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Chapter 8

Geodesic scattering by surface
deformations of a topological
insulator

8.1 Introduction

Topological insulators such as Bi2Se3 form a new class of materials, char-
acterized by an insulating bulk and a conducting surface [1, 2]. The
surface states are massless Dirac fermions with spin tied to momen-
tum by spin-orbit coupling. Time-reversal symmetry prohibits backscat-
tering and prevents disorder from localizing the surface states. The
surface conductivity can therefore be unusually large, offering poten-
tial applications for electronics. The limitations on the conductivity of
Dirac fermions imposed by random potential fluctuations are well un-
derstood (mostly from extensive studies of graphene [3]). Here we study
an altogether different non-electrostatic scattering mechanism, originat-
ing from random surface deformations.

The epitaxial growth of Bi2Se3 films is known to produce random
variations in the height profile z = ζ(x, y) of the surface [4]. These
surface deformations correspond to terraces of additional layers of the
material (of typical height H = 2 nm and width W = 10 nm). Since
the Dirac fermions are bound to the surface, they are forced to follow
its geometry. Like photons in curved space-time, the electrons follow
the geodesic or shortest path between two points, although here the
curvature is purely spatial [5]. (The metric tensor of the surface does
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not couple space to time.) The geodesic motion around deformations
constitutes a scattering mechanism that by its very nature is energy in-
dependent, and which therefore is qualitatively different from potential
scattering.

Our problem has no direct analogue in the context of graphene. Rip-
ples of a graphene sheet do scatter the electrons, but this is not geodesic
scattering: Ripples in graphene are described by gauge fields and scalar
potentials in a flat space [3]. Space curvature effects may appear around
conical defects (pentagon and heptagon rings), but these are rare in
graphene [6]. An early study of geodesic scattering in condensed matter
that we have found in the literature is by Dugaev and Petrov [7], with
possible applications to intercalated layered crystals. The present work
goes beyond their analysis by including the effects of an anisotropic
dispersion relation, which is a major complication but relevant for topo-
logical insulators.

The chapter is organized as follows. In Sec. 8.2 we investigate the
classical motion of the surface electrons in the presence of surface de-
formations. The geodesic equation is solved in the regime H/W ≪ 1
of shallow deformations, to obtain the differential scattering cross sec-
tion S . In Sec. 8.3 we use the linearized Boltzmann integral equation
to compute the conductivity tensor σ from S . This is a notoriously dif-
ficult problem for an anisotropic dispersion relation [8]. In the regime
H/W ≪ 1 we are able to find a closed-form solution, by converting
the integral equation into a differential equation. Results are given in
Sec. 8.4 and in Sec. 8.5 we discuss the experimental signatures that dis-
tinguish geodesic scattering from potential scattering.

8.2 Geodesic scattering

8.2.1 Geodesic motion

We consider the surface of a topological insulator in the x − y plane,
deformed by a locally varying height z = ζ(x, y). The dispersion relation
of a locally flat surface is an elliptical hyperboloid,

E =
√

v2
x p2

x + v2
y p2

y + v2
z p2

z + ǫ2, (8.1)

where we have taken the x, y, z axes as the principal axes of the ellip-
tical cone. In general, all three velocity components vx, vy, vz may be
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different. For an isotropic dispersion relation in the x − y plane we have
in-plane velocities vx = vy = vF, but the out-of-plane velocity vz may
still differ.

We have included a mass term ǫ in Eq. (8.1) in order to have a
nonzero Lagrangian,

L = ∑
i

ẋi pi − E = −ǫ
√

1 −∑
i

(ẋi/vi)2, (8.2)

with ẋi = dxi/dt = ∂E/∂pi and i = x, y, z. In the final equation of mo-
tion ǫ will drop out. The constraint that the motion follows the surface
implies ż = (∂ζ/∂x)ẋ + (∂ζ/∂y)ẏ, which can be used to eliminate ż from
the Lagrangian. The result can be written in the form

L = −ǫ
√

1 − v−2
x gµν ẋµ ẋν, (8.3)

with gµν the metric tensor (made dimensionless by pulling out a factor
v2

x). Summation over repeated indices µ, ν = 1, 2 = x, y is implied and
upper or lower indices distinguish contravariant or covariant vectors.

