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Chapter 1

Introduction

1.1 Preface

Considering what we know about Nature, it is quite fascinating how
well it can be described by complex mathematical concepts. Among the
most impressive examples might well be General Relativity and Quan-
tum Mechanics. In the former the ideas of differential geometry form
the heart of what we call curved space-time, while in the latter the world
is described by states and operators in a Hilbert space.

Another intriguing area of mathematics - topology - is by now un-
derstood to govern the nature of gapped electronic systems like band
insulators or superconductors [1–5]. And it has profound impact on
their properties. Most importantly, the boundary between electronic sys-
tems with different topology supports protected surface states – robust
against disorder and other imperfections. From Majorana bound states
at the ends of superconducting wires to the unique metallic surface of
three dimensional topological insulators a variety of different bound-
ary states arise in this way – depending on the dimensionality and the
symmetries of the system.

The consequences of band topology have by now been observed in
several systems, foremost in the form of the quantum Hall and quan-
tum spin Hall effects in two dimensions and the topological insulator
in three dimensions. Furthermore, the first signatures of topological
superconductivity have been found in nanowire setups.

The primary methods of identification of these phases are their unique
transport properties: in the quantum Hall effect, perfectly transmitting
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edge channels lead to a quantized Hall conductance, the quantum spin
Hall effect shows quantized two- and four-terminal conductances and
Majorana bound states show up as a zero bias peak in the Andreev con-
ductance. Only three-dimensional topological insulators are, up to now,
identified by spectroscopy rather than by electronic transport, because
of the complication of a non-zero bulk conductance.

This work is dedicated to the interplay of topology and imperfec-
tions in insulators and superconductors. On the one hand a realistic
understanding of the transport signatures of topological phases in the
presence of disorder is vital to explain experimental data. On the other
hand the interplay of topology and imperfections leads to interesting
new phenomena such as delocalization at topological phase transitions
and geodesic scattering. We study the thermal and Andreev conduc-
tances of chaotic superconducting quantum dots, the effect of disorder
on the electrical conductance of normal-superconductor junctions, and
the influence of surface roughness on the conductance of a topological
insulator. Furthermore we investigate the localization properties at a
topological phase transition, estimating the universal critical exponent
that describes the observed delocalization for both the quantum Hall
and the quantum spin Hall effect.

1.2 Concept of topology in insulating systems

What is a topological phase? I will try to give an intuitive approach to
the topic, using examples and concentrating on topics that will be of
interest later on in this thesis. From the band theory of solids we know
that the electronic excitations of condensed matter systems appear in
the form of energy bands E(k) with corresponding Bloch states ψ(k), k

being a wave vector in the first Brillouin zone. In an insulating system,
the Fermi energy lies in an excitation gap between such bands. Now, a
topological property is by definition something that is preserved under
continuous deformations, in this case of the Hamiltonian. A simple
example is most suitable to illustrate how this concept applies to band
structures.
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Figure 1.1. Band structure for µ = 1.9. At the center of the Brillouin zone a
Dirac cone emerges, which will be fully formed when the gap closes at µ = 2.

1.2.1 Example: winding number

Consider the Hamiltonian

H(k) = u(k) · σ =





sin kx

sin ky

cos kx + cos ky − µ



 ·




σx

σy

σz



 , (1.1)

with the Pauli matrices σi and momenta kx, ky ∈ [−π, π) in the first Bril-
louin zone of a two-dimensional system. The two bands of the model,
E±(k) = ±|u(k)|, are plotted in Fig. 1.1 for µ = 1.9.

In this example, the notion of topology manifests itself in the spin
structure of the wave functions. The spin quantization axis for given k

is û(k) = u(k)/|u(k)|. In Fig. 1.2 this vector is plotted in the Brillouin
zone for two different values of µ. For µ = 1, the vector shows a winding
while for µ = 3 it does not. With "winding" we mean the number of
complete rotations the vector performs throughout the Brillouin zone.
Due to the periodicity of the Brillouin zone it is an integer quantity and
can be calculated by

I = − 1
4π

∫ π

−π
dkx

∫ π

−π
dky

[

∂û(k)

∂kx
× ∂û(k)

∂ky

]

· û(k). (1.2)

A winding of a vector of this form is preserved under continuous de-
formations of the Hamiltonian H(k) and is thus a topological property.
Since the integer number I characterizes the topology, it is called topo-
logical invariant or in this specific case Skyrmion number. The integrand
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Figure 1.2. Spin quantization axis in the Brillouin zone for a topologically
trivial phase, µ = 3 (left panel), and a phase that shows a non-trivial winding,
µ = 1 (right panel). The winding can best be seen along the line kx = 0, where
the vector makes a complete rotation as it goes from −π to π.

of Eq. (1.2) is the so-called Berry flux and the overall integral relates to
the Berry phase picked up by a state ψ(k) of the lower band when k is
transported through the Brillouin zone in a closed loop. In this simple
example the topological invariant represents the phase picked up when
a spin is rotated once around.

The topological invariant cannot change when we change the Hamil-
tonian continuously as long as u(k) 6= (0, 0, 0) for all k. Thus the gap
between the two bands has to vanish when the topology changes, which
happens e.g. for µ = 2 at (kx, ky) = (0, 0). In overall the model supports
the following phases, depending on the value of µ:

I(µ) =

{ −sign (µ) if |µ| < 2,
0 if |µ| > 2.

(1.3)

The closing of the energy gap is a general feature appearing generically
at the transition between two different topological phases.

1.2.2 Boundary states

Maybe the most striking consequence of band topology appears at the
boundary of a topological phase. Imagine an interface between a topo-
logical region (e.g. I = 1) and a trivial region (I = 0). Interpolation of
the Hamiltonian between the two regions requires a change of topology
which is accompanied by a closing of the energy gap. Therefore there
have to be low-energy electronic states in the region where the energy
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Figure 1.3. Left panel: Topologically protected state propagating along the
edge of a region with non-trivial winding number. Middle panel: in the con-
ventional quantum Hall effect, edge states arise in the presence of a strong
magnetic field due to the motion electrons perform as their cyclotron orbits
bounce repeatedly off the edge of the sample. Right panel: Energy spectrum
showing the two bulk bands and the dispersion of the edge state.

gap passes through zero. In other words we find boundary states with
energies in the bulk gap.

For the toy model above, these boundary states propagate in one
direction along the edge of a sample, see Fig. 1.3. Since there are no
states into which they could backscatter, they are insensitive to disorder.
A change of sign of the topological invariant reverses the direction of
propagation.

The edge states are a feature that our model has in common with
the quantum Hall effect, rooted in exactly the same concept of topology.
For the quantum Hall effect, there is an intuitive understanding for the
existence of edge states: they arise due to the motion electrons perform
in a strong magnetic field as their cyclotron orbits bounce repeatedly
off the edge of the sample. The presence of the perfectly transmitting
edge states leads to a quantized Hall conductance: GH = IG0 with the
conductance quantum G0 = e2/h. Unlike the conventional quantum
Hall effect the model above (taken from Ref. [6]) does not originate in
Landau level quantization – it is called quantum anomalous Hall effect.

1.2.3 Role of symmetries and dimensionality

The example studied so far is in the quantum Hall universality class,
which means that it lacks time-reversal symmetry. Indeed symmetries
play a crucial role for the existence and the nature of topology in a
system [7]. For example the presence of time-reversal symmetry in a
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Figure 1.4. Edge states and transport measurements of the quantum spin
Hall effect. Upper panel: counter-propagating pair of topologically protected
states with opposite spin at the edge of a quantum spin Hall phase. Left lower
panel: Energy spectrum showing the two bulk bands and the dispersion of the
edge states. Right panel: Experimental data for the conductance of a quantum
spin Hall sample, as a function of the gate voltage that tunes the Fermi energy
EF through the bulk gap. Sample I is in the trivial state, showing insulating
behavior, while samples III and IV show quantized transport associated with
edge states. From Ref. [8]. Reprinted with permission from AAAS.

spinfull system,

H(k) = σyH∗(−k)σy, (1.4)

forbids any winding of the type described above in an isolated band.
Thus it was long thought that the existence of topology becomes im-
possible in the presence of time-reversal symmetry. When starting from
2005, theoretical proposals for topology in time-reversal invariant sys-
tems were put forward, the research area saw a rapid boost of activity
[1–3]. This culminated in the experimental demonstration [8] of the so-
called quantum spin Hall effect in 2007, demonstrating that the concept
of topology is much more general than and not restricted to the winding
numbers introduced above.

The quantum spin Hall effect is a time-reversal invariant version of
the quantum Hall effect. Time-reversal symmetry ensures that an edge
state always comes hand in hand with its time-reversed partner, a state
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Figure 1.5. Topologically protected states on the surface of a three-dimensional
topological insulator. Left panel: Dispersion relation of the metallic surface
(Dirac cone). The spin direction is tied perpendicular to the momentum (orange
arrows). Right panel: Energy spectrum of the surface states of the topologi-
cal insulator Bi2Se3, measured by angle-resolved photo-emission spectroscopy.
From Ref. [10]. Reprinted by permission from Macmillan Publishers Ltd.

with opposite spin, traveling in the reverse direction along the edge (see
upper panel of Fig. 1.4).

A fundamental difference between the quantum Hall and the quan-
tum spin Hall effect is that the topological invariant is restricted to the
values 0 and 1 in the latter case, meaning either a pair of topologically
protected edge states or none at all. The emphasize is here on the topo-
logical protection - further edge states may exist but would not be stable.
In contrast the quantum Hall effect can realize any integer number of
topologically protected edge modes, but they all propagate in the same
direction. This ensures the topological protection: if there was a channel
in the opposite direction, left and right moving states could scatter into
each other and would hybridize, leading to a gap in the spectrum of
edge states. In the quantum spin Hall effect this is prevented for a sin-
gle pair of time reversed modes since the so-called Kramers degeneracy
of the crossing point in the Brillouin zone (see lower panel of Fig. 1.4) is
protected by time-reversal symmetry.

The two cases mentioned so far are intrinsically two-dimensional.
When in 2008 topology was first observed in three dimensions [9], it
was a huge step forward on the path to unravel all the possibilities that
topology provides. Although conceptually the topology of the three-
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dimensional topological insulator is a natural generalization of the quan-
tum spin Hall effect, its properties are exceptional: instead of a pair of
edge states, a three-dimensional topological insulator hosts a contin-
uum of surface states, forming a metallic surface of in insulating bulk.
Its dispersion has the form of a Dirac cone, see Fig. 1.5, with the spin
perpendicular to momentum.

Generally the existence of topology and the allowed values of the
topological invariant are determined by the dimensionality of a system
and the symmetries present. For insulators, time reversal symmetry
plays the primary role in the classification. For superconducting systems
which are discussed in the next section, another type of fundamental
symmetry arises (particle-hole symmetry) and provides an even larger
variety of topological phases.

1.2.4 Anderson localization and topology

The free (ballistic) motion of a particle produces a quadratic spreading
of a wave packet in time, 〈ψ(t)|x̂2|ψ(t)〉 ∝ t2. A disordered potential
slows down the spreading, to a linear increase 〈ψ(t)|x̂2|ψ(t)〉 = Dt.
This diffusive spreading, with diffusion constant D, describes a metal.
If the disorder is strong enough, the metal becomes an insulator and the
spreading stops at a characteristic length ξ,

lim
t→∞

〈ψ(t)|x̂2|ψ(t)〉 ∼ ξ2. (1.5)

This so-called Anderson localization [11, 12] originates from destructive
interference processes of the wave function and is thus a purely quantum
mechanical phenomenon.

Anderson localization happens on shorter length scales in lower di-
mensional systems. In particular, the localization length grows linearly
with the mean free path in one dimension, while it grows exponentially
in two dimensions. In three dimensions the localization length is infinite
below a critical disorder strength. At the critical disorder strength Uc a
quantum phase transition occurs between a localized insulating phase
and a diffusive metallic phase. The divergence of the localization length
when the disorder strength U approaches Uc is governed by a critical
exponent ν,

ξ ∝ |U − Uc|−ν. (1.6)
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The critical exponent is a universal quantity depending only on the fun-
damental symmetries and the dimensionality, but not on microscopic
details.

Anderson localization refers to states in the bulk of a disordered ma-
terial. States may still be extended along the boundary, without any lo-
calization. These extended boundary states are a signature of a topolog-
ically nontrivial phase. Figs. 1.3 and 1.4 show examples in the quantum
Hall effect and quantum spin Hall effect. The extended boundary states
in these two cases carry electrical current along the edge of the system,
with a quantized conductance. In a three-dimensional topological insu-
lator, the surface supports extended states, but there is no quantization
of conductance in that case.

The appearance and disappearance of extended boundary states is a
topological phase transition. Because it is accompanied by a divergence
of the localization length in the bulk of the system, it is also associated
with a critical exponent, as in Eq. (1.6).

1.3 Topological superconductors

Just like insulators, superconductors have a gapped band structure. In
this sense they are insulating as well - but for thermal instead of charge
transport. Thus the concept of topology introduced above for insulating
systems holds in the same way for superconductors. The presence of
another fundamental symmetry (particle-hole symmetry) in a supercon-
ductor introduces new features though, as we discuss now.

On mean-field level, superconductors can be described by the Bo-
goliubov de Gennes Hamiltonian

HBdG(k) =

(

H0(k)− EF ∆(k)
−∆∗(−k) EF − H∗

0 (−k)

)

, (1.7)

with the single particle Hamiltonian H0(k), the Fermi energy EF and
the superconducting pair potential ∆(k). This Hamiltonian acts on two-
component wave functions ψ = (u, v) with electron part u and hole part
v. With "hole" we mean an empty state in the conduction band, below
the Fermi level. This should not be confused with the concept of a hole
in a semiconductor, which refers to an empty state in the valence band.

Because electrons and holes in a superconductor refer to the same
state, either filled or empty, there is a symmetry relation between elec-
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trons and holes,

HBdG(k) = −τxH∗
BdG(−k)τx, (1.8)

with the Pauli matrix τx acting in electron-hole space. The existence of
this so-called particle-hole symmetry allows for new topological phases,
just like time-reversal symmetry does [7].

Of particular interest are one-dimensional topological superconduc-
tors with broken time-reversal and spin-rotation symmetry. They can be
realized in semiconductor - superconductor heterostructures (see Fig.
1.6) and their topologically protected end states are Majorana bound
states – zero energy eigenstates that are their own electron-hole conju-
gate partners. These Majorana states are regarded as promising can-
didates for the realization of a topological quantum memory. In the
following section this example is discussed from a transport perspec-
tive.

1.3.1 Example: Majorana wire

To illustrate how the concept of topology survives in a disordered sys-
tem, I will now introduce the scattering approach to topology in a su-
perconducting wire. To this end the wire is contacted by a metallic lead,
just as in the experimental situation shown in Fig. 1.6.

When an electron moving inside the lead hits the superconductor, it
is reflected back since transmission through the superconductor is sup-
pressed by the superconducting gap. A unitary reflection matrix r re-
lates incoming electronic states ψin to outgoing electronic states ψout at
the interface (see Fig. 1.6):

ψout = rψin =

(

ree reh

rhe rhh

)

ψin. (1.9)

The block rhe (reh) describes the process of Andreev reflection, where an
electron (hole) hitting the superconductor is reflected as a hole (electron)
while a Cooper pair is added to (removed from) the superconductor.
This process is associated with a charge transfer of 2e, leading to an
electrical conductance of

GNS = G0Tr r†
herhe, (1.10)
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Figure 1.6. Upper panel: Scanning electron microscope image of a device
designed to realize a one-dimensional topological superconductor: an InSb
nanowire in proximity to a superconductor (S) is contacted by a normal metal
lead (N). In the presence of a magnetic field, the wire is expected to make a
transition into a topological state. Right panel: Differential conductance mea-
surements for the setup on the left, as a function of bias voltage and magnetic
field. For a range of magnetic field strengths a clear zero bias signature is ob-
served in between the two superconducting gap peaks (green arrows), signaling
the existence of Majorana bound states. Both from Ref. [13]. Reprinted with
permission from AAAS. Lower panel: Schematic of the transport situation.

at zero bias voltage. Here, conductance was measured in units of the
superconducting conductance quantum G0 = 2e2/h.

At the Fermi level (zero excitation energy), particle-hole symmetry
requires rhh = r∗ee and reh = r∗he. Therefore the determinant of r has to be
real. Since unitarity on the other hand forces the determinant to be of
magnitude one, the number

Q = det r (1.11)

is a well defined integer, restricted to the two values +1 and −1. Be-
cause Q cannot change by any small perturbation of the Hamiltonian,
it is a topological invariant. To change the value of this number, trans-
mission through the superconductor has to become possible, breaking
the unitarity of the reflection matrix. In this sense, the topology of the
system is protected by the the superconducting gap.

We can straightforwardly use this definition of topology in a disor-
dered system to show the delocalization at the topological phase tran-
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sition: when the invariant Q changes, det r has to change sign and be-
comes zero at the transition point. This means that r†r has a zero eigen-
value and thus one perfectly transmitting channel opens through the
wire.

1.4 Random-matrix theory

Multiple scattering by impurities or boundaries introduces an element of
randomness in mesoscopic systems that calls for a statistical description.
An ensemble of nominally identical systems, differing only in the con-
figuration of impurities or the precise shape of a boundary, corresponds
to an ensemble of random Hamiltonians or random scattering matrices.
Random-matrix theory tries to make statistical predictions by choosing
the ensemble of matrices as generic as possible, constrained only by fun-
damental symmetries. A variety of applications of random-matrix the-
ory to mesoscopic transport problems are known, summarized in detail
in the books and reviews available [14–17]. In the following we will
focus on the aspects directly relevant to this thesis.

1.4.1 Symmetry classes

We have already encountered two fundamental symmetries: time-reversal
and particle-hole symmetry. They both come in different forms, depend-
ing, for example, on the presence or absence of spin-rotation symmetry.
In particular, both the time-reversal operator T and the particle-hole
conversion operator C are anti-unitary operators that square to either
unity or minus unity. The time-reversal symmetry in Eq. (1.4) is, for ex-
ample, given by the operator T = Kσy (T 2 = −1) and the particle-hole
symmetry in Eq. (1.8) by C = Kτx (C2 = 1), with K denoting complex
conjugation.

Time-reversal and particle-hole symmetry can be written in the form

H = T HT −1, (1.12)

H = −CHC−1, (1.13)

using the time-reversal and particle-hole conversion operators. One gen-
erally classifies systems regarding the presence or absence of these sym-
metries and and whether their operators square to +1 or −1. This leads
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Figure 1.7. Classification of topological insulators and superconductors in one,
two and three dimensions. For each dimension, the five symmetry classes in
which topology is possible are indicated and the relevant types of invariants
(Z, Z2 or 2Z) are given. The symmetry classes are ordered depending on their
time-reversal and particle-hole symmetry behavior: squaring to +1, −1 or ab-
sent (×). The case of exclusive chiral symmetry is listed separately (symmetry
class AIII). In the lower left corner of each box the name of the symmetry class
is given. Design adapted from Ref. [18].

to nine different symmetry classes. A tenth symmetry class arises when
we also consider the case where only chiral symmetry, H = −T CHC−1T −1,
is present.

Each of these symmetry classes may or may not allow for topolog-
ical invariants, depending on the dimensionality of the system [7]. An
overview is given in Fig. 1.7, listing all the different symmetry classes
and their formal names, which stem from Cartan’s classification of sym-
metric spaces. The type of topological invariant if possible is given by
the symbols Z (all integers), Z2 (0 or 1), and 2Z (only even integers).

The examples of topological phases we discussed so far fit into this
scheme as follows: in the quantum Hall effect (2D), no symmetries are
present. Thus the relevant symmetry class is class A and topology is
given by a Z topological winding number like in Sec.
refsec:WindingNumber. In the quantum spin Hall effect (2D) and the
topological insulator (3D), time-reversal symmetry squares to −1 and
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Figure 1.8. Chaotic scattering region with an interface between a normal metal
(N) and a superconductor (S, shaded region). Andreev reflection at the NS in-
terface converts a normal current (carried by electron and hole excitations e and
h) into a supercurrent (carried by Cooper pairs). A normal metal electrode is
connected to the dot via an N-mode point contact (narrow opening at the left).
In this example the chaos is induced by the irregular shape of the dot region.
Alternatively disorder in the scattering region does have a similar effect. The
quantum transport phenomena in the setup can be characterized by a circular
ensemble if the dwell time τD in the scattering region is much larger than the
ergodic time τergodic, the time scale on which a classical particle explores the
whole phase space.

we are in class AII, with the Z2 topological invariants mentioned in Sec.
refsec:othertopologicalphases. Finally, the Majorana wire (1D) of Sec.
1.3.1 obeys no time-reversal symmetry but a particle hole symmetry that
squares to unity, placing it in symmetry class D with a Z2 topological
invariant.

1.4.2 Circular ensembles

The ensemble of scattering matrices used in random-matrix theory is
called circular, because for a single scattering channel it would corre-
spond to a uniform distribution of the phase shift on the unit circle. For
N scattering channels the ensemble corresponds to a uniform distribu-
tion of the scattering matrix in the group of N × N unitary matrices,
suitably restricted by the fundamental symmetries. Chaotic scattering
by impurities or boundaries is known to be well described by a circular
ensemble. An example relevant for this thesis is the chaotic normal-
superconductor junction of Fig. 1.8. It is described by a unitary reflec-
tion matrix r and the electrical conductance is given by Eq. (1.10).

If no symmetry constraints are imposed on the unitary matrices, we
call the ensemble of scattering matrices the circular unitary ensemble.
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The presence or absence of time-reversal and/or particle-hole symmetry
restricts the relevant matrix space to a smaller subset of unitary matrices,
giving rise to several distinct circular ensembles.

1.5 Stroboscopic models

There is, up to now, still no rigorous analytical theory describing disorder-
induced localization-delocalization transitions, including those that oc-
cur generically at a topological phase transition. Thus computer sim-
ulations are needed to calculate the scaling law and critical exponent
associated with the diverging localization length at the transition.

Because the localization properties are universal, independent of mi-
croscopic details, we are free to choose a computationally efficient model
even if it does not correspond to any particular physical realization.
Stroboscopic models [19–22] are very well suited for this purpose since
the propagation of wave functions is computationally very efficient for
them, especially in higher dimensions. Although stroboscopic models
do not correspond to a physical system in condensed matter, they can
be realized experimentally with atomic matter waves in 1D optical lat-
tices.

1.5.1 The quantum kicked rotator

A model is called stroboscopic when an otherwise freely propagating
particle with kinetic energy T(p) is subject to a driving potential V(x)
that is repeatedly turned on for an instant of time,

H = T(p) + V(x) ∑
n

δ(t − nτ). (1.14)

The period of the driving field is denoted τ. The prototypical example
for a stroboscopic model is the so-called quantum kicked rotator [19–22],
describing a particle with kinetic energy T(p) = p2/2m that is moving
on a circle, θ ∈ [0, 2π), subject to the driving field V(θ) = K cos(θ).
Consider such a particle, initially in a momentum eigenstate, |ψ0〉 =
δ(p − p0). The propagation of the wave function over one period of the
driving field is given by a time evolution operator of the form

F = e−iV(θ)/h̄e−iT(p)/h̄, |ψ(t)〉 = F t|ψ0〉, (1.15)
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Figure 1.9. Particle in a quantum kicked rotator, initially in a momentum
eigenstate |ψ0〉 = δ(p), is propagated in time. Left panel: Time dependence
of the width of the wave function in momentum space. For a small number
of kicks, the wave function spreads diffusively, 〈k2〉 ∝ t (red dashed line). At
larger times, interference effects become important and the wave function lo-
calizes, leading to a saturation of the spread (blue dotted line). Right panel:
The wave function in momentum space after 1000 kicks. The exponentially
localized shape is clearly visible (solid red lines, notice the logarithmic scale).
Parameters used are K = 6.66 and h̄ = m = 1. Momentum is discrete with
spacing δk due to the periodic real space.

also called Floquet operator. In the corresponding classical model, the
particle performs a diffusive motion in momentum space over time,
given a sufficiently large K. In the quantum kicked rotator, the parti-
cle wave function starts to spread diffusively in momentum space in the
beginning but soon interference effects set in and the spreading slows
down. For a large number of kicks, the spreading essentially stops and
the wave function shows an exponentially localized shape, see Fig. 1.9.

1.5.2 Stroboscopic models in higher dimensions and the An-
derson metal-insulator transition

Since the Floquet operator decomposes into two exponentials which
are diagonal in real space and momentum space respectively, see Eq.
(1.15), the computational cost of wave function propagation essentially
reduces to two fast Fourier transforms. This is why stroboscopic models
are computationally efficient. Another simplification arises for higher
dimensional stroboscopic models since they can be simulated in one-
dimension, as we will see in the following.

For example let us consider a three-dimensional stroboscopic model
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of the form (1.14) with

T(p) =
p2

1
2

+ ω2p2 + ω3p3, (1.16)

V(x) = K cos x1(1 + ǫ cos x2 cos x3), (1.17)

and set τ = 1 for brevity. If we choose the initial condition of a wave
function as

ψ(x1, x2, x3, t = 0) = ψ1(x1)δ(x2 − φ2)δ(x3 − φ3), (1.18)

its propagation can be solved analytically in two of the dimensions:

ψ(x1, x2, x3, t) = F tψ(x1, x2, x3, t = 0)

= ψ1(x1, t)δ(x2 − φ2 − ω2t)δ(x3 − φ3 − ω3t). (1.19)

Here, F is the Floquet operator of the model which decomposes into two
exponentials just as in the example (1.15). The step to step evolution of
the remaining dimension is given by a time-dependent Floquet operator

ψ1(x1, t + 1) = F̃(t)ψ1(x1, t), (1.20)

F̃ (t) = e−iV(x1, ω2t+φ2, ω3t+φ3)/h̄e−ip2
1/2h̄. (1.21)

This is equivalent to the stepwise propagation of a wave function in
a one-dimensional model with a time-dependent kicking potential of
the form V(x1, ω2t + φ2, ω3t + φ3). The reduction from three to one
dimension greatly simplifies the numerical simulation of the model. In
the same way d-dimensional stroboscopic models can be reduced to a
one-dimensional model, given that the kinetic term is linear in d − 1
dimensions.

The model considered here features an Anderson metal-insulator
transition in momentum space. This means that when the parameter
K is decreased (e.g. at fixed ǫ ∼ 0.5), the evolution of the wave functions
changes: for large K they spread diffusively while for small K they local-
ize (see phase diagram in Fig. 1.10). The corresponding one-dimensional
model for this three-dimensional transition was realized experimentally
with atomic matter waves in a cold atoms setup [23]. In the experiment,
Cs atoms with kinetic energy p2

1/2 were subjected to a stroboscopic kick-
ing potential, produced by a pulsed standing laser wave. In this way the
time evolution of ψ1(x1) could be simulated, allowing for measurements



18 Chapter 1. Introduction

Figure 1.10. Phase diagram of the stroboscopic model in Eq. (1.17), from nu-
merical simulations. The Anderson transition line separates the localized phase
(blue) from the diffusive metallic phase (red). In the corresponding atomic
matter wave experiment, the parameters were swept along the diagonal dash-
dotted line. The insets show the experimentally observed momentum distribu-
tions, localized in the blue region and Gaussian in the diffusive (blue) region.
From Ref. [23]. Copyright (2008) by the American Physical Society.

of the momentum distribution after some time of propagation. The crit-
ical exponent characterizing the divergence of the localization length
at the transition could be extracted from these measurements and was
found to be in accordance with numerical predictions.

1.6 This thesis

In the following a brief description of each chapter is given.

