
Random-matrix theory and stroboscopic models of topological insulators
and superconductors
Dahlhaus, J.P.

Citation
Dahlhaus, J. P. (2012, November 21). Random-matrix theory and stroboscopic models of
topological insulators and superconductors. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/20139
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/20139
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/20139


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/20139   holds various files of this Leiden University 
dissertation. 
 
Author:  Dahlhaus, Jan Patrick 
Title: Random-matrix theory and stroboscopic models of topological insulators and 
superconductors 
Date:  2012-11-21 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20139
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 1

Introduction

1.1 Preface

Considering what we know about Nature, it is quite fascinating how
well it can be described by complex mathematical concepts. Among the
most impressive examples might well be General Relativity and Quan-
tum Mechanics. In the former the ideas of differential geometry form
the heart of what we call curved space-time, while in the latter the world
is described by states and operators in a Hilbert space.

Another intriguing area of mathematics - topology - is by now un-
derstood to govern the nature of gapped electronic systems like band
insulators or superconductors [1–5]. And it has profound impact on
their properties. Most importantly, the boundary between electronic sys-
tems with different topology supports protected surface states – robust
against disorder and other imperfections. From Majorana bound states
at the ends of superconducting wires to the unique metallic surface of
three dimensional topological insulators a variety of different bound-
ary states arise in this way – depending on the dimensionality and the
symmetries of the system.

The consequences of band topology have by now been observed in
several systems, foremost in the form of the quantum Hall and quan-
tum spin Hall effects in two dimensions and the topological insulator
in three dimensions. Furthermore, the first signatures of topological
superconductivity have been found in nanowire setups.

The primary methods of identification of these phases are their unique
transport properties: in the quantum Hall effect, perfectly transmitting
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edge channels lead to a quantized Hall conductance, the quantum spin
Hall effect shows quantized two- and four-terminal conductances and
Majorana bound states show up as a zero bias peak in the Andreev con-
ductance. Only three-dimensional topological insulators are, up to now,
identified by spectroscopy rather than by electronic transport, because
of the complication of a non-zero bulk conductance.

This work is dedicated to the interplay of topology and imperfec-
tions in insulators and superconductors. On the one hand a realistic
understanding of the transport signatures of topological phases in the
presence of disorder is vital to explain experimental data. On the other
hand the interplay of topology and imperfections leads to interesting
new phenomena such as delocalization at topological phase transitions
and geodesic scattering. We study the thermal and Andreev conduc-
tances of chaotic superconducting quantum dots, the effect of disorder
on the electrical conductance of normal-superconductor junctions, and
the influence of surface roughness on the conductance of a topological
insulator. Furthermore we investigate the localization properties at a
topological phase transition, estimating the universal critical exponent
that describes the observed delocalization for both the quantum Hall
and the quantum spin Hall effect.

1.2 Concept of topology in insulating systems

What is a topological phase? I will try to give an intuitive approach to
the topic, using examples and concentrating on topics that will be of
interest later on in this thesis. From the band theory of solids we know
that the electronic excitations of condensed matter systems appear in
the form of energy bands E(k) with corresponding Bloch states ψ(k), k

being a wave vector in the first Brillouin zone. In an insulating system,
the Fermi energy lies in an excitation gap between such bands. Now, a
topological property is by definition something that is preserved under
continuous deformations, in this case of the Hamiltonian. A simple
example is most suitable to illustrate how this concept applies to band
structures.
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Figure 1.1. Band structure for µ = 1.9. At the center of the Brillouin zone a
Dirac cone emerges, which will be fully formed when the gap closes at µ = 2.

1.2.1 Example: winding number

Consider the Hamiltonian

H(k) = u(k) · σ =





sin kx

sin ky

cos kx + cos ky − µ



 ·




σx

σy

σz



 , (1.1)

with the Pauli matrices σi and momenta kx, ky ∈ [−π, π) in the first Bril-
louin zone of a two-dimensional system. The two bands of the model,
E±(k) = ±|u(k)|, are plotted in Fig. 1.1 for µ = 1.9.

In this example, the notion of topology manifests itself in the spin
structure of the wave functions. The spin quantization axis for given k

is û(k) = u(k)/|u(k)|. In Fig. 1.2 this vector is plotted in the Brillouin
zone for two different values of µ. For µ = 1, the vector shows a winding
while for µ = 3 it does not. With "winding" we mean the number of
complete rotations the vector performs throughout the Brillouin zone.
Due to the periodicity of the Brillouin zone it is an integer quantity and
can be calculated by

I = − 1
4π

∫ π

−π
dkx

∫ π

−π
dky

[

∂û(k)

∂kx
× ∂û(k)

∂ky

]

· û(k). (1.2)

A winding of a vector of this form is preserved under continuous de-
formations of the Hamiltonian H(k) and is thus a topological property.
Since the integer number I characterizes the topology, it is called topo-
logical invariant or in this specific case Skyrmion number. The integrand
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Figure 1.2. Spin quantization axis in the Brillouin zone for a topologically
trivial phase, µ = 3 (left panel), and a phase that shows a non-trivial winding,
µ = 1 (right panel). The winding can best be seen along the line kx = 0, where
the vector makes a complete rotation as it goes from −π to π.

of Eq. (1.2) is the so-called Berry flux and the overall integral relates to
the Berry phase picked up by a state ψ(k) of the lower band when k is
transported through the Brillouin zone in a closed loop. In this simple
example the topological invariant represents the phase picked up when
a spin is rotated once around.

