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Chapter 5

Scattering theory of
topological invariants in
nodal superconductors

5.1 Introduction

The topological classification of superconductors relies on the existence
of an excitation gap in the bulk of the material, that prevents transi-
tions between topologically distinct phases [1, 2]. The gap of a topo-
logical superconductor closes only at the boundary, where propagating
states with a linear dispersion appear. The protected boundary states
are counted by a topological invariant Q, expressed either in terms of
the Hamiltonian of an infinite system [3] or in terms of the scattering
matrix for Andreev reflection from the boundary with a normal metal
[4].

Nodal superconductors with time-reversal symmetry also have bound-
ary states, forming flat bands in the middle of the bulk gap [5]. The same
topological considerations do not apply because the gap vanishes in the
bulk for certain momenta k on the Fermi surface (nodal points). Exam-
ples include the cuprate superconductors (gap ∝ kxky) [6], and a variety
of superconductors without inversion symmetry [7]. Nodal supercon-
ductors may also appear as an intermediate phase in the transition from
a topological superconductor to a trivial one [8, 9].

A topological invariant can still be constructed in a nodal supercon-
ductor for a translationally invariant boundary [10, 11], conserving the
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parallel momentum k‖. The value of Q(k‖) can only change if k‖ crosses
a nodal point. This topological invariant again counts the boundary
states, which are now non-propagating dispersionless states (pinned to
E = 0 for a range of k‖).

In Refs. 10, 11 the topological invariant Q(k‖) of a nodal supercon-
ductor takes the form of a winding number, calculated from the Hamil-
tonian of a translationally invariant infinite system. Here we present
an alternative scattering formulation, which expresses Q(k‖) as a trace
of the Andreev reflection matrix. Since the conductance of a normal-
metal–superconductor (NS) interface is expressed in terms of the same
Andreev reflection matrix, this alternative formulation allows for a di-
rect connection between the topological invariant and a transport prop-
erty.

If the NS interface contains a tunnel barrier, the angle-resolved con-
ductance G(k‖) measures the density of states and directly probes the
flat surface bands as a zero-bias peak [12]. For a transparent interface
the boundary states in the superconductor merge with the continuum
in the metal, resulting in a featureless density of states, but the zero-bias
peak remains [13]. Here we relate the height of this zero-bias peak to the
value of the topological invariant. While in general this relation takes
the form of an inequality, a quantized conductance,

G(k‖) = |Q(k‖)| × 2e2/h, (5.1)

may result under certain conditions which we identify.

The outline of this chapter is as follows. In the next section we for-
mulate the scattering problem and construct the topological invariant
from the Andreev reflection matrix. We make contact in Sec. 5.3 with
the Hamiltonian formulation, by closing the system and showing that
we recover the number of flat bands at the boundary. We then return
to the open system and in Sec. 5.4 relate the angle-resolved zero-bias
conductance to the topological invariant. So far we only assumed the
basic symmetries of time-reversal and charge-conjugation. The effects of
additional unitary symmetries are considered in Sec. 5.5. We apply the
general theory to a model of a two-dimensional (2D) nodal supercon-
ductor in Secs. 5.6 and 5.7, including also the effects of disorder. Effects
that are specific to 3D are discussed in Sec. 5.8. We conclude in Sec. 5.9.
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Figure 5.1. Interface between a superconductor (S) and a normal metal (N).
The reflection matrix r(k‖) relates the amplitudes of the incident and reflected
waves (arrows, both normal reflection and Andreev reflection are indicated).
The conductance of the NS interface is measured by applying a voltage differ-
ence V between the normal metal and the grounded superconductor.

5.2 Topological invariant for Andreev reflection

5.2.1 Chiral symmetry

We study the Andreev reflection of electrons and holes at the Fermi
level from a planar interface between a normal metal (N) and a super-
conductor (S). (See Fig. 5.1.) The component k‖ along the interface of
the momentum k is conserved, so we can consider each k‖ separately
and work with a one-dimensional (1D) reflection matrix r(k‖). For k not
in a nodal direction (nonzero excitation gap) this is a unitary matrix,

r(k‖)r†(k‖) = 1. (5.2)

The dimension of the reflection matrix is 4 × 4, with basis states
(ψe↑, ψe↓, ψh↑, ψh↓) labeled by the spin ↑, ↓ and the electron-hole e, h de-
grees of freedom. The e, h grading produces four 2 × 2 submatrices,

r(k‖) =

(

ree(k‖) reh(k‖)
rhe(k‖) rhh(k‖)

)

. (5.3)

Normal reflection (from electron to electron or from hole to hole) is
described by ree and rhh, while rhe and reh describe Andreev reflection
(from electron to hole or the other way around).

The two fundamental symmetries that we impose are time-reversal
and charge-conjugation symmetry. Time-reversal symmetry requires

r(k‖) = σyrT(−k‖)σy, (5.4)
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while charge-conjugation symmetry at the Fermi level requires

r(k‖) = τxr∗(−k‖)τx. (5.5)

The Pauli matrices σi and τi act on, respectively, the spin and electron-
hole degrees of freedom. (For later use we denote the 2× 2 unit matrices
by σ0 and τ0.)

