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Chapter 1

Introduction

The two parts of this thesis: “Dirac edge states in graphene” and “Majorana edge states
in topological superconductors” may seem very loosely connected to the reader. To
study the edges of graphene, a one-dimensional sheet of carbon, one needs to pay close
attention to the graphene lattice and accurately account for the microscopic details of
the system. The Majorana fermions, particles which are their own anti-particles, are on
the contrary insensitive to any perturbation and possess universal properties which are
insensitive to microscopic details.

Curiously, the history of graphene has parallels with that of Majorana fermions.
Graphene was first analysed in 1947 by Wallace [1], and the term “graphene” was in-
vented in 1962 by Boehm and co-authors [2]. However, it was not until 2005, after
graphene was synthesized in the group of Geim [3], that there appeared an explosion
of research activity, culminating in the Nobel prize five years later. Majorana fermions
were likewise described for the first time a long time ago, in 1932 [4], and then were
mostly forgotten until the interest in them revived in high energy physics decades later.
For the condensed matter physics community Majorana fermions acquired an important
role only in the last few years, when they were predicted to appear in several condensed
matter systems [5–7], and to provide a building block for a topological quantum com-
puter [8, 9].

There are two other more relevant similarities between edge states in graphene and
in topological superconductors. To understand what they are, we need to answer the
question “what is special about the edge states in these systems?” Edge states in general
have been known for a long time [10, 11] — they are electronic states localized at the
interface of a material with vacuum or another material. They may or may not appear,
and their presence depends sensitively on microscopic details of the interface.

The distinctive feature of the edge states studied here is that they are protected by a
certain physical symmetry of the system. This protection by symmetry ensures that they
always exist at a fixed energy: at the Dirac point in graphene and at the Fermi energy
in topological superconductors. Additionally, protection by symmetry ensures that the
edge states possess universal properties — they occur at a large set of boundaries, and
their presence can be deduced from the bulk properties.
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Another property shared by graphene and topological superconductors is that both
are well described by the Dirac equation, as opposed to the Schrödinger equation suit-
able for most other condensed matter systems. This is in no respect accidental and is
tightly related to the symmetry properties of the two systems. In graphene the symmetry
ensuring the presence of the edge states is the so-called sublattice symmetry. Using only
this symmetry one may derive that graphene obeys the Dirac equation on long length
scales. The appearance of the Dirac equation in topological superconductors is also
natural, once one realizes that the phase transition into a topologically nontrivial state
is scale invariant, and that the Dirac Hamiltonian is one of the simplest scale-invariant
Hamiltonians.

An understanding of the role of symmetry in the study of edge states and familiarity
with the Dirac equation are necessary and sufficient to understand most of this thesis. In
this introductory chapter we describe both and explain how they apply to graphene and
topological superconductors.

1.1 Role of symmetry in the protection of edge states

The concept of symmetry plays a central role in physics. It is so influential because
complete theories may be constructed by just properly taking into account the relevant
symmetries. For example, electrodynamics is built on gauge symmetry and Lorentz
symmetry. In condensed matter systems there are only three discrete symmetries which
survive the presence of disorder: time-reversal symmetry (denoted as T ), particle-hole
symmetry (denoted as CT ), and sublattice or chiral symmetry (denoted as C ). The time-
reversal symmetry and the particle-hole symmetry have anti-unitary operators. These
may square either to C1 or �1 depending on the spin of particles and on spin-rotation
symmetry being present or absent. Chiral symmetry has a unitary operator and always
squares to C1. Together these three symmetries form ten symmetry classes [12], each
class characterized by the type (or absence of) time-reversal and particle-hole symmetry
and the possible presence of chiral symmetry.

Sublattice symmetry and particle-hole symmetry require that for every eigenstate
j i of the Hamiltonian H with energy " there is an eigenstate of the same Hamiltonian
given by either C j i or CT j i with energy �". We observe that eigenstates of the
Hamiltonian with energy " D 0 are special in that they may transform into themselves
under the symmetry transformation. Time-reversal symmetry implies no such property,
and hence is unimportant for what follows. We proceed to discuss in more detail what is
the physical meaning of sublattice and particle-hole symmetries and of the zero energy
states protected by them.

