cut off at ı � jT j � a.) The increase of ı near
the armchair orientation is rather slow: For ' & 0:1 the zigzag-type boundary condition
remains precise on the scale of a few unit cells away from the boundary.

Although the presented derivation is only valid for periodic boundaries and low ener-
gies, such that the wavelength is much larger than the length jT j of the boundary period,
we argue that these conditions may be relaxed. Indeed, since the boundary condition is
local, it cannot depend on the structure of the boundary far away, hence the periodicity
of the boundary cannot influence the boundary condition. It can also not depend on the
wavelength once the wavelength is larger than the typical size of a boundary feature
(rather than the length of the period). Since for most boundaries both ı and the scale
of the boundary roughness are of the order of several unit cells, we conclude that the
zigzag boundary condition is in general a good approximation.
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2.3.5 Density of edge states near a zigzag-like boundary

A zigzag boundary is known to support a band of dispersionless states [26], which are lo-
calized within several unit cells near the boundary. We calculate the 1D density of these
edge states near an arbitrary zigzag-like boundary. Again assuming that the sublattice A
has more boundary modes than conditions (n < m), for each k there are NA.k/ � NA
linearly independent states (2.18), satisfying the boundary condition. For k ¤ 0 the
number of boundary modes is equal to NA D n � .m � n/=3, so that for each k there
are

Nstates D NA.k/ � n D .m � n/=3 (2.25)

edge states. The number of the edge states for the case when n > m again follows upon
interchanging n and m. The density � of edge states per unit length is given by

� D
Nstates

jT j
D

jm � nj

3a
p
n2 C nmCm2

D
2

3a
j sin'j: (2.26)

The density of edge states is maximal � D 1=3a for a perfect zigzag edge and it de-
creases continuously when the boundary orientation ' approaches the armchair one.
Eq. (2.26) explains the numerical data of Ref. [26], providing an analytical formula for
the density of edge states.

2.4 Staggered boundary potential

The electron-hole symmetry (2.12), which restricts the boundary condition to being ei-
ther of zigzag-type or of armchair-type, is broken by an electrostatic potential. Here
we consider, motivated by Ref. [18], the effect of a staggered potential at the zigzag
boundary. We show that the effect of this potential is to change the boundary condition
in a continuous way from ‰ D ˙�z ˝ �z‰ to ‰ D ˙�z ˝ .� � ŒOz � nB �/‰. The first
boundary condition is of zigzag-type, while the second boundary condition is produced
by an infinitely large mass term at the boundary [23].

The staggered potential consists of a potential VA D C�, VB D �� on the A-sites
and B-sites in a total of 2N rows closest to the zigzag edge parallel to the y-axis (see
Fig. 2.3). Since this potential does not mix the valleys, the boundary condition near a
zigzag edge with staggered potential has the form

‰ D ��z ˝ .�z cos � C �y sin �/‰; (2.27)

in accord with the general boundary condition (2.10). For � D 0; � we have the zigzag
boundary condition and for � D ˙�=2 we have the infinite-mass boundary condition.

To calculate the angle � we substitute Eq. (2.20) into the tight-binding equation
(2.11) (including the staggered potential at the left-hand side) and search for a solution
in the limit " D 0. The boundary condition is precise for the zigzag orientation, so
we may set p̨ D ˛0p D 0. It is sufficient to consider a single valley, so we also
set ‰3 D ‰4 D 0. The remaining nonzero components are ‰1eiK �r �  A.i/e

iKy
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and ‰2eiK �r �  B.i/e
iKy , where i in the argument of  A;B numbers the unit cell

away from the edge and we have used that K points in the y-direction. The resulting
difference equations are

�� A.i/ D t Œ B.i/ �  B.i � 1/�; i D 1; 2; : : : N; (2.28a)

� B.i/ D t Œ A.i/ �  A.i C 1/�; i D 0; 1; 2; : : : N � 1; (2.28b)

 A.0/ D 0: (2.28c)

For the ‰1; ‰2 components of the Dirac spinor ‰ the boundary condition (2.27) is
equivalent to

 A.N /= B.N / D � tan.�=2/: (2.29)

Substituting the solution of Eq. (2.28) into Eq. (2.29) gives

cos � D
1C sinh.�/ sinh.� C 2N�=t/

cosh.�/ cosh.� C 2N�=t/
; (2.30)

with sinh � D �=2t . Eq. (2.30) is exact for N � 1, but it is accurate within 2% for
any N . The dependence of the parameter � of the boundary condition on the staggered
potential strength� is shown in Fig. 2.4 for various values ofN . The boundary condition
is closest to the infinite mass for �=t � 1=N , while the regimes �=t � 1=N or
�=t � 1 correspond to a zigzag boundary condition.