Taken together, Eqs. (5.4) and (5.5) represent the chiral symmetry
relation

r(k‖) = (σy ⊗ τx)r†(k‖)(σy ⊗ τx). (5.6)

This is the 1D symmetry class AIII in the periodic table of topological
phases [3].

It is convenient to represent the symmetry relations in terms of the
matrix R(k‖) = (σy ⊗ τx)r(k‖), which is both Hermitian and unitary,

R = R†, R2 = 1. (5.7)

The submatrices in Eq. (5.3) appear in R as

R(k‖) =

(

Rhe(k‖) Rhh(k‖)
Ree(k‖) Reh(k‖)

)

, (5.8)

where Rpq = σyrpq. The two blocks Rhe and Reh are Hermitian, while
Ree = R†

hh.

5.2.2 Topological invariant

The Z topological invariant of 1D reflection matrices in class AIII is
given by [14]

Q(k‖) = 1
2 Tr R(k‖)

= 1
2 Tr σy[rhe(k‖) + reh(k‖)].

(5.9)

In view of Eq. (5.7), the 4 × 4 matrix R has eigenvalues ±1, so the value
of Q ∈ {−2,−1, 0, 1, 2}.1 This value is k‖-independent as long as the re-
flection matrix remains unitary. For k in a nodal direction, the reflection
matrix is sub-unitary and the topological invariant may change.

1The topological invariant Q is restricted to the integers 0,±1,±2 because we con-
sider only spin and electron-hole degrees of freedom. Further integer values become
possible if multiple valleys or layers produce additional internal degrees of freedom,
which is why Q is a called a Z invariant.
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Application of Eq. (5.4) gives the relation

R(−k‖) = −τxRT(k‖)τx, (5.10)

which implies that
Q(−k‖) = −Q(k‖). (5.11)

If k‖ = 0 one necessarily has Q = 0. For this time-reversally invariant
momentum the Pfaffian of the antisymmetric matrix σyr(0) (equal to
±1) produces a Z2 topological invariant [14], characteristic of the 1D
symmetry class DIII. We write this invariant in the form

Q0 = 1 + Pf σyr(0) ∈ {0, 2}, (5.12)

so that for Q0, as well as for Q, the value 0 indicates the topologically
trivial phase.

5.3 Topologically protected boundary states

The scattering formulation of topological invariants refers to an open
system, without bound states. In the alternative Hamiltonian formu-
lation, the topological invariant counts the number of dispersionless
boundary states (flat bands at the Fermi level, consisting of edge states
in 2D or surface states in 3D) [10, 11, 15–18]. To relate the two formu-
lations, we close the system by means of an insulating barrier at the NS
interface, and show that |Q(k‖)| boundary states appear.

The calculation closely follows Ref. 14. The number of boundary
states at k‖ equals the number of independent solutions ψ of

[

1 − r1(k‖)r(k‖)
]

ψ = 0. (5.13)

The unitary matrix r1 is the reflection matrix of the barrier, approached
from the side of the superconductor. We can write this equation in terms
of Hermitian and unitary matrices R1 = r1(σy ⊗ τx) and R2 = (σy ⊗ τx)r,
which we decompose as

Ri = UiDiU
†
i , Di =

(

112+Qi
0

0 −112−Qi

)

. (5.14)

(The notation 11M indicates the M× M unit matrix and U1, U2 are unitary
matrices.) Eq. (5.13) takes the form

(1 − D1UD2U†)ψ′ = 0, (5.15)
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with U = U†
1U2 and ψ′ = U†

1 ψ.
We decompose U into N × M submatrices AN,M,

U =

(

A2+Q1,2+Q2 A2+Q1,2−Q2

A2−Q1,2+Q2 A2−Q1,2−Q2

)

. (5.16)

Since

U − D1UD2 = 2
(

0 A2+Q1,2−Q2

A2−Q1,2+Q2 0

)

, (5.17)

we can rewrite Eq. (5.15) as
(

0 A2+Q1,2−Q2

A2−Q1,2+Q2 0

)

ψ′′ = 0, (5.18)

with ψ′′ = U†
2 ψ.

For any matrix AN,M with N < M there exist at least M − N inde-
pendent vectors v of rank M such that AN,Mv = 0. Therefore Eq. (5.18)
has at least |Q1 +Q2| independent solutions. These are the topologically
protected boundary states.

Because the insulating barrier is topologically trivial, Q1 = 0, while
Q2 = Q is the topological invariant of the superconductor, so it all works
out as expected: The topological invariant of the open system counts the
number of boundary states that would appear if we would close it.

Both values Q and −Q of the topological invariant produce the same
number N = |Q| of boundary states if the superconductor is terminated
by a topologically trivial barrier (an insulator or vacuum). The sign of
the topological invariant matters if we consider the interface between
two topologically nontrivial superconductors 1, 2. The combined num-
ber of boundary states Ntotal = |Q1 + Q2| = |N1 ±N2| is the sum or
difference of the individual numbers depending on whether the topo-
logical invariants have the same or opposite sign.

