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Chapter 6

Quantum Hall effect in a
one-dimensional dynamical
system

6.1 Introduction

The disorder-induced localization-delocalization transition in the quan-
tum Hall effect is the oldest and best-known example of a topological
phase transition [1, 2]. The transition is called topological because it
is associated with a change in a topological invariant, the Chern num-
ber, which counts the number of edge states and the quantized value
of the Hall conductance [3]. Since there is still no analytical theory for
the quantum Hall phase transition, computer simulations are needed to
calculate the scaling law and critical exponent associated with the di-
verging localization length at the transition. The two-dimensional (2D)
network model of Chalker and Coddington has been the primary tool
for these studies for more than two decades [4–6].

In this chapter we introduce an alternative one-dimensional (1D) model
of the quantum Hall phase transition. The model is stroboscopic, with
a Hamiltonian that is driven quasiperiodically with two incommensu-
rate driving frequencies. It is a variation on the quantum kicked rota-
tor [7–9], used to study the 3D Anderson metal-insulator transition of
atomic matter waves in a 1D optical lattice [10–14]. Stroboscopic mod-
els of quantum phase transitions have received much attention recently
[15–20], but the dimensional reduction considered here has not yet been
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explored.
Usually the quantum Hall effect is due to the quantization of cy-

clotron orbits in Landau levels. It is possible to simulate a Lorentz force
acting on neutral atoms in a 2D optical lattice [21–23], but in a 1D lat-
tice we need a quantum Hall effect without Landau levels [24]. This
socalled quantum anomalous Hall effect appears in the Qi-Wu-Zhang
(QWZ) model of a spin-1/2 coupled to orbit and to a uniform magneti-
zation. While the topological invariant in this model takes on only the
three values 0,±1, the phase transitions are in the same Z universality
class as the usual quantum Hall effect.

In the next two sections we formulate the stroboscopic model of the
quantum Hall effect, first in 2D (Sec. 6.2) and then reduced to 1D (Sec.
6.3). We obtain the model by starting from the QWZ Hamiltonian, but
we also show how it is related to the quantum kicked rotator (upon
exchange of position and momentum).

In Sec. 6.4 we perform numerical simulations of the spreading of
a 1D wave packet to identify the localization-delocalization transitions.
While the translationally invariant QWZ model has three quantum Hall
transitions, we find four transitions because one is split by disorder. We
verify one-parameter scaling of the time-dependent diffusion coefficient
and calculate the critical exponent. The result is consistent with the most
accurate value obtained from the Chalker-Coddington model [6].

To further support that these are topological phase transitions in the
quantum Hall universality class we calculate the Hall conductance as
well as the Z topological invariant in Sec. 6.5. We conclude by discussing
the possibilities for the realization of the quantum Hall effect in a 1D
optical lattice.

6.2 Formulation of the 2D stroboscopic model

6.2.1 Quantum anomalous Hall effect

In this subsection we summarize the QWZ model [25] of the quantum
anomalous Hall effect, on which we base the stroboscopic model de-
scribed in the next subsection.

The QWZ model describes two spin bands of a magnetic insulator
on a two-dimensional (2D) square lattice. The crystal momentum p =
(p1, p2) varies over the Brillouin zone −πh̄/a < p1, p2 < πh̄/a. The
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Hamiltonian has the form u · σ, with σ = (σx, σy, σz) a vector of Pauli
matrices and

u(p) = K
(

sin p1, sin p2, β[µ − cos p1 − cos p2]
)

(6.1)

a momentum-dependent vector that couples the spin bands. (We have
set h̄ and a both equal to unity.) The dispersion relation is E±(p) =
±u(p), with u = |u| the norm of the vector u. We fix the Fermi level at
zero, in the middle of the energy gap.

Eq. (6.1) contains three parameters, K, β, µ. The parameter K sets the
strength of the spin-orbit coupling. Time-reversal symmetry is broken
by a nonzero β, representing a magnetization perpendicular to the 2D
plane. The Hall conductance GH is quantized at [25]

GH =
e2

h
×
{

sign (β µ) if |µ| < 2,
0 if |µ| > 2.