1.1.1 Sublattice symmetry

Let us consider a set of atoms which one can split into two groups, such that the Hamil-
tonian contains only matrix elements between the two groups, but not within the same
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group. This means that the system of tight-binding equations describing the system is

" Ai D
X

tij 
B
j ; (1.1a)

" Bi D
X

tij 
A
j ; (1.1b)

where we call one group of atoms sublattice A, and another group of atoms sublattice
B . Examples of bipartite lattices are shown in Fig. 1.1, with the panel a) showing the
honeycomb lattice of graphene.

Figure 1.1: Panel a): the bipartite honeycomb lattice of graphene. Panel b): an irregular
bipartite lattice. Panel c): an example of a lattice without bipartition. Nodes belonging
to one sublattice are marked with open circles, nodes belonging to the other one by black
circles, and finally nodes which belong to neither of the sublattices are marked with grey
circles.

The Hamiltonian of a system with chiral symmetry can always be brought to a form

H D

�
0 T

T � 0

�
; (1.2)

with T the matrix of hopping amplitudes from one sublattice to another. Now we are
ready to construct the chiral symmetry operator. The system of tight-binding equations
stays invariant under the transformation  B ! � B and " ! �". In terms of the
Hamiltonian this translates into a symmetry relation

CHC D �H; (1.3)

C D diag.1; 1; : : : ; 1;�1; : : : ;�1/: (1.4)

The number of 1’s and �1’s in C is equal to the number of atoms in sublattices A and B
respectively.

Let us now consider a situation when the matrix T has vanishing eigenvalues, or
in other words when we are able to find j Ai such that T j Ai D 0. This means that
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. A; 0/ is a zero energy eigenstate of the full Hamiltonian. Moreover since the diagonal
terms in the Hamiltonian are prohibited by the symmetry, this eigenstate can only be
removed from zero energy by coupling it with an eigenstate which belongs completely
to sublattice B . If sublattice A has N more atoms than sublattice B , this means that the
matrix T is non-square and always has exactly N more zero eigenstates than the matrix
T �. Hence there will be at least N zero energy eigenstates in the system, a result also
known as Lieb’s theorem [13].

Analogously, if there are several modes localized close to a single edge, they cannot
be removed from zero energy as long as they all belong to the same sublattice. One of the
central results presented in this thesis is that this is generically the case for a graphene
boundary.

1.1.2 Particle-hole symmetry

On the mean-field level superconductors are described by the Bogoliubov-de-Gennes
Hamiltonian [14]

HBdG D

�
H0 �EF �

�� EF � T �1H0T

�
; (1.5)

with H0 the single-particle Hamiltonian, EF the Fermi energy, and � the pairing term.
This Hamiltonian acts on a two-component wave function  BdG D .u; v/T with u the
particle component of the wave function and v the hole component. The many-body
operators creating excitations above the ground state of this Hamiltonian are � � uc�C
vc, with c� and c electron creation and annihilation operators.

This description is redundant; for each eigenstate  " D .u0; v0/T of HBdG with en-
ergy " there is another eigenstate  �" D .T v0;�T u0/

T . The redundancy is manifested
in the fact that the creation operator � of the quasiparticle in the  " state is identical
to the annihilation operator  of the quasiparticle in the  �" state. In other words, the
two wave functions  " and  �" correspond to a single quasiparticle, and the creation
of a quasiparticle with positive energy is identical to the annihilation of a quasiparticle
with negative energy. The origin of the redundancy lies in the doubling of the degrees
of freedom [15], which has to be applied to bring the many-body Hamiltonian to the
non-interacting form (1.5). For the Hamiltonian HBdG this CT symmetry is expressed
by the relation

.i�yT /�1HBdG.i�yT / D �HBdG; (1.6)

where �y is the second Pauli matrix in the electron-hole space.
Let us now study what happens if there is an eigenstate of HBdG with exactly zero

energy, similar to the way we studied the case of the sublattice-symmetric Hamiltonian.
This eigenstate transforms into itself after applying CT symmetry:  0 D CT  0, hence
it has to have a creation operator � which is equal to the annihilation operator  of its
electron-hole partner.