5.4 Relation between conductance and topological

invariant

By considering an open system when formulating the topological in-
variant, we can make direct contact to transport properties. The angle-
resolved zero-bias conductance of the NS interface is given by

G(k‖) = G0 Tr rhe(k‖)r†
he(k‖), (5.19)
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with G0 = 2e2/h the Andreev conductance quantum. We wish to relate
this transport property to the topological invariant (5.9).

For that purpose it is convenient to work with the matrices Rhe =
σyrhe and Reh = σyreh, since these are Hermitian (unlike the rhe and reh

themselves). For brevity we omit the label k‖. The squares R2
he and R2

eh
have the same set of Andreev reflection eigenvalues ρn ∈ [0, 1], which
are also the eigenvalues of rher

†
he.

On the one hand we have the conductance

G/G0 = Tr R2
he = Tr R2

eh, (5.20)

and on the other hand the topological invariant

Q = 1
2 Tr (Rhe + Reh). (5.21)

In App. 5.A we prove that at least |Q| of the ρn’s are equal to unity. This
immediately implies the inequality

G/G0 ≥ |Q|. (5.22)

For k‖ = 0 we have, additionally,

G/G0 ≥ Q0, for k‖ = 0. (5.23)

In a topologically trivial system, with Q,Q0 = 0, these inequalities
are ineffective, while for |Q|,Q0 = 2 the inequalities are saturated (since
G cannot become larger than 2G0). Scattering events in the normal or
superconducting region that conserve k‖, such as spin mixing, cannot
change the conductance once it is saturated.

5.5 Effects of additional unitary symmetries

Further unitary symmetries may enforce restrictions on both the topo-
logical invariant and the angle-resolved conductance, or even introduce
new topological invariants. In the first subsection we consider spatial
symmetries that invert k‖ 7→ −k‖, whereas in the second subsection we
address symmetries that conserve k‖.
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a, b x, x or z, x x, 0 or z, 0 x, z or y, x y, y or 0, z x, y or z, y 0, 0
or 0, y or y, z or z, z or y, 0 or 0, x

T 2
ab +1 +1 +1 −1 −1 −1

C2
ab +1 +1 −1 −1 +1 +1

class BDI BDI CI CII DIII DIII
Qab 0,±1,±2 0,±1,±2 0 0,±2 0, 2 0, 2

G/G0 ≥ |Qab| = |Qab| × = |Qab| × = |Qab|

Table 5.1. The first row lists the spatial symmetry (5.24); the second and third
rows give the square of the anti-unitary operators (5.25) and (5.26); the fourth
and fifth rows show the corresponding symmetry class and the values taken
by the topological invariant; finally, the last row gives the relation between
conductance and invariant for a topologically nontrivial system (so for Qab 6= 0,
with × indicating the absence of a relation).

5.5.1 Spatial symmetries

We consider a spatial symmetry of the form

r(k‖) = (σa ⊗ τb)r(−k‖)(σa ⊗ τb). (5.24)

Combined with time-reversal symmetry (5.4) and charge-conjugation
symmetry (5.5), this produces the two symmetry relations

r(k‖) = Tabr†(k‖)T −1
ab , Tab = (σa · σy)⊗ τb K, (5.25)

r(k‖) = Cabr(k‖)C−1
ab , Cab = σa ⊗ (τb · τx)K, (5.26)

where K is the operator of complex conjugation. The product of Tab and
Cab brings us back to the chiral symmetry (5.6).

Topological invariant

Depending on whether the anti-unitary operators Tab and Cab square to
+1 or −1, the reflection matrix falls in one of the four Altland-Zirnbauer
symmetry classes BDI, CI, CII, DIII [19]. The various cases are listed in
Table 5.1. These all have a higher symmetry than the class AIII from
which we started (with only chiral symmetry). The additional symmetry
may restrict the topological invariant to a smaller range of values. In
class DIII a new Z2 topological invariant appears, that can be nonzero
even if the Z invariant vanishes.

We denote the modified topological invariant by Qab(k‖). In class
CI only topologically trivial systems exist [3], meaning that the spatial
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symmetry allows only for Qab = 0. For the other three symmetry classes
the topological invariants are given by [14]

Qab = 1
2 Tr R ∈ {−2,−1, 0, 1, 2}, for BDI, (5.27)

Qab = 1
2 Tr R ∈ {−2, 0, 2}, for CII, (5.28)

Qab = 1 + Pf (σa ⊗ τb)(σyr) ∈ {0, 2}, for DIII. (5.29)

The restriction to even integers in class CII (a 2Z invariant) is a conse-
quence of the Kramers degeneracy of the eigenvalues of the Hermitian
matrix R = (σy ⊗ τx)r. Symmetry class DIII has a Z2 invariant.

Conductance

The expressions (5.27) and (5.28) for Qab in class BDI and CII are the
same as the expression (5.9) for Q in class AIII, so the topological invari-
ant still provides a lower bound on the angle-resolved conductance,

G/G0 ≥ |Qab|, for BDI and CII. (5.30)

In symmetry class DIII the invariants Q00 in Eq. (5.29) and Q0 in Eq.
(5.12) also have the same expression, so the inequality (5.23) still applies,

G/G0 ≥ Q00. (5.31)

No relation with the conductance exists for the other invariants in class
DIII, so Q0x,Qxy, and Qzy provide no restriction on the conductance.2

The inequality (5.30) can be sharpened further in class BDI, so that
it becomes an equality not only for |Qab| = 2 but also for |Qab| = 1
[20]. As we show in App. 5.C, this equality is enforced by the spatial
symmetry (5.24) for (a, b) ∈ {(y, z), (x, 0), (z, 0)}, so for three out of the
six symmetries in class BDI.