Explicitly, we find

gxx = 1 + (∂ζ/∂x)2v2
xz, (8.4a)

gyy = v2
xy + (∂ζ/∂y)2v2

xz, (8.4b)

gxy = gyx = (∂ζ/∂x)(∂ζ/∂y)v2
xz , (8.4c)

where we have abbreviated vij = vi/vj. The inverse of the tensor gµν,
denoted by gµν, has elements

gxx = D−1[1 + (∂ζ/∂y)2v2
yz], (8.5a)

gyy = D−1[v2
yx + (∂ζ/∂x)2v2

yz], (8.5b)

gxy = gyx = −D−1(∂ζ/∂x)(∂ζ/∂y)v2
yz , (8.5c)

D = 1 + (∂ζ/∂x)2v2
xz + (∂ζ/∂y)2v2

yz. (8.5d)

The Euler-Lagrange equation ∂L/∂xµ = (d/dt)∂L/∂ẋµ gives the in-
homogeneous geodesic equation [9, 10]

ẍλ + Γλ
µνẋµ ẋν = ẋλ 1

L

dL

dt
. (8.6)
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The coefficients Γλ
µν are the Christoffel symbols,

Γλ
µν ≡

gλδ

2

(

∂

∂xν
gδµ +

∂

∂xµ
gδν −

∂

∂xδ
gµν

)

. (8.7)

The nonzero right-hand-side in Eq. (8.6) may be eliminated by a repa-
rameterization of time, from t to τ such that dτ/dt = −L(t)/ǫ. We thus
arrive at the homogeneous geodesic equation

d2xλ

dτ2 + Γλ
µν

dxµ

dτ

dxν

dτ
= 0. (8.8)

Since ǫ does not appear in this equation of motion, it holds also in the
limit of massless electrons.

8.2.2 Scattering angle

We consider the scattering from a surface deformation ζ(x, y) of charac-
teristic width W and height H large compared to the Fermi wave length
λF. The scattering may then be described by the classical equation of
motion, which is the geodesic equation (8.8).

An electron with wave vector k incident on the deformation with
impact parameter b at an angle θk with the x-axis is scattered by an an-
gle θ(θk, b), resulting in a differential scattering cross section S(θk, θ) =
|db/dθ|. Multiple trajectories may lead to the same scattering angle so
that θ(θk, b) cannot be inverted. Then the function has to be split into
several invertable branches i and the cross section becomes S(θk, θ) =

∑i |dbi(θk, θ)/dθ|.
These quantities may be calculated by numerically solving the geodesic

equation. Analytical progress is possible in the physically relevant regime
H/W ≪ 1 of shallow deformations. As shown in App. 8.A.2, the scat-
tering angle is then given by

θ(θk, b) = −
∫ ∞

−∞
Γ̃

y
xx(x̃, b)dx̃. (8.9)

Here Γ̃λ
µν(x̃, ỹ) is obtained from Γλ

µν(x, y) by a rotation of the coordinate
axes over an angle θk (so that the electron is incident parallel to the x̃-
axis). To leading order in H/W and b/W the scattering angle scales as
θ = O(H2b/W3).
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Figure 8.1. Geodesic trajectory of an electron deflected by a circularly sym-
metric deformation (characteristic width W). The impact parameter b, incident
angle θk, and scattering angle θ are indicated. The blue background shows the
height profile of the Gaussian deformation (8.10).

One simple example is the case of a Gaussian deformation,

ζ(x, y) = H exp[−(x2 + y2)/2W2], (8.10)

which yields (see App. 8.A.3)

θ(θk, b) = −
√

π

2

H2vyz

W3 be−b2/W2

× (cos2 θk + v2
yx sin2 θk),

(8.11)

in the shallow deformation limit. The geometry is depicted in Fig. 8.1.
We will use this example throughout the chapter to illustrate our general
results.