1.6.1 Chapter 2

When the chaotic superconducting scattering region introduced in Fig.
1.8 is coupled to two leads, also transport from one lead to the other
becomes possible, see Fig. 1.11. The scattering matrix

S =

(

r t′

t r′

)

, (1.22)
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for this situation is not solely a reflection matrix but also contains trans-
mission blocks t and t′. Since the quasiparticles in a superconducting
region are superpositions of electrons and holes they do not carry a def-
inite charge and thus their transmission is not associated with an elec-
trical current. But they have a fixed energy and carry a thermal current,
with thermal conductance

Gth = Gth
0 Tr t†t = Gth

0 ∑
n

Tn, (1.23)

at low temperatures T. Here, conductance is measured in units of Gth
0 =

π2k2
BT/6h and we denoted the eigenvalues of t†t by Tn.
In chapter two we study the thermal transport statistics of such a

chaotic superconducting quantum dot using random-matrix theory. To
this end we calculate the probability distribution P({Tn}) of indepen-
dent transmission eigenvalues from which all moments of the thermal
conductance at the Fermi level can be extracted. We distinguish between
four superconducting symmetry classes which give rise to four circular
ensembles of scattering matrices, with distinct probability distributions.
In this way we are able to deduce the generic influence of the sym-
metries on the thermal conductance, in form of weak (anti-)localization
corrections. Compared to the statistics of the electrical conductance in
non-superconducting ensembles, the most striking differences appear
in the single-channel limit, which is not accessible in normal electronic
gases. We show how this single-channel limit can be reached using a
topological insulator or superconductor, without running into the prob-
lem of fermion doubling.

1.6.2 Chapter 3

In the third chapter we determine the influence of topology on the
Andreev reflection properties of chaotic normal-metal–superconductor
junctions. We already introduced the relevant setup in Fig. 1.8. The
electrical conductance of the NS junction can be calculated from

G = G0 ∑
n

Rn, (1.24)

following Eq. (1.10), but expressed in terms of the eigenvalues Rn of
r†

herhe, the so-called Andreev reflection eigenvalues.
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Figure 1.11. Quantum dot in a two-dimensional electron gas, connected to a
pair of superconductors (shaded) and to two normal-metal reservoirs. One of
the normal reservoirs is at a slightly elevated temperature T + δT. The second
superconductor is needed to ensure the presence of time-reversal symmetry in
the symmetry classes DIII and CI.

It is well established that the generic influence of symmetries on
the conductance statistics can be determined by random-matrix theory.
With the realization that topology constrains the reflection matrix just as
symmetries do (e.g. Q = det r in symmetry class D), it becomes apparent
that averaging over all possible reflection matrices of a symmetry class
implies averaging over different topological phases. Since we want to
disentangle the contributions from distinct topological phases we thus
have to subdivide the known superconducting circular ensembles.

By calculating the probability distribution of the Andreev reflection
eigenvalues Rn for these subdivisions of ensembles, we investigate the
influence of topology on the electrical conductance G. We show that
the dependence of G on the topological quantum number Q is non-
perturbative in the number N of scattering channels. As a consequence
a large-N effect such as weak localization cannot probe the topological
quantum number. For small N we calculate the full distribution P(G)
of the conductance and find qualitative differences in the topologically
trivial and nontrivial phases.

1.6.3 Chapter 4

The fourth chapter of the thesis introduces a setup for the unambiguous
detection of topological superconductivity: a quantum point contact at-
tached to a superconducting wire, as depicted in the inset of Fig. 1.12.
The main part of the figure is a plot of the conductance G as a func-
tion of contact width or Fermi energy, showing plateaus at half-integer
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Figure 1.12. Conductance of a ballistic normal-metal–superconductor junction,
with the superconductor in a topologically trivial (blue curve) or nontrivial
phase (red curve). The black dashed curve is for an entirely normal system. By
varying the potential VQPC at constant Fermi energy EF, the width of a point
contact is varied in the setup (see inset).

multiples of 4e2/h if the superconductor is in a topologically nontriv-
ial phase. In contrast, the plateaus are at the usual integer multiples
in the topologically trivial phase. Disorder destroys all plateaus except
the first, which remains precisely quantized, consistent with previous
results for a tunnel contact. The advantage of a ballistic contact over a
tunnel contact as a probe of the topological phase is the strongly reduced
sensitivity to finite voltage or temperature.

By now, experiments have demonstrated signatures of topology in
superconducting wires, with one example summarized in Fig. 1.6. Nev-
ertheless, the quantized nature of the conductance peak height has not
been observed so far, presumably due to finite temperatures. The setup
we propose here could be a step forward on the quest to detect this
quantized peak height.

1.6.4 Chapter 5

In the fifth chapter the focus shifts to time-reversal invariant nodal su-
perconductors. Although they are not topological in the usual sense, a
variety of lower dimensional topological invariants can be defined that
have strong impact on the transport properties of these systems.

Existing expressions for the topological invariant are based on the
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Figure 1.13. Left panel: reflection processes at a planar interface between a
normal-metal and a gapless superconductor. The sketch in the superconduct-
ing region shows the Fermi surfaces and nodal lines for the specific case of
a d-wave superconductor with Rashba spin-orbit coupling. Both the electrical
conductance G and Z topological invariant Q are plotted for this case in the
right panel, shown as a function of momentum k‖ along the NS interface and
angle φ between the interface and the nodal line of the superconductor.

Hamiltonian of an infinite system. We introduce an alternative formula-
tion in terms of the Andreev reflection matrix of a planar normal-metal–
superconductor interface (left panel of Fig. 1.13). This allows to relate
the topological invariant to the angle-resolved Andreev conductance.
We discuss a variety of symmetry classes that may arise depending on
additional unitary symmetries of the reflection matrix. The condition
for the quantization of the conductance is derived in each symmetry
class and is tested on a model for a 2D or 3D superconductor with spin-
singlet and spin-triplet pairing, mixed by Rashba spin-orbit interaction.
The right panel of Fig. 1.13 shows our results for the case of a two-
dimensional d-wave superconductor with spin-singlet pairing.

1.6.5 Chapter 6

In chapter six we introduce the concept of topology into stroboscopic
models, explicitly constructing a two-dimensional periodically kicked
system with a topological phase transition in the quantum Hall univer-
sality class.

Our model is essentially a stroboscopic version of the toy model in
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Figure 1.14. Left axis: Time-dependent diffusion coefficient (solid curve) after a
sufficiently long time of propagation, showing four localization-delocalization
transitions. Right axis: Four-terminal Hall conductance GH (data points) and
topological invariant I (dashed curve), demonstrating that these are topological
phase transitions.

Sec. 1.2.1, combined with a localizing potential term. As we tune the
system through a topological phase transition, the localization length
of the system diverges. This can be observed in the time-dependent
diffusion constant

D(t) = 〈ψ(t)|x2|ψ(t)〉/t, (1.25)

which converges to zero with increasing propagation time if the wave
function localizes. In contrast it stays finite at the critical point. For
our model D is plotted in Fig. 1.14 for a sufficiently large time, show-
ing the presence of four localization-delocalization transitions where
the topology of the system changes. We quantitatively investigate this
localization-delocalization behavior, determining the critical exponent ν
of the transition. Since the critical exponent is a universal property de-
pending only on the symmetries and the dimensionality of the model,
our result straightforwardly applies to corresponding solid state systems
as well.

In order to obtain our results, we used the dimensional reduction
scheme introduced in Sec. 1.5.2 and were thus able to study the quan-
tum Hall transition in a one-dimensional system. Not only is this re-
duction to 1D computationally very efficient, it also provides a possible
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Figure 1.15. Bottom panel: Time-dependent diffusion coefficient for times t =
106 (red), t = 105 (green) and t = 104 (blue), showing three metallic regions.
The points of intersection of these curves locate the metal-insulator transition.
Top panel: Topological quantum number used to distinguish the topologically
trivial (Q = 0) and nontrivial (Q = 1) insulators. In the metallic regions Q is
not quantized.

route to perform experiments on the 2D quantum Hall effect using cold
atoms in a 1D optical lattice. The approach we introduce in this chap-
ter to investigate the quantum Hall transition can readily be generalized
to other symmetry classes and dimensions, making it possible to study
higher-dimensional systems in one spatial dimension as well.

1.6.6 Chapter 7

Following the methods introduced in chapter six we construct a stro-
boscopic model that realizes the Z2 topology of the quantum spin Hall
effect. Due to the presence of time-reversal symmetry, the transition
from the topological to the trivial phase does not happen directly as
in the quantum Hall effect but only via an extended metallic region in
parameter space.

This metallic phase is a bit unusual since wave functions spread
faster than in a normal diffusion process. Thus the time-dependent dif-
fusion coefficient does not tend to a constant value for large times, in
contrast to the situation at the critical point. This is illustrated in Fig.
1.15 for our model. The plotted Z2 topological invariant was calculated
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Figure 1.16. Surface conductivity of a topological insulator as a function of the
height H of randomly positioned Gaussian surface deformations (width W =
10 nm). The insets illustrate characteristic scattering situations that arise for
different heights of the deformations. Dots represent numerical results whereas
the line shows the analytical solution we derived in the shallow deformation
limit.

using a scattering formulation that remains valid in the presence of dis-
order.

Once again we can use the dimensional reduction scheme to find an
effective one-dimensional description of the localization behavior of the
model. In the same way as in chapter six we study the delocalization at
the metal insulator transitions quantitatively, finding that the critical ex-
ponent does not depend on the topological invariant, in agreement with
earlier independent results from the network model of the quantum spin
Hall effect.

1.6.7 Chapter 8

In chapter eight we consider the classical ballistic dynamics of mass-
less electrons on the conducting surface of a three-dimensional topo-
logical insulator, influenced by random variations of the surface height.
Since electrons traveling on the surface of a topological insulator are
constrained to follow its geometry, they essentially move in a curved
space. Their free motion is thus described by so-called geodesic lines,
solutions of the geodesic equation of motion. In the presence of surface
deformations these geodesic lines bend, a process we call geodesic scat-
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tering. We solve the geodesic equation and the Boltzmann equation in
the limit of shallow deformations to obtain the scattering cross section
and the conductivity σ, see Fig. 1.16. At large surface electron densities
n this geodesic scattering mechanism (with σ ∝

√
n) is more effective at

limiting the surface conductivity than electrostatic potential scattering.
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Chapter 2

Random-matrix theory of
thermal conduction in
superconducting quantum
dots

2.1 Introduction

The Landauer approach to quantum transport [1–3] relates a transport
property (such as the electrical or thermal conductance) to the eigen-
values Tn of the transmission matrix product tt†. If transport takes
place through a region with chaotic scattering (typically a quantum
dot), random-matrix theory (RMT) provides a statistical description [4–
6]. While the properties of individual chaotic systems are highly sensi-
tive to the microscopic parameters of the scattering region, such as its
geometry or the arrangements of impurities, they obey universal sta-
tistical features, independent of these details, on energy scales below
the Thouless energy (the inverse of the dwell time). The distribution
P({Tn}) of the transmission eigenvalues then naturally emerges as the
determining quantity for the distribution of the transport properties.

While microscopic details do not influence the statistics, the role of
symmetries is essential. According to Dyson [7, 8], there are three sym-
metry classes in normal (non-superconducting) electronic systems, char-
acterized by a symmetry index β depending on the presence or absence
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Ensemble name CUE COE CSE

Symmetry class A AI AII
S-matrix elements complex complex complex
S-matrix space unitary unitary symmetric unitary selfdual
Time-reversal symmetry × S = ST S = σ2STσ2

Spin-rotation symmetry × or X X ×
degeneracy d of Tn 1 or 2 2 2

β 2 1 4

Table 2.1. Classification of the Wigner-Dyson scattering matrix ensem-
bles for normal (non-superconducting) systems, with the parameter β in
the distribution (2.1) of the electrical conductance. (The parameter γ ≡ 0
in these ensembles.) The abbreviations C(U,O,S)E signify Circular (Uni-
tary,Orthogonal,Symplectic) Ensemble. The Pauli matrix σj acts on the spin
degree of freedom.

of time-reversal and spin-rotation symmetry (cf. Table 2.1). The trans-
mission eigenvalue distribution for these three RMT ensembles is known
[9, 10]. For a single d-fold degenerate channel at the entrance and exit
of the quantum dot this gives the distribution

P(g) ∝ g−1+β/2, 0 < g < 1, (2.1)

of the electrical conductance g (in units of de2/h). The full distribution
P({Tn}) has found a variety of physical applications [11], and has also
been used in a more mathematical context to obtain exact results for
electrical conductance and shot noise [12, 13] and to uncover connections
between quantum chaos and integrable models [14].

As first shown by Altland and Zirnbauer [15], Dyson’s classification
scheme becomes insufficient in the presence of superconducting order:
The particle-hole symmetry of the Bogoliubov-De Gennes Hamiltonian
produces four new symmetry classes [16–18]. Depending again on the
presence or absence of time-reversal and spin-rotation symmetry, these
classes are characterized by β and a second symmetry index γ (cf. Table
2.2) [19, 20]. As we show in this chapter, the analogous result to Eq. (2.1)
is

P(g) ∝ g−1+β/2(1 − g)γ/2, 0 < g < 1, (2.2)

where now g is the thermal conductance in units of dπ2k2
BT0/6h (at tem-

perature T0). We consider thermal transport instead of electrical trans-
port because the Bogoliubov quasiparticles that are transmitted through
a superconducting quantum dot carry a definite amount of energy rather
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Ensemble name CRE T-CRE CQE T-CQE

Symmetry class D DIII C CI
S-matrix elements real real quaternion quaternion
S-matrix space orthogonal orthogonal selfdual symplectic symplectic symmetric
Particle-hole symmetry S = S∗ S = S∗ S = τ2S∗τ2 S = τ2S∗τ2

Time-reversal symmetry × S = σ2STσ2 × S = ST

Spin-rotation symmetry × × X X

degeneracy d of Tn 1 2 4 4
β 1 2 4 2
γ −1 −1 2 1

Table 2.2. Classification of the Altland-Zirnbauer scattering matrix ensem-
bles for superconducting systems. For each ensemble the parameters β, γ in
the distribution (2.2) of the thermal conductance are indicated. The Pauli
matrices σj and τj act on, respectively the spin and particle-hole degrees of
freedom. The abbreviations (T)-C(R,Q)E signify (Time-reversal-symmetric)-
Circular (Real,Quaternion) Ensemble.

than a definite amount of charge. (Charge is not conserved upon An-
dreev reflection at the superconductor, when charge-2e Cooper pairs are
absorbed by the superconducting condensate.)

Concerning previous related studies, we note that the electrical con-
ductance has been investigated by Altland and Zirnbauer [15], but not
the thermal conductance. Thermal transport in superconductors has
been studied in connection with the thermal quantum Hall effect in two
dimensions [21–23], and also in connection with one-dimensional local-
ization [24, 25]. The present study complements these works by address-
ing the zero-dimensional regime in connection with chaotic scattering.

The outline of this chapter is as follows. Sections 2.2 and 2.3 formu-
late the problem and present P({Tn}). In Sec. 2.4 we then apply this
to the statistics of the thermal conductance. The probability distribu-
tion (2.2) in the single-channel limit is of particular interest (since it is
furthest from a Gaussian), but it can only be reached in the Andreev
quantum dot in the presence of spin-rotation symmetry. A fermion-
doubling problem stands as an obstacle when spin-rotation symmetry
is broken. We show how to overcome this obstacle in Sec. 2.5 using
topological phases of matter [26–28] (topological superconductors or in-
sulators). We close in Sec. 2.6 with a summary and a proposal to realize
the superconducting ensembles in graphene.



32 Chapter 2. Random-matrix theory of thermal conduction

Figure 2.1. Quantum dot in a two-dimensional electron gas, connected to a
pair of superconductors (shaded) and to two normal-metal reservoirs. One of
the normal reservoirs is at a slightly elevated temperature T0 + δT.

2.2 Formulation of the problem

2.2.1 Andreev quantum dot

An Andreev quantum dot, or Andreev billiard, is a confined region in a
two-dimensional electron gas connected to superconducting electrodes
(see Fig. 2.1). Electronic transport through this system is governed by
the interplay of chaotic scattering at the boundaries of the quantum dot
and Andreev reflection at the superconductors. (See Ref. 30 for a re-
view.) We assume s-wave superconductors, with an isotropic gap ∆, so
for excitation energies E < ∆ there are no modes propagating into the
superconductors. In order to enable quasiparticle transport, the cavity
has two additional leads connected to it which support N1, N2 propagat-
ing modes (not counting degeneracies). The leads connect the cavity to
normal-metal reservoirs in local thermal equilibrium.

Quasiparticle transmission is possible only if the excitations of the
Andreev quantum dot (without the leads) are gapless. This is also nec-
essary for the excitations to explore the phase space of the cavity, an
essential requirement for chaotic scattering. Gapless excitations are en-
sured by taking two superconducting electrodes with the same contact
resistance and a phase difference π. This value of the phase difference
closes the gap while respecting time-reversal invariance (because phase
differences π and −π are equivalent). Time-reversal invariance can be
broken by application of a magnetic field, perpendicular to the plane of
the dot. (A sufficiently strong magnetic field closes the gap, so then the
π-phase difference of the superconductors is not needed and a single
superconducting electrode is sufficient.) Spin-rotation symmetry can be
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broken by spin-orbit coupling. An ensemble of chaotic systems can be
generated, for example, by varying the shape of the quantum dot or by
a random arrangement of impurities.

In global equilibrium the superconducting and normal-metal con-
tacts are all at the same temperature T0 and Fermi energy (or chemical
potential) EF. For thermal conduction in the linear response regime
we raise the temperature of one of the normal metals by an amount
δT ≪ T0. The thermal conductance G is the heat current between the
normal reservoirs divided by δT. (The reservoirs are kept at the same
chemical potential, so there is no thermo-electric contribution to the heat
current.)

If kBT0 is small compared to the Thouless energy (the inverse dwell
time in the quantum dot), then G is determined by the transmission
eigenvalues at the Fermi energy,

G = dG0 ∑
n

Tn. (2.3)

The sum runs over the min (N1, N2) nonzero transmission eigenvalues
Tn, with spin and/or particle-hole degeneracy accounted for by the fac-
tor d. The thermal conductance quantum for superconducting systems
is G0 = π2k2

BT0/6h, one-half the normal-state value [2, 29].

2.2.2 Scattering matrix ensembles

The scattering matrix S is a unitary matrix of dimension (N1 + N2) ×
(N1 + N2) that relates the amplitudes of outgoing and incoming modes
in the two leads connected to the normal reservoirs. The energy is fixed
at the Fermi level (E = 0). Four sub-blocks of S define the transmission
and reflection matrices,

S =

(

rN1×N1 t′N1×N2

tN2×N1 r′N2×N2

)

. (2.4)

(The subscripts refer to the dimension of the blocks.) Table 2.2 lists
the Altland-Zirnbauer symmetry classes to which S belongs, and the
corresponding RMT ensembles [15–18]. We briefly discuss the various
entries in that table.

In the case of systems without spin-rotation symmetry, it is conve-
nient to choose the Majorana basis in which S has real matrix elements.1

1The basis in which S is real is constructed by taking the combinations |e〉 + |h〉,
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Without time-reversal symmetry (symmetry class D), the scattering ma-
trix space is thus the orthogonal group. The presence of time-reversal
symmetry imposes the additional constraint S = σ2STσ2, where σj is a
Pauli matrix in spin-space, and T indicates the matrix transpose. The
scattering matrices in this symmetry class DIII are self-dual orthogonal
matrices. (The combination σ2 ATσ2 is the so-called dual of the matrix
A.)

If spin-rotation symmetry is preserved, the spin degree of freedom
can be omitted if we use the electron-hole basis (rather than the Majo-
rana basis). The electron-hole symmetry relation then reads S = τ2S∗τ2,
where now the Pauli matrices τj act on the electron-hole degree of free-
dom. The matrix elements of S can be written in the quaternion form
a0τ0 + i ∑

3
n=1 anτn, with real coefficients an. The scattering matrix space

for the symmetry class C without time-reversal symmetry is the sym-
plectic group, additionally restricted to symmetric matrices in the pres-
ence of time-reversal symmetry (class CI).

Henceforth we assume that the quantum dot is connected to the
leads via ballistic point contacts. The RMT ensembles in this case are
defined by S being uniformly distributed with respect to the invariant
measure dµ(S) in the scattering matrix space for each particular symme-
try class [15]. (For the distribution in the case that the contacts contain
tunnel barriers, see Ref. 31.)

It is convenient to have names for the Altland-Zirnbauer ensembles,
analogous to the existing names for the Dyson ensembles. Zirnbauer
[18] has stressed that the names D,DIII,C,CI given to the symmetry
classes (derived from Cartan’s classification of symmetric spaces) should
be kept distinct from the ensembles, because a single symmetry class can
produce different ensembles. Following Ref. 32, we will refer to the Cir-
cular Real Ensemble (CRE) and Circular Quaternion Ensemble (CQE) of
uniformly distributed real or quaternion unitary matrices. The presence
of time-reversal symmetry is indicated by T-CRE and T-CQE. (The pre-
fix T can also be thought of as referring to the matrix transpose in the
restrictions imposed by time-reversal symmetry.)

i|e〉 − i|h〉 of the electron and hole states |e〉, |h〉 with the same spin and mode quantum
numbers. The corresponding creation and annihilation operators are identical, so these
basis states represent Majorana fermions.
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2.3 Transmission eigenvalue distribution

2.3.1 Joint probability distribution

Because of unitarity, the matrix products tt† and t′t′† have the same set
T1, T2, . . . TNmin of nonzero eigenvalues, with Nmin = min (N1, N2). The
calculation of the joint probability distribution P({Tn}) of these trans-
mission eigenvalues from the invariant measure dµ(S) is outlined in
App. 2.A [38]. (It is equivalent to the calculation of the Jacobian given
in Ref. 24.) The result is

P({Tn}) ∝ ∏
i

T
(β/2)(N1−N2)
i T

−1+β/2
i (1 − Ti)

γ/2

× ∏
j<k

∣

∣Tk − Tj

∣

∣

β. (2.5)

The values of the parameters β and γ characterizing the Altland-Zirnbauer
symmetry classes are listed in Table 2.2.

The distribution (2.5) differs from the result [4, 9, 10] in the Dyson
ensembles by the factor ∏i(1 − Ti)

γ/2. Depending on the sign of γ, this
factor produces a repulsion or attraction of the Ti’s to perfect transmis-

sion. In contrast, the factor ∏i T
−1+β/2
i , which exists also in the Dyson

ensembles, repels or attracts the Ti’s to perfect reflection. The distribu-
tions P(T1) for N1 = N2 = 1 in the various ensembles are plotted in Fig.
2.2. In view of Eq. (2.3), this is just the distribution (2.2) of the thermal
conductance in the single-channel limit announced in the Introduction.
(How to actually reach this limit is discussed in following Sections.)

2.3.2 Eigenvalue density

The density ρ(T) of the transmission eigenvalues is defined by

ρ(T) =

〈

∑
n

δ(T − Tn)

〉

, (2.6)

where 〈· · · 〉 denotes an average with distribution (2.5). It can be calcu-
lated for N1, N2 ≫ 1 using the general methods of RMT [4].

To leading order in N1, N2 the eigenvalue density approaches the β
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Figure 2.2. Probability distribution (2.5) in the case N1 = N2 = 1 of a single
(d-fold degenerate) transmission eigenvalue T, which then corresponds to the
(dimensionless) thermal conductance g = G/dG0. The four curves correspond
to the four superconducting ensembles in Table 2.2.

and γ independent limiting form [4, 9, 10]

ρ0(T) =
N1 + N2

2π

(

T − Tc

1 − T

)1/2 1
T

× Θ(1 − T)Θ(T − Tc), (2.7)

Tc =
(N1 − N2)2

(N1 + N2)2 . (2.8)

(The function Θ(x) is the unit step function, Θ(x) = 0 if x < 0 and
Θ(x) = 1 if x > 0.) The approach to this ensemble-independent density
with increasing N1 = N2 is shown in Fig. 2.3 for one of the ensembles.

The first correction δρ to ρ0 is of order unity in N1, N2, given by

δρ(T) = 1
4(1 − 2/β)[δ(1 − T) − δ(T − Tc)]

− 1
2(γ/β)δ(1 − T)

+
1

2π
(γ/β)

Θ(1 − T)Θ(T − Tc)
√

(1 − T)(T − Tc)
. (2.9)

We will use this expression in Sec. 2.4.2 to calculate the weak localization
effect on the thermal conductance.
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Figure 2.3. Transmission eigenvalue densities in the T-CQE for various num-
bers N = N1 = N2 of transmission eigenvalues, calculated from Eq. (2.5). The
large-N limit is the same for each ensemble.

2.4 Distribution of the thermal conductance

2.4.1 Minimal channel number

The strikingly different probability distributions (2.1) and (2.2) in the
normal and superconducting ensembles apply to transmission between
contacts with a single (possibly degenerate) non-vanishing transmission
eigenvalue. For the normal ensembles a narrow point contact suffices
to reach this single-channel limit. In the superconducting ensembles a
narrow point contact is not in general sufficient, because electrons and
holes may still contribute independently to the thermal conductance.

Consider the Andreev quantum dot of Fig. 2.1. The minimal number
of propagating modes incident on the quantum dot from each of the two
leads is 2× 2 = 4: a factor-of-two counts the spin directions, and another
factor-of-two the electron-hole degrees of freedom. In the CQE and T-
CQE the four transmission eigenvalues are all degenerate, so we have
reached the single-channel limit where the distribution (2.2) applies.

The situation is different in the CRE and T-CRE. In the T-CRE two
of the four transmission eigenvalues are independent (and a two-fold
Kramers degeneracy remains). In the CRE all four transmission eigen-
values are independent, but two of the four can be eliminated by spin-
polarizing the leads by means of a sufficiently strong magnetic field. So
the case with two independent transmission eigenvalues (with degener-
acy factor d = 2 for the T-CRE) is minimal in the Andreev quantum dot
with broken spin-rotation symmetry.
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Figure 2.4. Probability distribution of the dimensionless thermal conductance
in the two ensembles with broken spin-rotation symmetry, for two independent
transmission eigenvalues (N1 = N2 = 2). This is the minimal channel number
in an Andreev quantum dot. To reach the single-channel case in the CRE or
T-CRE (N1 = N2 = 1, plotted in Fig. 2.2) one needs a topological phase of
matter, as discussed in Sec. 2.5.

We have calculated the corresponding probability distribution of the
(dimensionless) thermal conductance g = T1 + T2 by integrating over the
transmission eigenvalue distribution (2.5). The result, plotted in Fig. 2.4,
has a singularity at g = 1, in the form of a divergence in the CRE and
a cusp in the T-CRE. It is entirely different from the distribution in the
single-channel case (see Fig. 2.2). How to reach the single-channel limit
in the CRE and T-CRE using topological phases of matter is described
in Sec. 2.5.

2.4.2 Large number of channels

In the limit N1, N2 ≫ 1 of a large number of channels the distribution
of the thermal conductance is a narrow Gaussian. We consider first the
average and then the variance of this distribution.

The average conductance can be calculated by integrating over the
eigenvalue density ρ(T) of Sec. 2.3.2. We write the average of the di-
mensionless thermal conductance g = G/dG0 as 〈g〉 = g0 + δg, where
g0 is the leading order term for large N1, N2 and δg is the first correction.



2.4 Distribution of the thermal conductance 39

From Eqs. (2.7)–(2.9) we obtain

g0 =
N1N2

N1 + N2
, (2.10)

δg =
1
β
(β − 2 − γ)

N1N2

(N1 + N2)2 . (2.11)

The result (2.11) for δg in the zero-dimensional regime of a quantum
dot has the same dependence on the symmetry indices as in the one-
dimensional wire geometry studied by Brouwer et al [24].

Filling in the values of β, γ, and d in the four superconducting en-
sembles from Table 2.2, we see that (for N1 = N2)

δG =











0 in the CRE and CQE,

−G0/2 in the T-CQE,
G0/4 in the T-CRE.

(2.12)

This is fully analogous to the weak (anti)localization effect for the elec-
trical conductance (with G0 = e2/h) in the non-superconducting ensem-
bles [4]. Without time-reversal symmetry (in the CRE, CQE, and CUE)
there is no effect (δG = 0), with both time-reversal and spin-rotation
symmetry (in the T-CQE and COE) there is weak localization (δG < 0)
and with time-reversal symmetry but no spin-rotation symmetry (in the
T-CRE and CSE) there is weak antilocalization (δG > 0).