(6.2)

This quantum Hall effect is called “anomalous”, because it does not
originate from Landau level quantization.

The value of GH is a topological invariant [25], meaning that it is
insensitive to variations of the Hamiltonian that do not close the en-
ergy gap. Since the gap can only close if u(p) vanishes for some p, the
Hamiltonian

H0(p) = T (u) u · σ (6.3)

has the same quantized Hall conductance (6.2) if the function T (u) is
positive definite. We will make use of this freedom in order to flatten
the spin bands, by choosing a function T (u) which decays for large u.

The Hamiltonian H0(p) describes a clean system. The effects of elec-
trostatic disorder are included by adding the scalar potential V(x). The
2D coordinate x = (x1, x2) is measured in units of a, while momen-
tum p = (p1, p2) is measured in units of h̄/a, so their commutator is
[xn, pm] = iδnm.

6.2.2 Stroboscopic Hamiltonian

This completes the description of the QWZ model. We now introduce a
periodic time dependence by multiplying H0 with the stroboscopic func-
tion τ ∑n δ(t− nτ), while keeping the scalar potential time-independent.
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We thus arrive at the stroboscopic Hamiltonian

H(t) = V(x) + H0(p)
∞

∑
n=−∞

δ(t − n), (6.4)

where we have set the period τ equal to unity.
For the choice of T (u) and V(x) we are guided by the tight-binding

representation given in App. 6.A. We use

T (u) =
2 arctan u

u
, (6.5)

which has a tight-binding representation with nearest-neighbor hop-
ping. For the scalar potential V(x) we take a separable form,

V(x) =
2

∑
i=1

Vi(xi), (6.6)

with Vi(xi) a low-order polynomial in xi. Such a simple potential pro-
duces quasi-random on-site disorder in the tight-binding representation.

6.2.3 Relation to quantum kicked rotator

The quantum kicked rotator is a particle moving freely along a circle,
with moment of inertia I, being subjected periodically (with period τ)
to a kick whose strength depends ∝ cos θ on the angular coordinate θ.
The quantum mechanical Hamiltonian is [7, 26]

H(t) = − h̄2

2I

∂2

∂θ2 +
KI

τ
cos θ

∞

∑
n=−∞

δ(t − nτ). (6.7)

The stroboscopic Hamiltonian (6.4) has the same general form, upon
substitution of θ 7→ p, with the extension from 1D to 2D and with the
addition of a spin degree of freedom in the kicking term.

A 1D spinful kicked rotator has been used to study the effects of
spin-orbit coupling on quantum localization [27–32]. (Because in the
kicked rotator the variable which localizes is momentum rather than
position, one speaks of dynamical localization.) In these 1D studies there
was only a topologically trivial phase, while — as we shall see — the
present 2D model exhibits a topological phase transition.
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Figure 6.1. Momentum dependence of the quasi-energy (6.9) for zero disorder
potential, calculated from Eqs. (6.1) and (6.5) for K = 2, β = 0.8, µ = 1.9. At the
center of the Brillouin zone the Dirac cone emerges, which will be fully formed
when the gap closes at µ = 2.

6.2.4 Floquet operator

The evolution Ψ(t + 1) = FΨ(t) of the wave function Ψ(t) over one pe-
riod is described by the Floquet operator F . Integration of the Schrödinger
equation i∂Ψ/∂t = H(t)Ψ(t) gives the Floquet operator as the product

F = e−iH0(p)e−iV(i∂p), (6.8)

with i∂p ≡ i∂/∂p the position operator x in momentum representation.
The eigenvalues of the unitary operator F are phase factors e−iε. The

phase shift ε ∈ [−π, π) plays the role of energy (in units of h̄/τ), and
is therefore called a quasi-energy. For V ≡ 0 the quasi-energy is an
eigenvalue of H0, hence

ε = ±uT (u), for V ≡ 0. (6.9)

The p-dependence of the two bands is plotted in Fig. 6.1. The emerging
Dirac cone is clearly visible. Away from the cone the bands are quite
flat, which is a convenient feature of our choice (6.5) of T (u).