Let us now, similar to the case of sublattice symmetry, study what happens if there
is an eigenstate of HBdG with exactly zero energy which transforms into itself after
applying CT symmetry:  0 D CT  0. This state has to have a creation operator �
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which is equal to the annihilation operator  of its electron-hole partner. Since this state
is an electron-hole partner of itself, we arrive to � D  . Fermionic operators which
satisfy this property are called Majorana fermions. Just using the defining properties
we can derive many properties of Majorana fermions. For example let us calculate the
occupation number � of a Majorana state. We use the fermionic anticommutation
relation

� C � D 1: (1.7)

Then, by using the Majorana condition, we get � D 2 D � . After substituting
this into the anticommutation relation we immediately get � D 1=2. In other words,
any Majorana state is always half-occupied.

Unlike the zero energy states in sublattice-symmetric systems, which shift in energy
if an electric field is applied because the sublattice symmetry is broken, a Majorana
fermion can only be moved away from zero energy by being paired with another Majo-
rana fermion, because every state at positive energy has to have a counterpart at negative
energy.

1.2 Dirac Hamiltonian

The Dirac equation was originally conceived to settle a disagreement between quantum
mechanics and the special theory of relativity, namely to make the Schrödinger equation
invariant under Lorentz transformation. The equation in its original form reads

i„
d 

dt
D

 
3X
iD1

˛ipic C ˇmc
2

!
 : (1.8)

Here ˇ and ˛i form a set of 4 � 4 Dirac matrices, m and pi are mass and momentum of
the particle, and c is the speed of light. For p � mc the spectrum of this equation is
conical, and it has a gap betweenCm and �m.

In condensed matter physics the term Dirac equation is used more loosely for any
Hamiltonian which is linear in momentum:

H D
X
i

˛ipivi C
X
j

mj ǰ : (1.9)

In such a casemj are called mass terms and vi velocities. The set of Hermitian matrices
˛i ; ˇi do not have to satisfy the anticommutation relations, unlike the original Dirac
matrices. The number of components of the wave function also does not have to be
equal to 4: it is even customary to call H D vp a Dirac equation. The symmetry
properties of these equations are fully determined by the set of matrices ˛i ; ˇi , making
the Dirac equation a very flexible tool in modeling different physical systems. Since the
spectrum of the Dirac equation is unbounded both at large positive and large negative
energies, this equation is an effective low-energy model.

In this section we focus on two contexts in which the Dirac equation appears: it
occurs typically in systems with sublattice symmetry and in particular in graphene; also
it allows to study topological phase transitions in insulators and superconductors.
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1.2.1 Derivation of Dirac Hamiltonian using sublattice symmetry
and its application to graphene

To derive a dispersion relation of a system with sublattice symmetry, we start from
the Hamiltonian (1.2). After transforming it to momentum space by applying Bloch’s
theorem, we get the following Hamiltonian:

H D

�
0 Q.k/

Q�.k/ 0

�
; (1.10)

where Q is a matrix which depends on the two-dimensional momentum k. Let us now
consider a situation when the phase of detQ.k/ winds around a unit circle as k goes
around a contour � in momentum space. Since detQ.k/ is a continuous complex func-
tion, it has to vanish in a certain point k0 inside this contour. Generically a single
eigenvalue of Q vanishes at this point. Since we are interested in the low energy ex-
citation spectrum, let us disregard all the eigenvectors of Q which correspond to the
non-vanishing eigenvalues and expand Q.k/ close to the momentum where it vanishes:

Q D vxıkx C vyıky CO.jık2j/; (1.11)

with vx and vy complex numbers, and ık � k � k0. For Q to vanish only at ık D 0,
vxv
�
y has to have a finite imaginary part. In that case the spectrum of the Hamiltonian

assumes the shape of a cone close to k0, and the Hamiltonian itself has the form

H D jvxjıkx

�
0 ei˛x

e�i˛x

�
C jvy jıky

�
0 ei˛y

e�i˛y

�
; ˛x ¤ ˛y : (1.12)

We see that the system is indeed described by a Dirac equation with no mass terms.
The point k0 in the Brillouin zone is called a Dirac point. Since the winding of detQ.k/
around the border of the Brillouin zone must vanish, we conclude that there should be
as many Dirac points with positive winding around them, as there are with negative
winding. In other words the Dirac points must come in pairs with opposite winding.
If in addition time-reversal symmetry is present, then Q.k/ D Q�.�k/, and the Dirac
points with opposite winding are located at opposite momenta.