Figure 2.3: Zigzag boundary with V D C� on the A-sites (filled dots) and V D ��
on the B-sites (empty dots). The staggered potential extends over 2N rows of atoms
nearest to the zigzag edge. The integer i counts the number of unit cells away from the
edge.
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Figure 2.4: Plot of the parameter � in the boundary condition (2.27) at a zigzag edge
with the staggered potential of Fig. 2.3. The curves are calculated from Eq. (2.30). The
values � D 0 and � D �=2 correspond, respectively, to the zigzag and infinite-mass
boundary conditions.

2.5 Dispersion relation of a nanoribbon

A graphene nanoribbon is a carbon monolayer confined to a long and narrow strip. The
energy spectrum "n.k/ of the n-th transverse mode is a function of the wave number k
along the strip. This dispersion relation is nonlinear because of the confinement, which
also may open up a gap in the spectrum around zero energy. We calculate the dependence
of the dispersion relation on the boundary conditions at the two edges x D 0 and x D W
of the nanoribbon (taken along the y-axis).

In this section we consider the most general boundary condition (2.10), constrained
only by time-reversal symmetry. We do not require that the boundary is purely a termi-
nation of the lattice, but allow for arbitrary local electric fields and strained bonds. The
conclusion of Sec. 2.3, that the boundary condition is either zigzag-like or armchair-like,
does not apply therefore to the analysis given in this section.

The general solution of the Dirac equation (2.1) in the nanoribbon has the form
‰.x; y/ D ‰n;k.x/e

iky . We impose the general boundary condition (2.10),

‰.0; y/ D .�1 � �/˝ .n1 � � /‰.0; y/; (2.31a)

‰.W; y/ D .�2 � �/˝ .n2 � � /‰.W; y/; (2.31b)

with three-dimensional unit vectors �i , ni , restricted by ni � Ox D 0 (i D 1; 2). (There
is no restriction on the �i .) Valley isotropy of the Dirac Hamiltonian (2.2) implies that
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the spectrum does not depend on �1 and �2 separately but only on the angle  between
them. The spectrum depends, therefore, on three parameters: The angle  and the angles
�1, �2 between the z-axis and the vectors n1, n2.

The Dirac equation H‰ D "‰ has two plane wave solutions ‰ / exp.iky C
iqx/ for a given " and k, corresponding to the two (real or imaginary) transverse wave
numbers q that solve .„v/2.k2 C q2/ D "2. Each of these two plane waves has a
twofold valley degeneracy, so there are four independent solutions in total. Since the
wavefunction in a ribbon is a linear combination of these four waves, and since each
of the Eqs. (2.31a,2.31b) has a two-dimensional kernel, these equations provide four
linearly independent equations to determine four unknowns. The condition that Eq.
(2.31) has nonzero solutions gives an implicit equation for the dispersion relation of the
nanoribbon:

cos �1 cos �2.cos! � cos2�/C cos! sin �1 sin �2 sin2�

� sin�Œsin� cos  C sin! sin.�1 � �2/� D 0; (2.32)

where !2 D 4W 2Œ."=„v/2 � k2� and cos� D „vk=".
For �1 D �2 D 0 and  D � Eq. (5.2) reproduces the transcendental equation of

Ref. [21] for the dispersion relation of a zigzag ribbon. In the case �1 D �2 D �=2 of
an armchair-like nanoribbon, Eq. (5.2) simplifies to

cos! D cos : (2.33)

This is the only case when the transverse wave function ‰n;k.x/ is independent of the
longitudinal wave number k. In Fig. 2.5 we plot the dispersion relations for several
different boundary conditions.