Turning now to the variance, we address the thermal analogue of
universal conductance fluctuations. It is a central result of RMT[4] that
the Gaussian distribution of g has a variance of order unity in the large
N-limit, determined entirely by the eigenvalue repulsion factor ∏i<j |Ti −
Tj|β in the probability distribution (2.5). The γ-dependent factors plays
no role. The result of the Dyson ensembles [9, 10],

Var g =
2(N1N2)2

β(N1 + N2)4 , (2.13)

therefore still applies in the Altland-Zirnbauer ensembles.
For N1 = N2 we find the variance of the thermal conductance Var G =

G2
0/p with p = 8, 4, 2, 1 in, respectively, the CRE, T-CRE, CQE, T-CQE.

Breaking of time-reversal symmetry thus reduces the variance of the
thermal conductance in the superconducting ensembles by a factor of
two, while breaking of spin-rotation symmetry reduces it by a factor of
four. This is fully analogous to the electrical conductance in the non-
superconducting ensembles.
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2.4.3 Arbitrary number of channels

While the results from the previous subsection for the average and vari-
ance of the thermal conductance hold in the limit of a large number of
channels, it is also possible to derive exact results for arbitrary N1, N2.
Following the method described in Ref. 12, the moments of g can be
evaluated using the Selberg integral [8]. We find

〈g〉 =
N1N2

Nt + ξ
, (2.14)

Var g =
2N1N2(N1 + ξ)(N2 + ξ)

β(Nt − 1 + ξ)(Nt + ξ)2(Nt + ξ + 2/β)
, (2.15)

where we abbreviated Nt = N1 + N2 and ξ = (2− β + γ)/β. One readily
checks that the large-N limits (2.10), (2.11), and (2.13) are consistent with
Eqs. (2.14) and (2.15).

2.5 How to reach the single-channel limit using topo-

logical phases

As explained in Sec. 2.4.1, the single-channel distribution (2.2) of the
thermal conductance can only be realized in an Andreev quantum dot
in two of the four superconducting ensembles: CQE and T-CQE. The
minimal channel number in the CRE and T-CRE is two, with an entirely
different conductance distribution (compare Figs. 2.2 and 2.4). Here
we show how this fermion doubling can be avoided using topological
insulators or superconductors.

Consider first the CRE. To have just a single nonzero transmission
eigenvalue we need incoming and outgoing modes that contain only
half the degrees of freedom of spin-polarized electrons. These so-called
Majorana modes propagate along the edge of a two-dimensional spin-
polarized-triplet, px ± ipy-wave superconductor [26, 33], Following Ref.
32, we consider the scattering geometry shown in Fig. 2.5. The role of
the quantum dot is played by a disordered domain wall between p-wave
superconductors of opposite chirality. The system has two incoming
and two outgoing Majorana modes, with a 2 × 2 scattering matrix in
the CRE. The thermal conductance between the two domains has the
single-channel distribution (2.2) (with β = 1, γ = −1).
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Figure 2.5. Realization of single-channel transmission in the CRE, following
Ref. 32. The arrows indicate the direction of propagation of chiral Majorana
modes at the edges of a px ± ipy-wave superconductor. The shaded strip at
the center represents a disordered boundary between two domains of opposite
chirality. The thermal conductance is measured between two reservoirs at a
temperature difference δT, and has the single-channel distribution (2.2) (with
β = 1, γ = −1).

We now turn to the T-CRE. For a single two-fold degenerate trans-
mission eigenvalue we need a 4 × 4 scattering matrix. Time-reversal
invariant scattering in this single-channel limit can be achieved if one
uses helical Majorana modes (propagating in both directions) instead of
chiral Majorana modes (propagating in a single direction only). These
can be realized using s-wave superconductors deposited on the two-
dimensional conducting surface of a three-dimensional topological in-
sulator [34].

The scattering geometry is illustrated in Fig. 2.6. The helical Ma-
jorana modes propagate along a channel with superconducting bound-
aries having a phase difference of π (order parameter ±∆0). Two normal-
metal contacts at a temperature difference δT inject quasiparticles via a
pair of these modes into a region with chaotic scattering (provided by
irregularly shaped boundaries or by disorder). The π phase difference
of the superconductors that form the boundaries of the quantum dot
also ensures that there is no excitation gap in that region. There are four
incoming and four outgoing Majorana modes, so the scattering matrix
has dimension 4× 4 and the thermal conductance has the single-channel
T-CRE distribution (2.2) (with β = 2, γ = −1).

The geometry of Fig. 2.6 also provides an alternative way to reach
the single-channel limit in the CRE. One then needs to replace the two
superconducting islands having order parameter −∆0 by ferromagnetic
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Figure 2.6. Realization of single-channel transmission in the T-CRE. The con-
ducting surface of a topological insulator is partially covered by an s-wave
superconductor, with order parameter ±∆0. Two contacts at temperature dif-
ference δT inject quasiparticles via two pairs of helical Majorana modes (indi-
cated by arrows). For chaotic scattering in the central region, the thermal con-
ductance is given by the single-channel distribution (2.2) (with β = 2, γ = −1).

insulators. The Majorana modes transform from helical to chiral [34]
and one has essentially the same scattering geometry as in Fig. 2.5 —
but with s-wave rather than p-wave superconductors.

2.6 Conclusion

In conclusion, we have obtained the distribution of transmission eigen-
values for low-energy chaotic scattering in the four superconducting en-
sembles. From this distribution all moments of the thermal conduc-
tance of an Andreev quantum dot can be calculated. In the limit of
a large number of scattering channels the phenomena of weak (anti)-
localization and mesoscopic fluctuations are analogous to those for the
electrical conductance in the non-superconducting ensembles. The op-
posite single-channel limit, however, shows striking differences. Most
notably, in the absence of time-reversal symmetry, the thermal conduc-
tance distribution is either peaked or suppressed at minimal and maxi-
mal conductance, while the corresponding distribution of the electrical
conductance is completely uniform.

While Andreev quantum dots with multiple scattering channels can
be realized in a two-dimensional electron gas with s-wave supercon-
ductors, the single-channel limit is out of reach in these systems in the
absence of spin-rotation symmetry because of a fermion doubling prob-
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lem. We have shown how Majorana modes at the interface between
different topological phases can be used to overcome this problem.

In closing we point to the possibility to realize the four superconduct-
ing ensembles in graphene, where a strong proximity effect to s-wave su-
perconductors has been demonstrated [35]. An Andreev quantum dot
in graphene could be created using superconducting boundaries [36] ,as
in Fig. 2.6. Since spin-orbit coupling is ineffective in graphene, only
the two ensembles which preserve spin-rotation symmetry (CQE and
T-CQE) are accessible in principle. However, if intervalley scattering is
sufficiently weak (on the time scale set by the dwell time in the quan-
tum dot), then the sublattice degree of freedom can play the role of the
electron spin. This pseudospin is strongly coupled to the orbit, so one
can then access the two ensembles with broken spin-rotation symmetry
(CRE and T-CRE).

It is an interesting question to ask whether the single-channel limit
might be reachable in graphene. For the CQE and T-CQE we need strong
intervalley scattering, to remove the valley degeneracy. For the T-CRE
we need weak intervalley scattering, and could use the very same setup
as in Fig. 2.6. One can then do without a topological insulator, because
the helical Majorana modes exist also in graphene at the interface be-
tween superconductors with a π phase difference [37]. For the CRE,
however, weak intervalley scattering is not enough. We would also need
to convert the helical Majorana mode into a chiral mode, which we do
not know how to achieve without a topological phase.
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Appendix 2.A Calculation of the transmission eigen-

value distribution

We briefly outline how to obtain the distribution (2.5) of the transmission
eigenvalues from the invariant measure. (For a more detailed presenta-
tion of this type of calculation we refer to a textbook [38]). One goes
through the following steps. The polar decomposition of S provides us
with a parametrization in terms of the transmission eigenvalues Ti and
angular parameters pi. We express the invariant measure dµ(S) in terms
of these parameters via the metric tensor m: dµ(S) =

√
det m ∏i dxi,

where {xi} denotes the full set of parameters {Ti, pi} and m is defined
by Tr (dS†dS) = ∑ij mijdxidxj. Upon integration over the pi’s we obtain
the required distribution P({Ti}).

Starting from the first step, the polar decomposition reads

S =

(

U1 0
0 U2

)

(√
1 − ΛΛT iΛ

iΛT
√

1 − ΛTΛ

)

(

V†
1 0

0 V†
2

)

, (2.16)

where the N1 × N2 matrix Λ has elements Λjk =
√

Tjδjk. Referring to
Table 2.2, the transmission eigenvalues have a twofold electron-hole de-
generacy in classes C and CI, as a direct consequence of the fact that the
matrix elements can be represented by (real) quaternions. In addition,
there is a twofold spin degeneracy because spin-rotation symmetry is
preserved. In class DIII, the presence of time-reversal symmetry pro-
duces a twofold Kramers degeneracy of the transmission eigenvalues.
(We focus on the situation where N1 and N2 are even.) The unitary ma-
trices Un and Vn are orthogonal in classes D and DIII and symplectic in
classes C and CI. They are independent in classes D and C. In class DIII
one has V†

n = σ2UT
n σ2, while in class CI V†

n = U∗
n .

The following steps are straightforward, apart from one complica-
tion. In the polar decomposition, the set of Ti’s and the matrices Un

and Vn introduce more parameters than the number of independent de-
grees of freedom of the scattering matrix. The metric tensor, however,
is defined through the derivatives of S with respect to the set of its in-
dependent parameters. Keeping {Ti} in our parametrization, we define
the angular parameters {pi} as independent combinations of the matrix
elements of δUn = U†

ndUn and δVn = V†
n dVn. In this way, the subsequent

integration over these degrees of freedom does not involve dependencies
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on the Ti’s. The integration over these parameters thus only produces an
irrelevant normalization constant and need not be carried out explicitly.
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Chapter 3

Random-matrix theory of
Andreev reflection from a
topological superconductor

3.1 Introduction

The random-matrix theory (RMT) of quantum transport studies the sta-
tistical distribution of phase-coherent transport properties in an ensem-
ble of random scattering matrices. The theory finds a major applica-
tion in the context of chaotic scattering, because then the ensemble is
fully specified by fundamental symmetries — without requiring mi-
croscopic input [1]. Since scattering phase shifts for chaotic scattering
are uniformly distributed on the unit circle, such ensembles are called
“circular”, following Dyson who first introduced these ensembles in a
mathematical context [2]. The circular ensembles have been success-
ful in describing experiments on low-temperature electrical and thermal
conduction in quantum dots, which are confined geometries connected
by point contacts to metallic or superconducting electrodes. For a re-
cent overview of the field we refer to several chapters of a forthcoming
Handbook [3].

While metallic quantum dots are characterized by the three circular
ensembles introduced originally by Dyson [2], superconducting quan-
tum dots are described by four different ensembles discovered by Al-
tland and Zirnbauer [4]. The classification of the superconducting en-
sembles is based on the presence or absence of time-reversal and spin-



52 Chapter 3. RMT of topological Andreev reflection

Symmetry class D DIII C CI
Ensemble name CRE T-CRE CQE T-CQE
Particle-hole symmetry ree = r∗hh, reh = r∗he ree = r∗hh, reh = −r∗he

Time-reversal symmetry × r = ΣyrTΣy × r = rT

Spin-rotation symmetry × × X X

topological quantum number Q Det r Pf iΣyr × ×
degeneracy of Rn 6= 0, 1 2 2 2 2
degeneracy of Rn = 0, 1 1 2 2 2

Table 3.1. Classification of the symmetries of the reflection matrix r for a
normal-metal–superconductor junction. See Sec. 3.2 for explanations.

rotation symmetry, as summarized in Table 3.1. The symmetry classes
are called D, DIII, C, and CI, in a notation which originates from dif-
ferential geometry [4]. The corresponding circular ensembles, in the
nomenclature of Ref. 5, are the circular real (CRE) and circular quater-
nion (CQE) ensembles in class D and C, respectively, and their time-
reversal invariant restrictions (T-CRE and T-CQE) in class DIII and CI.

In a remarkable recent development, it was found that some of these
symmetry classes divide into disjunct subclasses, characterized by a
topological quantum number [6–9]. For a quantum dot connected to
a superconducting wire, such as shown in Fig. 3.1, the topological quan-
tum number Q = −1 or +1 depending on whether or not the quan-
tum dot has a bound state at zero excitation energy. (The state is only
quasi-bound if the quantum dot is also connected by a point contact
to a normal-metal electrode.) Because of particle-hole symmetry, such
a fermionic excitation is equal to its own antiparticle, so it is a Majo-
rana fermion. There is now an active search for the Majorana bound
states predicted to appear at the ends of superconducting wires without
spin-rotation symmetry [10–15].

The RMT of the four superconducting circular ensembles was de-
veloped for the quasiparticle transmission eigenvalues in Ref. 5, and
applied to the thermal conductance. The probability distribution of this
transport property does not depend on the topological quantum num-
ber, so it was not needed in that study to distinguish the topologically
nontrivial ensemble (with a Majorana bound state) from the topologi-
cally trivial ensemble (without such a state).

The electrical conductance G, in contrast, can probe the presence
or absence of the Majorana bound state through resonant Andreev re-
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Figure 3.1. Quantum dot with an interface between a normal metal (N) and
a superconductor (S, shaded region). Andreev reflection at the NS interface
converts a normal current (carried by electron and hole excitations e and h)
into a supercurrent (carried by Cooper pairs). The conductance G is the ratio
of the current I into the grounded superconductor and the voltage V applied
to the quantum dot via an N-mode point contact to a normal metal electrode
(narrow opening at the left). The system is in a topologically nontrivial state if it
supports a quasi-bound state at the Fermi level. This is possible if spin-rotation
symmetry is broken by spin-orbit coupling. In the configuration shown in the
figure (with a single NS interface), time-reversal symmetry should be broken to
prevent the opening of an excitation gap in the quantum dot. In the presence
of time-reversal symmetry a second NS interface, with a π phase difference,
can be used to close the gap.

flection [16, 17]. This applies also to a quasi-bound state [18, 19], so
even if the N-mode point contact to the normal metal has a conduc-
tance which is not small compared to e2/h — although the effect of Q
on G diminishes with increasing N. As we will show in this chapter,
the Q-dependence of the conductance distribution P(G) in the circular
ensembles is nonperturbative in N: Cumulants of order p are identical
in the topologically trivial and nontrivial phases for p < N (N/2) in the
absence (presence) of time-reversal symmetry.

We derive this nonperturbative result by exactly computing (in Sec.
3.3 and App. 3.A) the joint probability distribution P({Rn}) of the An-
dreev reflection eigenvalues R1, R2, . . . RN (eigenvalues of the product
r†

herhe of the matrix rhe of Andreev reflection amplitudes). This proba-
bility distribution was only known previously for one of the ensembles
(CQE) without a topological phase [20], while here we calculate it for all
four superconducting ensembles, including the possibility of a topolog-
ically nontrivial phase.

The distribution of the electrical conductance G ∝ ∑n Rn follows on
integration over the Rn’s (Sec. 3.4). For small N we obtain a closed-
form expression for P(G) in the two cases Q = ±1, and we demonstrate
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that, on increasing N, first the average becomes the same, followed by
variance, skewness, kurtosis, etc. A proof for arbitrary N of the Q-
independence of low-order cumulants is given in App. 3.B.

We conclude in Sec. 3.5 with a comparison of the analytical pre-
dictions from RMT with a computer simulation of a system that is of
current experimental interest (a disordered semiconductor wire on an
s-wave superconducting substrate, with Rashba spin-orbit coupling and
Zeeman spin splitting) [10, 11].

3.2 Andreev reflection eigenvalues

Andreev reflection of electrons injected through a point contact towards
a normal-metal–superconductor (NS) interface is described by the N × N
subblock rhe of the 2N × 2N reflection matrix r,

r =

(

ree reh

rhe rhh

)

. (3.1)

The labels e and h refer to electron and hole excitations in the normal-
metal point contact, each of which can be in one of N modes. We allow
for spin-orbit coupling, so N counts both orbital and spin degrees of
freedom. The Andreev reflection eigenvalues Rn (n = 1, 2, . . . N) are the
eigenvalues of the Hermitian matrix product r†

herhe.
At excitation energies ε below the superconducting gap ∆ there is no

transmission of excitations through the superconductor (assuming that
it is large compared to the penetration depth ξ0 = h̄vF/∆). The reflection
matrix is then a unitary matrix, r† = r−1. An electrical current I can still
enter into the superconductor, driven by a voltage difference V with the
normal metal. The electrical conductance G = I/V is fully determined
by the Andreev reflection eigenvalues [21],

G/G0 = N − Tr r†
eeree + Tr r†

herhe = 2
N

∑
n=1

Rn. (3.2)

The conductance quantum is G0 = e2/h and the factor of two accounts
for the fact that charge is added to the superconductor as Cooper pairs
of charge 2e. (Spin is counted in the sum over n.)

The relation (3.2) holds in the limit of zero voltage and zero temper-
ature, when the reflection matrix is evaluated at the Fermi level (ε → 0).



3.2 Andreev reflection eigenvalues 55

The subblocks in Eq. (3.1) are then related by particle-hole symmetry,

rhh = r∗ee, reh = r∗he. (3.3)

Time-reversal symmetry imposes a further constraint on the reflection
matrix,

r = ΣyrTΣy, (3.4)

with Σy = σy ⊕ σy ⊕ · · · ⊕ σy and σy a 2× 2 Pauli matrix. (The superscript
T denotes the transpose.)

The Andreev reflection eigenvalues are all twofold degenerate in the
presence of time-reversal symmetry. This is the usual Kramers degen-
eracy, which follows directly from the fact that Σyr is an antisymmetric
matrix [Σyr = −(Σyr)T] when Eq. (3.4) holds [22].

Remarkably enough, a twofold degeneracy persists even if time-
reversal symmetry is broken. More precisely, as discovered by Béri [23],
if Rn is not degenerate then it must equal 0 or 1. This follows from
the antisymmetry of the matrix rT

heree, which is required by particle-hole
symmetry and unitarity irrespective of whether time-reversal symmetry
is present or not. The degeneracy of the Andreev reflection eigenvalues
Rn 6= 0, 1 is remarkable because the eigenvalues of the Hamiltonian are
not degenerate in the absence of time-reversal symmetry. To distinguish
it from the Kramers degeneracy, we propose the name “Béri degener-
acy”.

The determinant of r is real due to particle-hole symmetry, and there-
fore equal to either +1 or −1 due to unitarity. The topological quantum
number Q = Det r distinguishes the topologically trivial phase (Q = 1)
from the topologically nontrivial phase (Q = −1) [24–26]. This quantum
number is ineffective in the presence of time-reversal symmetry, when
Kramers degeneracy enforces Det r = 1. In that case the Pfaffian (the
square root of the determinant of an antisymmetric matrix) can be used
instead of the determinant to identify the topologically nontrivial phase
[27]: Q = Pf iΣyr equals +1 or −1 depending on whether the supercon-
ductor is topologically trivial or not.

A topologically nontrivial superconductor has a (possibly degener-
ate) bound state at ε = 0, consisting of an equal-weight superposition
of electrons and holes from the same spin band. It is the π phase shift
upon reflection from such a Majorana bound state which is responsible
for the minus sign in the topological quantum number [26].
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These properties of the reflection matrix in the absence of spin-rotation
symmetry are summarized in Table 3.1. For completeness, we also in-
clude in that table the case when there is no spin-orbit coupling. In that
case it is sufficient to consider only the orbital degree of freedom, with
a two-fold spin degeneracy of all Rn’s. The conditions for particle-hole
symmetry and time-reversal symmetry are then both different from Eqs.
(3.3) and (3.4), given respectively by

rhh = r∗ee, reh = −r∗he, (3.5)

r = rT. (3.6)

As a consequence, the determinant of r is now always +1, while the
Pfaffian does not exist (for want of an antisymmetric matrix). Without
spin-orbit coupling Andreev reflection exclusively couples electrons and
holes from opposite spin bands, which prevents the formation of a Ma-
jorana bound state at the NS interface.

3.3 Random-matrix theory

In this section we calculate the distribution of the Andreev reflection
eigenvalues, which we then apply to electrical conduction in the next
section. For each symmetry class we first determine the polar decom-
position of r in terms of the Rn’s. The resulting invariant measure
dµ(r) ∝ P({Rn}) ∏n dRn then gives the probability distribution P({Rn})
of the Andreev reflection eigenvalues in the corresponding circular en-
semble.

3.3.1 Class D, ensemble CRE

In the absence of time-reversal and spin-rotation symmetry the scatter-
ing matrix has the polar decomposition

r =

(

U 0
0 U∗

)(

Γ −iΛ
iΛ Γ

)(

V† 0
0 VT

)

. (3.7)

The N × N matrices U, V are unitary and the N × N matrices Λ and Γ

are real, to satisfy the particle-hole symmetry condition (3.3). Unitarity
of r requires, in addition to ΓTΓ + ΛTΛ = 1, that ΛTΓ = −ΓTΛ is anti-
symmetric. As derived in Ref. 23, the matrices Λ and Γ must therefore
have a 2 × 2 block diagonal structure.
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For N = 2M even and Q = 1 one has Λ = ΛM, Γ = ΓM with

ΛM =
M
⊕

n=1

(

sin αn 0
0 sin αn

)

=
M
⊕

n=1

σ0 sin αn, (3.8)

ΓM =
M
⊕

n=1

(

0 cos αn

− cos αn 0

)

=
M
⊕

n=1

iσy cos αn. (3.9)

The 2× 2 Pauli matrices are σx, σy, σz (with σ0 the 2× 2 unit matrix). The
real angles αn ∈ (0, 2π) determine the Andreev reflection eigenvalues
Rn = sin2 αn. These are all twofold degenerate.

The parameterization derived in Ref. 23 has ΛM ∝ iσy and ΓM ∝ σ0.
The present, equivalent, form is chosen because it is more easily ex-
tended to symmetry class DIII (where an additional symmetry condition
applies). For the same reason, we parameterize the diagonal entries in
terms of the angles αn rather than in terms of

√
Rn and

√
1 − Rn. (The

sign of the terms sin αn, cos αn cannot be fixed in class DIII.)
To check that the polar decomposition (3.7)–(3.9) indeed gives Det r =

1, one can use the identities Det AB = (Det A)(Det B) and

Det
(

A B
C D

)

= Det (AD − ACA−1B). (3.10)

For N = 2M even and Q = −1 one has

Λ = ΛM−1 ⊕
(

0 0
0 1

)

, Γ = ΓM−1 ⊕
(

1 0
0 0

)

, (3.11)

so in addition to M− 1 two-fold degenerate eigenvalues R1, R2, . . . RM−1
there is one nondegenerate eigenvalue equal to 0 and one nondegenerate
eigenvalue equal to 1. It is this unit Andreev reflection eigenvalue which
contributes a factor −1 to Det r.

For N = 2M + 1 odd there are M two-fold degenerate eigenval-
ues R1, R2, . . . RM plus one nondegenerate eigenvalue equal to q = (1 −
Q)/2,

Λ = ΛM ⊕ (q), Γ = ΓM ⊕ (1 − q). (3.12)

The nondegenerate eigenvalue equals 1 in the topologically nontrivial
phase and 0 otherwise. Again, it is the unit Andreev reflection eigen-
value which gives Det r = −1.
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The calculation of the invariant measure from these polar decompo-
sitions is outlined in App. 3.A. The resulting probability distributions of
the twofold degenerate Andreev reflection eigenvalues in the CRE are

P({Rn}) ∝
M

∏
i<j=1

(Ri − Rj)
4,

if N = 2M and Q = 1, (3.13)

P({Rn}) ∝
M−1

∏
i<j=1

(Ri − Rj)
4

M−1

∏
k=1

R2
k(1 − Rk)

2,

if N = 2M and Q = −1, (3.14)

P({Rn}) ∝
M

∏
i<j=1

(Ri − Rj)
4

M

∏
k=1

[Rk − 1
2(1 − Q)]2,

if N = 2M + 1. (3.15)

The degenerate Andreev reflection eigenvalues repel each other with
the fourth power of their separation. In addition there is a repulsion
with the second power of the separation to each of the nondegenerate
eigenvalues, pinned at 0 or 1.

3.3.2 Class DIII, ensemble T-CRE

In the presence of time-reversal symmetry the scattering matrix should
also satisfy the condition (3.4), which implies that iΣyr is antisymmetric.
The polar decomposition which respects this symmetry condition (as
well as the condition (3.3) for particle-hole symmetry) is

iΣyr =

(

Ω 0
0 Ω∗

)(

Γ −iΛ
iΛ Γ

)(

ΩT 0
0 Ω†

)

, (3.16)

with Ω an N × N unitary matrix. Unitarity still requires that ΛTΓ is
antisymmetric, while time-reversal symmetry requires ΓT = −Γ, ΛT =
Λ.

The number of channels N = 2M is even, with M the number of
channels per spin. Each reflection eigenvalue has a two-fold degener-
acy, including those equal to 0 or 1. This Kramers degeneracy due to
time-reversal symmetry [22] in class DIII replaces the Béri degeneracy
due to electron-hole symmetry [23] in class D — it is not an additional
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degeneracy. The topological quantum number [27] Q = Pf iΣyr can be
calculated using the identity

Pf









0 a b c
−a 0 d e
−b −d 0 f
−c −e − f 0









= a f − be + cd, (3.17)

for scalars a, b, c, d, e, f , and also the formulas Pf XYXT = (Det X)(Pf Y),
Pf
⊕

n Yn = ∏n Pf Yn (valid for arbitrary square matrices X and antisym-
metric matrices Y, Yn).

For Q = 1 we take Λ = ΛM and Γ = ΓM from Eqs. (3.8) and (3.9).
The Pfaffian of the matrix (3.16) is always +1, so this polar decompo-
sition describes the topologically trivial phase. In order to reach the
topologically nontrivial phase, we include a twofold degenerate eigen-
value equal to unity, but with a σz matrix rather than a σ0 matrix:
Λ = ΛM−1 ⊕ diag (1,−1), Γ = ΓM−1 ⊕ diag (0, 0). Then the Pfaffian
is −1.

As derived in App. 3.A, the distribution of the M degenerate An-
dreev reflection eigenvalues in the T-CRE is given most compactly in
terms of the variables ξn = sin αn ∈ (−1, 1) (with Rn = ξ2

n). For Q = 1
the result is

P({ξn}) ∝
M

∏
i<j=1

(ξi − ξ j)
4. (3.18)

Notice that there is no repulsion of pairs of Andreev reflection eigenval-
ues: If ξi → −ξ j then Ri → Rj and yet the probability distribution does
not vanish.

For Q = −1 one pair of eigenvalues is pinned at RM = 1 ⇒ ξM = 1.
The distribution of the remaining M − 1 degenerate eigenvalues is

P({ξn}) ∝
M−1

∏
i<j=1

(ξi − ξ j)
4

M−1

∏
k=1

(1 − ξ2
k)

2. (3.19)

While pairs of Andreev reflection eigenvalues Rn ∈ (0, 1) in the T-CRE
do not repel each other, they are repelled from the eigenvalue pinned at
RM = 1, with the same second power of the separation as in the CRE.
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3.3.3 Class C, ensemble CQE

For completeness we also consider the two symmetry classes C and CI
without a topological phase. Then spin-rotation symmetry is preserved,
so it is sufficient to consider a single spin degree of freedom, say an
electron in the spin-up band coupled to a hole in the spin-down band.
The reflection matrix for this scattering process has dimension 2M× 2M,
where M only counts the orbital degree of freedom. Each reflection
eigenvalue has a twofold spin degeneracy.

The polar decomposition of the reflection matrix reads

r =

(

U 0
0 U∗

)(

cos α i sin α

i sin α cos α

)(

V† 0
0 VT

)

, (3.20)

as required by unitarity and the particle-hole symmetry condition (3.5).
Here U, V are unitary M× M matrices and α = diag (α1, α2, . . . αM) is the
diagonal matrix of real angles that determine the reflection eigenvalues
Rn = sin2 αn. As before, we might have replaced sin αn 7→ √

Rn and
cos αn 7→ √

1 − Rn in this polar decomposition for class C, but not when
we additionally impose time-reversal symmetry (in class CI).