We are now ready to apply this derivation to graphene. Since there is only one atom
of each sublattice per unit cell (as shown in Fig. 1.2), Q.k/ is a number rather than a
matrix. The explicit expression for Q is

Q D eik�a1 C eik�a2 C eik�a3 ; (1.13)

with vectors a1; a2; a3 shown in Fig. 1.2. It is straightforward to verify that Q vanishes
at momenta .˙4�=3a; 0/. These two momenta are called K and K

0

valleys of the
dispersion respectively. The Dirac dispersion near each valley has to satisfy the three-
fold rotation symmetry of the lattice, which leads to vx D ivy . Further, due to the mirror
symmetry around the x-axis, vx has to be real, so we get the Hamiltonian

H D v

�
�xpx C �ypy 0

0 �xpy � �ypy

�
; (1.14)
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Figure 1.2: Lattice structure of graphene. The grey rhombus is the unit cell, with
sublattices A and B marked with open and filled circles respectively.

where the matrices �i are Pauli matrices in the sublattice space. The first two compo-
nents of the wave function in this 4-component equation correspond to the valleyK, and
the second two to the valley K

0

. We will find it convenient to perform a change of basis
H ! UHU � with U D diag.�0; �x/. This transformation brings the Hamiltonian to
the valley-isotropic form:

H
0

D v

�
�xpx C �ypy 0

0 �xpy C �ypy

�
: (1.15)

1.2.2 Dirac Hamiltonian close to a phase transition point

Let us consider the one-dimensional Dirac Hamiltonian

H D �i„v�z
@

@x
Cm.x/�y : (1.16)

The symmetryH� D �H expresses particle-hole symmetry.1 We search for eigenstates
 .x/ of this Hamiltonian at exactly zero energy. Expressing the derivative of the wave
function through the other terms gives

@ 

@x
D
m.x/

„v
�x : (1.17)

The solutions of this equation have the form

 .x/ D exp

 
�x

Z x

x0

m.x
0

/dx
0

„v
/

!
 .x0/: (1.18)

1Any particle-hole symmetry operator of systems without spin rotation invariance can be brought to this
form by a basis transformation.
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There is only one Pauli matrix entering the expression, so the two linearly-independent
solutions are given by

 ˙ D exp

 
˙

Z x

x0

m.x
0

/dx
0

„v

!�
1

˙1

�
: (1.19)

At most one of the solutions is normalizable, and it is only possible to find a solution if
the mass has opposite signs at x ! ˙1. In other words a solution exists if and only
if there is a domain wall in the mass. The state bound at the interface between positive
and negative masses is a Majorana bound state. The wave function corresponding to the
Majorana state may change depending on the particular form of the function m.x/, but
the presence or absence of the Majorana bound state is determined solely by the fact
that the mass is positive on one side and negative on the other. An example of a domain
wall in the mass and the Majorana bound state localized at the domain wall are shown
in Fig. 1.3.

Figure 1.3: A model system with a domain wall in the mass. The domain with positive
mass is called topologically trivial, the domain with negative mass is called topologically
nontrivial. A Majorana bound state is located at the interface between the two domains.

The property that two domains with opposite mass have a symmetry-protected state
at the interface, irrespective of the details of the interface, is called topological protec-
tion. Materials with symmetry-protected edge states are called topological insulators
and superconductors. By selecting different mass terms in the Dirac equation one can
change the symmetry class of the topological insulators or superconductors [16].

1.3 This thesis

We give a brief description of the content of each of the chapters.