More generally, for nonzero V, the 2π-periodicity of H0(p) implies
that the eigenstates

Ψq(p) = e−ip·qχq(p) (6.10)
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of F are labeled by a Bloch vector q in the Brillouin zone −π < q1, q2 <

π. The function χq(p) is a 2π-periodic eigenstate of

Fq = e−iH0(p)e−iV(i∂p+q). (6.11)

A convenient basis for the functions χq(p) is formed by the eigenfunc-
tions exp(−im · p) of x. The 2π-periodicity of χq requires that the vector
m = (m1, m2) contains integers.

6.3 Mapping onto a 1D model

The quantum kicked rotator in d dimensions can be simulated in one
single dimension by means of d incommensurate driving frequencies
[9, 33]. We apply this dimensional reduction to our stroboscopic model
of the quantum Hall effect.

We take a linear potential in the variable x2,

V(x) = V1(x1)− ωx2, (6.12)

with ω/2π an irrational number ∈ (0, 1). During one period the mo-
mentum p2 is incremented to p2 + ω (modulo 2π), so ω is an incom-
mensurate driving frequency. An initial state

Ψ(p1, p2, t = 0) = ψ(p1, t = 0)δ(p2 − α). (6.13)

evolves as

Ψ(p1, p2, t) = e−iH0(p1,ωt+α)e−iV1(x1)ψ(p1, t − 1)

× δ(p2 − ωt − α). (6.14)

We may therefore replace the 2D dynamics by a 1D dynamics with a
time-dependent Floquet operator

F(t) = e−iH0(p1,ωt+α)e−iV1(i∂p1 ), (6.15)

Fq(t) = e−iH0(p1,ωt+α)e−iV1(i∂p1+q). (6.16)

This reduction from two dimensions to one dimension greatly simplifies
the numerical simulation of the quantum Hall effect.

For the potential in the remaining dimension we take a quadratic
form,

V1(x1) = 1
2 λ(x1 − x0)

2, (6.17)
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with x0 an arbitrary offset and λ, ω, 2π an incommensurate triplet. (We
take λ = 2, ω = 2π/

√
5.) From studies of the d-dimensional quantum

kicked rotator it is known that such a simple potential, which is linear
in d − 1 dimensions and nonlinear in one single dimension, provides
sufficient randomness for localization [34].

6.4 Localization in the quantum Hall effect

6.4.1 Numerical simulation

We base our numerical simulation on the 1D stroboscopic model with
two incommensurate frequencies of Sec. 6.3. We introduce a Bloch num-
ber q and seek the time dependence of the state ψ(p1, t) = e−iqp1χq(p1, t).
The state χq(p1, t) is a 2π-periodic function of p1, so it is a superposi-
tion of a discrete set of eigenstates e−imp1 of x1. For numerical purposes
this infinite set is truncated to M states, m ∈ {1, 2, . . . M}, with periodic
boundary conditions at the end points.

Fourier transformation from eigenstates of x1, with eigenvalue m, to
eigenstates of p1, with eigenvalue 2πn/M, amounts to multiplication
with the unitary matrix

Unm = M−1/2e2πinm/M, n, m ∈ {1, 2, . . . M}. (6.18)

Calculation of the state χq(x1, t), for t an integer multiple of τ ≡ 1,
requires 2t Fourier transformations,

χq(x1, t) =

(

t−1

∏
t′=0

Fq(t′)

)

χq(x1, 0), (6.19)

[

Fq(t)
]

nm
=

M

∑
k=1

U∗
kne−iH0(2πk/M,ωt+α)Ukme−iV1(m+q). (6.20)

These operations can be carried out with high efficiency using the fast-
Fourier-transform algorithm [35].

As initial state we choose

χq(x1, 0) = δx0,x1

[

e−iφ0/2 cos(θ0/2)

(

0
1

)

(6.21)

+ eiφ0/2 sin(θ0/2)

(

1
0

)]

, (6.22)
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Figure 6.2. Time-dependent diffusion coefficient (6.25) at t = 3000 as a function
of µ for M = 1024. The different values of K range from weak disorder (K = 4)
to strong disorder (K = 0.8). The peaks signal a localization-delocalization
transition. Compared to the three quantum Hall transitions in a clean system
(indicated by arrows on the top), the two outer transitions are displaced in-
wards by disorder, while the central transition is split. The splitting of the two
central peaks becomes larger and larger with increasing disorder, until they
merge with the outer peaks.

spatially localized at x1 = x0 = M/2 (for even M). The angles φ0, θ0 of
the initial spin direction are chosen randomly on the unit sphere.