The topological invariant cannot change when we change the Hamil-
tonian continuously as long as u(k) 6= (0, 0, 0) for all k. Thus the gap
between the two bands has to vanish when the topology changes, which
happens e.g. for µ = 2 at (kx, ky) = (0, 0). In overall the model supports
the following phases, depending on the value of µ:

I(µ) =

{ −sign (µ) if |µ| < 2,
0 if |µ| > 2.

(1.3)

The closing of the energy gap is a general feature appearing generically
at the transition between two different topological phases.

1.2.2 Boundary states

Maybe the most striking consequence of band topology appears at the
boundary of a topological phase. Imagine an interface between a topo-
logical region (e.g. I = 1) and a trivial region (I = 0). Interpolation of
the Hamiltonian between the two regions requires a change of topology
which is accompanied by a closing of the energy gap. Therefore there
have to be low-energy electronic states in the region where the energy
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Figure 1.3. Left panel: Topologically protected state propagating along the
edge of a region with non-trivial winding number. Middle panel: in the con-
ventional quantum Hall effect, edge states arise in the presence of a strong
magnetic field due to the motion electrons perform as their cyclotron orbits
bounce repeatedly off the edge of the sample. Right panel: Energy spectrum
showing the two bulk bands and the dispersion of the edge state.

gap passes through zero. In other words we find boundary states with
energies in the bulk gap.

For the toy model above, these boundary states propagate in one
direction along the edge of a sample, see Fig. 1.3. Since there are no
states into which they could backscatter, they are insensitive to disorder.
A change of sign of the topological invariant reverses the direction of
propagation.

The edge states are a feature that our model has in common with
the quantum Hall effect, rooted in exactly the same concept of topology.
For the quantum Hall effect, there is an intuitive understanding for the
existence of edge states: they arise due to the motion electrons perform
in a strong magnetic field as their cyclotron orbits bounce repeatedly
off the edge of the sample. The presence of the perfectly transmitting
edge states leads to a quantized Hall conductance: GH = IG0 with the
conductance quantum G0 = e2/h. Unlike the conventional quantum
Hall effect the model above (taken from Ref. [6]) does not originate in
Landau level quantization – it is called quantum anomalous Hall effect.

1.2.3 Role of symmetries and dimensionality

The example studied so far is in the quantum Hall universality class,
which means that it lacks time-reversal symmetry. Indeed symmetries
play a crucial role for the existence and the nature of topology in a
system [7]. For example the presence of time-reversal symmetry in a
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Figure 1.4. Edge states and transport measurements of the quantum spin
Hall effect. Upper panel: counter-propagating pair of topologically protected
states with opposite spin at the edge of a quantum spin Hall phase. Left lower
panel: Energy spectrum showing the two bulk bands and the dispersion of the
edge states. Right panel: Experimental data for the conductance of a quantum
spin Hall sample, as a function of the gate voltage that tunes the Fermi energy
EF through the bulk gap. Sample I is in the trivial state, showing insulating
behavior, while samples III and IV show quantized transport associated with
edge states. From Ref. [8]. Reprinted with permission from AAAS.

spinfull system,

H(k) = σyH∗(−k)σy, (1.4)

forbids any winding of the type described above in an isolated band.
Thus it was long thought that the existence of topology becomes im-
possible in the presence of time-reversal symmetry. When starting from
2005, theoretical proposals for topology in time-reversal invariant sys-
tems were put forward, the research area saw a rapid boost of activity
[1–3]. This culminated in the experimental demonstration [8] of the so-
called quantum spin Hall effect in 2007, demonstrating that the concept
of topology is much more general than and not restricted to the winding
numbers introduced above.

The quantum spin Hall effect is a time-reversal invariant version of
the quantum Hall effect. Time-reversal symmetry ensures that an edge
state always comes hand in hand with its time-reversed partner, a state
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Figure 1.5. Topologically protected states on the surface of a three-dimensional
topological insulator. Left panel: Dispersion relation of the metallic surface
(Dirac cone). The spin direction is tied perpendicular to the momentum (orange
arrows). Right panel: Energy spectrum of the surface states of the topologi-
cal insulator Bi2Se3, measured by angle-resolved photo-emission spectroscopy.
From Ref. [10]. Reprinted by permission from Macmillan Publishers Ltd.

with opposite spin, traveling in the reverse direction along the edge (see
upper panel of Fig. 1.4).