1.3.1 Part I: Dirac edge states in graphene

Chapter 2: Boundary conditions for Dirac fermions on a terminated honeycomb
lattice

We derive the boundary condition for the Dirac equation corresponding to a tight-binding
model of graphene terminated along an arbitary direction. Zigzag boundary conditions
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result generically once the boundary is not parallel to the bonds, as shown in Fig. 1.4.
Since a honeycomb strip with zigzag edges is gapless, this implies that confinement by
lattice termination does not in general produce an insulating nanoribbon. We consider
the opening of a gap in a graphene nanoribbon by a staggered potential at the edge and
derive the corresponding boundary condition for the Dirac equation. We analyze the
edge states in a nanoribbon for arbitrary boundary conditions and identify a class of
propagating edge states that complement the known localized edge states at a zigzag
boundary.

Figure 1.4: Top panel: two graphene boundaries appearing when graphene is terminated
along one of the main crystallographic directions are the armchair boundary and the
zigzag boundary. Only the zigzag boundary supports edge states. Bottom panel: when
graphene is terminated along an arbitrary direction, the boundary condition generically
corresponds to a zigzag one, except for special angles.

Chapter 3: Detection of valley polarization in graphene by a superconducting
contact

Because the valleys in the band structure of graphene are related by time-reversal sym-
metry, electrons from one valley are reflected as holes from the other valley at the
junction with a superconductor. We show how this Andreev reflection can be used to
detect the valley polarization of edge states produced by a magnetic field using the
setup of Fig. 1.5. In the absence of intervalley relaxation, the conductance GNS D
2.e2=h/.1 � cos‚/ of the junction on the lowest quantum Hall plateau is entirely de-
termined by the angle ‚ between the valley isospins of the edge states approaching and
leaving the superconductor. If the superconductor covers a single edge, ‚ D 0 and
no current can enter the superconductor. A measurement of GNS then determines the
intervalley relaxation time.
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Figure 1.5: A normal metal-graphene-superconductor junction in high magnetic field.
The only possibility for electric conductance is via the edge states. The valley polar-
izations �1, �2 of the edge states at different boundaries are determined only by the
corresponding boundary conditions. The probability for an electron to reflect from the
superconductor as a hole, as shown, depends on both �1 and �2.

Chapter 4: Theory of the valley-valve ecect in graphene

A potential step in a graphene nanoribbon with zigzag edges is shown to be an intrin-
sic source of intervalley scattering – no matter how smooth the step is on the scale
of the lattice constant a. The valleys are coupled by a pair of localized states at the
opposite edges, which act as an attractor/repellor for edge states propagating in valley
K=K

0

. The relative displacement � along the ribbon of the localized states determines
the conductance G. Our result G D .e2=h/Œ1 � cos.N� C 2��=3a/� explains why
the “valley-valve” effect (the blocking of the current by a p-n junction) depends on the
parity of the number N of carbon atoms across the ribbon, as shown in Fig. 1.6.

Figure 1.6: A pn-junction in zigzag and antizigzag ribbons (shown as a grey line sepa-
rating p-type and n-type regions). The two ribbons are described on long length scales
by the same Dirac equation, with the same boundary condition, however one ribbon is
fully insulating, while the other one is perfectly conducting.



1.3 This thesis 11

Chapter 5: Robustness of edge states in graphene quantum dots

We analyze the single particle states at the edges of disordered graphene quantum dots.
We show that generic graphene quantum dots support a number of edge states propor-
tional to the circumference of the dot divided by the lattice constant. The density of these
edge states is shown in Fig. 1.7. Our analytical theory agrees well with numerical simu-
lations. Perturbations breaking sublattice symmetry, like next-nearest neighbor hopping
or edge impurities, shift the edge states away from zero energy but do not change their
total amount. We discuss the possibility of detecting the edge states in an antidot array
and provide an upper bound on the magnetic moment of a graphene dot.

Figure 1.7: Density of low energy states in a graphene quantum dot as a function of
position (top panel) or energy (bottom panels). The bottom left panel corresponds to
the case when sublattice symmetry is present and the edge states are pinned to zero
energy, while the bottom right panel shows the effect of sublattice symmetry breaking
perturbations on the density of states.
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1.3.2 Part II: Majorana bound states in topological superconduc-
tors

Chapter 6: Topological quantum computation away from ground state with Ma-
jorana fermions

We relax one of the requirements for topological quantum computation with Majorana
fermions. Topological quantum computation was discussed so far as the manipulation of
the wave function within a degenerate many-body ground state. Majorana fermions, are
the simplest particles providing a degenerate ground state (non-abelian anyons). They
often coexist with extremely low energy excitations (see Fig. 1.8), so keeping the system
in the ground state may be hard. We show that the topological protection extends to the
excited states, as long as the Majorana fermions interact neither directly, nor via the
excited states. This protection relies on the fermion parity conservation, and so it is
generic to any implementation of Majorana fermions.