8.3 Calculation of the conductivity

8.3.1 Linearized Boltzmann equation

We investigate how geodesic scattering influences the surface conductiv-
ity σ of the topological insulator. We assume σ ≫ e2/h, so that we may
use a semiclassical Boltzmann equation approach. In the presence of an
external electric field E, the occupation fk = f0(Ek) + gk of the electron
states deviates to first order in E according to the linearized Boltzmann
equation,

∂ f0

∂Ek
evk · E = ∑

k′

Q(k, k′)(gk − gk′). (8.12)
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Here, vk = ∂Ek/h̄∂k is the velocity and Q(k, k′) the scattering rate from
k to k′ (equal to Q(k′, k) because of detailed balance). The sum over
k′ runs over all states of the (d-dimensional) momentum space. In the
continuum limit, ∑k → V

∫

dk/(2π)d, where V is the d-dimensional
volume (d = 2 in our case). Spin degrees of freedom do not contribute
to the sum since the helical surface states have definite spin direction.
Particle conservation leads to the normalization condition

∑
k

gk = 0. (8.13)

The electric field can be eliminated from Eq. (8.12) by means of the
vector mean free path Λk, defined by [8, 11]

gk =
∂ f0

∂Ek
eE · Λk, (8.14)

∑
k′

Q(k, k′)(Λk − Λk′) = vk. (8.15)

For elastic scattering, Q(k, k′) = δ(Ek −Ek′)q(k, k′). Using dk = dk⊥ dSF =
dEkdSF/|h̄vk|, with dSF a Fermi surface element, Eq. (8.15) can be rewrit-
ten in terms of the density of states N(EF ) at the Fermi energy,

N(EF) = (2π)−d
∮

dSF |h̄vk|−1. (8.16)

The integral
∮

dSF extends over the Fermi surface. The result is

VN(EF)〈q(k, k′)(Λk − Λk′)〉k′ = vk, (8.17)

with 〈· · · 〉k denoting the weighted average over the Fermi surface,

〈 f (k)〉k =

∮

dSF f (k)|h̄vk|−1
∮

dSF |h̄vk|−1 . (8.18)

The normalization condition (8.13) becomes 〈Λk〉k = 0.
At zero temperature, the conductivity tensor is given by

σ =
e2

V ∑
k

δ(Ek − EF) vk ⊗ Λk

= e2N(EF)〈vk ⊗ Λk〉k.

(8.19)
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The direct product ⊗ indicates the dyadic tensor with elements [vk]i[Λk]j.
Substitution of Eq. (8.17) for vk and the use of q(k, k′) = q(k′, k) shows
that σ is a symmetric tensor.

For a low density N of scatterers, the scattering rate q(k, k′) can be
related to the differential cross section S of a single scatterer (averaged
over all scatterers). In the two-dimensional case of interest here, the
relation is

N |vk|S(θk, θk′)dθk′ = q(k, k′)
V

(2π)2

dS′
F

|h̄vk′ | , (8.20)

where θk is the angle between vk and the x-axis. The Eq. (8.17) which
determines the vector mean free path then takes the form

N |vk|
∫ 2π

0
dθk′ S(θk, θk′)(Λk − Λk′) = vk. (8.21)

For the solution of this equation (and the interpretation of the re-
sults), it is convenient to follow Ziman [8, 12] and define an anisotropic
relaxation time τ(k) by

1
τ(k)

= V N(EF)〈(1 − v̂k · v̂k′)q(k, k′)〉k′ . (8.22)

Using Eq. (8.20) this can be rewritten as

1
τ(k)

= N |vk|
∫ 2π

0
dθk′ S(θk, θk′)[1 − cos(θk′ − θk)]. (8.23)

8.3.2 Isotropic dispersion relation

For isotropic dispersion relations (when Ek depends only on |k|, so that
the velocity v = vF k̂ is aligned with the wave vector), the linearized
Boltzmann equation can be solved exactly [8]. This applies, for example,
to surfaces perpendicular to the [111] direction of Bi2Se3. We consider
this simplest case first.