The last row of Table 5.1 summarizes the relation between the topo-
logical invariant and the conductance for a topologically nontrivial sys-
tem (Qab 6= 0). It is an equality for all symmetries in class CII and for
some symmetries in classes BDI and DIII.

2To see that Q0x = 1 + Pf R is independent of G, note that the transformation R 7→
ORO with O = diag (1, 1, 1,−1) switches the sign of the Pfaffian — while leaving the
conductance unchanged. In a similar way one can show that also the DIII invariants
Qxy and Qzy are independent of G.
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5.5.2 Symmetries that preserve k‖

A different type of unitary symmetry preserves parallel momentum,

r(k‖) = (σa ⊗ τb)r(k‖)(σa ⊗ τb). (5.32)

Combined with the chiral symmetry relation (5.6) and unitarity of r, this
symmetry ensures that the matrix R̃ = (σa ⊗ τb)R is a unitary matrix that
squares to ±1. We can thus define a new Z invariant

Q̃(k‖) =

{

1
2 Tr R̃(k‖) if R̃2 = 1,
1
2 i Tr R̃(k‖) if R̃2 = −1.

(5.33)

In general, Q̃ and Q are distinct, and in particular Q̃ can be an even
function of k‖. The coexistence of two distinct topological invariants is
quite unusual, and as we will see, it has observable consequences in the
conductance.

For b ∈ {0, z} nonzero values of Q̃ constrain the conductance in the
same way that Q does in Eq. (5.22). For b ∈ {x, y} one has instead the
constraint

G/G0 ≤ 2 − |Q̃|, (5.34)

as we show in App. 5.B.

5.6 Application: 2D Rashba superconductor

As a first application of our general scattering theory we consider a two-
dimensional superconductor with spin-singlet and spin-triplet pairing
mixed by Rashba spin-orbit coupling. The topologically protected edge
states for this Rashba superconductor have been studied in Refs. 10, 21,
22 using the Hamiltonian formulation. We summarize those results in
the next subsection, before proceeding to the scattering formulation and
the calculation of the conductance.

5.6.1 Hamiltonian and edge states

The superconductor has the Bogoliubov-de Gennes Hamiltonian

H(k) =

(

ǫ(k) + g(k) · σ ∆(k)
∆†(k) −ǫ(k) + g(k) · σ

∗

)

, (5.35)
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Figure 5.2. Interface between a normal metal and a 2D Rashba superconductor.
The Fermi surface is split into two circles, which intersect the nodal lines (red)
of the superconducting pair potential in eight nodal points.

with free electron part ǫ(k) = |k|2/2m − µ, at Fermi energy µ, and
Rashba spin-orbit coupling g(k) = λ(ky,−kx, 0). We have set h̄ = 1 and
have collected the three Pauli matrices in a vector σ = (σx, σy, σz). The
Fermi surface consists of two concentric circles at momenta

k± = [(mλ)2 + 2mµ]1/2 ± mλ. (5.36)

For later use we give the spin orbit energy Eso = mλ2 and the spin-orbit
momentum and length kso = mλ = 1/lso.

The mixed singlet-triplet pair potential is given by

∆(k) = f (k)

(

∆s + ∆t
g(k) · σ

λ(2mµ)1/2

)

iσy, (5.37)

f (k) =
1

2mµ

[

kxky cos 2φ + 1
2(k2

y − k2
x) sin 2φ

]

, (5.38)

The strength of the singlet and triplet pairing is parameterized by the
energies ∆s and ∆t. The nodal lines of vanishing pair potential are ori-
ented at an angle φ with the NS interface (see Fig. 5.2). The intersection
of the nodal lines with the Fermi surface defines 8 nodal points, in each
of which Det H = 0.

The chiral symmetry

H(k) = −(σy ⊗ τx)H(k)(σy ⊗ τx) (5.39)

ensures that H can be brought in the off-diagonal form

U †H(k)U =

(

0 q(k)
q†(k) 0

)

. (5.40)
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Figure 5.3. Topological invariant Q = −W of the 2D Rashba superconductor
(φ = 0, µ = 10 Eso), as a function of momentum ky along the NS interface and
ratio ∆t/∆s of triplet and singlet pairing energies.

The Z topological invariant is then defined by the winding number [10]

W(ky) =
1

2π
Im
∫

dkx
∂

∂kx
ln Det q(kx, ky), (5.41)

for any ky that is not equal to the projection of one of the nodal points
on the y-axis.

As analysed in Refs. 10, 21, 22, the termination of the superconductor
at x = 0 by an insulator (or by vacuum) produces |W(ky)| dispersionless
edge states (flat bands). A simple example occurs for φ = 0 and ∆t = 0,
corresponding to dxy-wave spin-singlet pairing. Then

W(ky) =







2 sign (ky) if |ky| < k−,
sign (ky) if k− < |ky| < k+,

0 if |ky| > k+,
(5.42)

so there are two topologically protected edge states for |ky| < k− and a
single one for k− < |ky| < k+.

