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Chapter 4

Quantum point contact as a
probe of a topological
superconductor

4.1 Introduction

Massless Dirac fermions have the special property that they can be con-
fined without the energy cost from zero-point motion. In graphene, this
manifests itself as a Landau level at zero energy, without the usual 1

2 h̄ωc

offset [1]. The zeroth Landau level contributes half as much to the Hall
conductance as the higher levels (because it is already half-filled in equi-
librium), leading to the celebrated half-integer quantum Hall plateaus
[2, 3]. In a semiclassical description, the π phase shift at turning points,
responsible for the zero-point energy, is canceled by the Berry phase of
π, characteristic for the periodic orbit of a Dirac fermion.

The same absence of zero-point energy appears when Dirac fermions
are confined by superconducting barriers, produced by the proximity
effect in a topological insulator [4, 5]. Because of particle-hole symme-
try in a superconductor, a state at zero excitation energy is a Majorana
bound state, with identical creation and annihilation operators. A su-
perconductor that supports Majorana bound states is called topological
[6, 7].

Tunneling spectroscopy is a direct method of detection of a topolog-
ical superconductor [8–11]. Resonant tunneling into a Majorana bound
state produces a conductance of 2e2/h, while without this state the
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tunneling conductance vanishes [9]. The tunneling resonance becomes
broader if the tunneling probability is increased, and one might surmise
that the resonance would vanish if the conductance is measured via a
ballistic contact. We show in this chapter, by means of a model calcu-
lation, that the contrary is true: The signature of the topological phase
is more robust when measured by a ballistic contact than by a tunnel
contact.

Our model calculation is in accord with general theoretical consid-
erations [12, 13], but may appear counter-intuitive. After all, the Majo-
rana bound state no longer exists as an individual energy level if it is
connected by a ballistic contact to a normal metal, since the level broad-
ening then exceeds the level spacing. As we have found, the topological
phase of the superconductor still manifests itself in the conductance of a
ballistic point contact, in a way reminiscent of the half-integer quantum
Hall plateaus.

4.2 Integer versus half-integer conductance plateaus

We consider the model Hamiltonian [14, 15] of a two-dimensional semi-
conducting wire with an s-wave proximity-induced superconducting
gap ∆. (See App. 4.A for a detailed description.) We have calculated
the scattering matrix of a quantum point contact (QPC) in the normal
region (N) at a distance d from the superconducting region (S), by dis-
cretizing the Hamiltonian on a square lattice (lattice constant a = lso/40,
with lso the spin-orbit scattering length). Our key result is presented in
Fig. 4.1. The number of propagating modes in the point contact (and
hence the transmittance TQPC) is varied by changing the electrostatic po-
tential VQPC inside the point contact, at constant Fermi energy EF. Spin
degeneracy is removed by the Zeeman energy EZ = 1

2 gµBB in a mag-
netic field B (parallel to the wire), so that when the entire system is in
the normal state (∆ → 0) the conductance increases step wise in units of
e2/h (black dashed curve, showing the step wise increase of the trans-
mittance from TQPC = 0, for a fully pinched off contact, to TQPC = 8, for
a maximally open contact).

The conductance G of the NS junction is obtained from the Andreev
reflection eigenvalues Rn at the Fermi level,

G =
2e2

h ∑
n

Rn(EF). (4.1)
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Figure 4.1. Solid curves: conductance of a ballistic normal-metal–
superconductor (NS) junction, with the superconductor in a topologically triv-
ial phase (blue curve, ∆ = 8 Eso) or nontrivial phase (red curve, ∆ = 4 Eso).
The black dashed curve is for an entirely normal system (∆ = 0). The data
is obtained from the model Hamiltonian [14, 15] of a semiconducting wire
on a superconducting substrate in a parallel magnetic field (Zeeman energy
EZ = 6 Eso), for the ballistic point contact geometry shown in the inset (not to
scale, d = 2.5 lso, W = lso). By varying the potential VQPC at constant Fermi
energy EF = 120 Eso, the point contact width w is varied between 0 and W.
The dotted horizontal lines indicate the shift from integer to half-integer con-
ductance plateaus upon transition from the topologically trivial to nontrivial
phase.

The factor of two accounts for the fact that charge is added to the su-
perconductor as Cooper pairs of charge 2e. (The spin degree of free-
dom is included in the sum over n.) The superconductor can be in a
topologically trivial (Q = 1) or nontrivial (Q = −1) phase, depending
on the relative magnitude of EZ, ∆, and the spin-orbit coupling energy
Eso = h̄2/meffl

2
so. The blue and red solid curves show these two cases,

where the topological quantum number Q = sign Det r was obtained in
an independent calculation from the determinant of the reflection ma-
trix [16–18]. As we see from Fig. 4.1, the conductance shows plateaus at
values Gp, p = 0, 1, 2, . . ., given by

Gp =
4e2

h
×
{

p if Q = 1,
p + 1/2 if Q = −1.