Since the deformations do not have a preferred orientation and the
dispersion is isotropic, the average scattering cross section S(θk, θk′)
only depends on the scattering angle θ = θk − θk′ , independently of
the incident direction. The solution to Eq. (8.17) is then Λk = τvk with
a relaxation time τ given by

1
τ

= N vF

∫ 2π

0
dθ S(θ)(1 − cos θ). (8.24)
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Substitution into Eq. (8.19) leads to a scalar conductivity σ given by the
Drude formula,

σ = e2N(EF)v2
F

τ

d
=

e2

h

EF

h̄

τ

2
. (8.25)

In the second equality the density of states N(EF) = EF/(2πh̄2v2
F) of a

Dirac cone with a circular cross section was inserted.
The regime H/W ≪ 1 of shallow surface deformations is character-

ized by predominantly forward scattering (|θ| ≪ 1). Then the relaxation
time (8.24) is given by the second moment of the scattering angle,

1
τ

= 1
2N vF

∫

dθ S(θ)θ2. (8.26)

We substitute the relation S(θ) = 〈|dθ(b)/db|−1〉, where 〈· · · 〉 indicates
an average over the (randomly oriented) scatterers. The integration over
scattering angles θ becomes an integration over impact parameters b,

1
τ

= 1
2N vF

〈

∫

db θ2(b)

〉

. (8.27)

From Eq. (8.9) we infer the scaling 1/τ ∝ W × (H/W)4 of the relax-
ation rate with the characteristic height and width of the surface defor-
mations. (The additional factor of W comes from the integral over b.)
This scaling was first obtained by Dugaev and Petrov [7]. Eq. (8.25)
then gives the scaling of the conductivity

σ = constant × e2

h

EF

h̄

1
N vF

W3

H4 . (8.28)

8.3.3 Anisotropic dispersion relation

We now turn to the case of an anisotropic dispersion relation. There
is then, in general, no closed-form solution of the linearized Boltzmann
equation [13]. One widely used approximation for the conductivity, due
to Ziman [12], has the form

σZiman = e2N(EF)〈vk ⊗ vkτ(k)〉k, (8.29)

with τ(k) the anisotropic relaxation time (8.22). As we will show in the
following, this is a poor approximation for our problem, but fortunately
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it is not needed: In the relevant limit H/W ≪ 1 of scattering from
shallow surface deformations an exact solution becomes possible. For
shallow deformations forward scattering dominates, |θ| = |θk − θk′ | ≪
1. This allows for an expansion of Λk′ around θk, which reduces the
integral equation (8.17) to a differential equation.

With the notation

Mp(φ) =
∫ 2π

0
dθ S(φ, φ + θ)θp, (8.30)

the expansion to second order of Eq. (8.21) can be written as

M1(φ)
d

dφ
λ(φ) + 1

2 M2(φ)
d2

dφ2 λ(φ) = − 1
N eiφ. (8.31)

We introduced a complex variable λ = Λx + iΛy to combine the two
components of the vector mean free path. Denoting the radius of cur-
vature of the Fermi surface by κ(φ) = dSF/dφ, the normalization condi-
tion (8.13) becomes

∫ 2π

0
dφ

κ(φ)

v(φ)
λ(φ) = 0. (8.32)

Once we have the solution of Eq. (8.31), the conductivity tensor elements
follow from

σxx ± σyy =
e2

h
Re
∫ 2π

0

dφ

2π
e∓iφκ(φ)λ(φ), (8.33a)

σxy = σyx =
e2

h
1
2 Im

∫ 2π

0

dφ

2π
eiφκ(φ)λ(φ). (8.33b)

A further simplification is possible if the average scattering angle
vanishes, M1(φ) = 0. Then the second moment M2(φ) of the scattering
angle is, within the forward scattering approximation, directly related
to the anisotropic relaxation time:

1
τ(φ)

= 1
2N v(φ)M2(φ). (8.34)
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Eq. (8.31) can now be solved in terms of the Fourier transforms

ℓn =
∫ 2π

0

dφ

2π
e−inφv(φ)τ(φ), (8.35a)

κn =
∫ 2π

0

dφ

2π
e−inφκ(φ), (8.35b)

λn =
∫ 2π

0

dφ

2π
e−inφλ(φ), (8.35c)

resulting in

λn =
ℓn−1

n2 + constant× δn,0. (8.36)

The normalization constant can be determined from Eq. (8.32).
Inserting the solution into Eq. (8.33) we obtain the conductivity

σxx ± σyy =
e2

h
Re

∞

∑
n=−∞

ℓn−1κ−n±1

n2 , (8.37a)

σxy = σyx =
e2

h
1
2 Im

∞

∑
n=−∞

ℓn−1κ−n−1

n2 . (8.37b)

For simplicity we have assumed an inversion symmetric Fermi surface,
for which κ±1 = 0 so that the normalization constant in Eq. (8.36) does
not contribute to the conductivity.