Figure 1.8: A Majorana fermion (red ellipse) coexists with many localized finite energy
fermion states (blue ellipses) separated by a minigap ı, which is much smaller than the
bulk gap �.

Chapter 7: Splitting of a Cooper pair by a pair of Majorana bound states

A single qubit can be encoded nonlocally in a pair of spatially separated Majorana bound
states. Such Majorana qubits are in demand as building blocks of a topological quantum
computer, but direct experimental tests of the nonlocality remain elusive. In this chapter
we propose a method to probe the nonlocality by means of crossed Andreev reflection,
which is the injection of an electron into one bound state followed by the emission of
a hole by the other bound state (equivalent to the splitting of a Cooper pair over the
two states). The setup we use is shown in Fig. 1.9. We have found that, at sufficiently
low excitation energies, this nonlocal scattering process dominates over local Andreev
reflection involving a single bound state. As a consequence, the low-temperature and
low-frequency fluctuations ıIi of currents into the two bound states i D 1; 2 are maxi-
mally correlated: ıI1ıI2 D ıI 2i .
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Figure 1.9: An edge of a two-dimensional topological insulator supports Majorana
fermions when interrupted by ferromagnetic insulators and superconductors. Majorana
fermions allow for only one electron out of a Cooper pair to exit at each side, acting as
a perfect Cooper pair splitter.

Chapter 8: Electrically detected interferometry of Majorana fermions in a topo-
logical insulator

Chiral Majorana modes, one-dimensional analogue of Majorana bound states exist at
a tri-junction of a topological insulator, s-wave superconductor, and a ferromagnetic
insulator. Their detection is problematic since they have no charge. This is an obstacle to
the realization of topological quantum computation, which relies on Majorana fermions
to store qubits in a way which is insensitive to decoherence. We show how a pair of
neutral Majorana modes can be converted reversibly into a charged Dirac mode. Our
Dirac-Majorana converter, shown in Fig. 1.10, enables electrical detection of a qubit by
an interferometric measurement.

Chapter 9: Domain wall in a chiral p-wave superconductor: a pathway for electri-
cal current

Superconductors with px ˙ ipy pairing symmetry are characterized by chiral edge
states, but these are difficult to detect in equilibrium since the resulting magnetic field is
screened by the Meissner effect. Nonequilibrium detection is hindered by the fact that
the edge excitations are unpaired Majorana fermions, which cannot transport charge
near the Fermi level. In this chapter we show that the boundary between px C ipy and
px � ipy domains forms a one-way channel for electrical charge (see Fig. 1.11). We
derive a product rule for the domain wall conductance, which allows to cancel the effect
of a tunnel barrier between metal electrodes and superconductor and provides a unique
signature of topological superconductors in the chiral p-wave symmetry class.
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Figure 1.10: A Mach-Zehnder interferometer formed by a three-dimensional topologi-
cal insulator (grey) in proximity to ferromagnets (M" andM#) of opposite polarizations
and a superconductor (S ). Electrons approaching the superconductor from the magnetic
domain wall are split into pairs of Majorana fermions, which later recombine into either
electrones or holes.

Figure 1.11: Left panel: a single chiral Majorana mode circling around a p-wave super-
conductor cannot carry electric current due to its charge neutrality. Right panel: when
two chiral Majorana modes are brought into contact, they can carry electric current due
to interference.

Chapter 10: Quantized conductance at the Majorana phase transition in a disor-
dered superconducting wire

Superconducting wires without time-reversal and spin-rotation symmetries can be driven
into a topological phase that supports Majorana bound states. Direct detection of these
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zero-energy states is complicated by the proliferation of low-lying excitations in a dis-
ordered multi-mode wire. We show that the phase transition itself is signaled by a quan-
tized thermal conductance and electrical shot noise power, irrespective of the degree of
disorder. In a ring geometry, the phase transition is signaled by a period doubling of
the magnetoconductance oscillations. These signatures directly follow from the identi-
fication of the sign of the determinant of the reflection matrix as a topological quantum
number (as shown in Fig. 1.12).