The low energy modes of a nanoribbon with j"j < „vjkj [see panels a-d of Fig. 2.5]
have imaginary transverse momentum since q2 D ."=„v/2 � k2 < 0. If jqj becomes
larger than the ribbon width W , the corresponding wave function becomes localized at
the edges of the nanoribbon and decays in the bulk. The dispersion relation (2.32) for
such an edge state simplifies to " D „vjkj sin �1 for the state localized near x D 0 and
" D �„vjkj sin �2 for the state localized near x D W . These dispersive edge states
with velocity v sin � generalize the known [26] dispersionless edge states at a zigzag
boundary (with sin � D 0).

Inspection of the dispersion relation (2.32) gives the following condition for the pres-
ence of a gap in the spectrum of the Dirac equation with arbitrary boundary condition:
Either the valleys should be mixed ( ¤ 0; �) or the edge states at opposite boundaries
should have energies of opposite sign (sin �1 sin �2 > 0 for  D � or sin �1 sin �2 < 0

for  D 0).
As an example, we calculate the band gap for the staggered potential boundary con-

dition of Sec. 2.4. We assume that the opposite zigzag edges have the same staggered
potential, so that the boundary condition is

‰.0; y/ D C�z ˝ .�z cos � C �y sin �/‰.0; y/; (2.34a)

‰.W; y/ D ��z ˝ .�z cos � C �y sin �/‰.W; y/: (2.34b)
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Figure 2.5: Dispersion relation of nanoribbons with different boundary conditions. The
large-wave number asymptotes j"j D „vjkj of bulk states are shown by dashed lines.
Modes that do not approach these asymptotes are edge states with dispersion j"j D
„vjk sin �i j. The zigzag ribbon with  D � and �1 D �2 D 0 (a) exhibits dispersionless
edge states at zero energy [26]. If �1 or �2 are nonzero (b, c) the edge states acquire
linear dispersion and if sin �1 sin �2 > 0 (c) a band gap opens. If  is unequal to 0 or �
(d) the valleys are mixed which makes all the level crossings avoided and opens a band
gap. Armchair-like ribbons with �1 D �2 D �=2 (e, f) are the only ribbons having no
edge states.

The dependence of � on the parameters �, N of the staggered potential is given by Eq.
(2.30). This boundary condition corresponds to  D � , �1 D �2 D � , so that it has a
gap for any nonzero � . As shown in Fig. 2.6,�.�/ increases monotonically with � from
the zigzag limit �.0/ D 0 to the infinite-mass limit �.�=2/ D �„v=W .

2.6 Band gap of a terminated honeycomb lattice

In this section we return to the case of a boundary formed purely by termination of
the lattice. A nanoribbon with zigzag boundary condition has zero band gap according
to the Dirac equation (Fig. 2.5a). According to the tight-binding equations there is a
nonzero gap �, which however vanishes exponentially with increasing width W of the
nanoribbon. We estimate the decay rate of �.W / as follows.
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Figure 2.6: Dependence of the band gap� on the parameter � in the staggered potential
boundary condition (2.34).

The low energy states in a zigzag-type nanoribbon are the hybridized zero energy
edge states at the opposite boundaries. The energy " of such states may be estimated
from the overlap between the edge states localized at the opposite edges,

" D ˙.„v=W / exp.�W=ldecay/: (2.35)

In a perfect zigzag ribbon there are edge states with ldecay D 0 (and " D 0), so that there
is no band gap. For a ribbon with a more complicated edge shape the decay length of an
edge state is limited by ı, the length within which the boundary condition breaks down
(see Sec. 2.3.D). This length scale provides the analytical estimate of the band gap in a
zigzag-like ribbon:

� �
„v

W
e�W=ı ; (2.36)

with ı given by Eqs. (2.23) and (2.24).
The band gap of an armchair-like ribbon is

� D .„v=W / arccos.cos / (2.37)

[see Eq. (2.33) and panels e,f of Fig. 2.5]. Adding another row of atoms increases the
nanoribbon width by one half of a unit cell and increases  by K � R3 D 4�=3, so the
product �W in such a ribbon is an oscillatory function of W with a period of 1.5 unit
cells.