In the case of an isotropic Fermi surface, only the Fourier compo-
nents l0 = vFτ and κ0 = kF are nonzero. From Eq. (8.37), we then find
σxy = 0 = σyx, σxx = σyy = (e2/2h)kFvFτ, in agreement with Eq. (8.25).

Comparing with the Ziman approximation (8.29) for the conductiv-
ity in terms of the anisotropic relaxation time, we see that it can be
written in the same form (8.37), but without the factor 1/n2. It therefore
deviates strongly from our forward-scattering limit, except in the case
of an isotropic Fermi surface (when only n = 1 contributes).

8.4 Results

8.4.1 Isotropic dispersion relation

In the shallow deformation limit the conductivity is given by Eq. (8.28),
up to a numerical prefactor of order unity. We have calculated this
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Figure 8.2. Surface conductivity of a topological insulator as a function of the
height H of randomly positioned Gaussian deformations (width W = 10 nm,
density N = 0.1 W−2). We took an isotropic dispersion relation, with in-plane
velocities vx = vy = vF = 5 · 105 m/s, and a smaller out-of-plane velocity
vz = vF/3. The Fermi energy is fixed at EF = 150 meV. As discussed in Sec.
8.5, these are realistic parameter values for the [111] surface of Bi2Se3. Dots
represent numerical results whereas the line shows the shallow deformation
limit (8.38).

prefactor for Gaussian deformations of the form (8.10), randomly dis-
tributed over the surface. We assume that the deformations are shallow,
H/W ≪ 1. For simplicity, we also take the same parameters H and W
for each deformation. From Eqs. (8.11), (8.25), and (8.27) we obtain the
result

σ =
16
√

2
π
√

π

EF

h̄vFN
W3

(HvF/vz)4
e2

h
. (8.38)

The factor vF/vz is there to allow for an out-of-plane velocity vz that
is different from the in-plane velocity vx = vy = vF. The result (8.38)
confirms the scaling behavior (8.28) and gives the numerical prefactor.

To relax the assumption H/W ≪ 1 of shallow deformations, we
solved the geodesic equation (8.8) numerically for the Gaussian case.
The corresponding Christoffel symbols were taken from Eq. (8.48) with
vx = vy = vF. Using the scattering angle θ(b) that we obtained from
the numerics, we calculated the conductivity following from Eqs. (8.24,
8.25).

As shown in Fig. 8.2, the numerical results deviate from the scaling
(8.38) only for relatively large ratios H/W & 0.5. The deviations are
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oscillatory, due to electron trajectories that circle around the deformation
as depicted in the inset (b) of Fig. 8.2. Inset (a) shows generic trajectories
for electrons scattering off a shallow Gaussian deformation. Notice the
focussing of trajectories as an analogue of gravitational lensing.

8.4.2 Anisotropic dispersion relation

As an example of an anisotropic dispersion relation, we consider elliptic
equi-energy contours Ek = h̄(v2

xk2
x + v2

yk2
y)

1/2 with principal axes x and y.
As in the previous subsection, we investigate shallow Gaussian surface
deformations. These have zero average scattering angle, M1(φ) = 0, and
second moment

M2(φ) =
1
C

(sin2 φ + v2
yx cos2 φ)2. (8.39)

The coefficient C is given by

C =
16
√

2
π
√

π

W3

H4v4
y/v4

z

. (8.40)

From Eq. (8.58) we deduce that Eq. (8.39) actually holds more generally
for any circularly symmetric deformation, the only difference being in
the expression for C.