The factor i in Eq. (3.20) accounts for the π/2 phase shift associated
with Andreev reflection of an electron into a hole from the opposite
spin band. No such factor appears in the polar decomposition (3.7) in
the absence of spin-rotation symmetry, because there it can be absorbed
in the unitary matrices (which in that case contain both spin bands for
electrons and holes).

The probability distribution of the Andreev reflection eigenvalues in
the CQE was calculated previously by Khaymovich et al [20]. We find

P({Rn}) ∝
M

∏
i<j=1

|Ri − Rj|, (3.21)

in agreement with Ref. 20 (up to an evident misprint, ∏i 6=j instead of
∏i<j).

3.3.4 Class CI, ensemble T-CQE

Finally, in class CI we have the additional requirement (3.6) of time-
reversal symmetry. The polar decomposition becomes

r =

(

U 0
0 U∗

)(

cos α i sin α

i sin α cos α

)(

UT 0
0 U†

)

. (3.22)
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Figure 3.2. Probability distribution of the conductance in the CRE, for channel
numbers N = 1, 2, 3, 4 and topological charges Q = −1 (red solid curves) and
Q = +1 (blue dashed curves). In the lower panel the thick vertical lines indicate
a delta-function distribution.

The distribution of the Rn’s in the T-CQE (each doubly degenerate)
is again given most compactly in terms of the variables ξn = sin αn ∈
(−1, 1) (with Rn = ξ2

n). We find

P({ξn}) ∝
M

∏
i<j=1

|ξi − ξ j|. (3.23)

As in the T-CRE, there is no repulsion between pairs of Andreev reflec-
tion eigenvalues in the presence of time-reversal symmetry.

3.4 Dependence of conductance distributions on topo-

logical invariant

3.4.1 Broken time-reversal symmetry

From the probability distributions P({Rn}) in Secs. 3.3.1 and 3.3.2 we
readily calculate the distribution P(G) of the conductance (3.2), in both
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〈〈(G/G0)p〉〉
p = 1 p = 2 p = 3 p = 4 p = 5

N = 1 0
... 2 0

... 0 0
... 0 0

... 0 0
... 0

N = 2 2
... 2 4

3

... 0 0
... 0 − 32

15
... 0 0

... 0

N = 3 3
... 3 3

5
... 3

5 −
2
5

... 2
5

6
175

... 6
175

24
35

... − 24
35

N = 4 4
... 4 4

7
... 4

7 0
... 0 176

735

... −
32

147 0
... 0

N = 5 5
... 5 5

9
... 5

9 0
... 0 10

2079
... 10

2079 −
8

63

... 8
63

Table 3.2. First five cumulants (p ≤ 5) of conductance in the CRE, calculated for
number of modes N ≤ 5 and topological quantum number Q. (The first entry
in each cell is for Q = 1, the second entry is for Q = −1.) The conductance
distribution depends on Q starting from the N-th cumulant (bold).

the topologically trivial and nontrivial phases. We first consider the
case without time-reversal symmetry (class D, ensemble CRE). Using
Eqs. (3.13)–(3.15) we obtain the distributions for the first few channel
numbers N = 1, 2, 3, 4. The results are plotted in Fig. 3.2, and given by:

• For N = 1, the conductance G/G0 = 1 − Q without statistical
fluctuations [23, 18].

• For N = 2, the conductance G/G0 = 2 for Q = −1 without statis-
tical fluctuations; if Q = 1, instead G/G0 = 4g with P(g) = 1.

• For N = 3 the conductance G/G0 = 1 − Q + 4g, with P(g) =
3( 1

2 − 1
2 Q − g)2.

• For N = 4 the conductance G/G0 = 2 + 4g if Q = −1, with P(g) =
30 g2(1 − g)2, while if Q = 1 we have G/G0 = 8g with P(g) =
6(1 − |1 − 2g|)5.

In these expressions, g denotes a stochastic variable in the range (0, 1).
From Fig. 3.2 we see that upon increasing N, the conductance dis-

tributions for Q = 1 and Q = −1 become more and more similar. To
quantify the difference, we list in Table 3.2 the first few cumulants 〈〈Gp〉〉
of P(G) for several values of N. Inspection of the table brings us to pro-
pose that:

The cumulant of order p of the N-mode conductance in the CRE is inde-
pendent of the topological charge for p < N.

A proof for arbitrary N is given in App. 3.B.



3.4 Dependence of conductance distributions on topological invariant63

Figure 3.3. Same as Fig. 3.2, for the T-CRE.

3.4.2 Preserved time-reversal symmetry

In the presence of time-reversal symmetry (class DIII, ensemble T-CRE)
we can similarly calculate the conductance distribution from Eqs. (3.18)
and (3.19). For small N we find:

• For N = 2, the conductance G/G0 = 4 without statistical fluc-
tuations if Q = −1, while if Q = 1 we have G/G0 = 4g with
P(g) = 1

2 g−1/2.

• For N = 4 the conductance G/G0 = 4 + 4g if Q = −1, with P(g) =
15
16(1 − g)2g−1/2; if Q = 1, instead G/G0 = 8g with P(g) plotted in
Fig. 3.3, upper panel. (The analytic expression is lengthy.)

The analogous theorem for the Q-independence of low-order cumulants
now reads:

The cumulant of order p of the N-mode conductance in the T-CRE is
independent of the topological charge for p < N/2.

A proof for arbitrary (even) N is given also in App. 3.B.

3.4.3 Weak localization and UCF

Weak localization and universal conductance fluctuations (UCF) refer
to the average and to the variance of the conductance in the large-N
limit. Since the dependence on the topological charge is nonpertubative
in N, these two effects cannot contain any information on whether the
superconductor is in a topological phase or not. As a check, we have
calculated the average 〈G〉 and the variance Var G = 〈G2〉 − 〈G〉2 for
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N ≫ 1, directly from the probability distribution of the Andreev reflec-
tion eigenvalues. This calculation also allows us to verify a conjecture
from Ref. 4 on the UCF in the presence of time-reversal symmetry. Since
the calculation follows established methods in random-matrix theory
[28], we only give the results.

The weak-localization correction δG = G − NG0 to the conductance
vanishes in the CRE and CQE, while δG/G0 = 1

2 ,−1 in the T-CRE and
T-CQE, respectively. The UCF are given by Var G/G0 = 1

2 , 1, 2, 4 in the
CRE, T-CRE, CQE, and T-CQE, respectively. These Q-independent re-
sults are in full agreement with Ref. 4.

All these results assume that the proximity to the superconductor
does not induce an excitation gap in the quantum dot. In the CRE and
CQE this is realized by the pair-breaking magnetic field. In the T-CRE
and T-CQE we need a π-junction to close the gap: Two NS interfaces,
coupled equally well to the quantum dot and with a π phase differ-
ence of the superconducting phase [4]. For a single NS interface in zero
magnetic field, the presence of an excitation gap does not change the
value of δG, but the variance of the conductance is changed into [29]
Var G/G0 = 9/4β, with β = 1 or β = 4 in the presence or absence of
spin-rotation symmetry. Notice that time-reversal symmetry breaking
then has only a relatively small 10% effect on the UCF [28], while in the
absence of the excitation gap the effect on the variance is a factor of two
[4].

3.5 Conclusion and comparison with a model Hamil-

tonian

In conclusion, we have shown that the distribution P(G) of the electrical
conductance in a quantum dot connecting a normal-metal to a supercon-
ducting electrode has a striking dependence on the topological quantum
number Q of the superconductor, but only if the number of modes N in
which the current is injected is sufficiently small. In the absence of time-
reversal and spin-rotation symmetry, the distributions for Q = −1 and
Q = +1 differ in the average conductance for N = 1, in the variance for
N = 2, in the skewness for N = 3, and in the kurtosis for N = 4. More
generally, the dependence appears in the cumulant of order N or N/2,
depending on whether time-reversal symmetry is broken or not.

The system we have considered (Fig. 3.1) is constructed to ensure
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Figure 3.4. Comparison of the probability distribution of the electrical conduc-
tance as predicted by RMT (dashed curves) and as resulting from numerical
simulation of the model Hamiltonian (3.24) (solid histograms). The simulation
is for the disordered normal-metal–superconductor junction shown in the inset.
The number of propagating modes in the normal region is N = 2 (lower panel)
and N = 3 (upper panel), while the red and blue curves are for topological
quantum number Q = −1 and Q = +1, respectively. The disorder strength
is fixed at U0 = 130 Eso for N = 2 and U0 = 100 Eso for N = 3. The values
used for Fermi energy and Zeeman energy (in units of Eso) are as follows. For
N = 2: EF = 12, EZ = 3.8 (Q = 1) and EF = 13, EZ = 9 (Q = −1). For N = 3:
EF = 19, EZ = 3.8 (Q = 1) and EF = 19, EZ = 8 (Q = −1).

chaotic scattering, which is the requirement for application of the cir-
cular ensembles of RMT. Systems of present experimental focus in the
search for Majorana bound states have a simpler wire geometry, without
the quantum dot (Fig. 3.4, inset). Impurity scattering within a supercon-
ducting coherence length from the NS interface can still lead to chaotic
dynamics, at least if the number of modes is sufficiently small that they
are fully mixed by the disorder.

To test the applicability of our RMT results to such a system we have
performed numerical simulations of the model Hamiltonian of Refs. 10,
11, which describes an InAs nanowire on an Al or Nb substrate. The
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Bogoliubov-De Gennes Hamiltonian

H =

(

1 0
0 σy

)(

HR − EF ∆

∆∗ EF − σyH∗
Rσy

)(

1 0
0 σy

)

=

(

HR − EF ∆σy

∆∗σy EF − H∗
R

)

(3.24)

couples electron and hole excitations near the Fermi energy EF through
an s-wave superconducting order parameter ∆. (We have made a unitary
transformation to ensure that the condition for particle-hole symmetry
has the form used in the preceding sections.)

The excitations are confined to a wire of width W in the x − y plane
of the semiconductor surface inversion layer, where their dynamics is
governed by the Rashba Hamiltonian

HR =
p2

2meff
+ U(r) +

αso

h̄
(σx py − σy px) + 1

2 geffµBBσx. (3.25)

The spin is coupled to the momentum p = −ih̄∂/∂r by the Rashba effect,
and polarized through the Zeeman effect by a magnetic field B parallel
to the wire (in the x-direction). Characteristic length and energy scales
are lso = h̄2/meffαso and Eso = meffα

2
so/h̄2. Typical values in InAs are

lso = 100 nm, Eso = 0.1 meV, EZ = 1
2 geffµB = 1 meV at B = 1 T.

We have solved the scattering problem numerically [30] by discretiz-
ing the Hamiltonian (3.24) on a square lattice (lattice constant a = lso/20),
with an electrostatic disorder potential U(x, y) that varies randomly
from site to site, distributed uniformly in the interval (−U0, U0). The
disordered superconducting wire (width W = 20 a, length L = 800 a,
∆ = 4 Eso) is connected at two ends to ideal normal-metal leads, ob-
tained by setting ∆, U0 ≡ 0 for x < 0, x > L. The length L was chosen
large enough that the transmission probability through the wire was
< 10−2.

Results for the probability distribution of the electrical conductance
are shown in Fig. 3.4, for N = 2, 3 and Q = −1, 1. (For N = 1 we sim-
ply find the two delta-function distributions at G = (e2/h)(1 − Q), as
expected.) The histograms were obtained by averaging over 105 disor-
der realizations, conditionally on the value of the topological quantum
number Q = ±1 (calculated from Q = sign Det r, as in Ref. 26.) The
agreement with the predictions from RMT is quite satisfactory.
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Appendix 3.A Calculation of the invariant measure

In this appendix we derive the probability distributions of the Andreev
reflection eigenvalues in the circular ensembles, given in Sec. 3.3. We
work out the derivation for the symmetry classes D and DIII, for an even
number N = 2M of modes and for topological charge Q = 1, following
established methods of random-matrix theory [31]. The calculations for
the other ensembles are entirely analogous, so we do not present them
here.

The circular ensembles are characterized by a uniform probability
distribution, constrained only by fundamental symmetries. Uniformity
in the unitary group is defined with respect to the invariant (Haar) mea-
sure dµ(r) = r†dr ≡ δr. Since the polar decompositions in Sec. 3.3 give
a parametrization of the (unitary) reflection matrix r in terms of the an-
gles αn, we can transform the measure into dµ(r) = J ∏i dpi ∏n dαn. The
pi’s are the degrees of freedom of the matrices of eigenvectors and J is
the Jacobian of the transformation. From this expression the probability
distribution of the angles αn follows upon integration over the pi’s,

P({αn}) ∝

∫

J ∏
i

dpi, (3.26)

up to a normalization constant.
The Jacobian can be found from the metric tensor gµν, which can

be read off from the trace Tr δrδr† when it is expressed in terms of the
infinitesimals dαn and dpi (collectively denoted as dxµ):

Tr δrδr† = ∑
µ,ν

gµνdxµdxν, J = |Det gµν|1/2. (3.27)

We carry out this calculation first for class D and then for class DIII.

3.A.1 Class D (ensemble CRE)

In view of the polar decomposition (3.7) one has

(

U† 0
0 UT

)

dr

(

V 0
0 V∗

)

=

(

δU 0
0 δU∗

)

L + dL − L

(

δV 0
0 δV∗

)

,

(3.28)
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where we abbreviated

L =

(

Γ −iΛ
iΛ Γ

)

. (3.29)

The quantities δU = U†dU and δV = V†dV represent measures on the
eigenvector manifolds. We used that d(V†V) = 0 ⇒ (dV†)V = (δV)† =
−δV.

Substitution of Eq. (3.28) into Tr δrδr† = Tr drdr† gives

Tr δrδr† = 2 Tr L

(

δV 0
0 δV∗

)

L†
(

δU 0
0 δU∗

)

− Tr [δU2 + (δU∗)2 + δV2 + (δV∗)2]

+ Tr dLdL†. (3.30)

(All other cross terms vanish.) In terms of Γ and Λ this can be expressed
as a sum of five traces,

Tr δrδr† = Tr (ΓδV − δUΓ)(ΓTδU − δVΓT)

+ Tr (ΓδV∗ − δU∗Γ)(ΓTδU∗ − δV∗ΓT)

+ Tr (ΛδV∗ − δUΛ)(ΛTδU − δV∗ΛT)

+ Tr (ΛδV − δU∗Λ)(ΛTδU∗ − δVΛT)

+ Tr dLdLT

≡ T1 + T2 + T3 + T4 + T5. (3.31)

Each of the traces in Eq. (3.31) is of the form Tr AA† = ∑ij |Aij|2, and
is therefore real. Since the second line is the complex conjugate of the
first line and the fourth line is the complex conjugate of the third line,
their traces are the same, hence T1 = T2 and T3 = T4. For the evaluation
of the expression we need to distinguish between the different values
of the topological quantum number and between the cases of odd and
even number of channels.

We work out the calculation for N = 2M even and Q = 1, when Λ

and Γ are given by Eqs. (3.8) and (3.9). The trace T5 is easiest to evaluate,

T5 = ∑
i,j
|dLij|2 = 4

M

∑
i=1

dα2
i . (3.32)
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This trace contributes a diagonal block to the metric tensor and a con-
stant factor to the Jacobian, for M independent real parameters. The
other two traces T1 and T3 require more work,

T1 =
M

∑
r<s=1

1

∑
k,l=0

{

1
2(cos αr + cos αs)

2|δU2r−k,2s−l − (−1)k+lδV2r−k̄,2s−l̄|2

+ 1
2(cos αr − cos αs)

2|δU2r−k,2s−l + (−1)k+lδV2r−k̄,2s−l̄|2
}

+
M

∑
m

1

∑
k,l=0

cos2 αm|δV2m−k,2m−l − (−1)k+lδU2m−k̄,2m−l̄|2, (3.33)

T3 =
M

∑
r<s=1

1

∑
k,l=0

{ 1
2(sin αr + sin αs)

2|δV∗
2r−k,2s−l − δU2r−k,2s−l|2

+ 1
2(sin αr − sin αs)

2|δV∗
2r−k,2s−l + δU2r−k,2s−l|2

}

+
M

∑
m

1

∑
k,l=0

sin2 αm|δV∗
2m−k,2m−l − δU2m−k,2m−l|2. (3.34)

We denote k̄ = 0, 1 for k = 1, 0.

We group the indices of the matrices δU and δV into 2 × 2 blocks,
and consider first the off-diagonal blocks. For these we can choose as
independent parameters

δU2r,2s, δU2r−1,2s, δU2r,2s−1, δU2r−1,2s−1,

δV2r,2s, δV2r−1,2s, δV2r,2s−1, δV2r−1,2s−1,

with 1 ≤ r < s ≤ M. The real and imaginary parts, denoted by
δUR, δUI, δVR, δVI, produce a total of 8M(M − 1) independent param-
eters. The contribution to Tr δrδr† for given values of r and s has the
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form
2r

∑
k=2r−1

2s

∑
l=2s−1

{

4
[

(δUR
kl)

2 + (δUI
kl)

2 + (δVR
kl )

2 + (δVI
kl)

2
]

+ 2a
[

δVR
kl δUR

kl − δVI
klδUI

kl

]

}

+ 2b
[

δVR
2r−1,2s−1δUR

2r,2s + δVI
2r−1,2s−1δUI

2r,2s

]

+ 2b
[

δVR
2r,2sδUR

2r−1,2s−1 + δVI
2r,2sδUI

2r−1,2s−1

]

− 2b
[

δVR
2r−1,2sδUR

2r,2s−1 + δVI
2r−1,2sδUI

2r,2s−1

]

− 2b
[

δVR
2r,2s−1δUR

2r−1,2s + δVI
2r,2s−1δUI

2r−1,2s

]

,

where we abbreviated a = −4 sin αr sin αs and b = −4 cos αr cos αs.
The contribution to the metric tensor is a block matrix with elements

























4τ0 0 0 0 aτz 0 0 bτ0

0 4τ0 0 0 0 aτz −bτ0 0
0 0 4τ0 0 0 −bτ0 aτz 0
0 0 0 4τ0 bτ0 0 0 aτz

aτz 0 0 bτ0 4τ0 0 0 0
0 aτz −bτ0 0 0 4τ0 0 0
0 −bτ0 aτz 0 0 0 4τ0 0

bτ0 0 0 aτz 0 0 0 4τ0

























,

where the Pauli matrix τz and the 2 × 2 unit matrix τ0 were introduced
to account for real and imaginary parts in a compact way. The determi-
nant of this matrix is (sin2 αr − sin2 αs)8, hence the contribution to the
Jacobian from the off-diagonal matrix elements is

Joff-diagonal =
M

∏
r<s=1

∣

∣sin2 αr − sin2 αs

∣

∣

4
. (3.35)

Next we consider the diagonal blocks. We choose as independent
parameters

w1 = −i(δV2m,2m − δU2m−1,2m−1),

w2 = −i(δV2m−1,2m−1 − δU2m,2m),

w3 = −i(δV2m,2m + δU2m,2m),

w4 = δV2m−1,2m + δU2m,2m−1.
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These are in total 5M real parameters. (Since w1, w2, w3 are real numbers
they contribute only M parameters each.) The contribution to Tr δrδr† is

w2
1 + w2

2 + 2(w2w3 − w1w3 − w1w2 + w2
3) sin2 αm + 2w2

4,

and the contribution to the metric tensor is the block matrix








2 0 0 0
0 1 − sin2 αm − sin2 αm

0 − sin2 αm 1 sin2 αm

0 − sin2 αm sin2 αm 2 sin2 αm









,

with determinant 2(sin αm cos αm)2. Hence the contribution to the Jaco-
bian from the diagonal matrix elements is

Jdiagonal =
M

∏
m=1

| sin αm cos αm|. (3.36)

The number of independent parameters that we have accounted for
totals to 8M2 − 2M, which should equal the number of degrees of free-
dom of a matrix in class D. The matrix space in class D is isomorphic
to the group of 2N × 2N orthogonal matrices [4], which indeed has
N(2N − 1) = 8M2 − 2M degrees of freedom.

Gathering all terms that contribute to the Jacobian in Eq. (3.26), we
obtain the probability distribution

P({αn}) ∝
M

∏
r<s=1

∣

∣sin2 αr − sin2 αs

∣

∣

4
M

∏
m=1

|sin αm cos αm| . (3.37)

The integration
∫

dpi over the degrees of freedom of the eigenvector
matrices only contributes a prefactor, which can be absorbed in the pro-
portionality constant. Upon transformation to the Andreev reflection
eigenvalues Rn = sin2 αn, we arrive at the result (3.13) stated in the main
text.

3.A.2 Class DIII (ensemble T-CRE)

For the treatment of class DIII it is useful to notice the similarity of
the polar decomposition of iΣyr given in Eq. (3.16) to the one of r in
class D given in Eq. (3.7). Since δ(iΣyr) = δr all the equations up to
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Eq. (3.34) derived for class D also hold for class DIII, upon replacement
U 7→ Ω and V 7→ Ω∗. (As before, we only give the detailed derivation
for Q = 1.) The expressions for the traces T1 and T3 then simplify to

T1 =
M

∑
r<s=1

{

(cos αr + cos αs)
2 [|δΩ2r,2s − δΩ∗

2r−1,2s−1|2

+|δΩ2r−1,2s + δΩ∗
2r,2s−1|2

]

+ (cos αr − cos αs)
2 [|δΩ2r,2s + δΩ∗

2r−1,2s−1|2

+|δΩ2r−1,2s − δΩ∗
2r,2s−1|2

]}

+ 2
M

∑
m

cos2 αm|δΩ2m,2m + δΩ2m−1,2m−1|2, (3.38)

T3 = 2
M

∑
r<s=1

1

∑
k,l=0

(sin αr − sin αs)
2|δΩ2r−k,2s−l|2. (3.39)

For the off-diagonal blocks we choose

δΩ2r,2s, δΩ2r−1,2s, δΩ2r,2s−1, δΩ2r−1,2s−1,

with 1 ≤ r < s ≤ M, as the independent real parameters (a total of
4M2 − 4M). The contribution to Tr δrδr† for given values of r and s is

c
2r

∑
k=2r−1

2s

∑
l=2s−1

[

(δΩR
kl)

2 + (δΩI
kl)

2
]

+ 2d
[

δΩR
2r−1,2sδΩR

2r,2s−1 − δΩI
2r−1,2sδΩI

2r,2s−1

−δΩR
2r−1,2s−1δΩR

2r,2s + δΩI
2r−1,2s−1δΩI

2r,2s

]

,

with c = 4 − 4 sin αr sin αs and d = 4 cos αr cos αs. The contribution to
the metric tensor is a block matrix with elements









cτ0 0 0 −dτz

0 cτ0 dτz 0
0 dτz cτ0 0

−dτz 0 0 cτ0









,

with determinant (sin αr − sin αs)8. The contribution to the Jacobian is

Joff-diagonal =
M

∏
r<s=1

|sin αr − sin αs|4 . (3.40)
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The diagonal blocks have M independent degrees of freedom,

δΩ2m 2m + δΩ2m−1 2m−1,

which contribute to the Jacobian a factor

Jdiagonal =
M

∏
m=1

|cos αm| . (3.41)

The total number of independent parameters (including also the M
degrees of freedom from the αn’s) is then 4M2 − 2M. This agrees with
the number of degrees of freedom of the matrix space O(2N)/U(N) in
class DIII [4].

The distribution of the αn’s results from the product of Joff-diagonal
and Jdiagonal,

P({αn}) ∝
M

∏
r<s=1

|sin αr − sin αs|4
M

∏
m=1

|cos αm| . (3.42)

Transformation to ξn = sin αn gives the expression (3.18) in the main
text.

Appendix 3.B Proof of the topological-charge theo-

rem for circular ensembles

The theorem we wish to prove states that the p-th cumulant of the con-
ductance in the N-mode circular ensemble is independent of the topo-
logical charge Q for p < N/d, with d = 1 in the CRE and d = 2 in the
T-CRE.

We start from the definition (3.2) of the conductance, which we rewrite
as

G/G0 = 1
2Tr [1 − r†τzr(1 + τz)], τz =

(

1 0
0 −1

)

. (3.43)

The reflection matrix r is a 2N × 2N unitary matrix, satisfying the particle-
hole symmetry relation (3.3), which we rewrite as

r = τxr∗τx, τx =

(

0 1
1 0

)

. (3.44)
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This equation implies that Tr r†τzr = 0, hence Eq. (3.43) reduces to

G/G0 = 1
2Tr [1 − r†τzrτz)]. (3.45)

The p-th cumulant of G contains only averages mq = 〈(Tr r†τzrτz)q〉
with q ≤ p, hence to prove the theorem is it sufficient to prove that mp

is independent of Q for p < N/d.
We first do this for the CRE. Then the average mp can be written as

mp =
∫

dµ(r)
(

Tr r†τzrτz

)p 1
2(1 + Q Det r), (3.46)

where dµ(r) is the invariant measure of class D. The defining property of
this measure is that dµ(Ur) = dµ(rU) = dµ(r) for any 2N × 2N unitary
matrix U that satisfies U = τxU∗τx. What we seek to prove, therefore, is
that

∫

dµ(r)
(

Tr r†τzrτz

)p Det r = 0 if p < N. (3.47)

We decompose

τz =
N

∑
n=1

τ(n), τ
(n)
kl = δk,l(δk,n − δk,n+N) (3.48)

and apply this decomposition to one of the τz’s in Eq. (3.47),

(

Tr r†τzrτz

)p
=

N

∑
p1=0

N

∑
p2=0

· · ·
N

∑
pN=0

p!
p1!p2! · · · pN !

× δp,p1+p2+···+pN

N

∏
n=1

(

Tr r†τ(n)rτz

)pn

. (3.49)

Consider one of the terms

M =
∫

dµ(r)
N

∏
n=1

(

Tr r†τ(n)rτz

)pn

Det r. (3.50)

If p < N, there is at least one index n0 ∈ {1, 2, . . . N} such that pn0 = 0.
Transform r 7→ U(n0)r, with

U
(n0)
kl =







δk,l if k 6= n0, n0 + N,
δl,n0+N if k = n0,
δl,n0 if k = n0 + N,

(3.51)
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a real, symmetric, unitary matrix which commutes with τx. This trans-
formation does not change the invariant measure, dµ(U(n0)r) = dµ(r),
while the integrand transforms to

M =
∫

dµ(r)
N

∏
n=1

(

Tr r†U(n0)τ(n)U(n0)rτz

)pn

× Det U(n0)r

= −
∫

dµ(r)
N

∏
n=1

(

Tr r†τ(n)rτz

)pn

Det r

= −M, (3.52)

since Det U(n0) = −1 and U(n0) commutes with τ(n) for n 6= n0, while
pn0 = 0. Hence M = 0.

This completes the proof for the CRE. For the T-CRE, we seek to
prove that

∫

dµ(r)
(

Tr r†τzrτz

)p Pf iΣyr = 0 if p < N/2, (3.53)

where now dµ(r) is the invariant measure of class DIII. The invariance
property reads dµ(ΣyUTΣyrU) = dµ(r) for any 2N × 2N unitary matrix
U that satisfies U = τxU∗τx. Since τz and Σy commute, we may rewrite
Eq. (3.53) as

∫

dµ(r)
(

Tr r†ΣyτzΣyrτz

)p Pf iΣyr = 0 if p < N/2. (3.54)

Substitute the decomposition (3.48) in both the τz’s,

(

Tr r†ΣyτzΣyrτz

)p
=

N

∑
p11=0

· · ·
N

∑
pNN=0

p!
∏n,m pnm!