6.4.2 Localization-delocalization transition

To search for localization we calculate the expectation value

〈(

x1(t) − x0
)2〉

=
M

∑
m=1

(m − M/2)2|χq(x1 = m, t)|2, (6.23)

and obtain the mean squared displacement

∆2(t) =
〈(

x1(t) − x0
)2〉 (6.24)

by averaging over some 102–103 values of the random parameters α, q ∈
{0, 1}. We fix K = 2, β = 0.8 and vary the parameter µ.

The system is localized if the time-dependent diffusion coefficient

D(t) =
∆2(t)

t
(6.25)
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Figure 6.3. Left axis: Time-dependent diffusion coefficient for K = 2 (solid
curve, same data as in Fig. 6.2), showing the four localization-delocalization
transitions. Right axis: Four-terminal Hall conductance GH (data points) and
topological invariant I (dashed curve), calculated in Sec. 6.5, to demonstrate
that these are topological phase transitions.

vanishes in the large-t limit. Delocalization with diffusive propagation
corresponds to a non-zero large-time limit of D(t). The quantum Hall
phase transition is a localization-delocalization transition, so we would
expect a peak in D(t) as a function of µ at the critical points µc where
the topological invariant switches from one value to another. In a clean
system these values are µc = 0,±2, see Eq. (6.2).

The data in Fig. 6.2 shows that disorder has two effects: It shifts the
outer transitions inwards and splits the central transition, resulting in
a total of four peaks. We will demonstrate in Sec. 6.5 that these are
topological phase transitions, by calculating the topological invariant —
which as we can see in Fig. 6.3 switches at each of the transitions.

6.4.3 Scaling and critical exponent

In the single-parameter scaling theory of localization all microscopic
parameters enter only through a single length scale ξ (the localization
length) and the associated energy scale δξ = (ξdρc)−1 (being the mean
level spacing in a d-dimensional box of size ξ, obtained from the density
of states ρc at the critical energy) [36–38]. The corresponding scaling law
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Figure 6.4. Left panel: Time-dependent diffusion coefficient for different times
as a function of µ. The curves are a least-squares fit, used to extract the local-
ization length ξ(µ) and the critical exponent (see App. 6.B). In the right panel
time is rescaled, to test the scaling form D(t, µ) = F(t/ξ2) [see Eq. (6.26)]. The
open data points do not fully collapse onto a single scaling curve, due to finite-
time corrections to scaling. The filled data points include the leading-order
correction (see App. 6.B).

for dynamical localization has the form [39]

D(t) = ξ2−dF(ξ−dt), (6.26)

in the large-time limit near the critical point µc. The localization length
ξ diverges as a power law with critical exponent ν on approaching the
transition,

ξ ∝ |µ − µc|−ν. (6.27)

The limiting behavior of the function F(z) is F(z) ∝ 1/z for z → ∞

and F(z) ∝ z2/d−1 for z → 0. The first limit ensures that the mean
squared displacement ∆2 = tD(t) → ξ2 becomes time independent in
the limit t → ∞ at fixed µ− µc. The second limit ensures that, if we send
µ → µc at fixed t, the diffusion coefficient D(t) → t2/d−1 tends to a finite
value. For d = 2, this value is also time independent, which implies
regular diffusion (D = constant) at criticality in two dimensions.

We have performed a finite-time scaling analysis of D(t), similar to
Refs. 6, 39, to obtain the localization length ξ and extract the value of
the critical exponent. (See App. 6.B for details.) We considered times
up to t = 1.3 · 106 for system size M = 213 = 8192. In Fig. 6.4 we
show both the unscaled and the scaled data. For the two independent
transitions we find ν = 2.576± 0.03 at µc = 0.387 and ν = 2.565 ± 0.03 at
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µc = 1.903. Both results agree with νQHE = 2.593, the critical exponent
for the quantum Hall phase transition [6].