A fundamental difference between the quantum Hall and the quan-
tum spin Hall effect is that the topological invariant is restricted to the
values 0 and 1 in the latter case, meaning either a pair of topologically
protected edge states or none at all. The emphasize is here on the topo-
logical protection - further edge states may exist but would not be stable.
In contrast the quantum Hall effect can realize any integer number of
topologically protected edge modes, but they all propagate in the same
direction. This ensures the topological protection: if there was a channel
in the opposite direction, left and right moving states could scatter into
each other and would hybridize, leading to a gap in the spectrum of
edge states. In the quantum spin Hall effect this is prevented for a sin-
gle pair of time reversed modes since the so-called Kramers degeneracy
of the crossing point in the Brillouin zone (see lower panel of Fig. 1.4) is
protected by time-reversal symmetry.

The two cases mentioned so far are intrinsically two-dimensional.
When in 2008 topology was first observed in three dimensions [9], it
was a huge step forward on the path to unravel all the possibilities that
topology provides. Although conceptually the topology of the three-
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dimensional topological insulator is a natural generalization of the quan-
tum spin Hall effect, its properties are exceptional: instead of a pair of
edge states, a three-dimensional topological insulator hosts a contin-
uum of surface states, forming a metallic surface of in insulating bulk.
Its dispersion has the form of a Dirac cone, see Fig. 1.5, with the spin
perpendicular to momentum.

Generally the existence of topology and the allowed values of the
topological invariant are determined by the dimensionality of a system
and the symmetries present. For insulators, time reversal symmetry
plays the primary role in the classification. For superconducting systems
which are discussed in the next section, another type of fundamental
symmetry arises (particle-hole symmetry) and provides an even larger
variety of topological phases.

1.2.4 Anderson localization and topology

The free (ballistic) motion of a particle produces a quadratic spreading
of a wave packet in time, 〈ψ(t)|x̂2|ψ(t)〉 ∝ t2. A disordered potential
slows down the spreading, to a linear increase 〈ψ(t)|x̂2|ψ(t)〉 = Dt.
This diffusive spreading, with diffusion constant D, describes a metal.
If the disorder is strong enough, the metal becomes an insulator and the
spreading stops at a characteristic length ξ,

lim
t→∞

〈ψ(t)|x̂2|ψ(t)〉 ∼ ξ2. (1.5)

This so-called Anderson localization [11, 12] originates from destructive
interference processes of the wave function and is thus a purely quantum
mechanical phenomenon.

Anderson localization happens on shorter length scales in lower di-
mensional systems. In particular, the localization length grows linearly
with the mean free path in one dimension, while it grows exponentially
in two dimensions. In three dimensions the localization length is infinite
below a critical disorder strength. At the critical disorder strength Uc a
quantum phase transition occurs between a localized insulating phase
and a diffusive metallic phase. The divergence of the localization length
when the disorder strength U approaches Uc is governed by a critical
exponent ν,

ξ ∝ |U − Uc|−ν. (1.6)
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The critical exponent is a universal quantity depending only on the fun-
damental symmetries and the dimensionality, but not on microscopic
details.

Anderson localization refers to states in the bulk of a disordered ma-
terial. States may still be extended along the boundary, without any lo-
calization. These extended boundary states are a signature of a topolog-
ically nontrivial phase. Figs. 1.3 and 1.4 show examples in the quantum
Hall effect and quantum spin Hall effect. The extended boundary states
in these two cases carry electrical current along the edge of the system,
with a quantized conductance. In a three-dimensional topological insu-
lator, the surface supports extended states, but there is no quantization
of conductance in that case.

The appearance and disappearance of extended boundary states is a
topological phase transition. Because it is accompanied by a divergence
of the localization length in the bulk of the system, it is also associated
with a critical exponent, as in Eq. (1.6).

1.3 Topological superconductors

Just like insulators, superconductors have a gapped band structure. In
this sense they are insulating as well - but for thermal instead of charge
transport. Thus the concept of topology introduced above for insulating
systems holds in the same way for superconductors. The presence of
another fundamental symmetry (particle-hole symmetry) in a supercon-
ductor introduces new features though, as we discuss now.

On mean-field level, superconductors can be described by the Bo-
goliubov de Gennes Hamiltonian

HBdG(k) =

(

H0(k)− EF ∆(k)
−∆∗(−k) EF − H∗

0 (−k)

)

, (1.7)

with the single particle Hamiltonian H0(k), the Fermi energy EF and
the superconducting pair potential ∆(k). This Hamiltonian acts on two-
component wave functions ψ = (u, v) with electron part u and hole part
v. With "hole" we mean an empty state in the conduction band, below
the Fermi level. This should not be confused with the concept of a hole
in a semiconductor, which refers to an empty state in the valence band.

Because electrons and holes in a superconductor refer to the same
state, either filled or empty, there is a symmetry relation between elec-
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trons and holes,

HBdG(k) = −τxH∗
BdG(−k)τx, (1.8)

with the Pauli matrix τx acting in electron-hole space. The existence of
this so-called particle-hole symmetry allows for new topological phases,
just like time-reversal symmetry does [7].