For nonzero ∆t the phase boundaries (5.42) remain unaffected in the
interval

−
√

2mµ/k− < ∆t/∆s <
√

2mµ/k+,

see Fig. 5.3. To contrast the spin-singlet and spin-triplet dominated
regimes, we will in what follows focus on the two limits ∆t → 0 and
∆s → 0.
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Figure 5.4. Topological invariant Q of the reflection matrix from the 2D Rashba
superconductor, as a function of momentum ky along the NS interface and
angle φ between the interface and the nodal line. The left panel shows results
for spin-singlet pairing (∆s = Eso, ∆t = 0) and the right panel for spin-triplet
pairing (∆t = Eso, ∆s = 0). In both panels µ = 10 Eso and µN = 30 Eso. The
dotted lines indicate a topologically trivial system in class CI, as a consequence
of the spatial symmetry (5.43).

5.6.2 Reflection matrix and conductance

If the superconductor is not terminated at x = 0 but connected to a nor-
mal metal, the edge states hybridize with the continuum of the metallic
bands. The topological signature then shows up in the conductance
rather than in the density of states. To reveal these signatures we con-
struct the reflection matrix of the NS interface and calculate both the
topological invariant (5.9) and the angle-resolved conductance (5.19).

We used either an analytical method of calculation (matching wave
functions at the NS interface), or a numerical method (discretizing the
Hamiltonian (5.35) on a square lattice and calculating the Green func-
tion). We made sure that the lattice constant was sufficiently small that
the two methods gave equivalent results. In the normal metal we set
both the pair potential and the spin-orbit coupling to zero, so that there
is a single Fermi circle with momentum kN = (2mµN)1/2. Because of a
potential step at the NS interface, the chemical potential µN in the nor-
mal metal (x < 0) can differ from the value µ in the superconductor
(x > 0).

Results are collected in Figs. 5.4 and 5.5. As a first check, we note
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Figure 5.5. Electrical conductance and Z topological invariant for three of the
angles φ from Fig. 5.4. A nonzero Z2 invariant appears in the spin-triplet case:
Q0 = 2 for ky = 0, φ 6= 0.

that for φ = 0, ∆t = 0, we recover Eq. (5.42) — up to an irrelevant minus
sign, Q = −W . For φ = (n + 1/2)π/2, the system is topologically
trivial, Q(ky) ≡ 0, regardless of the choice of ∆s, ∆t (black dotted lines
in Figs. 5.4 and 5.5). This can be understood as a consequence of spatial
symmetry: For cos 2φ = 0 the system fulfills

H(kx, ky) = σyH(kx,−ky)σy ⇒ r(ky) = σyr(−ky)σy. (5.43)

This is a symmetry condition of the type (5.24), with a = y, b = 0, forcing
the reflection matrix into the topologically trivial symmetry class CI (see
Table 5.1). At ky = 0 the Z invariant Q vanishes, but the Z2 invariant
Q0 can be nonzero. This happens for ∆s = 0, φ 6= 0 (mod π/2), when
Q0 = 2.

Fig. 5.5 shows how the topological invariant enforces the quantiza-
tion of the angle-resolved conductance. First of all, G/G0 = 2 whenever
|Q| = 2 or Q0 = 2. For φ = 0 quantized plateaus at G/G0 = 1 appear
because of the spatial symmetry

r(ky) = (σy ⊗ τz)r(−ky)(σy ⊗ τz), (5.44)

which is a symmetry of the type (5.24) with a, b = y, z. This forces
the reflection matrix into class BDI and ensures that the conductance is
quantized for any nonzero Q (see Table 5.1).
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Figure 5.6. Topological invariants Q (left panel) and Q̃ (right panel) for an NS
junction between a normal metal and the anisotropic Rashba superconductor
of Sec. 5.6.3. The parameters chosen are: ∆s = Eso, ∆t = 0, µ = 10 Eso, µN =
30 Eso. The Z2 invariant Q00 = 2 on the dotted red lines in the left panel.

5.6.3 Anisotropic spin-orbit coupling

A strongly anisotropic dispersion, mx ≫ my, can produce an anisotropic
spin-orbit coupling term of the form [23] g(k) = λ(0,−kx, 0). Topolog-
ical invariants and conductance are plotted for the spin-singlet regime
(∆t = 0) in Figs. 5.6 and 5.7. There are two qualitative differences with
the isotropic case of the previous subsections.

First of all, for φ = nπ/2 the regions with |Q(ky)| = 1 are missing.
This can be explained by the spatial symmetry

r(ky) = τzr(−ky)τz, (5.45)

of the type (5.24) with a, b = 0, z. As a consequence, see Table 5.1, the
topological invariant Q(ky) becomes a 2Z invariant of class CII, exclud-
ing |Q(ky)| = 1.