6.5 Hall conductance and topological invariant

The quantum anomalous Hall effect in the absence of disorder (V ≡ 0)
is characterized by the topological invariant [25]

I = − 1
4π

∫ π

−π
dp1

∫ π

−π
dp2

[

∂û(p)

∂p1
× ∂û(p)

∂p2

]

· û(p), (6.28)

with û = u/|u|. This socalled Skyrmion number does not apply for
nonzero disorder potential, when momentum p is no longer a good
quantum number.

We calculate the topological invariant for nonzero V from the wind-
ing number of the reflection matrix r(φ) in a cylinder geometry [40, 41],

I = − 1
2πi

∫ 2π

0
dφ

d

dφ
ln Det r(φ), (6.29)

where Φ = φh̄/e is the flux enclosed by the cylinder and r(φ) is evalu-
ated at ε = 0. (We explain in App. 6.C how to construct the quasi-energy
dependent reflection matrix from the Floquet operator [42, 43].) Since
this is a 2D system, the sizes M × M for which we can calculate I are
much smaller than in the 1D reduction used to calculate D(t).

The results in Fig. 6.5 are for M × M = 40 × 40. This is data for a
single sample (q = 0), at fixed K = 2 as a function of β, µ. The disorder-
averaged µ-dependence of I is plotted in Fig. 6.3 (dashed curve, for
β = 0.8).

Comparing with the phase boundaries (6.2) for the clean system
(V ≡ 0), we see that disorder introduces topologically trivial regions
along clean phase boundaries. In the disordered system transitions be-
tween two different topologically nontrivial phases (with I = ±1) go
via a topologically trivial region (I = 0). A similarly disruptive effect
of disorder (but with a metallic gapless region replacing the topolog-
ically trivial phase) has been observed in computer simulations of the
quantum spin Hall effect [44].

We have also calculated the Hall conductance GH, which unlike the
topological invariant is a directly measurable quantity. The results shown
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Figure 6.5. Phase diagram of the topological invariant I in a cylinder of size
40 × 40, calculated from Eq. (6.29) for a single disorder realization. The solid
lines are the phase boundaries (6.2) in the clean system.

in Fig. 6.3 (data points) were obtained in a single four-terminal sample
of dimensions M × M = 70 × 70, directly taken from the scattering ma-
trix expression for the Hall conductance [45]. The Hall plateaus are at
the values expected from the topological invariant, GH ≈ I × e2/h, with
deviations from exact quantization due to the relatively small size of the
2D system.

6.6 Discussion

We have shown how the quantum Hall effect can be modeled in a 1D dy-
namical system, by using a pair of incommensurate driving frequencies
to simulate the effect of a second spatial dimension. This 1D strobo-
scopic model could become a competitive alternative to the 2D network
model for numerical studies of the quantum Hall phase transition [4],
similarly to how the 1D quantum kicked rotator is an alternative to the
3D Anderson model of the metal-insulator transition [9].

Since quantum kicked rotators can be realized using cold atoms
[10, 11, 39, 46], the stroboscopic model might also provide a way to
study the quantum Hall effect using atomic matter waves. Cold atoms
represent clean and controllable experimental quantum systems, owing
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to the ability to tune interaction strengths and external potentials [47].
Due to the absence of impurities they have long phase coherence times,
so their quantum dynamics can be followed over long time scales. These
properties make cold atoms ideally suited for the experimental study of
quantum phase transitions.

There is a particular need for a new physical system to investigate the
quantum Hall phase transition, because currently the theory disagrees
with semiconductor experiments on the value of the critical exponent
[6]. This might be an effect of Coulomb interactions between the elec-
trons in a semiconductor, and a system with controllable interactions
could shed light on this question.

For cold atomic gases prepared in a magneto-optical trap a quasi-
periodically modulated 1D standing wave, created by two overlapping
laser beams, simulates the quasi-periodic driving of the kicked rotator
[46]. The momentum distribution is accessible through an absorption
measurement, following the release of the atomic gas from the trap [47].
Since in the kicked rotator momentum plays the role of coordinate, in
this way the diffusion coefficient could be measured and the critical ex-
ponent of the metal-insulator transition was obtained from its time de-
pendence [10, 11, 39].