Of particular interest are one-dimensional topological superconduc-
tors with broken time-reversal and spin-rotation symmetry. They can be
realized in semiconductor - superconductor heterostructures (see Fig.
1.6) and their topologically protected end states are Majorana bound
states – zero energy eigenstates that are their own electron-hole conju-
gate partners. These Majorana states are regarded as promising can-
didates for the realization of a topological quantum memory. In the
following section this example is discussed from a transport perspec-
tive.

1.3.1 Example: Majorana wire

To illustrate how the concept of topology survives in a disordered sys-
tem, I will now introduce the scattering approach to topology in a su-
perconducting wire. To this end the wire is contacted by a metallic lead,
just as in the experimental situation shown in Fig. 1.6.

When an electron moving inside the lead hits the superconductor, it
is reflected back since transmission through the superconductor is sup-
pressed by the superconducting gap. A unitary reflection matrix r re-
lates incoming electronic states ψin to outgoing electronic states ψout at
the interface (see Fig. 1.6):

ψout = rψin =

(

ree reh

rhe rhh

)

ψin. (1.9)

The block rhe (reh) describes the process of Andreev reflection, where an
electron (hole) hitting the superconductor is reflected as a hole (electron)
while a Cooper pair is added to (removed from) the superconductor.
This process is associated with a charge transfer of 2e, leading to an
electrical conductance of

GNS = G0Tr r†
herhe, (1.10)
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Figure 1.6. Upper panel: Scanning electron microscope image of a device
designed to realize a one-dimensional topological superconductor: an InSb
nanowire in proximity to a superconductor (S) is contacted by a normal metal
lead (N). In the presence of a magnetic field, the wire is expected to make a
transition into a topological state. Right panel: Differential conductance mea-
surements for the setup on the left, as a function of bias voltage and magnetic
field. For a range of magnetic field strengths a clear zero bias signature is ob-
served in between the two superconducting gap peaks (green arrows), signaling
the existence of Majorana bound states. Both from Ref. [13]. Reprinted with
permission from AAAS. Lower panel: Schematic of the transport situation.

at zero bias voltage. Here, conductance was measured in units of the
superconducting conductance quantum G0 = 2e2/h.

At the Fermi level (zero excitation energy), particle-hole symmetry
requires rhh = r∗ee and reh = r∗he. Therefore the determinant of r has to be
real. Since unitarity on the other hand forces the determinant to be of
magnitude one, the number

Q = det r (1.11)

is a well defined integer, restricted to the two values +1 and −1. Be-
cause Q cannot change by any small perturbation of the Hamiltonian,
it is a topological invariant. To change the value of this number, trans-
mission through the superconductor has to become possible, breaking
the unitarity of the reflection matrix. In this sense, the topology of the
system is protected by the the superconducting gap.

We can straightforwardly use this definition of topology in a disor-
dered system to show the delocalization at the topological phase tran-
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sition: when the invariant Q changes, det r has to change sign and be-
comes zero at the transition point. This means that r†r has a zero eigen-
value and thus one perfectly transmitting channel opens through the
wire.

1.4 Random-matrix theory

Multiple scattering by impurities or boundaries introduces an element of
randomness in mesoscopic systems that calls for a statistical description.
An ensemble of nominally identical systems, differing only in the con-
figuration of impurities or the precise shape of a boundary, corresponds
to an ensemble of random Hamiltonians or random scattering matrices.
Random-matrix theory tries to make statistical predictions by choosing
the ensemble of matrices as generic as possible, constrained only by fun-
damental symmetries. A variety of applications of random-matrix the-
ory to mesoscopic transport problems are known, summarized in detail
in the books and reviews available [14–17]. In the following we will
focus on the aspects directly relevant to this thesis.

1.4.1 Symmetry classes

We have already encountered two fundamental symmetries: time-reversal
and particle-hole symmetry. They both come in different forms, depend-
ing, for example, on the presence or absence of spin-rotation symmetry.
In particular, both the time-reversal operator T and the particle-hole
conversion operator C are anti-unitary operators that square to either
unity or minus unity. The time-reversal symmetry in Eq. (1.4) is, for ex-
ample, given by the operator T = Kσy (T 2 = −1) and the particle-hole
symmetry in Eq. (1.8) by C = Kτx (C2 = 1), with K denoting complex
conjugation.

Time-reversal and particle-hole symmetry can be written in the form

H = T HT −1, (1.12)

H = −CHC−1, (1.13)

using the time-reversal and particle-hole conversion operators. One gen-
erally classifies systems regarding the presence or absence of these sym-
metries and and whether their operators square to +1 or −1. This leads



1.4 Random-matrix theory 13

Figure 1.7. Classification of topological insulators and superconductors in one,
two and three dimensions. For each dimension, the five symmetry classes in
which topology is possible are indicated and the relevant types of invariants
(Z, Z2 or 2Z) are given. The symmetry classes are ordered depending on their
time-reversal and particle-hole symmetry behavior: squaring to +1, −1 or ab-
sent (×). The case of exclusive chiral symmetry is listed separately (symmetry
class AIII). In the lower left corner of each box the name of the symmetry class
is given. Design adapted from Ref. [18].

to nine different symmetry classes. A tenth symmetry class arises when
we also consider the case where only chiral symmetry, H = −T CHC−1T −1,
is present.