× δp,∑n,m pnm

N

∏
n,m=1

(

Tr r†Σyτ(n)Σyrτ(m)
)pnm

. (3.55)

Consider one of the terms

M =
∫

dµ(r)
N

∏
n,m=1

(

Tr r†Σyτ(n)Σyrτ(m)
)pnm

× Pf iΣyr. (3.56)
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If p < N/2, there is at least one index n0 ∈ {1, 2, . . . N} such that
pn0m = 0 and pnn0 = 0 for each n, m ∈ {1, 2, . . . N}. Transform r 7→
ΣyU(n0)ΣyrU(n0), with U(n0) defined in Eq. (3.51). This transformation
does not change the invariant measure, so the integral transforms to

M =
∫

dµ(r)
N

∏
n,m=1

(

Tr r†ΣyU(n0)τ(n)U(n0)Σyr

× U(n0)τ(m)U(n0)
)pnm

Pf
(

U(n0)iΣyrU(n0)
)

=−
∫

dµ(r)
N

∏
n,m=1

(

Tr r†Σyτ(n)Σyrτ(m)
)pnm

× Pf iΣyr = −M, (3.57)

where we have used that Pf XYXT = (Det X)(Pf Y). Hence M = 0 and
we have completed the proof for the T-CRE.
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Chapter 4

Quantum point contact as a
probe of a topological
superconductor

4.1 Introduction

Massless Dirac fermions have the special property that they can be con-
fined without the energy cost from zero-point motion. In graphene, this
manifests itself as a Landau level at zero energy, without the usual 1

2 h̄ωc

offset [1]. The zeroth Landau level contributes half as much to the Hall
conductance as the higher levels (because it is already half-filled in equi-
librium), leading to the celebrated half-integer quantum Hall plateaus
[2, 3]. In a semiclassical description, the π phase shift at turning points,
responsible for the zero-point energy, is canceled by the Berry phase of
π, characteristic for the periodic orbit of a Dirac fermion.

The same absence of zero-point energy appears when Dirac fermions
are confined by superconducting barriers, produced by the proximity
effect in a topological insulator [4, 5]. Because of particle-hole symme-
try in a superconductor, a state at zero excitation energy is a Majorana
bound state, with identical creation and annihilation operators. A su-
perconductor that supports Majorana bound states is called topological
[6, 7].

Tunneling spectroscopy is a direct method of detection of a topolog-
ical superconductor [8–11]. Resonant tunneling into a Majorana bound
state produces a conductance of 2e2/h, while without this state the
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tunneling conductance vanishes [9]. The tunneling resonance becomes
broader if the tunneling probability is increased, and one might surmise
that the resonance would vanish if the conductance is measured via a
ballistic contact. We show in this chapter, by means of a model calcu-
lation, that the contrary is true: The signature of the topological phase
is more robust when measured by a ballistic contact than by a tunnel
contact.

Our model calculation is in accord with general theoretical consid-
erations [12, 13], but may appear counter-intuitive. After all, the Majo-
rana bound state no longer exists as an individual energy level if it is
connected by a ballistic contact to a normal metal, since the level broad-
ening then exceeds the level spacing. As we have found, the topological
phase of the superconductor still manifests itself in the conductance of a
ballistic point contact, in a way reminiscent of the half-integer quantum
Hall plateaus.

4.2 Integer versus half-integer conductance plateaus

We consider the model Hamiltonian [14, 15] of a two-dimensional semi-
conducting wire with an s-wave proximity-induced superconducting
gap ∆. (See App. 4.A for a detailed description.) We have calculated
the scattering matrix of a quantum point contact (QPC) in the normal
region (N) at a distance d from the superconducting region (S), by dis-
cretizing the Hamiltonian on a square lattice (lattice constant a = lso/40,
with lso the spin-orbit scattering length). Our key result is presented in
Fig. 4.1. The number of propagating modes in the point contact (and
hence the transmittance TQPC) is varied by changing the electrostatic po-
tential VQPC inside the point contact, at constant Fermi energy EF. Spin
degeneracy is removed by the Zeeman energy EZ = 1

2 gµBB in a mag-
netic field B (parallel to the wire), so that when the entire system is in
the normal state (∆ → 0) the conductance increases step wise in units of
e2/h (black dashed curve, showing the step wise increase of the trans-
mittance from TQPC = 0, for a fully pinched off contact, to TQPC = 8, for
a maximally open contact).

The conductance G of the NS junction is obtained from the Andreev
reflection eigenvalues Rn at the Fermi level,

G =
2e2

h ∑
n

Rn(EF). (4.1)
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Figure 4.1. Solid curves: conductance of a ballistic normal-metal–
superconductor (NS) junction, with the superconductor in a topologically triv-
ial phase (blue curve, ∆ = 8 Eso) or nontrivial phase (red curve, ∆ = 4 Eso).
The black dashed curve is for an entirely normal system (∆ = 0). The data
is obtained from the model Hamiltonian [14, 15] of a semiconducting wire
on a superconducting substrate in a parallel magnetic field (Zeeman energy
EZ = 6 Eso), for the ballistic point contact geometry shown in the inset (not to
scale, d = 2.5 lso, W = lso). By varying the potential VQPC at constant Fermi
energy EF = 120 Eso, the point contact width w is varied between 0 and W.
The dotted horizontal lines indicate the shift from integer to half-integer con-
ductance plateaus upon transition from the topologically trivial to nontrivial
phase.

The factor of two accounts for the fact that charge is added to the su-
perconductor as Cooper pairs of charge 2e. (The spin degree of free-
dom is included in the sum over n.) The superconductor can be in a
topologically trivial (Q = 1) or nontrivial (Q = −1) phase, depending
on the relative magnitude of EZ, ∆, and the spin-orbit coupling energy
Eso = h̄2/meffl

2
so. The blue and red solid curves show these two cases,

where the topological quantum number Q = sign Det r was obtained in
an independent calculation from the determinant of the reflection ma-
trix [16–18]. As we see from Fig. 4.1, the conductance shows plateaus at
values Gp, p = 0, 1, 2, . . ., given by

Gp =
4e2

h
×
{

p if Q = 1,
p + 1/2 if Q = −1.

(4.2)
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The sequence of conductance plateaus in the topologically trivial and
nontrivial phases can be understood from basic symmetry requirements.
As discovered by Béri [13], particle-hole symmetry requires that the Rn’s
at the Fermi level are either twofold degenerate or equal to 0 or 1. (See
App. 4.B for a derivation.) A nondegenerate unit Andreev reflection
eigenvalue is therefore pinned to exactly this value and contributes to
the conductance a quantized amount of 2e2/h. This is the signature of
the topological superconductor which persists even after the Majorana
bound state has merged with the continuum of states in the normal
metal contact.

If we include only the degenerate Rn’s in the sum over n (indicated
by a prime, ∑

′), we may write

G =
e2

h

(

1 − Q + 4∑
′
n
Rn

)

. (4.3)

A new mode that is fully Andreev reflected thus adds 4e2/h to the con-
ductance, with an offset of 0 or 2e2/h in the topologically trivial or non-
trivial phases. The resulting conductance plateaus therefore appear at
integer or half-integer multiples of 4e2/h, depending on the topological
quantum number, as expressed by Eq. (4.2) and observed in the model
calculation.

The quantum point contact conductance plateaus in the topologically
nontrivial phase occur at the same half-integer multiples of 4e2/h as the
quantum Hall plateaus in graphene, but the multiplicity of 4 has an
entirely different origin: In graphene, the factor of four accounts for the
twofold spin and valley degeneracy of the energy levels, while in the NS
junction there is no degeneracy of the energy levels. One factor of two
accounts for the Cooper pair charge, while the other factor of two is due
to the Béri degeneracy of the non-unit Andreev reflection eigenvalues.

4.3 Effect of disorder

While in the quantum Hall effect all plateaus are insensitive to disorder,
in the NS junction this applies only to the first plateau. As follows from
Eq. (4.3), the first plateau at G = (1 − Q)(e2/h) is determined by the
topological quantum number Q, which is robust against perturbations
of the Hamiltonian. No such topological protection applies to the higher
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Figure 4.2. Same as Fig. 4.1, but now in the presence of disorder (for two values
of the disorder strength). The first conductance plateau in the topologically
nontrivial phase remains precisely quantized.

plateaus, since Rn can take on any value between 0 and 1 in the presence
of disorder.

This is demonstrated in Fig. 4.2, where we have added disorder to
the model calculation (both in the normal and in the superconduct-
ing region), by randomly chosing the electrostatic potential at each lat-
tice point from the interval [−Udisorder, Udisorder]. The mean free path
lmfp ∝ U−2

disorder depends rather sensitively on the disorder strength. We
show results for Udisorder = 90 Eso and 110 Eso, when the mean free path
(calculated in Born approximation) is estimated at lmfp = 9 lso and 6 lso,
respectively. (The topologically nontrivial phase itself persists up to
lmfp = 3 lso.)

4.4 Effect of finite voltage and temperature

These are all results in the limit of zero applied voltage V and zero
temperature T. There is then no qualitative difference between the 2e2/h
conductance resonance in the tunneling regime or in the ballistic regime.
A substantial difference appears at finite voltages or temperatures.
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Figure 4.3. Differential conductance at different values of EF − VQPC (listed
in units of Eso), for two values of the distance d between quantum point con-
tact and superconductor. The data is taken on the first conductance plateau
in the topologically nontrivial phase (∆ = 4 Eso, Udisorder = 90 Eso). The
quantum point contact is in the tunneling regime for the blue curve (transmit-
tance TQPC = 0.1) and in the single-mode ballistic regime for the black curve
(TQPC ≈ 1). The width of the conductance peak increases both upon increasing
TQPC and upon decreasing d.

Considering first the effect of a nonzero applied voltage, we show in
Fig. 4.3 the differential conductance

dI

dV
=

2e2

h ∑
n

Rn(EF + eV). (4.4)

The peak centered at V = 0 is the signature of the topologically nontriv-
ial phase [9]. The height 2e2/h of this peak remains the same as TQPC is
raised from 0 to 1 by opening up the point contact, but the peak width
increases. For a given TQPC, moving the point contact closer to the super-
conductor also has the effect of increasing the peak width (right panel
in Fig. 4.3).

These considerations apply to the transition from the tunneling regime
(TQPC ≪ 1) to the ballistic regime with a single transmitted mode (TQPC ≈
1). If we open the point contact further, a second mode is partially trans-
mitted and at TQPC ≈ 1.3 the conductance peak switches to a conduc-
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Figure 4.4. The solid curve is the same data as the black curve in the left panel
of Fig. 4.3 (EF −VQPC = 10 Eso, TQPC ≈ 1), but on a larger voltage scale to show
the resonances beyond the conductance peak centered at V = 0. (The curve is
±V symmetric.) The dashed curve shows that the conductance peak becomes a
conductance dip when a second mode opens up in the quantum point contact
(EF − VQPC = 20 Eso, TQPC ≈ 2).

tance dip. Fig. 4.4 contrasts the inverted resonances at TQCP equal to
1 (conductance peak) and equal to 2 (conductance dip). The voltage
scale in this figure is larger than Fig. 4.3, to show also the higher-lying
resonances.

A simple estimate for the width δ ≃ h̄/τdwell of the conductance peak
in the tunneling regime equates it to the inverse of the dwell time τdwell
of an electron (effective mass meff) in the region (of size W × d) between
the point contact and the NS interface. For the relatively large mean free
paths in the calculation (lmfp > W, d), the dwell time for point contact
widths w ≪ W, d is given by τdwell ≃ meffWd/h̄TQPC, so we estimate

δ ≃ h̄2TQPC

meffWd
=

l2
so

Wd
TQPCEso. (4.5)

This formula (without numerical prefactors) qualitatively accounts for
the increase of δ with decreasing d and with increasing TQPC in the tun-
neling regime TQPC ≪ 1, but for a quantitative description of the ballistic
regime, including the switch from peak to dip, a more complete theory
is needed.

A similarly different robustness in the tunneling and ballistic regime
appears if we consider the effect of a nonzero thermal energy kBT on
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Figure 4.5. Conductance in the topologically nontrivial phase for different val-
ues of the thermal energy kBT. The 2e2/h plateau is suppressed at the smallest
temperatures in the tunneling regime, and only for larger temperatures in the
ballistic regime.

the 2e2/h conductance plateau. The finite-temperature conductance is
calculated from

G(kBT) =
2e2

h

∫ ∞

−∞
dE ∑

n

Rn(E)
d

dE

−1
1 + eE/kBT

. (4.6)

We show in Fig. 4.5 how raising the temperature suppresses the 2e2/h
conductance plateau in the topologically nontrivial phase. The charac-
teristic temperature scale for the suppression is kBT ≃ δ, so the plateau
persists longest for TQPC ≈ 1, when the line width δ of the resonance is
the largest.

4.5 Conclusion

In conclusion, we have presented a model calculation that shows how
a quantum point contact can be used to distinguish the topologically
trivial and nontrivial phases of a superconducting wire. The 2e2/h
conductance resonance in the tunneling regime [9] persists in the bal-
listic regime, with a greatly reduced sensitivity to finite voltages and
temperatures. The characteristic temperature scale (for a typical value
Eso = 0.1 meV of the spin-orbit coupling energy in InAs) reaches the
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100 mK range in the ballistic regime, which is still quite small but within
experimental reach.

As more and more modes are opened in the ballistic point contact,
new conductance plateaus appear at multiples of 4e2/h which are inte-
ger in the trivial and half-integer in the nontrivial phase. This sequence
of plateaus is a striking demonstration of the role which the degeneracy
of Andreev reflection eigenvalues plays in the classification of topologi-
cal superconductors [13, 19].
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Appendix 4.A Model Hamiltonian

Our model calculations are based on the Hamiltonian of Refs. [14, 15],
which describes an InAs nanowire on an Al or Nb substrate.
The Bogoliubov-De Gennes Hamiltonian

H =

(

1 0
0 σy

)(

HR − EF ∆

∆∗ EF − σyH∗
Rσy

)(

1 0
0 σy

)

=

(

HR − EF ∆σy

∆∗σy EF − H∗
R

)

(4.7)

couples electron and hole excitations near the Fermi energy EF through
an s-wave superconducting order parameter ∆. (We have made a unitary
transformation to ensure that the condition for particle-hole symmetry
has the form used in App. 4.B.)

The excitations are confined to a wire of width W in the x − y plane
of the semiconductor surface inversion layer, where their dynamics is
governed by the Rashba Hamiltonian

HR =
p2

2meff
+ U(r) +

αso

h̄
(σx py − σy px) + 1

2 geffµBBσx. (4.8)

The spin is coupled to the momentum p = −ih̄∂/∂r by the Rashba effect,
and polarized through the Zeeman effect by a magnetic field B parallel
to the wire (in the x-direction). Characteristic length and energy scales
are lso = h̄2/meffαso and Eso = meffα

2
so/h̄2. Typical values in InAs are

lso = 100 nm, Eso = 0.1 meV, EZ = 1
2 geffµBB = 1 meV at B = 1 T.

The electrostatic potential U = UQPC + δU is the sum of a gate poten-
tial UQPC and an impurity potential δU. The impurity potential δU(x, y)
varies randomly from site to site on a square lattice (lattice constant a),
distributed uniformly in the interval [−Udisorder, Udisorder].

The gate potential UQPC(x, y) (see Fig. 4.6) defines a saddle-shaped
constriction of length 2ℓ, containing a potential barrier of height VQPC >

0,

UQPC =

{

max
[

0, VQPC + Usaddle(x, y)
]

for|x| > ℓ,

VQPC + 1
2 meffω

2
yy2 for|x| < ℓ,

Usaddle = − 1
2 meffω

2
x(|x| − ℓ)2 + 1

2 meffω
2
yy2. (4.9)
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Figure 4.6. Contour plot of the quantum point contact potential (4.9), for the
parameters ℓ = 0.2 lso, h̄ωx = 15 Eso, h̄ωy = 25 Eso, VQPC = 55 Eso. This is the
constriction used in the calculations of the conductance.

The center (0, 0) of the constriction is placed in the normal region at a
distance d from the NS interface at x = d. The characteristic width w of
the constriction at the Fermi energy EF > VQPC is defined by

w =

√

2(EF − VQPC)

meffω2
y

. (4.10)

(This is the separation of classical turning points in the absence of Rashba
and Zeeman effects.)

All material parameters have the same value throughout the wire,
except the superconducting order parameter ∆, which is set to zero for
x < d and x > L + d. The length L of the superconducting region if
chosen long enough that quasiparticle transmission through it can be
neglected (transmission probability < 10−7).

Using the algorithm of Ref. [20] we calculate the reflection matrix
r of the NS junction, which is unitary in the absence of transmission
through the superconductor. Andreev reflection is described by the N ×
N subblock rhe,

r =

(

ree reh

rhe rhh

)

. (4.11)

The Andreev reflection eigenvalues Rn (n = 1, 2, . . . N) are the eigenval-
ues of the Hermitian matrix product r†

herhe. They are evaluated at the
Fermi level for the conductance (4.1) or at an energy eV above the Fermi
level for the differential conductance (4.4).
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Appendix 4.B Béri degeneracy

We give a self-contained derivation of the degeneracy of the Andreev
reflection eigenvalues discovered by Béri [13].

The Hamiltonian (4.7) satisfies the particle-hole symmetry relation
(

0 1
1 0

)

H∗
(

0 1
1 0

)

= −H. (4.12)

For the reflection matrix r(ε) at energy ε (relative to the Fermi level) this
implies

(

0 1
1 0

)

r(ε)∗
(

0 1
1 0

)

= r(−ε). (4.13)

At the Fermi level (ε = 0) the electron and hole subblocks in Eq. (4.11)
are therefore related by

rhh = r∗ee, reh = r∗he. (4.14)

Unitarity r†r = 1 requires that r†
ehree + r†

hhrhe = 0, hence at the Fermi
level

A ≡ rT
eerhe = −AT (4.15)

is an antisymmetric matrix. (The superscript T denotes the transpose.)
The Hermitian matrix product

A†A = r†
herhe − (r†

herhe)
2 (4.16)

has eigenvalues an = Rn(1 − Rn), n = 1, 2, . . . N.
Let Ψ be an eigenvector of A† A with (real, non-negative) eigenvalue

a, so A†AΨ = aΨ. Then Ψ′ = (AΨ)∗ satisfies A†AΨ′ = −A∗AA∗Ψ∗ =
A∗(A†AΨ)∗ = (aAΨ)∗ = aΨ′. The eigenvalue a is therefore twofold
degenerate, unless Ψ′ and Ψ are linearly dependent.

If Ψ′ = λΨ for some λ, then aΨ = A†AΨ = −A∗(λΨ)∗ = −|λ|2Ψ,
hence a = 0. So any nonzero eigenvalue Rn(1 − Rn) of A†A is twofold
degenerate, which implies that the Andreev reflection eigenvalues Rn

are either twofold degenerate or equal to 0 or 1.
Notice that the Béri degeneracy is distinct from the familiar Kramers

degeneracy (although the proof goes along similar lines [21]). Kramers
degeneracy is a consequence of an anti-unitary symmetry which squares
to −1. The particle-hole symmetry operation

Oph =

(

0 1
1 0

)

× complex conjugation (4.17)
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is anti-unitary, but squares to +1.
In the absence of time-reversal and spin-rotation symmetry, only the

Béri degeneracy of the Andreev reflection eigenvalues is operative. This
is the case for the model Hamiltonian (4.7) considered here (with time-
reversal symmetry broken by the Zeeman effect and spin-rotation sym-
metry broken by the Rashba effect). As worked out in Ref. [19], if one
or both of these symmetries are present, then all Rn’s are twofold de-
generate — including those equal to 0 or 1. The Kramers degeneracy
then comes in the place of the Béri degeneracy, it is not an additional
degeneracy.
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Chapter 5

Scattering theory of
topological invariants in
nodal superconductors

5.1 Introduction

The topological classification of superconductors relies on the existence
of an excitation gap in the bulk of the material, that prevents transi-
tions between topologically distinct phases [1, 2]. The gap of a topo-
logical superconductor closes only at the boundary, where propagating
states with a linear dispersion appear. The protected boundary states
are counted by a topological invariant Q, expressed either in terms of
the Hamiltonian of an infinite system [3] or in terms of the scattering
matrix for Andreev reflection from the boundary with a normal metal
[4].

Nodal superconductors with time-reversal symmetry also have bound-
ary states, forming flat bands in the middle of the bulk gap [5]. The same
topological considerations do not apply because the gap vanishes in the
bulk for certain momenta k on the Fermi surface (nodal points). Exam-
ples include the cuprate superconductors (gap ∝ kxky) [6], and a variety
of superconductors without inversion symmetry [7]. Nodal supercon-
ductors may also appear as an intermediate phase in the transition from
a topological superconductor to a trivial one [8, 9].

A topological invariant can still be constructed in a nodal supercon-
ductor for a translationally invariant boundary [10, 11], conserving the
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parallel momentum k‖. The value of Q(k‖) can only change if k‖ crosses
a nodal point. This topological invariant again counts the boundary
states, which are now non-propagating dispersionless states (pinned to
E = 0 for a range of k‖).

In Refs. 10, 11 the topological invariant Q(k‖) of a nodal supercon-
ductor takes the form of a winding number, calculated from the Hamil-
tonian of a translationally invariant infinite system. Here we present
an alternative scattering formulation, which expresses Q(k‖) as a trace
of the Andreev reflection matrix. Since the conductance of a normal-
metal–superconductor (NS) interface is expressed in terms of the same
Andreev reflection matrix, this alternative formulation allows for a di-
rect connection between the topological invariant and a transport prop-
erty.

If the NS interface contains a tunnel barrier, the angle-resolved con-
ductance G(k‖) measures the density of states and directly probes the
flat surface bands as a zero-bias peak [12]. For a transparent interface
the boundary states in the superconductor merge with the continuum
in the metal, resulting in a featureless density of states, but the zero-bias
peak remains [13]. Here we relate the height of this zero-bias peak to the
value of the topological invariant. While in general this relation takes
the form of an inequality, a quantized conductance,

G(k‖) = |Q(k‖)| × 2e2/h, (5.1)

may result under certain conditions which we identify.

The outline of this chapter is as follows. In the next section we for-
mulate the scattering problem and construct the topological invariant
from the Andreev reflection matrix. We make contact in Sec. 5.3 with
the Hamiltonian formulation, by closing the system and showing that
we recover the number of flat bands at the boundary. We then return
to the open system and in Sec. 5.4 relate the angle-resolved zero-bias
conductance to the topological invariant. So far we only assumed the
basic symmetries of time-reversal and charge-conjugation. The effects of
additional unitary symmetries are considered in Sec. 5.5. We apply the
general theory to a model of a two-dimensional (2D) nodal supercon-
ductor in Secs. 5.6 and 5.7, including also the effects of disorder. Effects
that are specific to 3D are discussed in Sec. 5.8. We conclude in Sec. 5.9.
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Figure 5.1. Interface between a superconductor (S) and a normal metal (N).
The reflection matrix r(k‖) relates the amplitudes of the incident and reflected
waves (arrows, both normal reflection and Andreev reflection are indicated).
The conductance of the NS interface is measured by applying a voltage differ-
ence V between the normal metal and the grounded superconductor.

5.2 Topological invariant for Andreev reflection

5.2.1 Chiral symmetry

We study the Andreev reflection of electrons and holes at the Fermi
level from a planar interface between a normal metal (N) and a super-
conductor (S). (See Fig. 5.1.) The component k‖ along the interface of
the momentum k is conserved, so we can consider each k‖ separately
and work with a one-dimensional (1D) reflection matrix r(k‖). For k not
in a nodal direction (nonzero excitation gap) this is a unitary matrix,

r(k‖)r†(k‖) = 1. (5.2)

The dimension of the reflection matrix is 4 × 4, with basis states
(ψe↑, ψe↓, ψh↑, ψh↓) labeled by the spin ↑, ↓ and the electron-hole e, h de-
grees of freedom. The e, h grading produces four 2 × 2 submatrices,

r(k‖) =

(

ree(k‖) reh(k‖)
rhe(k‖) rhh(k‖)

)

. (5.3)

Normal reflection (from electron to electron or from hole to hole) is
described by ree and rhh, while rhe and reh describe Andreev reflection
(from electron to hole or the other way around).

The two fundamental symmetries that we impose are time-reversal
and charge-conjugation symmetry. Time-reversal symmetry requires

r(k‖) = σyrT(−k‖)σy, (5.4)
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while charge-conjugation symmetry at the Fermi level requires

r(k‖) = τxr∗(−k‖)τx. (5.5)

The Pauli matrices σi and τi act on, respectively, the spin and electron-
hole degrees of freedom. (For later use we denote the 2× 2 unit matrices
by σ0 and τ0.)

Taken together, Eqs. (5.4) and (5.5) represent the chiral symmetry
relation

r(k‖) = (σy ⊗ τx)r†(k‖)(σy ⊗ τx). (5.6)

This is the 1D symmetry class AIII in the periodic table of topological
phases [3].

It is convenient to represent the symmetry relations in terms of the
matrix R(k‖) = (σy ⊗ τx)r(k‖), which is both Hermitian and unitary,

R = R†, R2 = 1. (5.7)

The submatrices in Eq. (5.3) appear in R as

R(k‖) =

(

Rhe(k‖) Rhh(k‖)
Ree(k‖) Reh(k‖)

)

, (5.8)

where Rpq = σyrpq. The two blocks Rhe and Reh are Hermitian, while
Ree = R†

hh.

5.2.2 Topological invariant

The Z topological invariant of 1D reflection matrices in class AIII is
given by [14]

Q(k‖) = 1
2 Tr R(k‖)

= 1
2 Tr σy[rhe(k‖) + reh(k‖)].

(5.9)

In view of Eq. (5.7), the 4 × 4 matrix R has eigenvalues ±1, so the value
of Q ∈ {−2,−1, 0, 1, 2}.1 This value is k‖-independent as long as the re-
flection matrix remains unitary. For k in a nodal direction, the reflection
matrix is sub-unitary and the topological invariant may change.

1The topological invariant Q is restricted to the integers 0,±1,±2 because we con-
sider only spin and electron-hole degrees of freedom. Further integer values become
possible if multiple valleys or layers produce additional internal degrees of freedom,
which is why Q is a called a Z invariant.
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Application of Eq. (5.4) gives the relation

R(−k‖) = −τxRT(k‖)τx, (5.10)

which implies that
Q(−k‖) = −Q(k‖). (5.11)

If k‖ = 0 one necessarily has Q = 0. For this time-reversally invariant
momentum the Pfaffian of the antisymmetric matrix σyr(0) (equal to
±1) produces a Z2 topological invariant [14], characteristic of the 1D
symmetry class DIII. We write this invariant in the form

Q0 = 1 + Pf σyr(0) ∈ {0, 2}, (5.12)

so that for Q0, as well as for Q, the value 0 indicates the topologically
trivial phase.

5.3 Topologically protected boundary states

The scattering formulation of topological invariants refers to an open
system, without bound states. In the alternative Hamiltonian formu-
lation, the topological invariant counts the number of dispersionless
boundary states (flat bands at the Fermi level, consisting of edge states
in 2D or surface states in 3D) [10, 11, 15–18]. To relate the two formu-
lations, we close the system by means of an insulating barrier at the NS
interface, and show that |Q(k‖)| boundary states appear.

The calculation closely follows Ref. 14. The number of boundary
states at k‖ equals the number of independent solutions ψ of

[

1 − r1(k‖)r(k‖)
]

ψ = 0. (5.13)

The unitary matrix r1 is the reflection matrix of the barrier, approached
from the side of the superconductor. We can write this equation in terms
of Hermitian and unitary matrices R1 = r1(σy ⊗ τx) and R2 = (σy ⊗ τx)r,
which we decompose as

Ri = UiDiU
†
i , Di =

(

112+Qi
0

0 −112−Qi

)

. (5.14)

(The notation 11M indicates the M× M unit matrix and U1, U2 are unitary
matrices.) Eq. (5.13) takes the form

(1 − D1UD2U†)ψ′ = 0, (5.15)
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with U = U†
1U2 and ψ′ = U†

1 ψ.
We decompose U into N × M submatrices AN,M,

U =

(

A2+Q1,2+Q2 A2+Q1,2−Q2

A2−Q1,2+Q2 A2−Q1,2−Q2

)

. (5.16)

Since

U − D1UD2 = 2
(

0 A2+Q1,2−Q2

A2−Q1,2+Q2 0

)

, (5.17)

we can rewrite Eq. (5.15) as
(

0 A2+Q1,2−Q2

A2−Q1,2+Q2 0

)

ψ′′ = 0, (5.18)

with ψ′′ = U†
2 ψ.

