

Random-matrix theory and stroboscopic models of topological insulators and superconductors

Dahlhaus, J.P.

Citation

Dahlhaus, J. P. (2012, November 21). *Random-matrix theory and stroboscopic models of topological insulators and superconductors. Casimir PhD Series*. Retrieved from https://hdl.handle.net/1887/20139

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/20139

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/20139</u> holds various files of this Leiden University dissertation.

Author: Dahlhaus, Jan Patrick

Title: Random-matrix theory and stroboscopic models of topological insulators and superconductors **Date:** 2012-11-21

Random-matrix theory and stroboscopic models of topological insulators and superconductors

PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus prof. mr P. F. van der Heijden, volgens besluit van het College voor Promoties te verdedigen op woensdag 21 november 2012 klokke 10.00 uur

DOOR

Jan Patrick Dahlhaus

Geboren te Essen, Duitsland in 1982

Promotiecommissie

Promotor: Prof. dr. C. W. J. Beenakker Overige leden: Prof. dr. E. R. Eliel Prof. dr. ir. L. P. Kouwenhoven (Technische Universiteit Delft) Prof. dr. H. Schomerus (Lancaster University) Prof. dr. J. Zaanen

Casimir PhD Series, Delft-Leiden, 2012-29 ISBN 978-90-8593-137-9

Dit werk maakt deel uit van het onderzoekprogramma van de Stichting voor Fundamenteel Onderzoek der Materie (FOM), die deel uit maakt van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

Cover: Topological invariant of a nodal Rashba superconductor in contact with a metal, as a function of interface orientation and momentum. Compare with the left panel of Fig. 5.4.

To Nina and my parents.

Contents

1	Introduction			1		
	1.1	Prefac	ce	1		
	1.2	Conce	ept of topology in insulating systems	2		
		1.2.1	Example: winding number	3		
		1.2.2	Boundary states	4		
		1.2.3	Role of symmetries and dimensionality	5		
		1.2.4	Anderson localization and topology	8		
	1.3	Topol	ogical superconductors	9		
		1.3.1	Example: Majorana wire	10		
	1.4	Rando	om-matrix theory	12		
		1.4.1	Symmetry classes	12		
		1.4.2	Circular ensembles	14		
	1.5	Strobo	oscopic models	15		
		1.5.1	The quantum kicked rotator	15		
		1.5.2	Stroboscopic models in higher dimensions and the			
			Anderson metal-insulator transition	16		
	1.6	This t	hesis	18		
		1.6.1	Chapter 2	18		
		1.6.2	Chapter 3	19		
		1.6.3	Chapter 4	20		
		1.6.4	Chapter 5	21		
		1.6.5	Chapter 6	22		
		1.6.6	Chapter 7	24		
		1.6.7	Chapter 8	25		
2	Random-matrix theory of thermal conduction in superconduct-					
	ing	quantu	um dots	29		
	2.1	Introc	luction	29		

	2.2	Formulation of the problem	32		
		2.2.1 Andreev quantum dot	32		
		2.2.2 Scattering matrix ensembles	33		
	2.3	Transmission eigenvalue distribution	35		
		2.3.1 Joint probability distribution	35		
		2.3.2 Eigenvalue density	35		
	2.4	Distribution of the thermal conductance	37		
		2.4.1 Minimal channel number	37		
		2.4.2 Large number of channels	38		
		2.4.3 Arbitrary number of channels	1 0		
	2.5	How to reach the single-channel limit using topological			
		phases	1 0		
	2.6	Conclusion	12		
	App	endix 2.A Calculation of the transmission eigenvalue dis-			
		tribution	1 4		
2	D	dense mentation (has more of Alex American Charthan Comments for a lastical			
3	Kandom-matrix theory of Andreev reflection from a topological				
	3 1	Introduction	51		
	2.1	Andreev reflection eigenvalues)1 5/		
	3.Z	Random matrix theory	54 56		
	5.5	2.2.1 Class D ensemble CPE	56		
		2.2.2 Class DIII ensemble T CPE	20		
		2.2.2 Class C anomble COE)0 (0		
		2.2.4 Class CL ensemble T COE)U 20		
	2.4	5.5.4 Class CI, ensemble I-CQE	50		
	5.4 Dependence of conductance distributions on topological				
		3.4.1 Broken time-reversal symmetry	51 51		
		3.4.2 Preserved time-reversal symmetry)1 (3		
		3.4.3 Weak localization and LICE	53		
	35	Conclusion and comparison with a model Hamiltonian	54		
	0.0 Apr	conclusion and comparison with a model Hamiltonian.) 1 (7		
	лүү	$3 \wedge 1$ Class D (onsomble CRE)	57 57		
		3 A 2 Class DIII (ensemble T-CRE)	71		
	Apr	pendix 3 B Proof of the topological-charge theorem for cir-	T		
	1 YP	cular ensembles	73		
			~		