Each of these symmetry classes may or may not allow for topolog-
ical invariants, depending on the dimensionality of the system [7]. An
overview is given in Fig. 1.7, listing all the different symmetry classes
and their formal names, which stem from Cartan’s classification of sym-
metric spaces. The type of topological invariant if possible is given by
the symbols Z (all integers), Z2 (0 or 1), and 2Z (only even integers).

The examples of topological phases we discussed so far fit into this
scheme as follows: in the quantum Hall effect (2D), no symmetries are
present. Thus the relevant symmetry class is class A and topology is
given by a Z topological winding number like in Sec.
refsec:WindingNumber. In the quantum spin Hall effect (2D) and the
topological insulator (3D), time-reversal symmetry squares to −1 and
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Figure 1.8. Chaotic scattering region with an interface between a normal metal
(N) and a superconductor (S, shaded region). Andreev reflection at the NS in-
terface converts a normal current (carried by electron and hole excitations e and
h) into a supercurrent (carried by Cooper pairs). A normal metal electrode is
connected to the dot via an N-mode point contact (narrow opening at the left).
In this example the chaos is induced by the irregular shape of the dot region.
Alternatively disorder in the scattering region does have a similar effect. The
quantum transport phenomena in the setup can be characterized by a circular
ensemble if the dwell time τD in the scattering region is much larger than the
ergodic time τergodic, the time scale on which a classical particle explores the
whole phase space.

we are in class AII, with the Z2 topological invariants mentioned in Sec.
refsec:othertopologicalphases. Finally, the Majorana wire (1D) of Sec.
1.3.1 obeys no time-reversal symmetry but a particle hole symmetry that
squares to unity, placing it in symmetry class D with a Z2 topological
invariant.

1.4.2 Circular ensembles

The ensemble of scattering matrices used in random-matrix theory is
called circular, because for a single scattering channel it would corre-
spond to a uniform distribution of the phase shift on the unit circle. For
N scattering channels the ensemble corresponds to a uniform distribu-
tion of the scattering matrix in the group of N × N unitary matrices,
suitably restricted by the fundamental symmetries. Chaotic scattering
by impurities or boundaries is known to be well described by a circular
ensemble. An example relevant for this thesis is the chaotic normal-
superconductor junction of Fig. 1.8. It is described by a unitary reflec-
tion matrix r and the electrical conductance is given by Eq. (1.10).

If no symmetry constraints are imposed on the unitary matrices, we
call the ensemble of scattering matrices the circular unitary ensemble.
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The presence or absence of time-reversal and/or particle-hole symmetry
restricts the relevant matrix space to a smaller subset of unitary matrices,
giving rise to several distinct circular ensembles.

1.5 Stroboscopic models

There is, up to now, still no rigorous analytical theory describing disorder-
induced localization-delocalization transitions, including those that oc-
cur generically at a topological phase transition. Thus computer sim-
ulations are needed to calculate the scaling law and critical exponent
associated with the diverging localization length at the transition.

Because the localization properties are universal, independent of mi-
croscopic details, we are free to choose a computationally efficient model
even if it does not correspond to any particular physical realization.
Stroboscopic models [19–22] are very well suited for this purpose since
the propagation of wave functions is computationally very efficient for
them, especially in higher dimensions. Although stroboscopic models
do not correspond to a physical system in condensed matter, they can
be realized experimentally with atomic matter waves in 1D optical lat-
tices.

1.5.1 The quantum kicked rotator

A model is called stroboscopic when an otherwise freely propagating
particle with kinetic energy T(p) is subject to a driving potential V(x)
that is repeatedly turned on for an instant of time,

H = T(p) + V(x) ∑
n

δ(t − nτ). (1.14)

The period of the driving field is denoted τ. The prototypical example
for a stroboscopic model is the so-called quantum kicked rotator [19–22],
describing a particle with kinetic energy T(p) = p2/2m that is moving
on a circle, θ ∈ [0, 2π), subject to the driving field V(θ) = K cos(θ).
Consider such a particle, initially in a momentum eigenstate, |ψ0〉 =
δ(p − p0). The propagation of the wave function over one period of the
driving field is given by a time evolution operator of the form

F = e−iV(θ)/h̄e−iT(p)/h̄, |ψ(t)〉 = F t|ψ0〉, (1.15)