(4.2)
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The sequence of conductance plateaus in the topologically trivial and
nontrivial phases can be understood from basic symmetry requirements.
As discovered by Béri [13], particle-hole symmetry requires that the Rn’s
at the Fermi level are either twofold degenerate or equal to 0 or 1. (See
App. 4.B for a derivation.) A nondegenerate unit Andreev reflection
eigenvalue is therefore pinned to exactly this value and contributes to
the conductance a quantized amount of 2e2/h. This is the signature of
the topological superconductor which persists even after the Majorana
bound state has merged with the continuum of states in the normal
metal contact.

If we include only the degenerate Rn’s in the sum over n (indicated
by a prime, ∑

′), we may write

G =
e2

h

(

1 − Q + 4∑
′
n
Rn

)

. (4.3)

A new mode that is fully Andreev reflected thus adds 4e2/h to the con-
ductance, with an offset of 0 or 2e2/h in the topologically trivial or non-
trivial phases. The resulting conductance plateaus therefore appear at
integer or half-integer multiples of 4e2/h, depending on the topological
quantum number, as expressed by Eq. (4.2) and observed in the model
calculation.

The quantum point contact conductance plateaus in the topologically
nontrivial phase occur at the same half-integer multiples of 4e2/h as the
quantum Hall plateaus in graphene, but the multiplicity of 4 has an
entirely different origin: In graphene, the factor of four accounts for the
twofold spin and valley degeneracy of the energy levels, while in the NS
junction there is no degeneracy of the energy levels. One factor of two
accounts for the Cooper pair charge, while the other factor of two is due
to the Béri degeneracy of the non-unit Andreev reflection eigenvalues.

4.3 Effect of disorder

While in the quantum Hall effect all plateaus are insensitive to disorder,
in the NS junction this applies only to the first plateau. As follows from
Eq. (4.3), the first plateau at G = (1 − Q)(e2/h) is determined by the
topological quantum number Q, which is robust against perturbations
of the Hamiltonian. No such topological protection applies to the higher
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Figure 4.2. Same as Fig. 4.1, but now in the presence of disorder (for two values
of the disorder strength). The first conductance plateau in the topologically
nontrivial phase remains precisely quantized.

plateaus, since Rn can take on any value between 0 and 1 in the presence
of disorder.

This is demonstrated in Fig. 4.2, where we have added disorder to
the model calculation (both in the normal and in the superconduct-
ing region), by randomly chosing the electrostatic potential at each lat-
tice point from the interval [−Udisorder, Udisorder]. The mean free path
lmfp ∝ U−2

disorder depends rather sensitively on the disorder strength. We
show results for Udisorder = 90 Eso and 110 Eso, when the mean free path
(calculated in Born approximation) is estimated at lmfp = 9 lso and 6 lso,
respectively. (The topologically nontrivial phase itself persists up to
lmfp = 3 lso.)

4.4 Effect of finite voltage and temperature

These are all results in the limit of zero applied voltage V and zero
temperature T. There is then no qualitative difference between the 2e2/h
conductance resonance in the tunneling regime or in the ballistic regime.
A substantial difference appears at finite voltages or temperatures.
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Figure 4.3. Differential conductance at different values of EF − VQPC (listed
in units of Eso), for two values of the distance d between quantum point con-
tact and superconductor. The data is taken on the first conductance plateau
in the topologically nontrivial phase (∆ = 4 Eso, Udisorder = 90 Eso). The
quantum point contact is in the tunneling regime for the blue curve (transmit-
tance TQPC = 0.1) and in the single-mode ballistic regime for the black curve
(TQPC ≈ 1). The width of the conductance peak increases both upon increasing
TQPC and upon decreasing d.

Considering first the effect of a nonzero applied voltage, we show in
Fig. 4.3 the differential conductance

dI

dV
=

2e2

h ∑
n

Rn(EF + eV). (4.4)

The peak centered at V = 0 is the signature of the topologically nontriv-
ial phase [9]. The height 2e2/h of this peak remains the same as TQPC is
raised from 0 to 1 by opening up the point contact, but the peak width
increases. For a given TQPC, moving the point contact closer to the super-
conductor also has the effect of increasing the peak width (right panel
in Fig. 4.3).