Secondly, there is a unitary symmetry σyr(ky)σy = r(ky) that holds
for all φ. This allows us to define an additional topological invariant,

Q̃ = 1
2 Tr σyR = 1

2Tr τxr, (5.46)

following Sec. 5.5.2. The topological invariants Q and Q̃ are indepen-
dent, in particular, Q̃(ky) = Q̃(−ky) while Q(ky) = −Q(−ky). Each
topological invariant Q and Q̃ gives a lower bound on the conductance.
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Figure 5.7. Electrical conductance and Z topological invariants for three of the
angles φ from Fig. 5.6.

This explains the diamond-shaped regions in the phase diagram with a
quantized conductance G/G0 = 2, enforced by |Q̃| = 2.

There is a third invariant: At φ = (n + 1/2)π/2 the spatial symme-
try r(ky) = r(−ky) places the reflection matrix in symmetry class DIII.
According to Eq. (5.29), the corresponding Z2 invariant Q00 = 2 on the
dotted red lines in the phase diagram.

This third invariant does not lead to additional constraints on the
conductance, since we already have Q̃ = 2 when Q00 = 2. But the
two invariants Q and Q̃ are both needed to explain the quantized con-
ductance. The coexistence of two topological invariants is an unusual
feature of this system.

5.7 Effects of angular averaging and disorder

It may be possible to measure the angle-resolved conductance G(k‖)
[24], but one typically measures the angular average. Moreover, disor-
der is detrimental for the conductance quantization if it mixes parallel
momenta with different values of the topological invariant. In this sec-
tion we investigate whether signatures of the conductance quantization
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Figure 5.8. Average conductance (5.47) of the NS junction as a function of
the Fermi momentum kN in the normal region, for various disorder strengths.
The 2D Rashba superconductor has a dxy-wave pair potential (φ = 0, ∆t = 0,
∆s = Eso, µ = 10 Eso). Disorder strengths from top to bottom curve: U0/Eso =
0, 1, 2, 3, 4, 5.

can survive the effects of angular averaging and disorder.
We focus on the 2D Rashba superconductor of Sec. 5.6, for ∆t = 0,

φ = 0, when the topological invariant is given by Eq. (5.42). The angular
average of the conductance for an interface of width W is given by

GNS =
W

2π

∫ kN

−kN

dky G(ky). (5.47)

The reflection matrix, which determines G(ky) via Eq. (5.19), is calcu-
lated numerically using the square lattice discretization of the Hamilto-
nian (5.35) (lattice constant a = 0.2 lso, W = 32 lso). Disorder is added
to a strip −L < x < 0 (L = 31.6 lso) of the normal region by means
of a random on-site potential, distributed uniformly in (−U0/2, U0/2).
Results are averaged over 100 disorder realizations.

In Fig. 5.8 we show the dependence of GNS on the Fermi momentum
kN in the normal region. This is relevant if the normal region is a semi-
conductor, where one can vary kN by a gate voltage. The quantization of
G(ky) manifests itself as a quantized slope of GNS versus kN: the steep
slope for kN < k− (where |Q| = 2) is reduced by a factor of two in the
interval k− < kN < k+ (where |Q| = 1), and then is strongly suppressed
for kN > k+. This signature of the topological invariant gradually dis-
appears with increasing disorder.
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Figure 5.9. Differential conductance of the NS junction for various disorder
strengths. The parameters for the superconductor are the same as in Fig. 5.8.
In the normal region we have fixed µN = 25 Eso. Disorder strengths from top
to bottom curve: U0/Eso = 0, 2.5, 5, 7.5, 10.

Another signature can be seen for fixed kN in the dependence of the
differential conductance dI/dV on the applied voltage V. As shown in
Fig. 5.9, the peak in dI/dV around V = 0 is a superposition of two
peaks with different widths, the narrower one originating from parallel
momenta in the |Q| = 2 regions and the broader one from the |Q| = 1
regions. The single edge state of the latter regions couples more strongly
to the continuum of the metal and thus has a larger width.

5.8 Three-dimensional superconductors

5.8.1 Topological invariant for arc surface states

The topological invariants considered so far, and the resulting constraints
on the angle-resolved conductance, apply both to 2D and 3D nodal su-
perconductors. In this section we discuss features that are specific for
3D superconductors. The topological invariant Q(k‖) of Sec. 5.2.2 then
counts dispersionless surface states, pinned to zero energy (the Fermi
level) in a 2D region of parallel momentum k‖ = (k1, k2). The bound-
ary of this flat band region is formed by nodal rings, closed contours of
k‖ on which transmission through the superconductor is possible — in
other words, the superconducting gap vanishes for k = (k⊥, k‖).

The new feature that appears in a 3D superconductor is the possibil-
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ity of zero-energy boundary states along a 1D arc connecting two nodal
rings. Some aspects of their topological nature have been discussed in
the Hamiltonian formulation of Ref. 18. Here we consider the alterna-
tive scattering formulation, and use it to obtain topological constraints
on the conductance.

We consider a spatial symmetry on the 2D surface of a 3D supercon-
ductor, in which only one of the two components of parallel momentum
is inverted:

r(k1, k2) = (σa ⊗ τb)r(−k1, k2)(σa ⊗ τb). (5.48)

Along the line k2 = 0, this is a symmetry of the type (5.24), so we can fol-
low Sec. 5.5.1 to introduce topological invariants Qab(k1). The resulting
constraints on the angle-resolved conductance G(k1, 0) are summarized
in Table 5.1.