Using Eqs. (8.34) and (8.35a) one obtains the Fourier coefficients

ℓ±n =
C

N

(

1 − vyx

1 + vyx

)|n|/2
(1 + |n|vyx + v2

yx)

v3
yx

(8.41)

for n even, and zero for n odd. The elliptic dispersion relation leads to

κ(φ) =
EF

h̄vx

vyx

(sin2 φ + v2
yx cos2 φ)3/2

. (8.42)

The Fourier coefficients κn are also nonzero only for n even. (Since their
expressions are rather lengthy, we do not list them here.)

From Eq. (8.37) we find that the off-diagonal components of the con-
ductivity tensor vanish, while the diagonal components are given by

σ{xx
yy} =

e2

h ∑
n≥1

1
2n2 (ℓn+1 ± ℓn−1)(κn+1 ± κn−1). (8.43)
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Figure 8.3. The solid line shows the ratio of conductivities σxx/σyy as a function
of anisotropy vy/vx, calculated from Eq. (8.43). The dashed line corresponds to
the Ziman approximation.

The series converges rapidly.
The ratio σxx/σyy depends only on the anisotropy vyx = vy/vx. It is

plotted in Fig. 8.3. For comparison, we also show the Ziman approxi-
mation σZiman (obtained from the forward-scattering limit (8.43) without
the 1/n2 factor). As expected, it deviates substantially upon increasing
the anisotropy (notice the logarithmic scale).

8.5 Comparison with potential scattering

8.5.1 Carrier density dependence

The energy independence of the mean free path ℓ = vFτ is the hallmark
of geodesic scattering. It implies the square root dependence dependence
σ ∝

√
n of the conductivity on the surface electron density n. This fol-

lows from Eq. (8.28) with EF = h̄vF

√
4πn for an isotropic Dirac cone, or

more generally from the scaling σ ∝ SF for a noncircular Fermi surface
(of area SF ∝

√
n).

As discussed in the context of graphene [3, 14], electrostatic poten-
tial scattering typically gives a faster increase of the conductivity with
increasing carrier density. Coulomb scattering from charged impurities
and resonant scattering from short-range impurities both give a linear
increase σ ∝ n (up to logarithmic factors). Scattering from a potential
landscape with a Gaussian correlator gives an even more rapid increase
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Figure 8.4. Conductivity as a function of carrier density. The influence of three
different sources of scattering is shown: surface deformations (solid line), un-
screened Coulomb impurities (dashed line) and Gaussian correlated potential
fluctuations (dotted line). The parameters used for the plot are given in the
text.

σ ∝ n3/2. Geodesic scattering, with σ ∝ n1/2, would therefore form
the dominant conduction-limiting scattering mechanism at high carrier
densities.

For a quantitative comparison of geodesic and potential scattering,
we consider the [111] surface of Bi2Se3 with Gaussian deformations
given by Eq. (8.38). We take isotropic in-plane velocities vx = vy =
vF = 5 · 105 m/s and a smaller out-of-plane velocity vz = vF/3 [15, 16].
We adopt the following numerical parameters for the deformations from
an experimental image [4]: characteristic width W = 10 nm and height
H = 2 nm, covering 40% of the surface area so N = 1011 cm−2. The
carrier density dependence of the conductivity for geodesic scattering,
following from Eq. (8.38), is plotted in Fig. 8.4 (solid curve).

To compare the geodesic scattering to typical potential scatterers, we
also show the corresponding results for scattering from charged impu-
rities (dashed) and Gaussian potential fluctuations (dotted) in Fig. 8.4.

For charged impurities (charge Q = e) we considered the unscreened
Coulomb potential U(r) = (Qe/4πǫ0ǫr)|r|−1, as the extreme case of
a long-ranged potential. We took ǫr = 80 as a typical value for the
dielectric constant and kept the other parameter values as before. The
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semiclassical conductivity is then given by [3, 17]

σ =
e2

h

n

Nc

2πh̄2v2
F

u2
0

, u0 =
Qe

4ǫ0ǫr
. (8.44)

For Fig. 8.4 we used Nc = 2.5 × 1011 cm−2 as the density of impurities.
For a potential landscape with Gaussian correlator (range ξ, dimen-

sionless strength U0),

〈U(r)U(r′)〉 =
U0(h̄vF)

2

2πξ2 exp
(

−|r − r′|2
2ξ2

)

, (8.45)

the conductivity takes the functional form [18]

σ =
e2

h

4πnξ2e4πnξ2

U0I1(4πnξ2)
. (8.46)

(The function I1 is a Bessel function.) For Fig. 8.4 we took U0 = 0.1 and
ξ = W = 10 nm.