Figure 1.12: Thermal conductance (top panel) and the determinant of a reflection matrix
(bottom panel) of a quasi one-dimensional superconducting wire as a function of Fermi
energy. At the topological phase transitions (vertical dashed lines) the determinant of
the reflection matrix changes sign, and the thermal conductance has a quantized spike.

Chapter 11: Theory of non-Abelian Fabry-Perot interferometry in topological insu-
lators

Interferometry of non-Abelian edge excitations is a useful tool in topological quantum
computing. In this chapter we present a theory of non-Abelian edge state interferometry
in a 3D topological insulator brought in proximity to an s-wave superconductor. The
non-Abelian edge excitations in this system have the same statistics as in the previously
studied 5/2 fractional quantum Hall effect and chiral p-wave superconductors. There are
however crucial differences between the setup we consider and these systems. The two
types of edge excitations existing in these systems, the edge fermions  and the edge
vortices � , are charged in fractional quantum Hall system, and neutral in the topological
insulator setup. This means that a converter between charged and neutral excitations,
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shown in Fig. 1.13, is required. This difference manifests itself in a temperature scaling
exponent of �7=4 for the conductance instead of �3=2 as in the 5/2 fractional quantum
Hall effect.

Figure 1.13: Top panel: non-Abelian Fabry-Perot interferometer in the 5/2 fractional
quantum Hall effect. The electric current is due to tunneling of � -excitations with charge
e=4. Bottom panel: non-abelian Fabry-Perot interferometer in a topological insula-
tor/superconductor/ferromagnet system. The electric current is due to fusion of two
 -excitations at the exit of the interferometer.

Chapter 12: Probing Majorana edge states with a flux qubit

A pair of counter-propagating Majorana edge modes appears in chiral p-wave supercon-
ductors and in other superconducting systems belonging to the same universality class.
These modes can be described by an Ising conformal field theory. We show how a su-
perconducting flux qubit attached to such a system couples to the two chiral edge modes
via the disorder field of the Ising model. Due to this coupling, measuring the back-action



1.3 This thesis 17

of the edge states on the qubit allows to probe the properties of Majorana edge modes in
the setup drawn in Fig. 1.14.

Figure 1.14: Schematic setup of the Majorana fermion edge modes coupled to a flux
qubit. A pair of counter-propagating edge modes appears at two opposite edges of a
topological superconductor. A flux qubit, consisting of a superconducting ring and a
Josephson junction, shown as a gray rectangle, is attached to the superconductor in such
a way that it does not interrupt the edge states’ flow. As indicated by the arrow across
the weak link, vortices can tunnel in and out of the superconducting ring through the
Josephson junction.

Chapter 13: Anyonic interferometry without anyons: how a flux qubit can read
out a topological qubit

Proposals to measure non-Abelian anyons in a superconductor by quantum interference
of vortices suffer from the predominantly classical dynamics of the normal core of an
Abrikosov vortex. We show how to avoid this obstruction using coreless Josephson
vortices, for which the quantum dynamics has been demonstrated experimentally. The
interferometer is a flux qubit in a Josephson junction circuit, which can nondestructively
read out a topological qubit stored in a pair of anyons — even though the Josephson
vortices themselves are not anyons. The flux qubit does not couple to intra-vortex ex-
citations, thereby removing the dominant restriction on the operating temperature of
anyonic interferometry in superconductors. The setup of Fig. 1.15 allows then to create
and manipulate a register of topological qubits.
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Figure 1.15: Register of topological qubits, read out by a flux qubit in a superconducting
ring. The topological qubit is encoded in a pair of Majorana bound states (white dots)
at the interface between a topologically trivial (blue) and a topologically nontrivial (red)
section of an InAs wire. The flux qubit is encoded in the clockwise or counterclockwise
persistent current in the ring. Gate electrodes (grey) can be used to move the Majorana
bound states along the wire.