To realize the stroboscopic model of the quantum Hall effect, a con-
trollable spin-1/2 degree of freedom is needed. Hyperfine levels in alkali
or earth alkali atoms can be used for that purpose [47], and arbitrary
rotations of this pseudospin have been demonstrated in Cs [48]. Two
overlapping standing waves would produce a purely sinusoidal kicking
potential (corresponding to T (u) ≡ 1), while for flat spin bands higher
harmonics are desirable. Fortunately, the topological nature of the phase
transition ensures that there is considerable freedom in the choice of the
potentials.

Continuing on the path of dimensional reduction proposed here, it
is conceivable that the hypothetical 4D quantum Hall effect [49] might
also be realized in the laboratory, by adding two more incommensurate
driving frequencies.
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Appendix 6.A Tight-binding representation

To gain further insight into the stroboscopic model, we give a tight-
binding representation. This will motivate the specific form (6.5) for
the function T (u) and it will also guide us in the choice (6.6) for the
scalar potential V(x). The derivation follows the same steps as for the
quantum kicked rotator [8, 27].

Including the spin degree of freedom (s = ±1), we denote the coor-
dinate basis states by |m, s〉, such that xi|m, s〉 = mi|m, s〉 and σz|m, s〉 =
s|m, s〉. The two states |a±〉 defined by

Fq|a+〉 = e−iε|a+〉, (6.30a)

|a−〉 = eiH0 |a+〉 = eiε−iVq |a+〉 (6.30b)

are evaluated just after and just before the kick. [We have abbreviated
Vq = V(i∂p + q).] Both states evolve with a phase factor e−iε in one
period τ ≡ 1. The tight-binding representation is expressed in terms of
the average

|b〉 = 1
2

(

|a+〉 + |a−〉
)

. (6.31)

The Hermitian operator

W = i
1 − eiH0

1 + eiH0
=

1
u

tan
[ 1

2 uT (u)
]

u · σ (6.32)

allows to relate |b〉 to |a±〉 separately,

|b〉 =
1

1 + iW
|a−〉 =

1
1 − iW

|a+〉. (6.33)

Substitution into Eq. (6.30b) gives

(1 + iW)|b〉 = eiε−iVq(1 − iW)|b〉 (6.34a)

⇒ i
1 − eiε−iVq

1 + eiε−iVq
|b〉 = W|b〉 (6.34b)

⇒ tan[(ε − Vq)/2]|b〉 = W|b〉. (6.34c)

In coordinate representation this gives the tight-binding equations

∑
n

∑
s′

Wss′
n bs′

m+n + tan
[

1
2V(m + q) − 1

2 ε

]

bs
m = 0, (6.35)
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with hopping matrix elements

Wss′
n = 〈m, s|W(p)|m + n, s′〉, (6.36a)

W(p) =
1
u

tan
[ 1

2 uT (u)
]

u · σ. (6.36b)

The tangent term in Eq. (6.35) provides a pseudo-random on-site
potential, provided that V(m + q) changes from site to site in a way
which is incommensurate with the periodicity π of the tangent. This is
why a simple polynomial V(x) suffices to produce the localizing effect
of a disorder potential [8].

The role of the Bloch vector q is to provide different realizations of
the disorder potential, so that a disorder average is effectively an aver-
age of q over the Brillouin zone. The strength of the disorder potential is
varied by varying the parameter K, which determines the relative mag-
nitude of kinetic and potential energies: small K corresponds to strong
disorder.

From Eq. (6.36) we see that different choices for T (u) lead to dif-
ferent hopping matrix elements, leaving the on-site disorder unaffected.
The arctangent form in Eq. (6.5) has the simplifying effect of excluding
hopping between sites that are not nearest neighbors. For this choice
1
u tan[ 1

2 uT (u)] ≡ 1 the hopping matrix elements are given by

Wn = 2πKβµσzδn1,0δn2,0

+ πK(±iσy − βσz)δn1,0δn2,±1

+ πK(±iσx − βσz)δn1,±1δn2,0. (6.37)

Appendix 6.B Finite-time scaling

Following Refs. 6, 39, we extract the critical exponent ν from finite-time
numerical data by fitting the diffusion coefficient (or, more conveniently,
its logarithm) to the scaling law D(t) = F(t/ξ2). For finite t the diffusion
coefficient is an analytic function of µ. In view of Eq. (6.27) the variable
(t/ξ2)1/2ν = t1/2νu is an analytic function of µ, vanishing at µc.