The parameter values used in Fig. 8.4 are only for the purpose of
illustration, but the point to make is that geodesic scattering dominates
over potential scattering for large carrier densities.

8.5.2 Anisotropy dependence of conductivity

In the case of an anisotropic (elliptical) dispersion relation the conduc-
tivity will be direction dependent. This situation arises for example if
the surface of Bi2Se3 is not in the [111] direction. Geodesic scattering im-
plies a certain universality for the directionality dependence of the con-
ductivity, if we may assume that the surface deformations are shallow
(H/W ≪ 1) and without a preferential orientation (circularly symmetric
on average). The ratio σxx/σyy is then only a function of vy/vx, indepen-
dent of other parameters (such as electron density or density and height
of the deformations). This universal function is plotted in Fig. 8.3 (solid
curve).

In Fig. 8.5 we compare this result for geodesic scattering with corre-
sponding results for potential scattering. Three typical impurity poten-
tials are considered, of different range: long-ranged unscreened Coulomb
potentials, medium-ranged Gaussian potential fluctuations, and short-
ranged potentials. The conductivities are obtained following the gen-
eral approach of Ref. 19, by first computing the transition rates in Born
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Figure 8.5. Ratios of conductivities along the two main axes of the disper-
sion relation are shown as a function of anisotropy vy/vx. The influence of
four different sources of scattering is shown: surface deformations (solid line),
unscreened Coulomb impurities (dashed line), Gaussian potential fluctuations
(dotted line), and short-ranged potentials (dot-dashed line). The parameters
used for the plot are given in the text.

approximation and then solving numerically the linearized Boltzmann
equation. We took the same material parameter values as in the previous
subsection.

The unscreened Coulomb potential gives a ratio σxx/σyy which de-
pends only on vy/vx (dashed line). For Gaussian potential fluctuations,
the ratio σxx/σyy is a function of both vy/vx and n. It is plotted as a
dotted line in Fig. 8.5 for nξ2 = 1. (If ξ = W = 10 nm this corresponds
to the carrier density n = 1012 cm−2.) In the same figure we also plot
(dot-dashed line) the limit ξ → 0 (at fixed n) of a short-ranged potential.

From the double-logarithmic plot in Fig. 8.5 one can see that there
is an approximate power law dependence, σxx/σyy ∝ (vy/vx)−p, over
at least one decade. The exponent is p ≈ 3.3 for geodesic scattering,
while p = 2 for short-range potential scattering. Scattering from long-
ranged Coulomb impurities or from medium-ranged Gaussian potential
fluctuations gives p < 2.

Anisotropic charge transport in the presence of unscreened Coulomb
impurities for an elliptic dispersion relation was also discussed in the
context of strained graphene [20]. There it was argued that σxx/σyy ∝

(vy/vx)−2 on the basis of a power-counting argument. Our numerical
solution of the Boltzmann equation gives a smaller exponent p ≈ 1.3 in
that case.
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To conclude, charge transport dominated by surface deformations
has a much stronger anisotropy dependence than that governed by im-
purity potentials. This highly anisotropic transport behavior is a distinct
characteristic of geodesic scattering.
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Appendix 8.A Calculation of scattering cross section

8.A.1 Christoffel symbols in rotated basis

In order to calculate the scattering angle in the geometry of Fig. 8.1, it
is convenient to rotate the coordinate axis in the x − y plane such that
the electron is incident parallel to the x-axis. Under the linear transfor-
mation from x, y to x̃ = x cos θk + y sin θk, ỹ = −x sin θk + y cos θk, the
Christoffel symbol Γλ

µν transforms to

Γ̃λ
µν(x̃, ỹ) =

∂x̃λ

∂xλ′ Γλ′
µ′ν′(x, y)

∂xµ′

∂x̃µ

∂xν′

∂x̃ν
. (8.47)