16 Chapter 1. Introduction

















Figure 1.9. Particle in a quantum kicked rotator, initially in a momentum
eigenstate |ψ0〉 = δ(p), is propagated in time. Left panel: Time dependence
of the width of the wave function in momentum space. For a small number
of kicks, the wave function spreads diffusively, 〈k2〉 ∝ t (red dashed line). At
larger times, interference effects become important and the wave function lo-
calizes, leading to a saturation of the spread (blue dotted line). Right panel:
The wave function in momentum space after 1000 kicks. The exponentially
localized shape is clearly visible (solid red lines, notice the logarithmic scale).
Parameters used are K = 6.66 and h̄ = m = 1. Momentum is discrete with
spacing δk due to the periodic real space.

also called Floquet operator. In the corresponding classical model, the
particle performs a diffusive motion in momentum space over time,
given a sufficiently large K. In the quantum kicked rotator, the parti-
cle wave function starts to spread diffusively in momentum space in the
beginning but soon interference effects set in and the spreading slows
down. For a large number of kicks, the spreading essentially stops and
the wave function shows an exponentially localized shape, see Fig. 1.9.

1.5.2 Stroboscopic models in higher dimensions and the An-
derson metal-insulator transition

Since the Floquet operator decomposes into two exponentials which
are diagonal in real space and momentum space respectively, see Eq.
(1.15), the computational cost of wave function propagation essentially
reduces to two fast Fourier transforms. This is why stroboscopic models
are computationally efficient. Another simplification arises for higher
dimensional stroboscopic models since they can be simulated in one-
dimension, as we will see in the following.

For example let us consider a three-dimensional stroboscopic model
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of the form (1.14) with

T(p) =
p2

1
2

+ ω2p2 + ω3p3, (1.16)

V(x) = K cos x1(1 + ǫ cos x2 cos x3), (1.17)

and set τ = 1 for brevity. If we choose the initial condition of a wave
function as

ψ(x1, x2, x3, t = 0) = ψ1(x1)δ(x2 − φ2)δ(x3 − φ3), (1.18)

its propagation can be solved analytically in two of the dimensions:

ψ(x1, x2, x3, t) = F tψ(x1, x2, x3, t = 0)

= ψ1(x1, t)δ(x2 − φ2 − ω2t)δ(x3 − φ3 − ω3t). (1.19)

Here, F is the Floquet operator of the model which decomposes into two
exponentials just as in the example (1.15). The step to step evolution of
the remaining dimension is given by a time-dependent Floquet operator

ψ1(x1, t + 1) = F̃(t)ψ1(x1, t), (1.20)

F̃ (t) = e−iV(x1, ω2t+φ2, ω3t+φ3)/h̄e−ip2
1/2h̄. (1.21)

This is equivalent to the stepwise propagation of a wave function in
a one-dimensional model with a time-dependent kicking potential of
the form V(x1, ω2t + φ2, ω3t + φ3). The reduction from three to one
dimension greatly simplifies the numerical simulation of the model. In
the same way d-dimensional stroboscopic models can be reduced to a
one-dimensional model, given that the kinetic term is linear in d − 1
dimensions.

The model considered here features an Anderson metal-insulator
transition in momentum space. This means that when the parameter
K is decreased (e.g. at fixed ǫ ∼ 0.5), the evolution of the wave functions
changes: for large K they spread diffusively while for small K they local-
ize (see phase diagram in Fig. 1.10). The corresponding one-dimensional
model for this three-dimensional transition was realized experimentally
with atomic matter waves in a cold atoms setup [23]. In the experiment,
Cs atoms with kinetic energy p2

1/2 were subjected to a stroboscopic kick-
ing potential, produced by a pulsed standing laser wave. In this way the
time evolution of ψ1(x1) could be simulated, allowing for measurements
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Figure 1.10. Phase diagram of the stroboscopic model in Eq. (1.17), from nu-
merical simulations. The Anderson transition line separates the localized phase
(blue) from the diffusive metallic phase (red). In the corresponding atomic
matter wave experiment, the parameters were swept along the diagonal dash-
dotted line. The insets show the experimentally observed momentum distribu-
tions, localized in the blue region and Gaussian in the diffusive (blue) region.
From Ref. [23]. Copyright (2008) by the American Physical Society.

of the momentum distribution after some time of propagation. The crit-
ical exponent characterizing the divergence of the localization length
at the transition could be extracted from these measurements and was
found to be in accordance with numerical predictions.

1.6 This thesis

In the following a brief description of each chapter is given.