136 Chapter 6. One dimensional quantum Hall effect

We therefore have the two power series

ln D(t) = ln Dc +
N1

∑
k=1

c
(1)
k

(

t1/2νu
)k

+ c0t−y, (6.38)

u = µ − µc +
N2

∑
k=2

c
(2)
k (µ − µc)

k. (6.39)

The term c0t−y, with y > 0, accounts for finite-time corrections to single-
parameter scaling at the transition point. We put c1 = 0, c2 < 0, to
ensure that D(t) as a function of µ has a maximum at µc. We then choose
integers N1, N2 and fit the parameters Dc, ν, c0, y with c

(i)
k (i ∈ {1, 2},

2 ≤ k ≤ Ni) to the t and µ-dependence of D(t), for a given 1D system
size M.

For the transition around µ = 0.38 we took times t = 1.2 · 104, 3.3 ·
104, 8.3 · 104, 2.1 · 105, 5.2 · 105, and 1.3 · 106, with M = 213 = 8192.
We averaged over 1000 samples. The quality of the fit is quantified by
the chi-square-value per degree of freedom (χ2/ndf). We systematically
increased N1, N2 until we arrived at χ2/ndf ≈ 1. Only the leading order
term in Eq. (6.39) was needed for a good fit, so we simply took u =
µ − µc. The expansion (6.38) did need higher order terms, up to N1 = 6.
We thus obtained ν = 2.576 ± 0.03 at µc = 0.387 with χ2/nd f = 1.2. A
similar analysis was performed for the outer peak in fig. 6.3, resulting
in ν = 2.565 ± 0.03 at µc = 1.903 with χ2/nd f = 1.01.

Appendix 6.C Scattering matrix from Floquet oper-

ator

To calculate the topological invariant (6.29) we need the reflection matrix
r(φ) in a cylinder geometry, at quasi-energy ε = 0 as a function of the
flux Φ = φh̄/e enclosed by the cylinder. This can be obtained from a
four-terminal scattering matrix S, which relates the wave amplitudes of
incoming and outgoing states at the four edges of an M × M square
lattice of sites (x1, x2) = (m1, m2), mi = 1, 2, . . . M. The dimensionality
of S is 8M × 8M, with the factor of 8 accounting for four terminals
and a twofold spin degree of freedom. The Floquet operator Fq is a
2M2 × 2M2 matrix describing the stroboscopic time evolution of states
on the 2D lattice. (We do not make the dimensional reduction to 1D for
this calculation.)
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Figure 6.6. Truncation of the lattice used to construct a four-terminal scattering
matrix, as described in the text.

When the square is folded into a cylinder, incoming and outgoing
states at the left and right edge are related by a phase factor eiφ. This
relation can be used to reduce the four-terminal scattering matrix to a
two-terminal scattering matrix S̃(φ) (which now has dimension 4M ×
4M). The reflection matrix r(φ) is a 2M × 2M subblock of S̃(φ), relating
incoming and outgoing states at the lower edge. We refer to Ref. 41 for
a computationally efficient way to carry out this general procedure.

What we discuss in this Appendix is how to obtain S from Fq. We
are faced with the complication that the truncation of the coordinates
to a finite range M introduces spurious hopping matrix elements that
couple sites near opposite edges (typically within 5–10 sites from the
edge). We cannot directly delete these matrix elements from the Floquet
matrix without losing unitarity.

Our solution (illustrated in Fig. 6.6) is to start from a larger M′ × M′

system (red square), with Floquet matrix F ′
q = e−iH′

0e−iV′
q . We then go

back to the M × M system (green square) by deleting rows and columns
in the coordinate representation of H′

0 7→ H0 and V ′
q 7→ Vq. The resulting

Floquet matrix Fq = e−iH0e−iVq remains unitary. By choosing M′ suffi-
ciently larger than M (typically M′ = M + 10 suffices), we effectively
eliminate the spurious hopping matrix elements.