Using the expressions (8.4), (8.5), (8.7) for metric tensor and Christof-
fel symbols, we arrive at

Γ̃x
µν = D−1 ∂2ζ

∂x̃µ∂x̃ν

[

v2
xz

∂ζ

∂x̃
− (v2

xz − v2
yz) sin θk

(

∂ζ

∂x̃
sin θk +

∂ζ

∂ỹ
cos θk

)]

,

(8.48a)

Γ̃
y
µν = D−1 ∂2ζ

∂x̃µ∂x̃ν

[

v2
yz

∂ζ

∂ỹ
− (v2

xz − v2
yz) sin θk

(

∂ζ

∂x̃
cos θk −

∂ζ

∂ỹ
sin θk

)]

.

(8.48b)

The factor D from Eq. (8.5d), written in terms of the rotated coordinates,
reads

D = 1 + v2
xz

(

∂ζ

∂x̃
cos θk −

∂ζ

∂ỹ
sin θk

)2

+ v2
yz

(

∂ζ

∂x̃
sin θk +

∂ζ

∂ỹ
cos θk

)2

.

(8.49)
The Christoffel symbols (8.48) appear in the geodesic equation for

the rotated coordinates,

d2 x̃λ

dτ2 + Γ̃λ
µν

dx̃µ

dτ

dx̃ν

dτ
= 0. (8.50)

8.A.2 Geodesic equation for shallow deformation

The geodesic equation (8.50) can be considerably simplified in the shal-
low deformation limit H/W ≪ 1. Let us consider a particle incident on
a deformation along the x̃-direction from −∞ with impact parameter b
and velocity

v = vxvy(v2
y cos2 θk + v2

x sin2 θk)
−1/2. (8.51)
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Since the derivative dỹ/dτ is smaller than dx̃/dτ by a factor (H/W)2,
we can drop this derivative from the geodesic equation. The result is

d2 x̃

dτ2 + Γ̃x
xx

(

dx̃

dτ

)2

= 0, (8.52a)

d2ỹ

dτ2 + Γ̃
y
xx

(

dx̃

dτ

)2

= 0. (8.52b)

Furthermore, since dx̃/dτ = v[1 + O(H/W)2], we can write d/dτ =
vd/dx̃. This leads to

d2ỹ

dx̃2 = −Γ̃
y
xx. (8.53)

The scattering angle θ ≪ 1 is obtained from θ = limx̃→∞ dỹ/dx̃,
hence

θ(θk, b) = −
∫ ∞

−∞
Γ̃

y
xx dx̃

∣

∣

ỹ→b
. (8.54)

Inserting Eq. (8.48b) into Eq. (8.54) and noting that D = 1 + O(H/W)2,
we obtain the scattering angle to leading order in H/W,

θ(θk, b) = −
∫ ∞

−∞
dx̃

[(

α
∂ζ

∂ỹ
− γ

∂ζ

∂x̃

)

∂2ζ

∂x̃2

]

ỹ→b

. (8.55)

We abbreviated

α = v2
yz cos2 θk + v2

xz sin2 θk, (8.56a)

γ = (v2
xz − v2

yz) sin θk cos θk. (8.56b)

8.A.3 Circularly symmetric deformation

For a circularly symmetric height profile ζ(x, y), dependent only on r =
√

x2 + y2 =
√

x̃2 + ỹ2, the term proportional to γ in Eq. (8.55) vanishes
(because it is an integral over an odd function of x̃). The expression for
the scattering angle thus simplifies further to

θ(θk, b) = −α
∫ ∞

−∞
dx

[

∂ζ

∂y

∂2ζ

∂x2

]

y→b

. (8.57)
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For the Gaussian deformation (8.10) we obtain the scattering angle (8.11)
given in the main text.

The entire dependence of the scattering angle θ on the angle of inci-
dence θk is contained in the prefactor α. This implies that the moments
Mp =

∫

db θp of the scattering angle depend on the angle of incidence
as

Mp(θk) = cpαp = cpv
p
xz(sin2 θk + v2

yx cos2 θk)p, (8.58)

with cp a coefficient independent of θk.
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