For any matrix AN,M with N < M there exist at least M − N inde-
pendent vectors v of rank M such that AN,Mv = 0. Therefore Eq. (5.18)
has at least |Q1 +Q2| independent solutions. These are the topologically
protected boundary states.

Because the insulating barrier is topologically trivial, Q1 = 0, while
Q2 = Q is the topological invariant of the superconductor, so it all works
out as expected: The topological invariant of the open system counts the
number of boundary states that would appear if we would close it.

Both values Q and −Q of the topological invariant produce the same
number N = |Q| of boundary states if the superconductor is terminated
by a topologically trivial barrier (an insulator or vacuum). The sign of
the topological invariant matters if we consider the interface between
two topologically nontrivial superconductors 1, 2. The combined num-
ber of boundary states Ntotal = |Q1 + Q2| = |N1 ±N2| is the sum or
difference of the individual numbers depending on whether the topo-
logical invariants have the same or opposite sign.

5.4 Relation between conductance and topological

invariant

By considering an open system when formulating the topological in-
variant, we can make direct contact to transport properties. The angle-
resolved zero-bias conductance of the NS interface is given by

G(k‖) = G0 Tr rhe(k‖)r†
he(k‖), (5.19)
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with G0 = 2e2/h the Andreev conductance quantum. We wish to relate
this transport property to the topological invariant (5.9).

For that purpose it is convenient to work with the matrices Rhe =
σyrhe and Reh = σyreh, since these are Hermitian (unlike the rhe and reh

themselves). For brevity we omit the label k‖. The squares R2
he and R2

eh
have the same set of Andreev reflection eigenvalues ρn ∈ [0, 1], which
are also the eigenvalues of rher

†
he.

On the one hand we have the conductance

G/G0 = Tr R2
he = Tr R2

eh, (5.20)

and on the other hand the topological invariant

Q = 1
2 Tr (Rhe + Reh). (5.21)

In App. 5.A we prove that at least |Q| of the ρn’s are equal to unity. This
immediately implies the inequality

G/G0 ≥ |Q|. (5.22)

For k‖ = 0 we have, additionally,

G/G0 ≥ Q0, for k‖ = 0. (5.23)

In a topologically trivial system, with Q,Q0 = 0, these inequalities
are ineffective, while for |Q|,Q0 = 2 the inequalities are saturated (since
G cannot become larger than 2G0). Scattering events in the normal or
superconducting region that conserve k‖, such as spin mixing, cannot
change the conductance once it is saturated.

5.5 Effects of additional unitary symmetries

Further unitary symmetries may enforce restrictions on both the topo-
logical invariant and the angle-resolved conductance, or even introduce
new topological invariants. In the first subsection we consider spatial
symmetries that invert k‖ 7→ −k‖, whereas in the second subsection we
address symmetries that conserve k‖.
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a, b x, x or z, x x, 0 or z, 0 x, z or y, x y, y or 0, z x, y or z, y 0, 0
or 0, y or y, z or z, z or y, 0 or 0, x

T 2
ab +1 +1 +1 −1 −1 −1

C2
ab +1 +1 −1 −1 +1 +1

class BDI BDI CI CII DIII DIII
Qab 0,±1,±2 0,±1,±2 0 0,±2 0, 2 0, 2

G/G0 ≥ |Qab| = |Qab| × = |Qab| × = |Qab|

Table 5.1. The first row lists the spatial symmetry (5.24); the second and third
rows give the square of the anti-unitary operators (5.25) and (5.26); the fourth
and fifth rows show the corresponding symmetry class and the values taken
by the topological invariant; finally, the last row gives the relation between
conductance and invariant for a topologically nontrivial system (so for Qab 6= 0,
with × indicating the absence of a relation).

5.5.1 Spatial symmetries

We consider a spatial symmetry of the form

r(k‖) = (σa ⊗ τb)r(−k‖)(σa ⊗ τb). (5.24)

Combined with time-reversal symmetry (5.4) and charge-conjugation
symmetry (5.5), this produces the two symmetry relations

r(k‖) = Tabr†(k‖)T −1
ab , Tab = (σa · σy)⊗ τb K, (5.25)

r(k‖) = Cabr(k‖)C−1
ab , Cab = σa ⊗ (τb · τx)K, (5.26)

where K is the operator of complex conjugation. The product of Tab and
Cab brings us back to the chiral symmetry (5.6).

Topological invariant

Depending on whether the anti-unitary operators Tab and Cab square to
+1 or −1, the reflection matrix falls in one of the four Altland-Zirnbauer
symmetry classes BDI, CI, CII, DIII [19]. The various cases are listed in
Table 5.1. These all have a higher symmetry than the class AIII from
which we started (with only chiral symmetry). The additional symmetry
may restrict the topological invariant to a smaller range of values. In
class DIII a new Z2 topological invariant appears, that can be nonzero
even if the Z invariant vanishes.

We denote the modified topological invariant by Qab(k‖). In class
CI only topologically trivial systems exist [3], meaning that the spatial
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symmetry allows only for Qab = 0. For the other three symmetry classes
the topological invariants are given by [14]

Qab = 1
2 Tr R ∈ {−2,−1, 0, 1, 2}, for BDI, (5.27)

Qab = 1
2 Tr R ∈ {−2, 0, 2}, for CII, (5.28)

Qab = 1 + Pf (σa ⊗ τb)(σyr) ∈ {0, 2}, for DIII. (5.29)

The restriction to even integers in class CII (a 2Z invariant) is a conse-
quence of the Kramers degeneracy of the eigenvalues of the Hermitian
matrix R = (σy ⊗ τx)r. Symmetry class DIII has a Z2 invariant.

Conductance

The expressions (5.27) and (5.28) for Qab in class BDI and CII are the
same as the expression (5.9) for Q in class AIII, so the topological invari-
ant still provides a lower bound on the angle-resolved conductance,

G/G0 ≥ |Qab|, for BDI and CII. (5.30)

In symmetry class DIII the invariants Q00 in Eq. (5.29) and Q0 in Eq.
(5.12) also have the same expression, so the inequality (5.23) still applies,

G/G0 ≥ Q00. (5.31)

No relation with the conductance exists for the other invariants in class
DIII, so Q0x,Qxy, and Qzy provide no restriction on the conductance.2

The inequality (5.30) can be sharpened further in class BDI, so that
it becomes an equality not only for |Qab| = 2 but also for |Qab| = 1
[20]. As we show in App. 5.C, this equality is enforced by the spatial
symmetry (5.24) for (a, b) ∈ {(y, z), (x, 0), (z, 0)}, so for three out of the
six symmetries in class BDI.

The last row of Table 5.1 summarizes the relation between the topo-
logical invariant and the conductance for a topologically nontrivial sys-
tem (Qab 6= 0). It is an equality for all symmetries in class CII and for
some symmetries in classes BDI and DIII.

2To see that Q0x = 1 + Pf R is independent of G, note that the transformation R 7→
ORO with O = diag (1, 1, 1,−1) switches the sign of the Pfaffian — while leaving the
conductance unchanged. In a similar way one can show that also the DIII invariants
Qxy and Qzy are independent of G.
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5.5.2 Symmetries that preserve k‖

A different type of unitary symmetry preserves parallel momentum,

r(k‖) = (σa ⊗ τb)r(k‖)(σa ⊗ τb). (5.32)

Combined with the chiral symmetry relation (5.6) and unitarity of r, this
symmetry ensures that the matrix R̃ = (σa ⊗ τb)R is a unitary matrix that
squares to ±1. We can thus define a new Z invariant

Q̃(k‖) =

{

1
2 Tr R̃(k‖) if R̃2 = 1,
1
2 i Tr R̃(k‖) if R̃2 = −1.

(5.33)

In general, Q̃ and Q are distinct, and in particular Q̃ can be an even
function of k‖. The coexistence of two distinct topological invariants is
quite unusual, and as we will see, it has observable consequences in the
conductance.

For b ∈ {0, z} nonzero values of Q̃ constrain the conductance in the
same way that Q does in Eq. (5.22). For b ∈ {x, y} one has instead the
constraint

G/G0 ≤ 2 − |Q̃|, (5.34)

as we show in App. 5.B.

5.6 Application: 2D Rashba superconductor

As a first application of our general scattering theory we consider a two-
dimensional superconductor with spin-singlet and spin-triplet pairing
mixed by Rashba spin-orbit coupling. The topologically protected edge
states for this Rashba superconductor have been studied in Refs. 10, 21,
22 using the Hamiltonian formulation. We summarize those results in
the next subsection, before proceeding to the scattering formulation and
the calculation of the conductance.

5.6.1 Hamiltonian and edge states

The superconductor has the Bogoliubov-de Gennes Hamiltonian

H(k) =

(

ǫ(k) + g(k) · σ ∆(k)
∆†(k) −ǫ(k) + g(k) · σ

∗

)

, (5.35)
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Figure 5.2. Interface between a normal metal and a 2D Rashba superconductor.
The Fermi surface is split into two circles, which intersect the nodal lines (red)
of the superconducting pair potential in eight nodal points.

with free electron part ǫ(k) = |k|2/2m − µ, at Fermi energy µ, and
Rashba spin-orbit coupling g(k) = λ(ky,−kx, 0). We have set h̄ = 1 and
have collected the three Pauli matrices in a vector σ = (σx, σy, σz). The
Fermi surface consists of two concentric circles at momenta

k± = [(mλ)2 + 2mµ]1/2 ± mλ. (5.36)

For later use we give the spin orbit energy Eso = mλ2 and the spin-orbit
momentum and length kso = mλ = 1/lso.

The mixed singlet-triplet pair potential is given by

∆(k) = f (k)

(

∆s + ∆t
g(k) · σ

λ(2mµ)1/2

)

iσy, (5.37)

f (k) =
1

2mµ

[

kxky cos 2φ + 1
2(k2

y − k2
x) sin 2φ

]

, (5.38)

The strength of the singlet and triplet pairing is parameterized by the
energies ∆s and ∆t. The nodal lines of vanishing pair potential are ori-
ented at an angle φ with the NS interface (see Fig. 5.2). The intersection
of the nodal lines with the Fermi surface defines 8 nodal points, in each
of which Det H = 0.

The chiral symmetry

H(k) = −(σy ⊗ τx)H(k)(σy ⊗ τx) (5.39)

ensures that H can be brought in the off-diagonal form

U †H(k)U =

(

0 q(k)
q†(k) 0

)

. (5.40)



106 Chapter 5. Scattering topology of nodal superconductors

Figure 5.3. Topological invariant Q = −W of the 2D Rashba superconductor
(φ = 0, µ = 10 Eso), as a function of momentum ky along the NS interface and
ratio ∆t/∆s of triplet and singlet pairing energies.

The Z topological invariant is then defined by the winding number [10]

W(ky) =
1

2π
Im
∫

dkx
∂

∂kx
ln Det q(kx, ky), (5.41)

for any ky that is not equal to the projection of one of the nodal points
on the y-axis.

As analysed in Refs. 10, 21, 22, the termination of the superconductor
at x = 0 by an insulator (or by vacuum) produces |W(ky)| dispersionless
edge states (flat bands). A simple example occurs for φ = 0 and ∆t = 0,
corresponding to dxy-wave spin-singlet pairing. Then

W(ky) =







2 sign (ky) if |ky| < k−,
sign (ky) if k− < |ky| < k+,

0 if |ky| > k+,
(5.42)

so there are two topologically protected edge states for |ky| < k− and a
single one for k− < |ky| < k+.

For nonzero ∆t the phase boundaries (5.42) remain unaffected in the
interval

−
√

2mµ/k− < ∆t/∆s <
√

2mµ/k+,

see Fig. 5.3. To contrast the spin-singlet and spin-triplet dominated
regimes, we will in what follows focus on the two limits ∆t → 0 and
∆s → 0.
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Figure 5.4. Topological invariant Q of the reflection matrix from the 2D Rashba
superconductor, as a function of momentum ky along the NS interface and
angle φ between the interface and the nodal line. The left panel shows results
for spin-singlet pairing (∆s = Eso, ∆t = 0) and the right panel for spin-triplet
pairing (∆t = Eso, ∆s = 0). In both panels µ = 10 Eso and µN = 30 Eso. The
dotted lines indicate a topologically trivial system in class CI, as a consequence
of the spatial symmetry (5.43).

5.6.2 Reflection matrix and conductance

If the superconductor is not terminated at x = 0 but connected to a nor-
mal metal, the edge states hybridize with the continuum of the metallic
bands. The topological signature then shows up in the conductance
rather than in the density of states. To reveal these signatures we con-
struct the reflection matrix of the NS interface and calculate both the
topological invariant (5.9) and the angle-resolved conductance (5.19).

We used either an analytical method of calculation (matching wave
functions at the NS interface), or a numerical method (discretizing the
Hamiltonian (5.35) on a square lattice and calculating the Green func-
tion). We made sure that the lattice constant was sufficiently small that
the two methods gave equivalent results. In the normal metal we set
both the pair potential and the spin-orbit coupling to zero, so that there
is a single Fermi circle with momentum kN = (2mµN)1/2. Because of a
potential step at the NS interface, the chemical potential µN in the nor-
mal metal (x < 0) can differ from the value µ in the superconductor
(x > 0).

Results are collected in Figs. 5.4 and 5.5. As a first check, we note
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Figure 5.5. Electrical conductance and Z topological invariant for three of the
angles φ from Fig. 5.4. A nonzero Z2 invariant appears in the spin-triplet case:
Q0 = 2 for ky = 0, φ 6= 0.

that for φ = 0, ∆t = 0, we recover Eq. (5.42) — up to an irrelevant minus
sign, Q = −W . For φ = (n + 1/2)π/2, the system is topologically
trivial, Q(ky) ≡ 0, regardless of the choice of ∆s, ∆t (black dotted lines
in Figs. 5.4 and 5.5). This can be understood as a consequence of spatial
symmetry: For cos 2φ = 0 the system fulfills

H(kx, ky) = σyH(kx,−ky)σy ⇒ r(ky) = σyr(−ky)σy. (5.43)

This is a symmetry condition of the type (5.24), with a = y, b = 0, forcing
the reflection matrix into the topologically trivial symmetry class CI (see
Table 5.1). At ky = 0 the Z invariant Q vanishes, but the Z2 invariant
Q0 can be nonzero. This happens for ∆s = 0, φ 6= 0 (mod π/2), when
Q0 = 2.

Fig. 5.5 shows how the topological invariant enforces the quantiza-
tion of the angle-resolved conductance. First of all, G/G0 = 2 whenever
|Q| = 2 or Q0 = 2. For φ = 0 quantized plateaus at G/G0 = 1 appear
because of the spatial symmetry

r(ky) = (σy ⊗ τz)r(−ky)(σy ⊗ τz), (5.44)

which is a symmetry of the type (5.24) with a, b = y, z. This forces
the reflection matrix into class BDI and ensures that the conductance is
quantized for any nonzero Q (see Table 5.1).
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Figure 5.6. Topological invariants Q (left panel) and Q̃ (right panel) for an NS
junction between a normal metal and the anisotropic Rashba superconductor
of Sec. 5.6.3. The parameters chosen are: ∆s = Eso, ∆t = 0, µ = 10 Eso, µN =
30 Eso. The Z2 invariant Q00 = 2 on the dotted red lines in the left panel.

5.6.3 Anisotropic spin-orbit coupling

A strongly anisotropic dispersion, mx ≫ my, can produce an anisotropic
spin-orbit coupling term of the form [23] g(k) = λ(0,−kx, 0). Topolog-
ical invariants and conductance are plotted for the spin-singlet regime
(∆t = 0) in Figs. 5.6 and 5.7. There are two qualitative differences with
the isotropic case of the previous subsections.

First of all, for φ = nπ/2 the regions with |Q(ky)| = 1 are missing.
This can be explained by the spatial symmetry

r(ky) = τzr(−ky)τz, (5.45)

of the type (5.24) with a, b = 0, z. As a consequence, see Table 5.1, the
topological invariant Q(ky) becomes a 2Z invariant of class CII, exclud-
ing |Q(ky)| = 1.

Secondly, there is a unitary symmetry σyr(ky)σy = r(ky) that holds
for all φ. This allows us to define an additional topological invariant,

Q̃ = 1
2 Tr σyR = 1

2Tr τxr, (5.46)

following Sec. 5.5.2. The topological invariants Q and Q̃ are indepen-
dent, in particular, Q̃(ky) = Q̃(−ky) while Q(ky) = −Q(−ky). Each
topological invariant Q and Q̃ gives a lower bound on the conductance.
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Figure 5.7. Electrical conductance and Z topological invariants for three of the
angles φ from Fig. 5.6.

This explains the diamond-shaped regions in the phase diagram with a
quantized conductance G/G0 = 2, enforced by |Q̃| = 2.

There is a third invariant: At φ = (n + 1/2)π/2 the spatial symme-
try r(ky) = r(−ky) places the reflection matrix in symmetry class DIII.
According to Eq. (5.29), the corresponding Z2 invariant Q00 = 2 on the
dotted red lines in the phase diagram.

This third invariant does not lead to additional constraints on the
conductance, since we already have Q̃ = 2 when Q00 = 2. But the
two invariants Q and Q̃ are both needed to explain the quantized con-
ductance. The coexistence of two topological invariants is an unusual
feature of this system.

5.7 Effects of angular averaging and disorder

It may be possible to measure the angle-resolved conductance G(k‖)
[24], but one typically measures the angular average. Moreover, disor-
der is detrimental for the conductance quantization if it mixes parallel
momenta with different values of the topological invariant. In this sec-
tion we investigate whether signatures of the conductance quantization
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Figure 5.8. Average conductance (5.47) of the NS junction as a function of
the Fermi momentum kN in the normal region, for various disorder strengths.
The 2D Rashba superconductor has a dxy-wave pair potential (φ = 0, ∆t = 0,
∆s = Eso, µ = 10 Eso). Disorder strengths from top to bottom curve: U0/Eso =
0, 1, 2, 3, 4, 5.

can survive the effects of angular averaging and disorder.
We focus on the 2D Rashba superconductor of Sec. 5.6, for ∆t = 0,

φ = 0, when the topological invariant is given by Eq. (5.42). The angular
average of the conductance for an interface of width W is given by

GNS =
W

2π

∫ kN

−kN

dky G(ky). (5.47)

The reflection matrix, which determines G(ky) via Eq. (5.19), is calcu-
lated numerically using the square lattice discretization of the Hamilto-
nian (5.35) (lattice constant a = 0.2 lso, W = 32 lso). Disorder is added
to a strip −L < x < 0 (L = 31.6 lso) of the normal region by means
of a random on-site potential, distributed uniformly in (−U0/2, U0/2).
Results are averaged over 100 disorder realizations.

In Fig. 5.8 we show the dependence of GNS on the Fermi momentum
kN in the normal region. This is relevant if the normal region is a semi-
conductor, where one can vary kN by a gate voltage. The quantization of
G(ky) manifests itself as a quantized slope of GNS versus kN: the steep
slope for kN < k− (where |Q| = 2) is reduced by a factor of two in the
interval k− < kN < k+ (where |Q| = 1), and then is strongly suppressed
for kN > k+. This signature of the topological invariant gradually dis-
appears with increasing disorder.
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Figure 5.9. Differential conductance of the NS junction for various disorder
strengths. The parameters for the superconductor are the same as in Fig. 5.8.
In the normal region we have fixed µN = 25 Eso. Disorder strengths from top
to bottom curve: U0/Eso = 0, 2.5, 5, 7.5, 10.

Another signature can be seen for fixed kN in the dependence of the
differential conductance dI/dV on the applied voltage V. As shown in
Fig. 5.9, the peak in dI/dV around V = 0 is a superposition of two
peaks with different widths, the narrower one originating from parallel
momenta in the |Q| = 2 regions and the broader one from the |Q| = 1
regions. The single edge state of the latter regions couples more strongly
to the continuum of the metal and thus has a larger width.

5.8 Three-dimensional superconductors

5.8.1 Topological invariant for arc surface states

The topological invariants considered so far, and the resulting constraints
on the angle-resolved conductance, apply both to 2D and 3D nodal su-
perconductors. In this section we discuss features that are specific for
3D superconductors. The topological invariant Q(k‖) of Sec. 5.2.2 then
counts dispersionless surface states, pinned to zero energy (the Fermi
level) in a 2D region of parallel momentum k‖ = (k1, k2). The bound-
ary of this flat band region is formed by nodal rings, closed contours of
k‖ on which transmission through the superconductor is possible — in
other words, the superconducting gap vanishes for k = (k⊥, k‖).

The new feature that appears in a 3D superconductor is the possibil-
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ity of zero-energy boundary states along a 1D arc connecting two nodal
rings. Some aspects of their topological nature have been discussed in
the Hamiltonian formulation of Ref. 18. Here we consider the alterna-
tive scattering formulation, and use it to obtain topological constraints
on the conductance.

We consider a spatial symmetry on the 2D surface of a 3D supercon-
ductor, in which only one of the two components of parallel momentum
is inverted:

r(k1, k2) = (σa ⊗ τb)r(−k1, k2)(σa ⊗ τb). (5.48)

Along the line k2 = 0, this is a symmetry of the type (5.24), so we can fol-
low Sec. 5.5.1 to introduce topological invariants Qab(k1). The resulting
constraints on the angle-resolved conductance G(k1, 0) are summarized
in Table 5.1.

Alternatively, for k1 = 0, the symmetry (5.48) is of the type (5.32)
with topological invariant Q̃(k2) from Eq. (5.33). The corresponding
constraints on the conductance are discussed in Sec. 5.5.2.

5.8.2 Example

As an example, we apply these general considerations to the same Rashba
Hamiltonian (5.35), but now with a 3D dispersion,

ǫ(k) = (k2
x + k2

y + k2
z)/2m − µ. (5.49)

In the pair potential (5.37) we set f (k) ≡ 1. This Hamiltonian applies to
non-centrosymmetric s+p-wave superconductors of point group C4v. As
described in Ref. 18, these superconductors have arc surface states con-
necting two nodal rings. They appear for example for the (011) surface
orientation that we will consider in the following. The two components
of parallel momentum on the surface are k1 = kx and k2 = (ky − kz)/

√
2.

We can obtain two topological invariants from the reflection matrix
r(k1, k2), plotted in the left panel of Fig. 5.10. The first invariant

Q(k1, k2) = 1
2Tr R(k1, k2) = 1

2 Tr (σy ⊗ τx)r(k1, k2) (5.50)

follows from chiral symmetry, see Sec. 5.2, and is defined on the entire
2D plane of parallel momenta. This Z invariant is nonzero inside the
regions bounded by the nodal rings, where it identifies a surface flat
band.
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Figure 5.10. Topological invariants and electrical conductance of an NS junction
between a normal metal and an s+p-wave superconductor of point group C4v.
The invariants Q and Q̃ are plotted in the left panel. The right panel shows
the conductance (black curve) and invariant Q̃ (red dotted curve) along the
line k1 = 0. Parameters chosen are ∆s = 0.1 Eso, ∆t = 0.2 Eso, µ = 10 Eso and
µN = 30 Eso.

A second Z invariant appears as a consequence of the spatial sym-
metry

H(kx, ky, kz) = (σx ⊗ τz)H(−kx, ky, kz)(σx ⊗ τz) ⇒
r(k1, k2) = (σx ⊗ τz)r(−k1, k2)(σx ⊗ τz). (5.51)

The line k1 = 0 connects the two nodal rings and on this line the invari-
ant

Q̃(k2) = 1
2Tr (σx ⊗ τz)R(0, k2) = − 1

2Tr (σz ⊗ τy)r(0, k2) (5.52)

can take on a nonzero value.
The non-trivial invariants enforce a lower bound on the conductance,

as is illustrated in the right panel of Fig. 5.10. This leads to a quantized
conductance G/G0 = 2 along the line k1 = 0.

The symmetry (5.51) produces arc surface states on all surfaces paral-
lel to the x-direction. For the (010) surface analyzed in Ref. 18 there is an
additional spatial symmetry, r(kx, kz) = r(kx,−kz). For kx = 0 this ad-
ditional symmetry allows for the Z2 invariant Q00 = 1 + Pf σyr(0, kz), in
addition to the Z invariant (5.52). For other surface orientations (0nm)
only the Z invariant is responsible for the arc states.
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5.9 Conclusion

In conclusion, we have constructed a topological invariant Q(k‖) of the
Andreev reflection matrix at the interface between a time-reversal sym-
metric nodal superconductor and a normal metal. In the absence of a
tunnel barrier, this interface has no zero-energy boundary states, but the
topologically nontrivial phase can still be detected in the angle-resolved
conductance G(k‖). A variety of symmetry classes can be realized (AIII,
BDI, CI, CII, DIII), by allowing for additional unitary symmetries. The
corresponding topological invariants are given by a trace or Pfaffian of
the reflection matrix.

Many of these topological invariants have been studied before in the
Hamiltonian formulation for an infinite system [10, 11, 15–18]. The scat-
tering formulation presented here makes it possible to directly relate
Q(k‖) to G(k‖). We have systematically examined when a nontrivial
topological invariant enforces a quantized conductance, and when it
only provides a lower bound. This approach can identify surface flat
bands (within nodal rings) as well as arc states (connecting nodal rings),
even when these zero-energy boundary states have merged with the
continuum of states in the normal metal.

We have applied the general theory to 2D and 3D superconductors
with spin-singlet and spin-triplet pairing mixed by Rashba spin-orbit
coupling. The appearance of a quantized conductance has allowed us
to verify known topological invariants and to identify new ones. In
particular, in the 2D case of a strongly anisotropic spin-orbit coupling,
we have shown the coexistence of two topological invariants — which
provide independent constraints on the conductance.

To make contact with experiments, the effects of angular averaging
and impurity scattering on the conductance quantization have been in-
vestigated by numerical simulation of a disordered NS interface.
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Appendix 5.A Topological invariant counts number

of unit Andreev reflection eigenval-

ues

5.A.1 Proof for the Z invariant

The Hermitian matrix R2
eh has eigenvalues ρn ∈ [0, 1]. We wish to prove

that at least |Q| of these Andreev reflection eigenvalues are equal to
unity.

Let φ be an eigenvector of Reh with eigenvalue λ. Assume λ 6= ±1
(so ρ = λ2 < 1). Since R2

eh = 1 − R†
hhRhh, the vector φ′ = Rhhφ cannot

vanish. Since RheRhh = −RhhReh, it then follows that φ′ is an eigenvector
of Rhe with eigenvalue µ = −λ.

Now consider the Z topological invariant Q = 1
2 ∑n(λn + µn) in

symmetry class AIII. The eigenvalues λn 6= ±1 of Reh are cancelled by
an eigenvalue µn = −λn of Rhe. The cancellation can only be avoided
for the M eigenvalues λn equal to ±1, resulting in |Q| ≤ M — as we set
out to prove.

5.A.2 Proof for the Z2 invariant

For any 4 × 4 antisymmetric matrix A with a block structure,

A =

(

A11 A12
A21 A22

)

= −AT, (5.53)

the Pfaffian is given by

Pf A = −Det A12 − 1
2 Tr A11A22. (5.54)

We apply this identity to the antisymmetric matrix σyr at k‖ = 0, to
obtain the Z2 topological invariant in symmetry class DIII,

Q0 = 1 − Det Reh − 1
2 Tr ReeRhh

= 1 − Det Reh − 1
2 Tr (1 − R2

eh). (5.55)

In terms of the two eigenvalues λ1, λ2 ∈ [−1, 1] of Reh this reduces to

Q0 = 1
2(λ1 − λ2)

2. (5.56)

Since by construction Q0 equals either 0 or 2, we have either Q0 =
0 ⇔ λ1 = λ2 or Q0 = 2 ⇔ λ1 = −λ2 = ±1. This shows that at least Q0

of the Andreev reflection eigenvalues ρn = λ2
n are equal to unity.
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Appendix 5.B Proof of Eq. (5.34)

We consider the topological invariant (5.33), constructed from the matrix
R̃ = (σa ⊗ τb)R with b ∈ {x, y}, and wish to proof the constraint (5.34)
on the conductance. This amounts to a proof that at least |Q̃| of the
Andreev reflection eigenvalues are equal to zero.