1.6.1 Chapter 2

When the chaotic superconducting scattering region introduced in Fig.
1.8 is coupled to two leads, also transport from one lead to the other
becomes possible, see Fig. 1.11. The scattering matrix

S =

(

r t′

t r′

)

, (1.22)
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for this situation is not solely a reflection matrix but also contains trans-
mission blocks t and t′. Since the quasiparticles in a superconducting
region are superpositions of electrons and holes they do not carry a def-
inite charge and thus their transmission is not associated with an elec-
trical current. But they have a fixed energy and carry a thermal current,
with thermal conductance

Gth = Gth
0 Tr t†t = Gth

0 ∑
n

Tn, (1.23)

at low temperatures T. Here, conductance is measured in units of Gth
0 =

π2k2
BT/6h and we denoted the eigenvalues of t†t by Tn.
In chapter two we study the thermal transport statistics of such a

chaotic superconducting quantum dot using random-matrix theory. To
this end we calculate the probability distribution P({Tn}) of indepen-
dent transmission eigenvalues from which all moments of the thermal
conductance at the Fermi level can be extracted. We distinguish between
four superconducting symmetry classes which give rise to four circular
ensembles of scattering matrices, with distinct probability distributions.
In this way we are able to deduce the generic influence of the sym-
metries on the thermal conductance, in form of weak (anti-)localization
corrections. Compared to the statistics of the electrical conductance in
non-superconducting ensembles, the most striking differences appear
in the single-channel limit, which is not accessible in normal electronic
gases. We show how this single-channel limit can be reached using a
topological insulator or superconductor, without running into the prob-
lem of fermion doubling.

1.6.2 Chapter 3

In the third chapter we determine the influence of topology on the
Andreev reflection properties of chaotic normal-metal–superconductor
junctions. We already introduced the relevant setup in Fig. 1.8. The
electrical conductance of the NS junction can be calculated from

G = G0 ∑
n

Rn, (1.24)

following Eq. (1.10), but expressed in terms of the eigenvalues Rn of
r†

herhe, the so-called Andreev reflection eigenvalues.
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Figure 1.11. Quantum dot in a two-dimensional electron gas, connected to a
pair of superconductors (shaded) and to two normal-metal reservoirs. One of
the normal reservoirs is at a slightly elevated temperature T + δT. The second
superconductor is needed to ensure the presence of time-reversal symmetry in
the symmetry classes DIII and CI.

It is well established that the generic influence of symmetries on
the conductance statistics can be determined by random-matrix theory.
With the realization that topology constrains the reflection matrix just as
symmetries do (e.g. Q = det r in symmetry class D), it becomes apparent
that averaging over all possible reflection matrices of a symmetry class
implies averaging over different topological phases. Since we want to
disentangle the contributions from distinct topological phases we thus
have to subdivide the known superconducting circular ensembles.

By calculating the probability distribution of the Andreev reflection
eigenvalues Rn for these subdivisions of ensembles, we investigate the
influence of topology on the electrical conductance G. We show that
the dependence of G on the topological quantum number Q is non-
perturbative in the number N of scattering channels. As a consequence
a large-N effect such as weak localization cannot probe the topological
quantum number. For small N we calculate the full distribution P(G)
of the conductance and find qualitative differences in the topologically
trivial and nontrivial phases.

1.6.3 Chapter 4

The fourth chapter of the thesis introduces a setup for the unambiguous
detection of topological superconductivity: a quantum point contact at-
tached to a superconducting wire, as depicted in the inset of Fig. 1.12.
The main part of the figure is a plot of the conductance G as a func-
tion of contact width or Fermi energy, showing plateaus at half-integer
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Figure 1.12. Conductance of a ballistic normal-metal–superconductor junction,
with the superconductor in a topologically trivial (blue curve) or nontrivial
phase (red curve). The black dashed curve is for an entirely normal system. By
varying the potential VQPC at constant Fermi energy EF, the width of a point
contact is varied in the setup (see inset).

multiples of 4e2/h if the superconductor is in a topologically nontriv-
ial phase. In contrast, the plateaus are at the usual integer multiples
in the topologically trivial phase. Disorder destroys all plateaus except
the first, which remains precisely quantized, consistent with previous
results for a tunnel contact. The advantage of a ballistic contact over a
tunnel contact as a probe of the topological phase is the strongly reduced
sensitivity to finite voltage or temperature.

By now, experiments have demonstrated signatures of topology in
superconducting wires, with one example summarized in Fig. 1.6. Nev-
ertheless, the quantized nature of the conductance peak height has not
been observed so far, presumably due to finite temperatures. The setup
we propose here could be a step forward on the quest to detect this
quantized peak height.

1.6.4 Chapter 5

In the fifth chapter the focus shifts to time-reversal invariant nodal su-
perconductors. Although they are not topological in the usual sense, a
variety of lower dimensional topological invariants can be defined that
have strong impact on the transport properties of these systems.

Existing expressions for the topological invariant are based on the
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Figure 1.13. Left panel: reflection processes at a planar interface between a
normal-metal and a gapless superconductor. The sketch in the superconduct-
ing region shows the Fermi surfaces and nodal lines for the specific case of
a d-wave superconductor with Rashba spin-orbit coupling. Both the electrical
conductance G and Z topological invariant Q are plotted for this case in the
right panel, shown as a function of momentum k‖ along the NS interface and
angle φ between the interface and the nodal line of the superconductor.