For a four-terminal scattering matrix we introduce absorbing termi-
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nals at the four edges of the M × M lattice. The 8M × 2M2 matrix P
projects onto these terminals,

Pss′
mm′ = δss′δm1m′

1
δm2m′

2
×







1 if m1 ∈ {1, M},
1 if m2 ∈ {1, M},
0 otherwise.

(6.40)

The ε-dependent scattering matrix S is obtained from the Floquet matrix
Fq through the formula [42, 43]

S = P
[

1 − eiεFq(1 − PTP)
]−1

eiεFqPT, (6.41)

where the superscript T indicates the transpose of the matrix. The quasi-
energy ε is set to zero for the calculation of the topological invariant
(6.28). The integral over φ is evaluated analytically[41] by contour inte-
gration over complex z = eiφ. Results for M = 40 are shown in Figs. 6.3
and 6.5.

To calculate the Hall conductance GH we directly use the four-terminal
scattering matrix S, without rolling up the system into a cylinder. The
geometry is still that of Fig. 6.6, but the four absorbing terminals are
point contacts, covering a single site at the center of each edge. The di-
mensionality of the scattering matrix, including spin, is thus 8 × 8. A
current I13 flows from terminal 1 to terminal 3 and the voltage V24 is
measured between terminals 2 and 4 (which draw no current). The Hall
conductance GH = I13/V24 is obtained from the scattering matrix ele-
ments using Büttiker’s formulas [45]. Results for M = 70 are shown in
Fig. 6.3.
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[29] D. R. Mašović and A. R. Tančić, Phys. Lett. A 191, 384 (1994).

[30] A. Ossipov, D. M. Basko, and V. E. Kravtsov, Eur. Phys. J. B 42, 457
(2004).

[31] J. H. Bardarson, J. Tworzydło, and C. W. J. Beenakker, Phys. Rev. B
72, 235305 (2005).

[32] J. H. Bardarson, I. Adagideli, and Ph. Jacquod, Phys. Rev. Lett. 98,
196601 (2007).



BIBLIOGRAPHY 141

[33] G. Casati, I. Guarneri, and D. L. Shepelyansky, Phys. Rev. Lett. 62,
345 (1989).

[34] F. Borgonovi and D. L. Shepelyansky, Physica D 109, 24 (1997).

[35] R. Ketzmerick, K. Kruse, and T. Geisel, Physica D 131, 247 (1999).

[36] J. T. Chalker, Physica A 167, 253 (1990).

[37] T. Brandes, B. Huckestein, and L. Schweitzer, Ann. Phys. (Leibzig)
8, 633 (1996).

[38] B. Huckestein and R. Klesse, Phil. Mag. B 77, 1181 (1998).

[39] G. Lemarié, J. Chabé, P. Szriftgiser, J. Garreau, B. Grémaud, and D.
Delande, Phys. Rev. A 80, 043626 (2009).

[40] G. Bräunlich, G. M. Graf, and G. Ortelli, Com. Math. Phys. 295, 243
(2009).

[41] I. C. Fulga, F. Hassler, and A. R. Akhmerov, Phys. Rev. B 85, 165409
(2012).

[42] Y. V. Fyodorov and H.-J. Sommers, JETP Lett. 72, 422 (2000).

[43] A. Ossipov, T. Kottos, and T. Geisel, Phys. Rev. E 65, 055209 (2002).

[44] A. Yamakage, K. Nomura, K.-I. Imura, and Y. Kuramoto, J. Phys.
Soc. Japan 80, 053703 (2011).

[45] M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).

[46] F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sundaram, and M.
G. Raizen, Phys. Rev. Lett. 75, 4598 (1995).

[47] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[48] M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt, D. Meschede,
and A. Widera, Science 325, 174 (2009).

[49] S.-C. Zhang and J. Hu, Science 294, 823 (2001).



142 BIBLIOGRAPHY