We define the Hermitian matrix

R̄ =

(

R̄ee R̄eh

R̄he R̄hh

)

≡
{

R̃(k‖) if R̃2 = 1,

iR̃(k‖) if R̃2 = −1.
(5.57)

Let φ be an eigenvector of R̄ee with eigenvalue λ. Assume λ 6= ±1. Since
R̄2

ee = 1 − R̄†
heR̄he, the vector φ′ = R̄heφ cannot vanish. With R̄heR̄ee =

−R̄hhR̄he, it then follows that φ′ is an eigenvector of R̄hh with eigenvalue
µ = −λ.

Now since Q̃ = 1
2 Tr(R̄ee + R̄hh) = 1

2 ∑n(λn + µn), the eigenvalues
λn 6= ±1 of Ree are cancelled by eigenvalues µn = −λn of Rhh in the
expression for the topological invariant. The cancellation can only be
avoided for the M eigenvalues λn equal to ±1, resulting in |Q̃| ≤ M. The
existence of at least |Q̃| unit eigenvalues of R̄†

eeR̄ee = R̄2
ee is equivalent

to the existence of at least |Q̃| zero Andreev reflection eigenvalues and
thereby proves Eq. (5.34).

Appendix 5.C Equality of conductance and topolog-

ical invariant in class BDI

A topologically nontrivial 4 × 4 reflection matrix in class BDI has either
|Qab| = 2 or |Qab| = 1. In the former case the inequality (5.30) is satu-
rated, because G/G0 ≤ 2, but in the latter case it provides only a lower
bound on the conductance. We now wish to show that the inequality
can be sharpened to an equality for three of the six spatial symmetries
(5.24) in class BDI. More precisely, we will show that |Qab| = 1 implies
G/G0 = 1 for (a, b) ∈ {(y, z), (x, 0), (z, 0)}.

For each of these three cases the symmetry relation (5.25) implies
that Rhe = σaRT

ehσa, so Tr Rhe = Tr Reh. Denote the eigenvalues of Reh

and Rhe by λ1, λ2 and µ1, µ2, respectively. (All are real numbers in the
interval [−1, 1].) The equality of the traces gives λ1 + λ2 = µ1 + µ2.
The topological invariant (5.27) determines the sum λ1 + λ2 + µ1 + µ2 =
2Qab, hence λ1 + λ2 = Qab.
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Because classes BDI and AIII have the same expression for the topo-
logical invariant, we may apply the result of App. 5.A.1 that at least
|Qab| of the λn’s equal ±1. If we take |Qab| = 1, |λ1| = 1, then necessar-
ily λ2 = 0. The dimensionless conductance G/G0 = λ2

1 + λ2
2 thus equals

unity, as we set out to prove.
Our finding can be seen in a broader context as a manifestation

of Béri degeneracy of Andreev reflection eigenvalues [25]: the charge-
conjugation symmetry (5.26), with (a, b) ∈ {(y, z), (x, 0), (z, 0)}, enforces
a twofold degeneracy of the Andreev reflection eigenvalues ρn = λ2

n that
can only be avoided if ρn equals 0 or 1.
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Chapter 6

Quantum Hall effect in a
one-dimensional dynamical
system

6.1 Introduction

The disorder-induced localization-delocalization transition in the quan-
tum Hall effect is the oldest and best-known example of a topological
phase transition [1, 2]. The transition is called topological because it
is associated with a change in a topological invariant, the Chern num-
ber, which counts the number of edge states and the quantized value
of the Hall conductance [3]. Since there is still no analytical theory for
the quantum Hall phase transition, computer simulations are needed to
calculate the scaling law and critical exponent associated with the di-
verging localization length at the transition. The two-dimensional (2D)
network model of Chalker and Coddington has been the primary tool
for these studies for more than two decades [4–6].

In this chapter we introduce an alternative one-dimensional (1D) model
of the quantum Hall phase transition. The model is stroboscopic, with
a Hamiltonian that is driven quasiperiodically with two incommensu-
rate driving frequencies. It is a variation on the quantum kicked rota-
tor [7–9], used to study the 3D Anderson metal-insulator transition of
atomic matter waves in a 1D optical lattice [10–14]. Stroboscopic mod-
els of quantum phase transitions have received much attention recently
[15–20], but the dimensional reduction considered here has not yet been
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explored.
Usually the quantum Hall effect is due to the quantization of cy-

clotron orbits in Landau levels. It is possible to simulate a Lorentz force
acting on neutral atoms in a 2D optical lattice [21–23], but in a 1D lat-
tice we need a quantum Hall effect without Landau levels [24]. This
socalled quantum anomalous Hall effect appears in the Qi-Wu-Zhang
(QWZ) model of a spin-1/2 coupled to orbit and to a uniform magneti-
zation. While the topological invariant in this model takes on only the
three values 0,±1, the phase transitions are in the same Z universality
class as the usual quantum Hall effect.

In the next two sections we formulate the stroboscopic model of the
quantum Hall effect, first in 2D (Sec. 6.2) and then reduced to 1D (Sec.
6.3). We obtain the model by starting from the QWZ Hamiltonian, but
we also show how it is related to the quantum kicked rotator (upon
exchange of position and momentum).

In Sec. 6.4 we perform numerical simulations of the spreading of
a 1D wave packet to identify the localization-delocalization transitions.
While the translationally invariant QWZ model has three quantum Hall
transitions, we find four transitions because one is split by disorder. We
verify one-parameter scaling of the time-dependent diffusion coefficient
and calculate the critical exponent. The result is consistent with the most
accurate value obtained from the Chalker-Coddington model [6].

To further support that these are topological phase transitions in the
quantum Hall universality class we calculate the Hall conductance as
well as the Z topological invariant in Sec. 6.5. We conclude by discussing
the possibilities for the realization of the quantum Hall effect in a 1D
optical lattice.

6.2 Formulation of the 2D stroboscopic model

6.2.1 Quantum anomalous Hall effect

In this subsection we summarize the QWZ model [25] of the quantum
anomalous Hall effect, on which we base the stroboscopic model de-
scribed in the next subsection.

The QWZ model describes two spin bands of a magnetic insulator
on a two-dimensional (2D) square lattice. The crystal momentum p =
(p1, p2) varies over the Brillouin zone −πh̄/a < p1, p2 < πh̄/a. The
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Hamiltonian has the form u · σ, with σ = (σx, σy, σz) a vector of Pauli
matrices and

u(p) = K
(

sin p1, sin p2, β[µ − cos p1 − cos p2]
)

(6.1)

a momentum-dependent vector that couples the spin bands. (We have
set h̄ and a both equal to unity.) The dispersion relation is E±(p) =
±u(p), with u = |u| the norm of the vector u. We fix the Fermi level at
zero, in the middle of the energy gap.

Eq. (6.1) contains three parameters, K, β, µ. The parameter K sets the
strength of the spin-orbit coupling. Time-reversal symmetry is broken
by a nonzero β, representing a magnetization perpendicular to the 2D
plane. The Hall conductance GH is quantized at [25]

GH =
e2

h
×
{

sign (β µ) if |µ| < 2,
0 if |µ| > 2.

(6.2)

This quantum Hall effect is called “anomalous”, because it does not
originate from Landau level quantization.

The value of GH is a topological invariant [25], meaning that it is
insensitive to variations of the Hamiltonian that do not close the en-
ergy gap. Since the gap can only close if u(p) vanishes for some p, the
Hamiltonian

H0(p) = T (u) u · σ (6.3)

has the same quantized Hall conductance (6.2) if the function T (u) is
positive definite. We will make use of this freedom in order to flatten
the spin bands, by choosing a function T (u) which decays for large u.

The Hamiltonian H0(p) describes a clean system. The effects of elec-
trostatic disorder are included by adding the scalar potential V(x). The
2D coordinate x = (x1, x2) is measured in units of a, while momen-
tum p = (p1, p2) is measured in units of h̄/a, so their commutator is
[xn, pm] = iδnm.

6.2.2 Stroboscopic Hamiltonian

This completes the description of the QWZ model. We now introduce a
periodic time dependence by multiplying H0 with the stroboscopic func-
tion τ ∑n δ(t− nτ), while keeping the scalar potential time-independent.
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We thus arrive at the stroboscopic Hamiltonian

H(t) = V(x) + H0(p)
∞

∑
n=−∞

δ(t − n), (6.4)

where we have set the period τ equal to unity.
For the choice of T (u) and V(x) we are guided by the tight-binding

representation given in App. 6.A. We use

T (u) =
2 arctan u

u
, (6.5)

which has a tight-binding representation with nearest-neighbor hop-
ping. For the scalar potential V(x) we take a separable form,

V(x) =
2

∑
i=1

Vi(xi), (6.6)

with Vi(xi) a low-order polynomial in xi. Such a simple potential pro-
duces quasi-random on-site disorder in the tight-binding representation.

6.2.3 Relation to quantum kicked rotator

The quantum kicked rotator is a particle moving freely along a circle,
with moment of inertia I, being subjected periodically (with period τ)
to a kick whose strength depends ∝ cos θ on the angular coordinate θ.
The quantum mechanical Hamiltonian is [7, 26]

H(t) = − h̄2

2I

∂2

∂θ2 +
KI

τ
cos θ

∞

∑
n=−∞

δ(t − nτ). (6.7)

The stroboscopic Hamiltonian (6.4) has the same general form, upon
substitution of θ 7→ p, with the extension from 1D to 2D and with the
addition of a spin degree of freedom in the kicking term.

A 1D spinful kicked rotator has been used to study the effects of
spin-orbit coupling on quantum localization [27–32]. (Because in the
kicked rotator the variable which localizes is momentum rather than
position, one speaks of dynamical localization.) In these 1D studies there
was only a topologically trivial phase, while — as we shall see — the
present 2D model exhibits a topological phase transition.
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Figure 6.1. Momentum dependence of the quasi-energy (6.9) for zero disorder
potential, calculated from Eqs. (6.1) and (6.5) for K = 2, β = 0.8, µ = 1.9. At the
center of the Brillouin zone the Dirac cone emerges, which will be fully formed
when the gap closes at µ = 2.

6.2.4 Floquet operator

The evolution Ψ(t + 1) = FΨ(t) of the wave function Ψ(t) over one pe-
riod is described by the Floquet operator F . Integration of the Schrödinger
equation i∂Ψ/∂t = H(t)Ψ(t) gives the Floquet operator as the product

F = e−iH0(p)e−iV(i∂p), (6.8)

with i∂p ≡ i∂/∂p the position operator x in momentum representation.
The eigenvalues of the unitary operator F are phase factors e−iε. The

phase shift ε ∈ [−π, π) plays the role of energy (in units of h̄/τ), and
is therefore called a quasi-energy. For V ≡ 0 the quasi-energy is an
eigenvalue of H0, hence

ε = ±uT (u), for V ≡ 0. (6.9)

The p-dependence of the two bands is plotted in Fig. 6.1. The emerging
Dirac cone is clearly visible. Away from the cone the bands are quite
flat, which is a convenient feature of our choice (6.5) of T (u).

More generally, for nonzero V, the 2π-periodicity of H0(p) implies
that the eigenstates

Ψq(p) = e−ip·qχq(p) (6.10)
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of F are labeled by a Bloch vector q in the Brillouin zone −π < q1, q2 <

π. The function χq(p) is a 2π-periodic eigenstate of

Fq = e−iH0(p)e−iV(i∂p+q). (6.11)

A convenient basis for the functions χq(p) is formed by the eigenfunc-
tions exp(−im · p) of x. The 2π-periodicity of χq requires that the vector
m = (m1, m2) contains integers.

6.3 Mapping onto a 1D model

The quantum kicked rotator in d dimensions can be simulated in one
single dimension by means of d incommensurate driving frequencies
[9, 33]. We apply this dimensional reduction to our stroboscopic model
of the quantum Hall effect.

We take a linear potential in the variable x2,

V(x) = V1(x1)− ωx2, (6.12)

with ω/2π an irrational number ∈ (0, 1). During one period the mo-
mentum p2 is incremented to p2 + ω (modulo 2π), so ω is an incom-
mensurate driving frequency. An initial state

Ψ(p1, p2, t = 0) = ψ(p1, t = 0)δ(p2 − α). (6.13)

evolves as

Ψ(p1, p2, t) = e−iH0(p1,ωt+α)e−iV1(x1)ψ(p1, t − 1)

× δ(p2 − ωt − α). (6.14)

We may therefore replace the 2D dynamics by a 1D dynamics with a
time-dependent Floquet operator

F(t) = e−iH0(p1,ωt+α)e−iV1(i∂p1 ), (6.15)

Fq(t) = e−iH0(p1,ωt+α)e−iV1(i∂p1+q). (6.16)

This reduction from two dimensions to one dimension greatly simplifies
the numerical simulation of the quantum Hall effect.

For the potential in the remaining dimension we take a quadratic
form,

V1(x1) = 1
2 λ(x1 − x0)

2, (6.17)
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with x0 an arbitrary offset and λ, ω, 2π an incommensurate triplet. (We
take λ = 2, ω = 2π/

√
5.) From studies of the d-dimensional quantum

kicked rotator it is known that such a simple potential, which is linear
in d − 1 dimensions and nonlinear in one single dimension, provides
sufficient randomness for localization [34].

6.4 Localization in the quantum Hall effect

6.4.1 Numerical simulation

We base our numerical simulation on the 1D stroboscopic model with
two incommensurate frequencies of Sec. 6.3. We introduce a Bloch num-
ber q and seek the time dependence of the state ψ(p1, t) = e−iqp1χq(p1, t).
The state χq(p1, t) is a 2π-periodic function of p1, so it is a superposi-
tion of a discrete set of eigenstates e−imp1 of x1. For numerical purposes
this infinite set is truncated to M states, m ∈ {1, 2, . . . M}, with periodic
boundary conditions at the end points.

Fourier transformation from eigenstates of x1, with eigenvalue m, to
eigenstates of p1, with eigenvalue 2πn/M, amounts to multiplication
with the unitary matrix

Unm = M−1/2e2πinm/M, n, m ∈ {1, 2, . . . M}. (6.18)

Calculation of the state χq(x1, t), for t an integer multiple of τ ≡ 1,
requires 2t Fourier transformations,

χq(x1, t) =

(

t−1

∏
t′=0

Fq(t′)

)

χq(x1, 0), (6.19)

[

Fq(t)
]

nm
=

M

∑
k=1

U∗
kne−iH0(2πk/M,ωt+α)Ukme−iV1(m+q). (6.20)

These operations can be carried out with high efficiency using the fast-
Fourier-transform algorithm [35].

As initial state we choose

χq(x1, 0) = δx0,x1

[

e−iφ0/2 cos(θ0/2)

(

0
1

)

(6.21)

+ eiφ0/2 sin(θ0/2)

(

1
0

)]

, (6.22)
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Figure 6.2. Time-dependent diffusion coefficient (6.25) at t = 3000 as a function
of µ for M = 1024. The different values of K range from weak disorder (K = 4)
to strong disorder (K = 0.8). The peaks signal a localization-delocalization
transition. Compared to the three quantum Hall transitions in a clean system
(indicated by arrows on the top), the two outer transitions are displaced in-
wards by disorder, while the central transition is split. The splitting of the two
central peaks becomes larger and larger with increasing disorder, until they
merge with the outer peaks.

spatially localized at x1 = x0 = M/2 (for even M). The angles φ0, θ0 of
the initial spin direction are chosen randomly on the unit sphere.

6.4.2 Localization-delocalization transition

To search for localization we calculate the expectation value

〈(

x1(t) − x0
)2〉

=
M

∑
m=1

(m − M/2)2|χq(x1 = m, t)|2, (6.23)

and obtain the mean squared displacement

∆2(t) =
〈(

x1(t) − x0
)2〉 (6.24)

by averaging over some 102–103 values of the random parameters α, q ∈
{0, 1}. We fix K = 2, β = 0.8 and vary the parameter µ.

The system is localized if the time-dependent diffusion coefficient

D(t) =
∆2(t)

t
(6.25)
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Figure 6.3. Left axis: Time-dependent diffusion coefficient for K = 2 (solid
curve, same data as in Fig. 6.2), showing the four localization-delocalization
transitions. Right axis: Four-terminal Hall conductance GH (data points) and
topological invariant I (dashed curve), calculated in Sec. 6.5, to demonstrate
that these are topological phase transitions.

vanishes in the large-t limit. Delocalization with diffusive propagation
corresponds to a non-zero large-time limit of D(t). The quantum Hall
phase transition is a localization-delocalization transition, so we would
expect a peak in D(t) as a function of µ at the critical points µc where
the topological invariant switches from one value to another. In a clean
system these values are µc = 0,±2, see Eq. (6.2).

The data in Fig. 6.2 shows that disorder has two effects: It shifts the
outer transitions inwards and splits the central transition, resulting in
a total of four peaks. We will demonstrate in Sec. 6.5 that these are
topological phase transitions, by calculating the topological invariant —
which as we can see in Fig. 6.3 switches at each of the transitions.

6.4.3 Scaling and critical exponent

In the single-parameter scaling theory of localization all microscopic
parameters enter only through a single length scale ξ (the localization
length) and the associated energy scale δξ = (ξdρc)−1 (being the mean
level spacing in a d-dimensional box of size ξ, obtained from the density
of states ρc at the critical energy) [36–38]. The corresponding scaling law
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Figure 6.4. Left panel: Time-dependent diffusion coefficient for different times
as a function of µ. The curves are a least-squares fit, used to extract the local-
ization length ξ(µ) and the critical exponent (see App. 6.B). In the right panel
time is rescaled, to test the scaling form D(t, µ) = F(t/ξ2) [see Eq. (6.26)]. The
open data points do not fully collapse onto a single scaling curve, due to finite-
time corrections to scaling. The filled data points include the leading-order
correction (see App. 6.B).

for dynamical localization has the form [39]

D(t) = ξ2−dF(ξ−dt), (6.26)

in the large-time limit near the critical point µc. The localization length
ξ diverges as a power law with critical exponent ν on approaching the
transition,

ξ ∝ |µ − µc|−ν. (6.27)

The limiting behavior of the function F(z) is F(z) ∝ 1/z for z → ∞

and F(z) ∝ z2/d−1 for z → 0. The first limit ensures that the mean
squared displacement ∆2 = tD(t) → ξ2 becomes time independent in
the limit t → ∞ at fixed µ− µc. The second limit ensures that, if we send
µ → µc at fixed t, the diffusion coefficient D(t) → t2/d−1 tends to a finite
value. For d = 2, this value is also time independent, which implies
regular diffusion (D = constant) at criticality in two dimensions.

We have performed a finite-time scaling analysis of D(t), similar to
Refs. 6, 39, to obtain the localization length ξ and extract the value of
the critical exponent. (See App. 6.B for details.) We considered times
up to t = 1.3 · 106 for system size M = 213 = 8192. In Fig. 6.4 we
show both the unscaled and the scaled data. For the two independent
transitions we find ν = 2.576± 0.03 at µc = 0.387 and ν = 2.565 ± 0.03 at
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µc = 1.903. Both results agree with νQHE = 2.593, the critical exponent
for the quantum Hall phase transition [6].

6.5 Hall conductance and topological invariant

The quantum anomalous Hall effect in the absence of disorder (V ≡ 0)
is characterized by the topological invariant [25]

I = − 1
4π

∫ π

−π
dp1

∫ π

−π
dp2

[

∂û(p)

∂p1
× ∂û(p)

∂p2

]

· û(p), (6.28)

with û = u/|u|. This socalled Skyrmion number does not apply for
nonzero disorder potential, when momentum p is no longer a good
quantum number.

We calculate the topological invariant for nonzero V from the wind-
ing number of the reflection matrix r(φ) in a cylinder geometry [40, 41],

I = − 1
2πi

∫ 2π

0
dφ

d

dφ
ln Det r(φ), (6.29)

where Φ = φh̄/e is the flux enclosed by the cylinder and r(φ) is evalu-
ated at ε = 0. (We explain in App. 6.C how to construct the quasi-energy
dependent reflection matrix from the Floquet operator [42, 43].) Since
this is a 2D system, the sizes M × M for which we can calculate I are
much smaller than in the 1D reduction used to calculate D(t).

The results in Fig. 6.5 are for M × M = 40 × 40. This is data for a
single sample (q = 0), at fixed K = 2 as a function of β, µ. The disorder-
averaged µ-dependence of I is plotted in Fig. 6.3 (dashed curve, for
β = 0.8).

Comparing with the phase boundaries (6.2) for the clean system
(V ≡ 0), we see that disorder introduces topologically trivial regions
along clean phase boundaries. In the disordered system transitions be-
tween two different topologically nontrivial phases (with I = ±1) go
via a topologically trivial region (I = 0). A similarly disruptive effect
of disorder (but with a metallic gapless region replacing the topolog-
ically trivial phase) has been observed in computer simulations of the
quantum spin Hall effect [44].

We have also calculated the Hall conductance GH, which unlike the
topological invariant is a directly measurable quantity. The results shown
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Figure 6.5. Phase diagram of the topological invariant I in a cylinder of size
40 × 40, calculated from Eq. (6.29) for a single disorder realization. The solid
lines are the phase boundaries (6.2) in the clean system.

in Fig. 6.3 (data points) were obtained in a single four-terminal sample
of dimensions M × M = 70 × 70, directly taken from the scattering ma-
trix expression for the Hall conductance [45]. The Hall plateaus are at
the values expected from the topological invariant, GH ≈ I × e2/h, with
deviations from exact quantization due to the relatively small size of the
2D system.

6.6 Discussion

We have shown how the quantum Hall effect can be modeled in a 1D dy-
namical system, by using a pair of incommensurate driving frequencies
to simulate the effect of a second spatial dimension. This 1D strobo-
scopic model could become a competitive alternative to the 2D network
model for numerical studies of the quantum Hall phase transition [4],
similarly to how the 1D quantum kicked rotator is an alternative to the
3D Anderson model of the metal-insulator transition [9].

Since quantum kicked rotators can be realized using cold atoms
[10, 11, 39, 46], the stroboscopic model might also provide a way to
study the quantum Hall effect using atomic matter waves. Cold atoms
represent clean and controllable experimental quantum systems, owing
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to the ability to tune interaction strengths and external potentials [47].
Due to the absence of impurities they have long phase coherence times,
so their quantum dynamics can be followed over long time scales. These
properties make cold atoms ideally suited for the experimental study of
quantum phase transitions.

There is a particular need for a new physical system to investigate the
quantum Hall phase transition, because currently the theory disagrees
with semiconductor experiments on the value of the critical exponent
[6]. This might be an effect of Coulomb interactions between the elec-
trons in a semiconductor, and a system with controllable interactions
could shed light on this question.

For cold atomic gases prepared in a magneto-optical trap a quasi-
periodically modulated 1D standing wave, created by two overlapping
laser beams, simulates the quasi-periodic driving of the kicked rotator
[46]. The momentum distribution is accessible through an absorption
measurement, following the release of the atomic gas from the trap [47].
Since in the kicked rotator momentum plays the role of coordinate, in
this way the diffusion coefficient could be measured and the critical ex-
ponent of the metal-insulator transition was obtained from its time de-
pendence [10, 11, 39].

To realize the stroboscopic model of the quantum Hall effect, a con-
trollable spin-1/2 degree of freedom is needed. Hyperfine levels in alkali
or earth alkali atoms can be used for that purpose [47], and arbitrary
rotations of this pseudospin have been demonstrated in Cs [48]. Two
overlapping standing waves would produce a purely sinusoidal kicking
potential (corresponding to T (u) ≡ 1), while for flat spin bands higher
harmonics are desirable. Fortunately, the topological nature of the phase
transition ensures that there is considerable freedom in the choice of the
potentials.

Continuing on the path of dimensional reduction proposed here, it
is conceivable that the hypothetical 4D quantum Hall effect [49] might
also be realized in the laboratory, by adding two more incommensurate
driving frequencies.
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Appendix 6.A Tight-binding representation

To gain further insight into the stroboscopic model, we give a tight-
binding representation. This will motivate the specific form (6.5) for
the function T (u) and it will also guide us in the choice (6.6) for the
scalar potential V(x). The derivation follows the same steps as for the
quantum kicked rotator [8, 27].

Including the spin degree of freedom (s = ±1), we denote the coor-
dinate basis states by |m, s〉, such that xi|m, s〉 = mi|m, s〉 and σz|m, s〉 =
s|m, s〉. The two states |a±〉 defined by

Fq|a+〉 = e−iε|a+〉, (6.30a)

|a−〉 = eiH0 |a+〉 = eiε−iVq |a+〉 (6.30b)

are evaluated just after and just before the kick. [We have abbreviated
Vq = V(i∂p + q).] Both states evolve with a phase factor e−iε in one
period τ ≡ 1. The tight-binding representation is expressed in terms of
the average

|b〉 = 1
2

(

|a+〉 + |a−〉
)

. (6.31)

The Hermitian operator

W = i
1 − eiH0

1 + eiH0
=

1
u

tan
[ 1

2 uT (u)
]

u · σ (6.32)

allows to relate |b〉 to |a±〉 separately,

|b〉 =
1

1 + iW
|a−〉 =

1
1 − iW

|a+〉. (6.33)

Substitution into Eq. (6.30b) gives

(1 + iW)|b〉 = eiε−iVq(1 − iW)|b〉 (6.34a)

⇒ i
1 − eiε−iVq

1 + eiε−iVq
|b〉 = W|b〉 (6.34b)

⇒ tan[(ε − Vq)/2]|b〉 = W|b〉. (6.34c)

In coordinate representation this gives the tight-binding equations

∑
n

∑
s′

Wss′
n bs′

m+n + tan
[

1
2V(m + q) − 1

2 ε

]

bs
m = 0, (6.35)
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with hopping matrix elements

Wss′
n = 〈m, s|W(p)|m + n, s′〉, (6.36a)

W(p) =
1
u

tan
[ 1

2 uT (u)
]

u · σ. (6.36b)

The tangent term in Eq. (6.35) provides a pseudo-random on-site
potential, provided that V(m + q) changes from site to site in a way
which is incommensurate with the periodicity π of the tangent. This is
why a simple polynomial V(x) suffices to produce the localizing effect
of a disorder potential [8].

The role of the Bloch vector q is to provide different realizations of
the disorder potential, so that a disorder average is effectively an aver-
age of q over the Brillouin zone. The strength of the disorder potential is
varied by varying the parameter K, which determines the relative mag-
nitude of kinetic and potential energies: small K corresponds to strong
disorder.

From Eq. (6.36) we see that different choices for T (u) lead to dif-
ferent hopping matrix elements, leaving the on-site disorder unaffected.
The arctangent form in Eq. (6.5) has the simplifying effect of excluding
hopping between sites that are not nearest neighbors. For this choice
1
u tan[ 1

2 uT (u)] ≡ 1 the hopping matrix elements are given by

Wn = 2πKβµσzδn1,0δn2,0

+ πK(±iσy − βσz)δn1,0δn2,±1

+ πK(±iσx − βσz)δn1,±1δn2,0. (6.37)

Appendix 6.B Finite-time scaling

Following Refs. 6, 39, we extract the critical exponent ν from finite-time
numerical data by fitting the diffusion coefficient (or, more conveniently,
its logarithm) to the scaling law D(t) = F(t/ξ2). For finite t the diffusion
coefficient is an analytic function of µ. In view of Eq. (6.27) the variable
(t/ξ2)1/2ν = t1/2νu is an analytic function of µ, vanishing at µc.
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We therefore have the two power series

ln D(t) = ln Dc +
N1

∑
k=1

c
(1)
k

(

t1/2νu
)k

+ c0t−y, (6.38)

u = µ − µc +
N2

∑
k=2

c
(2)
k (µ − µc)

k. (6.39)

The term c0t−y, with y > 0, accounts for finite-time corrections to single-
parameter scaling at the transition point. We put c1 = 0, c2 < 0, to
ensure that D(t) as a function of µ has a maximum at µc. We then choose
integers N1, N2 and fit the parameters Dc, ν, c0, y with c

(i)
k (i ∈ {1, 2},

2 ≤ k ≤ Ni) to the t and µ-dependence of D(t), for a given 1D system
size M.