To test these analytical estimates, we have calculated �.W / numerically for various
orientations and configurations of boundaries. As seen from Fig. 2.7, in ribbons with a
non-armchair boundary the gap decays exponentially / expŒ�f .'/W=a� as a function
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of W . Nanoribbons with the same orientation ' but different period jT j have the same
decay rate f . As seen in Fig. 2.8, the decay rate obtained numerically agrees well with
the analytical estimate f D a=ı following from Eq. (2.36) (with ı given as a function
of ' in Fig. 2.2). The numerical results of Fig. 2.7 are consistent with earlier studies
of the orientation dependence of the band gap in nanoribbons [22], but the exponential
decrease of the gap for non-armchair ribbons was not noticed in those studies.

Figure 2.7: Dependence of the band gap � of zigzag-like nanoribbons on the width W .
The curves in the left panel are calculated numerically from the tight-binding equations.
The right panel shows the structure of the boundary, repeated periodically along both
edges.

Figure 2.8: Dependence of the gap decay rate on the orientation ' of the boundary
(defined in the inset of Fig. 2.2). The dots are the fits to numerical results of the tight-
binding equations, the solid curve is the analytical estimate (2.36).

For completeness we show in Fig. 2.9 our numerical results for the band gap in an
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armchair-like nanoribbon (' D 0). We see that the gap oscillates with a period of 1.5
unit cells, in agreement with Eq. (2.37).

Figure 2.9: Dependence of the band gap � on the width W for an armchair ribbon
(dashed line) and for a ribbon with a boundary of the same orientation but with a larger
period (solid line). The curves are calculated numerically from the tight-binding equa-
tions.

2.7 Conclusion

In summary, we have demonstrated that the zigzag-type boundary condition‰ D ˙�z˝
�z‰ applies generically to a terminated honeycomb lattice. The boundary condition
switches from the plus-sign to the minus-sign at the angles ' D 0 .mod �=3/, when the
boundary is parallel to 1=3 of all the carbon-carbon bonds (see Fig. 2.10).

The distance ı from the edge within which the boundary condition breaks down is
minimal (D 0) at the zigzag orientation ' D �=6 .mod �=3/ and maximal at the arm-
chair orientation. This length scale governs the band gap� � .„v=W / exp.�W=ı/ in a
nanoribbon of width W . We have tested our analytical results for � with the numerical
solution of the tight-binding equations and find good agreement.

While the lattice termination by itself can only produce zigzag or armchair-type
boundary conditions, other types of boundary conditions can be reached by breaking the
electron-hole symmetry of the tight-binding equations. We have considered the effect
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of a staggered potential at a zigzag boundary (produced for example by edge magneti-
zation [18]), and have calculated the corresponding boundary condition. It interpolates
smoothly between the zigzag and infinite-mass boundary conditions, opening up a gap
in the spectrum that depends on the strength and range of the staggered potential.

We have calculated the dispersion relation for arbitrary boundary conditions and
found that the edge states which are dispersionless at a zigzag edge acquire a dispersion
for more general boundary conditions. Such propagating edge states exist, for example,
near a zigzag edge with staggered potential.

Our discovery that the zigzag boundary condition is generic explains the findings of
several computer simulations [26, 28, 29] in which behavior characteristic of a zigzag
edge was observed at non-zigzag orientations. It also implies that the mechanism of gap
opening at a zigzag edge of Ref. [18] (production of a staggered potential by magneti-
zation) applies generically to any ' ¤ 0. This may explain why the band gap measure-
ments of Ref. [25] produced results that did not depend on the crystallographic orienta-
tion of the nanoribbon.

Figure 2.10: These two graphene flakes (or quantum dots) both have the same zigzag-
type boundary condition: ‰ D ˙�z ˝ �z‰. The sign switches between C and � when
the tangent to the boundary has an angle with the x-axis which is a multiple of 60ı.

2.A Derivation of the general boundary condition

We first show that the anticommutation relation (2.7) follows from the current conser-
vation requirement (2.6). The current operator in the basis of eigenvectors of M has the
block form

nB � J D

�
X Y

Y � Z

�
; M D

�
1 0

0 �1

�
: (2.38)

The Hermitian subblock X acts in the two-dimensional subspace of eigenvectors of M
with eigenvalue 1. To ensure that h‰jnB � J j‰i D 0 for any ‰ in this subspace it
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is necessary and sufficient that X D 0. The identity .nB � J /2 D 1 is equivalent to
Y Y � D 1 and Z D 0, hence fM;nB � J g D 0.