Alternatively, for k1 = 0, the symmetry (5.48) is of the type (5.32)
with topological invariant Q̃(k2) from Eq. (5.33). The corresponding
constraints on the conductance are discussed in Sec. 5.5.2.

5.8.2 Example

As an example, we apply these general considerations to the same Rashba
Hamiltonian (5.35), but now with a 3D dispersion,

ǫ(k) = (k2
x + k2

y + k2
z)/2m − µ. (5.49)

In the pair potential (5.37) we set f (k) ≡ 1. This Hamiltonian applies to
non-centrosymmetric s+p-wave superconductors of point group C4v. As
described in Ref. 18, these superconductors have arc surface states con-
necting two nodal rings. They appear for example for the (011) surface
orientation that we will consider in the following. The two components
of parallel momentum on the surface are k1 = kx and k2 = (ky − kz)/

√
2.

We can obtain two topological invariants from the reflection matrix
r(k1, k2), plotted in the left panel of Fig. 5.10. The first invariant

Q(k1, k2) = 1
2Tr R(k1, k2) = 1

2 Tr (σy ⊗ τx)r(k1, k2) (5.50)

follows from chiral symmetry, see Sec. 5.2, and is defined on the entire
2D plane of parallel momenta. This Z invariant is nonzero inside the
regions bounded by the nodal rings, where it identifies a surface flat
band.
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Figure 5.10. Topological invariants and electrical conductance of an NS junction
between a normal metal and an s+p-wave superconductor of point group C4v.
The invariants Q and Q̃ are plotted in the left panel. The right panel shows
the conductance (black curve) and invariant Q̃ (red dotted curve) along the
line k1 = 0. Parameters chosen are ∆s = 0.1 Eso, ∆t = 0.2 Eso, µ = 10 Eso and
µN = 30 Eso.

A second Z invariant appears as a consequence of the spatial sym-
metry

H(kx, ky, kz) = (σx ⊗ τz)H(−kx, ky, kz)(σx ⊗ τz) ⇒
r(k1, k2) = (σx ⊗ τz)r(−k1, k2)(σx ⊗ τz). (5.51)

The line k1 = 0 connects the two nodal rings and on this line the invari-
ant

Q̃(k2) = 1
2Tr (σx ⊗ τz)R(0, k2) = − 1

2Tr (σz ⊗ τy)r(0, k2) (5.52)

can take on a nonzero value.
The non-trivial invariants enforce a lower bound on the conductance,

as is illustrated in the right panel of Fig. 5.10. This leads to a quantized
conductance G/G0 = 2 along the line k1 = 0.

The symmetry (5.51) produces arc surface states on all surfaces paral-
lel to the x-direction. For the (010) surface analyzed in Ref. 18 there is an
additional spatial symmetry, r(kx, kz) = r(kx,−kz). For kx = 0 this ad-
ditional symmetry allows for the Z2 invariant Q00 = 1 + Pf σyr(0, kz), in
addition to the Z invariant (5.52). For other surface orientations (0nm)
only the Z invariant is responsible for the arc states.
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5.9 Conclusion

In conclusion, we have constructed a topological invariant Q(k‖) of the
Andreev reflection matrix at the interface between a time-reversal sym-
metric nodal superconductor and a normal metal. In the absence of a
tunnel barrier, this interface has no zero-energy boundary states, but the
topologically nontrivial phase can still be detected in the angle-resolved
conductance G(k‖). A variety of symmetry classes can be realized (AIII,
BDI, CI, CII, DIII), by allowing for additional unitary symmetries. The
corresponding topological invariants are given by a trace or Pfaffian of
the reflection matrix.

Many of these topological invariants have been studied before in the
Hamiltonian formulation for an infinite system [10, 11, 15–18]. The scat-
tering formulation presented here makes it possible to directly relate
Q(k‖) to G(k‖). We have systematically examined when a nontrivial
topological invariant enforces a quantized conductance, and when it
only provides a lower bound. This approach can identify surface flat
bands (within nodal rings) as well as arc states (connecting nodal rings),
even when these zero-energy boundary states have merged with the
continuum of states in the normal metal.

We have applied the general theory to 2D and 3D superconductors
with spin-singlet and spin-triplet pairing mixed by Rashba spin-orbit
coupling. The appearance of a quantized conductance has allowed us
to verify known topological invariants and to identify new ones. In
particular, in the 2D case of a strongly anisotropic spin-orbit coupling,
we have shown the coexistence of two topological invariants — which
provide independent constraints on the conductance.

To make contact with experiments, the effects of angular averaging
and impurity scattering on the conductance quantization have been in-
vestigated by numerical simulation of a disordered NS interface.
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Appendix 5.A Topological invariant counts number

of unit Andreev reflection eigenval-

ues

5.A.1 Proof for the Z invariant

The Hermitian matrix R2
eh has eigenvalues ρn ∈ [0, 1]. We wish to prove

that at least |Q| of these Andreev reflection eigenvalues are equal to
unity.