Hamiltonian of an infinite system. We introduce an alternative formula-
tion in terms of the Andreev reflection matrix of a planar normal-metal–
superconductor interface (left panel of Fig. 1.13). This allows to relate
the topological invariant to the angle-resolved Andreev conductance.
We discuss a variety of symmetry classes that may arise depending on
additional unitary symmetries of the reflection matrix. The condition
for the quantization of the conductance is derived in each symmetry
class and is tested on a model for a 2D or 3D superconductor with spin-
singlet and spin-triplet pairing, mixed by Rashba spin-orbit interaction.
The right panel of Fig. 1.13 shows our results for the case of a two-
dimensional d-wave superconductor with spin-singlet pairing.

1.6.5 Chapter 6

In chapter six we introduce the concept of topology into stroboscopic
models, explicitly constructing a two-dimensional periodically kicked
system with a topological phase transition in the quantum Hall univer-
sality class.

Our model is essentially a stroboscopic version of the toy model in
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Figure 1.14. Left axis: Time-dependent diffusion coefficient (solid curve) after a
sufficiently long time of propagation, showing four localization-delocalization
transitions. Right axis: Four-terminal Hall conductance GH (data points) and
topological invariant I (dashed curve), demonstrating that these are topological
phase transitions.

Sec. 1.2.1, combined with a localizing potential term. As we tune the
system through a topological phase transition, the localization length
of the system diverges. This can be observed in the time-dependent
diffusion constant

D(t) = 〈ψ(t)|x2|ψ(t)〉/t, (1.25)

which converges to zero with increasing propagation time if the wave
function localizes. In contrast it stays finite at the critical point. For
our model D is plotted in Fig. 1.14 for a sufficiently large time, show-
ing the presence of four localization-delocalization transitions where
the topology of the system changes. We quantitatively investigate this
localization-delocalization behavior, determining the critical exponent ν
of the transition. Since the critical exponent is a universal property de-
pending only on the symmetries and the dimensionality of the model,
our result straightforwardly applies to corresponding solid state systems
as well.

In order to obtain our results, we used the dimensional reduction
scheme introduced in Sec. 1.5.2 and were thus able to study the quan-
tum Hall transition in a one-dimensional system. Not only is this re-
duction to 1D computationally very efficient, it also provides a possible
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Figure 1.15. Bottom panel: Time-dependent diffusion coefficient for times t =
106 (red), t = 105 (green) and t = 104 (blue), showing three metallic regions.
The points of intersection of these curves locate the metal-insulator transition.
Top panel: Topological quantum number used to distinguish the topologically
trivial (Q = 0) and nontrivial (Q = 1) insulators. In the metallic regions Q is
not quantized.

route to perform experiments on the 2D quantum Hall effect using cold
atoms in a 1D optical lattice. The approach we introduce in this chap-
ter to investigate the quantum Hall transition can readily be generalized
to other symmetry classes and dimensions, making it possible to study
higher-dimensional systems in one spatial dimension as well.

1.6.6 Chapter 7

Following the methods introduced in chapter six we construct a stro-
boscopic model that realizes the Z2 topology of the quantum spin Hall
effect. Due to the presence of time-reversal symmetry, the transition
from the topological to the trivial phase does not happen directly as
in the quantum Hall effect but only via an extended metallic region in
parameter space.

This metallic phase is a bit unusual since wave functions spread
faster than in a normal diffusion process. Thus the time-dependent dif-
fusion coefficient does not tend to a constant value for large times, in
contrast to the situation at the critical point. This is illustrated in Fig.
1.15 for our model. The plotted Z2 topological invariant was calculated
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Figure 1.16. Surface conductivity of a topological insulator as a function of the
height H of randomly positioned Gaussian surface deformations (width W =
10 nm). The insets illustrate characteristic scattering situations that arise for
different heights of the deformations. Dots represent numerical results whereas
the line shows the analytical solution we derived in the shallow deformation
limit.

using a scattering formulation that remains valid in the presence of dis-
order.

Once again we can use the dimensional reduction scheme to find an
effective one-dimensional description of the localization behavior of the
model. In the same way as in chapter six we study the delocalization at
the metal insulator transitions quantitatively, finding that the critical ex-
ponent does not depend on the topological invariant, in agreement with
earlier independent results from the network model of the quantum spin
Hall effect.

1.6.7 Chapter 8

In chapter eight we consider the classical ballistic dynamics of mass-
less electrons on the conducting surface of a three-dimensional topo-
logical insulator, influenced by random variations of the surface height.
Since electrons traveling on the surface of a topological insulator are
constrained to follow its geometry, they essentially move in a curved
space. Their free motion is thus described by so-called geodesic lines,
solutions of the geodesic equation of motion. In the presence of surface
deformations these geodesic lines bend, a process we call geodesic scat-
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tering. We solve the geodesic equation and the Boltzmann equation in
the limit of shallow deformations to obtain the scattering cross section
and the conductivity σ, see Fig. 1.16. At large surface electron densities
n this geodesic scattering mechanism (with σ ∝

√
n) is more effective at

limiting the surface conductivity than electrostatic potential scattering.
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