We now show that the most general 4 � 4 matrix M that satisfies Eqs. (2.5) and
(2.7) has the 4-parameter form (2.8). Using only the Hermiticity of M , we have the
16-parameter representation

M D

3X
i;jD0

.�i ˝ �j /cij ; (2.39)

with real coefficients cij . Anticommutation with the current operator brings this down
to the 8-parameter form

M D

3X
iD0

�i ˝ .ni � � /; (2.40)

where the ni ’s are three-dimensional vectors orthogonal to nB . The absence of off-
diagonal terms in M 2 requires that the vectors n1; n2; n3 are multiples of a unit vector
Qn which is orthogonal to n0. The matrix M may now be rewritten as

M D �0 ˝ .n0 � � /C . Q� � �/˝ . Qn � � /: (2.41)

The equality M 2 D 1 further demands n20 C Q�
2 D 1, leading to the 4-parameter repre-

sentation (2.8) after redefinition of the vectors.

2.B Derivation of the boundary modes

We derive the characteristic equation (2.17) from the tight-binding equation (2.11) and
the definitions of the boundary modes (2.14) and (2.15). In the low energy limit "=t �
a=jT j we may set "! 0 in Eq. (2.11), so it splits into two decoupled sets of equations
for the wave function on sublattices A and B:

 B.r/C  B.r �R1/C  B.r �R2/ D 0; (2.42a)

 A.r/C  A.r CR1/C  A.r CR2/ D 0: (2.42b)

Substituting R1 by R2 CR3 in these equations and using the definition (2.15) of � we
express  .r CR2/ through  .r/,

 B.r CR2/ D �.1C �/
�1 B.r/; (2.43a)

 A.r CR2/ D �.1C �/ A.r/: (2.43b)

Eqs. (2.15) and (2.43) together allow to find the boundary mode with a given value of �
on the whole lattice:

 B.r C pR2 C qR3/ D �
q.�1 � �/�p B.r/; (2.44a)

 A.r C pR2 C qR3/ D �
q.�1 � �/p A.r/; (2.44b)
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Re(λ)

Im(λ)

0−1

Figure 2.11: Plot of the solutions of the characteristic equations (2.45, 2.46) for n D 5,
m D 11, and k D 0. The dots are the roots, the solid curve is the contour described by
Eq. (2.45), and the dashed circles are unit circles with centers at 0 and �1.

with p and q arbitrary integers. Substituting  .r C T / into Eq. (2.14) from Eq. (2.44)
and using T D .nCm/R2 C nR3 we arrive at the characteristic equation (2.17).

We now find the roots of the Eq. (2.17) for a given k. It is sufficient to analyze the
equation for sublattice A only since the calculation for sublattice B is the same after
interchanging n and m. The analysis of Eq. (2.17a) simplifies in polar coordinates,

j1C �jmCn D j�jn (2.45)

.mC n/ arg.�1 � �/ � k � n arg.�/ D 2�l; (2.46)

with l D 0;˙1;˙2 : : :. The curve defined by Eq. (2.45) is a contour on the complex
plane around the point � D �1 which crosses points �˙ D �1=2 ˙ i

p
3=2 (see Fig.

2.11). The left-hand side of Eq. (2.46) is a monotonic function of the position on this
contour. If it increases by 2��l on the interval between two roots of the equation, then
there are �l � 1 roots inside this interval. For k D 0 both �� and �C are roots of the
characteristic equation. So in this case the number NA of roots lying inside the unit
circle can be calculated from the increment of the left-hand side of Eq. (2.46) between
�� and �C:

NA D
1

2�

�
.nCm/

2�

3
C n

2�

3

�
� 1 D n �

n �m

3
� 1: (2.47)

Similarly, on sublattice B , we have (upon interchanging n and m),

NB D m �
m � n

3
� 1: (2.48)

The same method can be applied to calculate �n. Since there are n � 1 roots on the
contour defined by Eq. (2.45) between �n and ��n, the increment of the left-hand side of
Eq. (2.46) between ��n and �n must be equal to 2�.n� 1/ � 2�n (for jT j � a), which
immediately leads to Eq. (2.24) for �n.