These considerations apply to the transition from the tunneling regime
(TQPC ≪ 1) to the ballistic regime with a single transmitted mode (TQPC ≈
1). If we open the point contact further, a second mode is partially trans-
mitted and at TQPC ≈ 1.3 the conductance peak switches to a conduc-
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Figure 4.4. The solid curve is the same data as the black curve in the left panel
of Fig. 4.3 (EF −VQPC = 10 Eso, TQPC ≈ 1), but on a larger voltage scale to show
the resonances beyond the conductance peak centered at V = 0. (The curve is
±V symmetric.) The dashed curve shows that the conductance peak becomes a
conductance dip when a second mode opens up in the quantum point contact
(EF − VQPC = 20 Eso, TQPC ≈ 2).

tance dip. Fig. 4.4 contrasts the inverted resonances at TQCP equal to
1 (conductance peak) and equal to 2 (conductance dip). The voltage
scale in this figure is larger than Fig. 4.3, to show also the higher-lying
resonances.

A simple estimate for the width δ ≃ h̄/τdwell of the conductance peak
in the tunneling regime equates it to the inverse of the dwell time τdwell
of an electron (effective mass meff) in the region (of size W × d) between
the point contact and the NS interface. For the relatively large mean free
paths in the calculation (lmfp > W, d), the dwell time for point contact
widths w ≪ W, d is given by τdwell ≃ meffWd/h̄TQPC, so we estimate

δ ≃ h̄2TQPC

meffWd
=

l2
so

Wd
TQPCEso. (4.5)

This formula (without numerical prefactors) qualitatively accounts for
the increase of δ with decreasing d and with increasing TQPC in the tun-
neling regime TQPC ≪ 1, but for a quantitative description of the ballistic
regime, including the switch from peak to dip, a more complete theory
is needed.

A similarly different robustness in the tunneling and ballistic regime
appears if we consider the effect of a nonzero thermal energy kBT on
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Figure 4.5. Conductance in the topologically nontrivial phase for different val-
ues of the thermal energy kBT. The 2e2/h plateau is suppressed at the smallest
temperatures in the tunneling regime, and only for larger temperatures in the
ballistic regime.

the 2e2/h conductance plateau. The finite-temperature conductance is
calculated from

G(kBT) =
2e2

h

∫ ∞

−∞
dE ∑

n

Rn(E)
d

dE

−1
1 + eE/kBT

. (4.6)

We show in Fig. 4.5 how raising the temperature suppresses the 2e2/h
conductance plateau in the topologically nontrivial phase. The charac-
teristic temperature scale for the suppression is kBT ≃ δ, so the plateau
persists longest for TQPC ≈ 1, when the line width δ of the resonance is
the largest.

4.5 Conclusion

In conclusion, we have presented a model calculation that shows how
a quantum point contact can be used to distinguish the topologically
trivial and nontrivial phases of a superconducting wire. The 2e2/h
conductance resonance in the tunneling regime [9] persists in the bal-
listic regime, with a greatly reduced sensitivity to finite voltages and
temperatures. The characteristic temperature scale (for a typical value
Eso = 0.1 meV of the spin-orbit coupling energy in InAs) reaches the
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100 mK range in the ballistic regime, which is still quite small but within
experimental reach.

As more and more modes are opened in the ballistic point contact,
new conductance plateaus appear at multiples of 4e2/h which are inte-
ger in the trivial and half-integer in the nontrivial phase. This sequence
of plateaus is a striking demonstration of the role which the degeneracy
of Andreev reflection eigenvalues plays in the classification of topologi-
cal superconductors [13, 19].
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Appendix 4.A Model Hamiltonian

Our model calculations are based on the Hamiltonian of Refs. [14, 15],
which describes an InAs nanowire on an Al or Nb substrate.
The Bogoliubov-De Gennes Hamiltonian

H =

(

1 0
0 σy

)(

HR − EF ∆

∆∗ EF − σyH∗
Rσy

)(

1 0
0 σy

)

=

(

HR − EF ∆σy

∆∗σy EF − H∗
R

)

(4.7)

couples electron and hole excitations near the Fermi energy EF through
an s-wave superconducting order parameter ∆. (We have made a unitary
transformation to ensure that the condition for particle-hole symmetry
has the form used in App. 4.B.)

The excitations are confined to a wire of width W in the x − y plane
of the semiconductor surface inversion layer, where their dynamics is
governed by the Rashba Hamiltonian

HR =
p2

2meff
+ U(r) +

αso

h̄
(σx py − σy px) + 1

2 geffµBBσx. (4.8)

The spin is coupled to the momentum p = −ih̄∂/∂r by the Rashba effect,
and polarized through the Zeeman effect by a magnetic field B parallel
to the wire (in the x-direction). Characteristic length and energy scales
are lso = h̄2/meffαso and Eso = meffα

2
so/h̄2. Typical values in InAs are

lso = 100 nm, Eso = 0.1 meV, EZ = 1
2 geffµBB = 1 meV at B = 1 T.

The electrostatic potential U = UQPC + δU is the sum of a gate poten-
tial UQPC and an impurity potential δU. The impurity potential δU(x, y)
varies randomly from site to site on a square lattice (lattice constant a),
distributed uniformly in the interval [−Udisorder, Udisorder].