Let φ be an eigenvector of Reh with eigenvalue λ. Assume λ 6= ±1
(so ρ = λ2 < 1). Since R2

eh = 1 − R†
hhRhh, the vector φ′ = Rhhφ cannot

vanish. Since RheRhh = −RhhReh, it then follows that φ′ is an eigenvector
of Rhe with eigenvalue µ = −λ.

Now consider the Z topological invariant Q = 1
2 ∑n(λn + µn) in

symmetry class AIII. The eigenvalues λn 6= ±1 of Reh are cancelled by
an eigenvalue µn = −λn of Rhe. The cancellation can only be avoided
for the M eigenvalues λn equal to ±1, resulting in |Q| ≤ M — as we set
out to prove.

5.A.2 Proof for the Z2 invariant

For any 4 × 4 antisymmetric matrix A with a block structure,

A =

(

A11 A12
A21 A22

)

= −AT, (5.53)

the Pfaffian is given by

Pf A = −Det A12 − 1
2 Tr A11A22. (5.54)

We apply this identity to the antisymmetric matrix σyr at k‖ = 0, to
obtain the Z2 topological invariant in symmetry class DIII,

Q0 = 1 − Det Reh − 1
2 Tr ReeRhh

= 1 − Det Reh − 1
2 Tr (1 − R2

eh). (5.55)

In terms of the two eigenvalues λ1, λ2 ∈ [−1, 1] of Reh this reduces to

Q0 = 1
2(λ1 − λ2)

2. (5.56)

Since by construction Q0 equals either 0 or 2, we have either Q0 =
0 ⇔ λ1 = λ2 or Q0 = 2 ⇔ λ1 = −λ2 = ±1. This shows that at least Q0

of the Andreev reflection eigenvalues ρn = λ2
n are equal to unity.
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Appendix 5.B Proof of Eq. (5.34)

We consider the topological invariant (5.33), constructed from the matrix
R̃ = (σa ⊗ τb)R with b ∈ {x, y}, and wish to proof the constraint (5.34)
on the conductance. This amounts to a proof that at least |Q̃| of the
Andreev reflection eigenvalues are equal to zero.

We define the Hermitian matrix

R̄ =

(

R̄ee R̄eh

R̄he R̄hh

)

≡
{

R̃(k‖) if R̃2 = 1,

iR̃(k‖) if R̃2 = −1.
(5.57)

Let φ be an eigenvector of R̄ee with eigenvalue λ. Assume λ 6= ±1. Since
R̄2

ee = 1 − R̄†
heR̄he, the vector φ′ = R̄heφ cannot vanish. With R̄heR̄ee =

−R̄hhR̄he, it then follows that φ′ is an eigenvector of R̄hh with eigenvalue
µ = −λ.

Now since Q̃ = 1
2 Tr(R̄ee + R̄hh) = 1

2 ∑n(λn + µn), the eigenvalues
λn 6= ±1 of Ree are cancelled by eigenvalues µn = −λn of Rhh in the
expression for the topological invariant. The cancellation can only be
avoided for the M eigenvalues λn equal to ±1, resulting in |Q̃| ≤ M. The
existence of at least |Q̃| unit eigenvalues of R̄†

eeR̄ee = R̄2
ee is equivalent

to the existence of at least |Q̃| zero Andreev reflection eigenvalues and
thereby proves Eq. (5.34).

Appendix 5.C Equality of conductance and topolog-

ical invariant in class BDI

A topologically nontrivial 4 × 4 reflection matrix in class BDI has either
|Qab| = 2 or |Qab| = 1. In the former case the inequality (5.30) is satu-
rated, because G/G0 ≤ 2, but in the latter case it provides only a lower
bound on the conductance. We now wish to show that the inequality
can be sharpened to an equality for three of the six spatial symmetries
(5.24) in class BDI. More precisely, we will show that |Qab| = 1 implies
G/G0 = 1 for (a, b) ∈ {(y, z), (x, 0), (z, 0)}.

For each of these three cases the symmetry relation (5.25) implies
that Rhe = σaRT

ehσa, so Tr Rhe = Tr Reh. Denote the eigenvalues of Reh

and Rhe by λ1, λ2 and µ1, µ2, respectively. (All are real numbers in the
interval [−1, 1].) The equality of the traces gives λ1 + λ2 = µ1 + µ2.
The topological invariant (5.27) determines the sum λ1 + λ2 + µ1 + µ2 =
2Qab, hence λ1 + λ2 = Qab.
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Because classes BDI and AIII have the same expression for the topo-
logical invariant, we may apply the result of App. 5.A.1 that at least
|Qab| of the λn’s equal ±1. If we take |Qab| = 1, |λ1| = 1, then necessar-
ily λ2 = 0. The dimensionless conductance G/G0 = λ2

1 + λ2
2 thus equals

unity, as we set out to prove.
Our finding can be seen in a broader context as a manifestation

of Béri degeneracy of Andreev reflection eigenvalues [25]: the charge-
conjugation symmetry (5.26), with (a, b) ∈ {(y, z), (x, 0), (z, 0)}, enforces
a twofold degeneracy of the Andreev reflection eigenvalues ρn = λ2

n that
can only be avoided if ρn equals 0 or 1.
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