4	Qua	ntum point contact as a probe of a topological supercon-	-0				
		tor 7	/9 70				
	4.1		·9				
	4.Z	Effect of disorder	50 27				
	4.5	Effect of finite voltage and temperature	52 52				
	4.4	Conclusion	26				
	4.5	Conclusion	20				
	App	pendix 4.A Model Hammonian	20 20				
	лрг	enuix 4.D Den degeneracy	10				
5	Scat	Scattering theory of topological invariants in nodal supercon-					
	duc	tors) 5				
	5.1	Introduction	<i>)</i> 5				
	5.2	Topological invariant for Andreev reflection	<i></i> 7				
		5.2.1 Chiral symmetry	<i></i> 7				
		5.2.2 Topological invariant	98				
	5.3	Topologically protected boundary states) 9				
	5.4	Relation between conductance and topological invariant . 10)()				
	5.5	Effects of additional unitary symmetries)1				
		5.5.1 Spatial symmetries)2				
		5.5.2 Symmetries that preserve k_{\parallel})4				
	5.6	Application: 2D Rashba superconductor 10)4				
		5.6.1 Hamiltonian and edge states)4				
		5.6.2 Reflection matrix and conductance)7				
		5.6.3 Anisotropic spin-orbit coupling 10)9				
	5.7	Effects of angular averaging and disorder	10				
	5.8	Three-dimensional superconductors	12				
		5.8.1 Topological invariant for arc surface states 11	12				
		5.8.2 Example	13				
	5.9	Conclusion	15				
	App	endix 5.A Topological invariant counts number of unit					
		Andreev reflection eigenvalues	16				
		5.A.1 Proof for the \mathbb{Z} invariant $\ldots \ldots \ldots$	16				
		5.A.2 Proof for the \mathbb{Z}_2 invariant	16				
	App	pendix 5.B Proof of Eq. (5.34)	17				
	App	endix 5.C Equality of conductance and topological invari-					
		ant in class BDI	17				

6	Quantum Hall effect in a one-dimensional dynamical system					
	6.2	Formulation of the 2D strohosconic model	121			
	0.2	6.2.1 Quantum anomalous Hall effect	122			
		6.2.2 Strohoscopic Hamiltonian	122			
		6.2.3 Relation to quantum kicked rotator	123			
		6.2.4 Floquet operator	121			
	63	Mapping onto a 1D model	120			
	6.4	Localization in the quantum Hall effect	120			
	0.1	6.4.1 Numerical simulation	127			
		6.4.2 Localization-delocalization transition	128			
		643 Scaling and critical exponent	120			
	65	Hall conductance and topological invariant	131			
	6.6	Discussion	132			
	Apr	pendix 6.A Tight-binding representation	134			
	Apr	pendix 6.B Finite-time scaling	135			
	App	pendix 6.C Scattering matrix from Floquet operator	136			
7	Met rota 7.1 7.2	al-topological-insulator transition in the quantum kicked tor with \mathbb{Z}_2 symmetry Introduction	143 143 145 145 145 147			
		7.2.3 Mapping from 2D to 1D	148			
	7.3	Phase diagram with disorder	149			
	7.4	Scaling law and critical exponent	151			
	7.5	Conclusion	153			
8	Geodesic scattering by surface deformations of a topological					
	insu	llator	159			
	8.1	Introduction	159			
	8.2	Geodesic scattering	160			
		8.2.1 Geodesic motion	160			
		8.2.2 Scattering angle				
			162			
	8.3	Calculation of the conductivity	162 163			
	8.3	Calculation of the conductivity	162 163 163			
	8.3	Calculation of the conductivity	162 163 163 165			

8.4	Result	s	168
	8.4.1	Isotropic dispersion relation	168
	8.4.2	Anisotropic dispersion relation	170
8.5	Comp	arison with potential scattering	171
	8.5.1	Carrier density dependence	171
	8.5.2	Anisotropy dependence of conductivity	173
Appendix 8.A Calculation of scattering cross section			176
	8.A.1	Christoffel symbols in rotated basis	176
	8.A.2	Geodesic equation for shallow deformation	176
	8.A.3	Circularly symmetric deformation	177
Samenvatting			
Summa	ry		185
List of Publications			
Curriculum Vitæ			