The gate potential UQPC(x, y) (see Fig. 4.6) defines a saddle-shaped
constriction of length 2ℓ, containing a potential barrier of height VQPC >

0,

UQPC =

{

max
[

0, VQPC + Usaddle(x, y)
]

for|x| > ℓ,

VQPC + 1
2 meffω

2
yy2 for|x| < ℓ,

Usaddle = − 1
2 meffω

2
x(|x| − ℓ)2 + 1

2 meffω
2
yy2. (4.9)
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Figure 4.6. Contour plot of the quantum point contact potential (4.9), for the
parameters ℓ = 0.2 lso, h̄ωx = 15 Eso, h̄ωy = 25 Eso, VQPC = 55 Eso. This is the
constriction used in the calculations of the conductance.

The center (0, 0) of the constriction is placed in the normal region at a
distance d from the NS interface at x = d. The characteristic width w of
the constriction at the Fermi energy EF > VQPC is defined by

w =

√

2(EF − VQPC)

meffω2
y

. (4.10)

(This is the separation of classical turning points in the absence of Rashba
and Zeeman effects.)

All material parameters have the same value throughout the wire,
except the superconducting order parameter ∆, which is set to zero for
x < d and x > L + d. The length L of the superconducting region if
chosen long enough that quasiparticle transmission through it can be
neglected (transmission probability < 10−7).

Using the algorithm of Ref. [20] we calculate the reflection matrix
r of the NS junction, which is unitary in the absence of transmission
through the superconductor. Andreev reflection is described by the N ×
N subblock rhe,

r =

(

ree reh

rhe rhh

)

. (4.11)

The Andreev reflection eigenvalues Rn (n = 1, 2, . . . N) are the eigenval-
ues of the Hermitian matrix product r†

herhe. They are evaluated at the
Fermi level for the conductance (4.1) or at an energy eV above the Fermi
level for the differential conductance (4.4).
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Appendix 4.B Béri degeneracy

We give a self-contained derivation of the degeneracy of the Andreev
reflection eigenvalues discovered by Béri [13].

The Hamiltonian (4.7) satisfies the particle-hole symmetry relation
(

0 1
1 0

)

H∗
(

0 1
1 0

)

= −H. (4.12)

For the reflection matrix r(ε) at energy ε (relative to the Fermi level) this
implies

(

0 1
1 0

)

r(ε)∗
(

0 1
1 0

)

= r(−ε). (4.13)

At the Fermi level (ε = 0) the electron and hole subblocks in Eq. (4.11)
are therefore related by

rhh = r∗ee, reh = r∗he. (4.14)

Unitarity r†r = 1 requires that r†
ehree + r†

hhrhe = 0, hence at the Fermi
level

A ≡ rT
eerhe = −AT (4.15)

is an antisymmetric matrix. (The superscript T denotes the transpose.)
The Hermitian matrix product

A†A = r†
herhe − (r†

herhe)
2 (4.16)

has eigenvalues an = Rn(1 − Rn), n = 1, 2, . . . N.
Let Ψ be an eigenvector of A† A with (real, non-negative) eigenvalue

a, so A†AΨ = aΨ. Then Ψ′ = (AΨ)∗ satisfies A†AΨ′ = −A∗AA∗Ψ∗ =
A∗(A†AΨ)∗ = (aAΨ)∗ = aΨ′. The eigenvalue a is therefore twofold
degenerate, unless Ψ′ and Ψ are linearly dependent.

If Ψ′ = λΨ for some λ, then aΨ = A†AΨ = −A∗(λΨ)∗ = −|λ|2Ψ,
hence a = 0. So any nonzero eigenvalue Rn(1 − Rn) of A†A is twofold
degenerate, which implies that the Andreev reflection eigenvalues Rn

are either twofold degenerate or equal to 0 or 1.
Notice that the Béri degeneracy is distinct from the familiar Kramers

degeneracy (although the proof goes along similar lines [21]). Kramers
degeneracy is a consequence of an anti-unitary symmetry which squares
to −1. The particle-hole symmetry operation

Oph =

(

0 1
1 0

)

× complex conjugation (4.17)
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is anti-unitary, but squares to +1.
In the absence of time-reversal and spin-rotation symmetry, only the

Béri degeneracy of the Andreev reflection eigenvalues is operative. This
is the case for the model Hamiltonian (4.7) considered here (with time-
reversal symmetry broken by the Zeeman effect and spin-rotation sym-
metry broken by the Rashba effect). As worked out in Ref. [19], if one
or both of these symmetries are present, then all Rn’s are twofold de-
generate — including those equal to 0 or 1. The Kramers degeneracy
then comes in the place of the Béri degeneracy, it is not an additional
degeneracy.
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