For the transition around µ = 0.38 we took times t = 1.2 · 104, 3.3 ·
104, 8.3 · 104, 2.1 · 105, 5.2 · 105, and 1.3 · 106, with M = 213 = 8192.
We averaged over 1000 samples. The quality of the fit is quantified by
the chi-square-value per degree of freedom (χ2/ndf). We systematically
increased N1, N2 until we arrived at χ2/ndf ≈ 1. Only the leading order
term in Eq. (6.39) was needed for a good fit, so we simply took u =
µ − µc. The expansion (6.38) did need higher order terms, up to N1 = 6.
We thus obtained ν = 2.576 ± 0.03 at µc = 0.387 with χ2/nd f = 1.2. A
similar analysis was performed for the outer peak in fig. 6.3, resulting
in ν = 2.565 ± 0.03 at µc = 1.903 with χ2/nd f = 1.01.

Appendix 6.C Scattering matrix from Floquet oper-

ator

To calculate the topological invariant (6.29) we need the reflection matrix
r(φ) in a cylinder geometry, at quasi-energy ε = 0 as a function of the
flux Φ = φh̄/e enclosed by the cylinder. This can be obtained from a
four-terminal scattering matrix S, which relates the wave amplitudes of
incoming and outgoing states at the four edges of an M × M square
lattice of sites (x1, x2) = (m1, m2), mi = 1, 2, . . . M. The dimensionality
of S is 8M × 8M, with the factor of 8 accounting for four terminals
and a twofold spin degree of freedom. The Floquet operator Fq is a
2M2 × 2M2 matrix describing the stroboscopic time evolution of states
on the 2D lattice. (We do not make the dimensional reduction to 1D for
this calculation.)
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Figure 6.6. Truncation of the lattice used to construct a four-terminal scattering
matrix, as described in the text.

When the square is folded into a cylinder, incoming and outgoing
states at the left and right edge are related by a phase factor eiφ. This
relation can be used to reduce the four-terminal scattering matrix to a
two-terminal scattering matrix S̃(φ) (which now has dimension 4M ×
4M). The reflection matrix r(φ) is a 2M × 2M subblock of S̃(φ), relating
incoming and outgoing states at the lower edge. We refer to Ref. 41 for
a computationally efficient way to carry out this general procedure.

What we discuss in this Appendix is how to obtain S from Fq. We
are faced with the complication that the truncation of the coordinates
to a finite range M introduces spurious hopping matrix elements that
couple sites near opposite edges (typically within 5–10 sites from the
edge). We cannot directly delete these matrix elements from the Floquet
matrix without losing unitarity.

Our solution (illustrated in Fig. 6.6) is to start from a larger M′ × M′

system (red square), with Floquet matrix F ′
q = e−iH′

0e−iV′
q . We then go

back to the M × M system (green square) by deleting rows and columns
in the coordinate representation of H′

0 7→ H0 and V ′
q 7→ Vq. The resulting

Floquet matrix Fq = e−iH0e−iVq remains unitary. By choosing M′ suffi-
ciently larger than M (typically M′ = M + 10 suffices), we effectively
eliminate the spurious hopping matrix elements.

For a four-terminal scattering matrix we introduce absorbing termi-
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nals at the four edges of the M × M lattice. The 8M × 2M2 matrix P
projects onto these terminals,

Pss′
mm′ = δss′δm1m′

1
δm2m′

2
×







1 if m1 ∈ {1, M},
1 if m2 ∈ {1, M},
0 otherwise.

(6.40)

The ε-dependent scattering matrix S is obtained from the Floquet matrix
Fq through the formula [42, 43]

S = P
[

1 − eiεFq(1 − PTP)
]−1

eiεFqPT, (6.41)

where the superscript T indicates the transpose of the matrix. The quasi-
energy ε is set to zero for the calculation of the topological invariant
(6.28). The integral over φ is evaluated analytically[41] by contour inte-
gration over complex z = eiφ. Results for M = 40 are shown in Figs. 6.3
and 6.5.

To calculate the Hall conductance GH we directly use the four-terminal
scattering matrix S, without rolling up the system into a cylinder. The
geometry is still that of Fig. 6.6, but the four absorbing terminals are
point contacts, covering a single site at the center of each edge. The di-
mensionality of the scattering matrix, including spin, is thus 8 × 8. A
current I13 flows from terminal 1 to terminal 3 and the voltage V24 is
measured between terminals 2 and 4 (which draw no current). The Hall
conductance GH = I13/V24 is obtained from the scattering matrix ele-
ments using Büttiker’s formulas [45]. Results for M = 70 are shown in
Fig. 6.3.
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Chapter 7

Metal–topological-insulator
transition in the quantum
kicked rotator with Z2
symmetry

7.1 Introduction

The spin of an electron moving in an electric field experiences a torque,
which can be understood as arising from the magnetic field in its rest
frame. In a two-dimensional electron gas this velocity-dependent mag-
netic field produces the quantum spin Hall effect [1, 2], reminiscent of
the quantum Hall effect but without time-reversal symmetry breaking
[3]. The difference manifests itself in the integer quantized values Q of
the dimensionless conductance. While there is no restriction on Q ∈ Z

in the quantum Hall effect (QHE), only the two values Q = 0, 1 ∈ Z2 ap-
pear in the quantum spin Hall effect (QSHE). In both effects the current
is carried by edge states, separated by an insulating bulk. The insula-
tor in the QSHE is called a topological insulator [4, 5] if the topological
quantum number Q = 1 and a trivial insulator if Q = 0.

Bulk states delocalize when the conductance switches between quan-
tized values. A distinguishing feature of the QSHE is that the delocal-
ized states can support metallic conduction (conductance ≫ e2/h), while
in the QHE the conductance remains . e2/h. The metallic conduction
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appears in extended regions of phase space, separated by a quantum
phase transition (Anderson transition) from the regions with a quan-
tized conductance and an insulating bulk. For a trivial insulator this is
the familiar metal-insulator transition in a two-dimensional (2D) elec-
tron gas with spin-orbit scattering [6, 7].

A fundamental question raised by the discovery of the QSHE was
whether the phase transition would depend on the topological quantum
number. Specifically, is the critical exponent νQ of the diverging local-
ization length different if the phase boundary separates a metal from a
topological insulator, rather than a trivial insulator? A numerical sim-
ulation [8] of the Kane-Mele model [1] of the QSHE gave an affirma-
tive answer, finding a value ν1 ≈ 1.6 substantially below the established
result[9, 10] for the metal–trivial-insulator transition. In contrast, studies
of the network model in the QSHE universality class gave ν1 = ν0 ≈ 2.7
within numerical accuracy [11, 12], consistent with analytical consider-
ations from the nonlinear sigma model [13] why the critical exponent
should be Q-independent.

In this chapter we study the metal-insulator transition in the QSHE
by means of an altogether different, stroboscopic model — the periodi-
cally driven system known as the quantum kicked rotator [14–16]. A
key feature of this dynamical system is that spatial dimensions can be
exchanged for incommensurate driving frequencies [17, 18], allowing for
the study of metal-insulator transitions in one spatial dimension [19, 20].
This proved very effective in the QHE [21], and also made it possible to
experimentally study the 3D Anderson transition in a 1D optical lattice
[22]. In the present chapter we apply the same strategy to study the 2D
QSHE in a 1D system.

In the next section we show how the quantum kicked rotator can
be extended to include the topological Q = 1 phase of the QSHE. We
first construct this Z2 quantum kicked rotator in 2D and then carry out
the mapping to 1D. We calculate the phase diagram in Sec. 7.3, using a
scattering formula for the topological quantum number valid for disor-
dered systems [23, 24]. In Sec. 7.4 we determine the scaling law at the
metal-insulator phase transition and compare the critical exponents νQ

for Q = 0 and Q = 1. We conclude in Sec. 7.5.
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7.2 Construction of the Z2 quantum kicked rotator

7.2.1 Stationary model without disorder

We start from a translationally invariant 2D system and will add disor-
der later. The minimal model Hamiltonian H0(p) of the QSHE has four
bands at each momentum p = (p1, p2), distinguished by indices σ (up
and down spins) and τ (s and p orbitals). The Pauli matrices σi and τi

(i = 0, x, y, z) act on the spin and orbital degrees of freedom, respectively.
Time-reversal symmetry is essential:

σyH∗(−p)σy = H(p). (7.1)

Inversion symmetry is not essential (and will be broken anyway once
we add disorder), but is assumed for convenience:

τzH(−p)τz = H(p). (7.2)

The generic Hamiltonian that satisfies the symmetries (7.1) and (7.2)
has the form [25]

H(p) = E0(p) +
5

∑
α=1

fα(p)Γα, (7.3)

Γ =
(

τxσz, τyσ0, τzσ0, τxσx, τxσy

)

. (7.4)

The real functions E0, f3 are even under inversion of p, while the func-
tions f1, f2, f4, f5 are odd. Because the Γ-matrices anticommute, {Γα, Γβ} =
2δαβ, the band structure is given by

ε±(p) = E0(p) ±
√

∑α f 2
α (p). (7.5)

Each band is twofold degenerate.
The band gap can close upon variation of a single control parame-

ter at high-symmetry points Λa in the first Brillouin zone, which satisfy
Λa = −Λa modulo a reciprocal lattice vector. At these time-reversally in-
variant momenta the Bloch wave function u−(Λa) of the lower band has
a definite parity πa = ±1 under inversion, τzu−(Λa) = πau−(Λa). The
Z2 topological quantum number Q follows from the Fu-Kane formula
[26],

(−1)Q = ∏
a

πa. (7.6)
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Figure 7.1. Band structure for the clean Hamiltonian H(p), as calculated from
Eqs. (7.5), (7.7), and (7.8), for parameter values K = 2, β = 0.8, γ = 2, µ = −0.3.
The Dirac cones emerging at the time-reversally invariant points in the Brillouin
zone will touch when µ = 0.

A gap closing and reopening can switch the parity of the lower and
upper bands, inducing a change in Q (a topological phase transition).

The specific choice for the functions fα(p) which we will study in
the following is based on experience with the stroboscopic model of the
QHE [21]. We take

E0 ≡ 0, fα = T(u)uα, T(u) = (2/u) arctan u, (7.7)

where the vector u (of length u = |u|) has components

u(p) =
(

K sin p1, K sin p2, βK(µ − cos p1 − cos p2),

γK cos p1 sin p2, γK cos p2 sin p1

)

. (7.8)

For γ = 0 this is the Bernevig-Hughes-Zhang model of the QSHE
[27], up to a function T(u) > 0 which flattens the bands without closing
the band gap (hence without affecting the topological quantum num-
ber). Without the γ-term the spin degree of freedom σ is conserved and
the QSHE Hamiltonian is identical to two copies of the QHE Hamil-
tonian (with opposite magnetic fields, to restore time-reversal symme-
try). When γ 6= 0 spin-orbit coupling mixes the spin-up and spin-down
blocks of the Hamiltonian.

The band structure for one set of parameters is shown in Fig. 7.1.
The time-reversally invariant momenta Λa in the first Brillouin zone
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−π < p1, p2 ≤ π are at the four points (0, 0), (π, π), (0, π), (π, 0). (We
have set both h̄ and the lattice constant a equal to unity.) The topological
quantum number (7.6) depends only on the parameter µ,

Q =

{

0 if |µ| > 2,
1 if |µ| < 2.

(7.9)

For µ = 2 or −2 the band gap closes at (0, 0) or (π, π), with a switch in
parity and a change of Q. For µ = 0 the gap closes at both points (0, π)
and (π, 0) — at constant Q since the two parity switches cancel.

7.2.2 Time-dependent model with disorder

The time-dependent model is based on the quantum kicked rotator [14],
which is a dynamical system designed to study the localization by dis-
order with great nuerical efficiency [15, 16, 20]. The time dependent
Hamiltonian H(t) contains a disorder potential V(x) and a stroboscopic
kinetic energy H(p),

H(t) = V(x) + H(p)
∞

∑
n=−∞

δ(t − n). (7.10)

(The stroboscopic period τ has been set equal to unity.) We take H(p)
of the form (7.3) and will specify V(x) later. The disorder strength is set
by the relative importance of V(x) and H(p). The Floquet operator F
describes the time evolution of the wavefunction over one period,

Ψ(t + 1) = FΨ(t), F = e−iH(p)e−iV(i∂p). (7.11)

Here i∂p is the operator x in the momentum representation. The eigen-
values e−iε of the unitary operator F define the quasi-energies ε ∈
(−π, π).

We use the 2π-periodicity of H(p) to label the eigenstates Ψq(p)
of F by a Bloch vector q in the Brillouin zone −π < q1, q2 ≤ π. By
construction,

Ψq(p) = e−ip·qχq(p), (7.12)

with χq(p) a 2π-periodic eigenstate of

Fq = e−iH(p)e−iV(i∂p+q). (7.13)

This is the quantum kicked rotator with Z2 symmetry.
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7.2.3 Mapping from 2D to 1D

By adding an incommensurate driving frequency to the quantum kicked
rotator in two spatial dimensions, it is possible to simulate the system
in one single dimension [17, 18]. For that purpose we take a potential of
the form

V(x) = V1(x1)− ωx2, (7.14)

with ω/2π an irrational number ∈ (0, 1). We consider states which at
t = 0 are plane waves in the x2-direction, having a well-defined initial
momentum p2 = α. In the Floquet operator the term linear in x2 has the
effect of shifting p2 to p2 + ω, so that the 2D operator Fq can be replaced
at the n-th time step by the 1D operator

F (n)
q = e−iH(p1, nω+α)e−iV1(i∂p1+q). (7.15)

There is considerable freedom in the choice of the potential V1 in the
remaining dimension. The simple quadratic form

V1(x1) = λ(x1 − x0)
2 (7.16)

provides sufficient randomness if {ω, λ, 2π} form an incommensurate
triplet [28]. We take λ = 1, ω = 2π/

√
5.

The numerical simulation is performed by subsequent multiplica-
tion of the state χq(x1, t) with the series of Floquet operators F (n)

q , n =

0, 1, 2, . . ., in the plane wave basis e−imp1 (eigenstates of x1). The integer
m is restricted to the values 1, 2, . . . M, with M an even integer that sets
the system size. As initial condition we choose

χq(x1, 0) = δx1,x0Σ, (7.17)

spatially localized at x0 = M/2. The vector Σ is a normalized vector of
rank 4 with random components denoting the spin and orbital degrees
of freedom.

The multiplication with the Floquet operators, represented by M ×
M unitary matrices, can be done very efficiently by means of the Fast
Fourier Transform algorithm. (See the analogous calculation in the QHE
for a more detailed exposition [21].) The calculation is repeated for dif-
ferent values of α and q, to simulate a disorder average. The disor-
der strength can be varied by varying K, with small K corresponding to
strong disorder.
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Figure 7.2. Bottom panel: Time-dependent diffusion coefficient (7.19) as a func-
tion of µ for K = 2, β = 0.8, γ = 2, shown for times t = 106 (red), t = 105

(green) and t = 104 (blue). The points of intersection of these curves locate the
metal-insulator transition. Top panel: Topological quantum number (7.20) for
the same parameter values, used to distinguish the topologically trivial (Q = 0)
and nontrivial (Q = 1) insulators. In the metallic regions Q is not quantized.

7.3 Phase diagram with disorder

Before embarking on a calculation of the scaling law and critical ex-
ponents, we first locate the metal-insulator transitions and identify the
topological phases.

To find the metal-insulator transitions, we calculate the time depen-
dent diffusion coefficient

D(t) =
∆2(t)

t
(7.18)

from the mean squared displacement

∆2(t) =
〈(

x1(t) − x0
)2〉. (7.19)

The brackets 〈· · · 〉 denote the expectation value in the state χq(x1, t) and
the overline indicates the ensemble average over α and q. We typically
average over 103 samples of size M = 4 · 103.

A representative series of scans of D versus µ for different values
of t is shown in Fig. 7.2 (bottom panel). In Fig. 7.3 we show D ver-
sus t for different µ. In the insulating phase D(t) ∝ 1/t decays with
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Figure 7.3. Time-dependent diffusion coefficient as a function of t for several
values of µ near the metal–topological-insulator transition. (Same parameters
as in Fig. 7.2.) The slope vanishes at the transition point µc ≈ −0.368.

increasing time, while in the metallic phase D(t) ∝ ln t grows with in-
creasing time [29]. The metal-insulator transition at µ = µc is signaled
by a t-independent D(t) (corresponding to a scale invariant diffusion
coefficient).

In this way we can locate the phase boundaries, but we cannot yet
distinguish topologically trivial and nontrivial insulators. For that pur-
pose we need the topological quantum number. The formula (7.6) for
the topological quantum number of the translationally invariant system
does not apply for nonzero disorder potential. The scattering formula-
tion [23, 24] continues to apply and is what we will use. An alternative
Hamiltonian formulation for disordered systems has been given by Pro-
dan [30, 31].

The topological invariant is computed using the formalism described
in Ref. 21. From the Floquet operator we can construct a reflection ma-
trix r(ε, φ) for a cylindrical system enclosing a flux Φ = φh̄/e. The
topological invariant then follows from the following combination of
determinants and Pfaffians, evaluated at ε = 0 and φ = 0, π,

(−1)Q =
Pf [σyr(0, π)]

Pf [σyr(0, 0)]

√

det r(0, 0)
√

det r(0, π)
. (7.20)

The results in Fig. 7.2 (top panel) show the disorder-averaged µ-
dependence of Q for a system of size M × M = 30 × 30. The value
of Q is only quantized ∈ {0, 1} in the insulating regions. In the metallic
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Figure 7.4. Phase diagram of the Z2 quantum kicked rotator in the µ–1/K
plane for fixed β = 0.8 and γ = 2. The topological quantum number Q = 0, 1
distinguishes the topologically trivial and nontrivial insulating phases. The
metallic phase between the insulating phases disappears in the clean limit
1/K → 0. The two circles indicate the metal–trivial-insulator and metal–
topological-insulator transitions that were studied to compare the critical ex-
ponents.

regions Q averages to 1/2 for a sufficiently large system [23, 31], which
is not quite observed for our system sizes.

The phase diagram obtained in this way is shown in Figs. 7.4 and
7.5. Without disorder, the topological invariant (7.9) gives a topological
insulator for |µ| < 2 and a trivial insulator for |µ| > 2. With disorder
a metallic phase appears between the insulating phases, provided that
γ/β 6= 0. For small γ we find an additional trivial insulating phase
around µ = 0, consistent with what was found in the quantum Hall
system in the presence of disorder [21].

In some other models of the QSHE a reentrant behavior Q = 0 7→
1 7→ 0 with increasing disorder is observed in some regions of parameter
space [31–34]. In our model a system which starts out topologically
trivial in the clean limit stays trivial with disorder.

7.4 Scaling law and critical exponent

The premise of one-parameter scaling is expressed by the equation [35]

ln D(t) = F(ξ−2t), (7.21)
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Figure 7.5. Phase diagram for fixed disorder strength (K = 2), in the µ–γ
plane for β = 0.8 (top panel) and in the µ–β plane for γ = 2 (bottom panel).
The metallic phase is stabilized by increasing the spin-orbit coupling strength
γ or by decreasing β.

where F is a universal scaling function. The localization length ξ has
a power law divergence ∝ |µ − µc|−ν at the metal-insulator transition,
with critical exponent ν.

We follow the established method of finite-size (here: finite-time)
scaling to extract ν from the numerical data [36]. We rewrite the scaling
law (7.21) as

ln D(t) = F(ut1/2ν), (7.22)

u = (µ − µc) +
Nu

∑
k=2

ck (µ − µc)
k , (7.23)

where F(z) is an analytic function of z = ut1/2ν. By fitting the free
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Nu NF Ns ν χ2/ndf
ν0 2 3 2 2.67 ± 0.09 0.97
ν1 2 1 2 2.69 ± 0.06 0.92

Table 7.1. Results of the finite-time scaling analysis described in the text.

parameters of the series expansion

ln D(t) = ln Dc +
NF

∑
k=1

dk

(

ut1/2ν
)k

+ S(t) (7.24)

to the data for D as a function of µ and t, the critical exponent ν is
obtained. The extra term S(t) accounts for finite-time corrections to
single-parameter scaling, of the form

S(t) = t−y
Ns

∑
k=0

gk

(

(µ − µc)t1/2ν
)k

. (7.25)

We have considered times up to t = 106 for system sizes up to
M = 104. The number of terms Nu, NF, and Ns in the series expansions
(7.23)–(7.25) are systematically increased until the chi-square-value per
degree of freedom (χ2/ndf) is approximately unity, see Table 7.1. The
calculation is carried out at the two points indicated by circles in Fig. 7.4,
one a metal–trivial-insulator transition (giving ν0 = 2.67 ± 0.09) and the
other a metal–topological-insulator transition (giving ν1 = 2.69 ± 0.06).

7.5 Conclusion

In conclusion, we have presented a numerical method to study the
metal-insulator transition in the quantum spin Hall effect (QSHE), based
on the incorporation of Z2 topological symmetry into the quantum kicked
rotator. We find that the critical exponent νQ of the diverging localiza-
tion length is the same whether the metal is approached from the topo-
logically trivial insulator (Q = 0) or from the topologically nontrivial
insulator (Q = 1). Our results ν0 = ν1 ≈ 2.7 are in agreement with Refs.
11, 12, but not with Ref. 8 (which found a much smaller ν1 ≈ 1.6 for the
topologically nontrivial insulator). Since our stroboscopic model is fully
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independent of the network model used in Refs. 11, 12, this is significant
support for the insensitivity of ν to the topological quantum number Q.

A special feature of the quantum kicked rotator is that it allows the
study of the QSHE, as well as the QHE [21], in one spatial dimension,
by exchanging a dimension for an incommensurate driving frequency
[17, 18]. There is much interest in such one-dimensional models of topo-
logical phases [37–40], because they might be more easily realized in
optical lattices of cold atoms than the original two-dimensional models.
Critical exponents were not studied in these earlier investigations, which
focused on the QSHE in clean systems without disorder.

An interesting direction for future research is to study the edge states
in the Z2 quantum kicked rotator, by replacing the periodic boundary
condition used in this chapter by a zero-current boundary condition.
While the localization length exponent ν does not depend on the topo-
logical quantum number, the edge state structure does depend on Q,
with a characteristic multifractality at the metal-insulator transition [11].
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Chapter 8

Geodesic scattering by surface
deformations of a topological
insulator

8.1 Introduction

Topological insulators such as Bi2Se3 form a new class of materials, char-
acterized by an insulating bulk and a conducting surface [1, 2]. The
surface states are massless Dirac fermions with spin tied to momen-
tum by spin-orbit coupling. Time-reversal symmetry prohibits backscat-
tering and prevents disorder from localizing the surface states. The
surface conductivity can therefore be unusually large, offering poten-
tial applications for electronics. The limitations on the conductivity of
Dirac fermions imposed by random potential fluctuations are well un-
derstood (mostly from extensive studies of graphene [3]). Here we study
an altogether different non-electrostatic scattering mechanism, originat-
ing from random surface deformations.

The epitaxial growth of Bi2Se3 films is known to produce random
variations in the height profile z = ζ(x, y) of the surface [4]. These
surface deformations correspond to terraces of additional layers of the
material (of typical height H = 2 nm and width W = 10 nm). Since
the Dirac fermions are bound to the surface, they are forced to follow
its geometry. Like photons in curved space-time, the electrons follow
the geodesic or shortest path between two points, although here the
curvature is purely spatial [5]. (The metric tensor of the surface does
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not couple space to time.) The geodesic motion around deformations
constitutes a scattering mechanism that by its very nature is energy in-
dependent, and which therefore is qualitatively different from potential
scattering.

Our problem has no direct analogue in the context of graphene. Rip-
ples of a graphene sheet do scatter the electrons, but this is not geodesic
scattering: Ripples in graphene are described by gauge fields and scalar
potentials in a flat space [3]. Space curvature effects may appear around
conical defects (pentagon and heptagon rings), but these are rare in
graphene [6]. An early study of geodesic scattering in condensed matter
that we have found in the literature is by Dugaev and Petrov [7], with
possible applications to intercalated layered crystals. The present work
goes beyond their analysis by including the effects of an anisotropic
dispersion relation, which is a major complication but relevant for topo-
logical insulators.

The chapter is organized as follows. In Sec. 8.2 we investigate the
classical motion of the surface electrons in the presence of surface de-
formations. The geodesic equation is solved in the regime H/W ≪ 1
of shallow deformations, to obtain the differential scattering cross sec-
tion S . In Sec. 8.3 we use the linearized Boltzmann integral equation
to compute the conductivity tensor σ from S . This is a notoriously dif-
ficult problem for an anisotropic dispersion relation [8]. In the regime
H/W ≪ 1 we are able to find a closed-form solution, by converting
the integral equation into a differential equation. Results are given in
Sec. 8.4 and in Sec. 8.5 we discuss the experimental signatures that dis-
tinguish geodesic scattering from potential scattering.

8.2 Geodesic scattering

8.2.1 Geodesic motion

We consider the surface of a topological insulator in the x − y plane,
deformed by a locally varying height z = ζ(x, y). The dispersion relation
of a locally flat surface is an elliptical hyperboloid,

E =
√

v2
x p2

x + v2
y p2

y + v2
z p2

z + ǫ2, (8.1)

where we have taken the x, y, z axes as the principal axes of the ellip-
tical cone. In general, all three velocity components vx, vy, vz may be
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different. For an isotropic dispersion relation in the x − y plane we have
in-plane velocities vx = vy = vF, but the out-of-plane velocity vz may
still differ.

We have included a mass term ǫ in Eq. (8.1) in order to have a
nonzero Lagrangian,

L = ∑
i

ẋi pi − E = −ǫ
√

1 −∑
i

(ẋi/vi)2, (8.2)

with ẋi = dxi/dt = ∂E/∂pi and i = x, y, z. In the final equation of mo-
tion ǫ will drop out. The constraint that the motion follows the surface
implies ż = (∂ζ/∂x)ẋ + (∂ζ/∂y)ẏ, which can be used to eliminate ż from
the Lagrangian. The result can be written in the form

L = −ǫ
√

1 − v−2
x gµν ẋµ ẋν, (8.3)

with gµν the metric tensor (made dimensionless by pulling out a factor
v2

x). Summation over repeated indices µ, ν = 1, 2 = x, y is implied and
upper or lower indices distinguish contravariant or covariant vectors.

Explicitly, we find

gxx = 1 + (∂ζ/∂x)2v2
xz, (8.4a)

gyy = v2
xy + (∂ζ/∂y)2v2

xz, (8.4b)

gxy = gyx = (∂ζ/∂x)(∂ζ/∂y)v2
xz , (8.4c)

where we have abbreviated vij = vi/vj. The inverse of the tensor gµν,
denoted by gµν, has elements

gxx = D−1[1 + (∂ζ/∂y)2v2
yz], (8.5a)

gyy = D−1[v2
yx + (∂ζ/∂x)2v2

yz], (8.5b)

gxy = gyx = −D−1(∂ζ/∂x)(∂ζ/∂y)v2
yz , (8.5c)

D = 1 + (∂ζ/∂x)2v2
xz + (∂ζ/∂y)2v2

yz. (8.5d)

The Euler-Lagrange equation ∂L/∂xµ = (d/dt)∂L/∂ẋµ gives the in-
homogeneous geodesic equation [9, 10]

ẍλ + Γλ
µνẋµ ẋν = ẋλ 1

L

dL

dt
. (8.6)
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The coefficients Γλ
µν are the Christoffel symbols,

Γλ
µν ≡

gλδ

2

(

∂

∂xν
gδµ +

∂

∂xµ
gδν −

∂

∂xδ
gµν

)

. (8.7)

The nonzero right-hand-side in Eq. (8.6) may be eliminated by a repa-
rameterization of time, from t to τ such that dτ/dt = −L(t)/ǫ. We thus
arrive at the homogeneous geodesic equation

d2xλ

dτ2 + Γλ
µν

dxµ

dτ

dxν

dτ
= 0. (8.8)

Since ǫ does not appear in this equation of motion, it holds also in the
limit of massless electrons.

8.2.2 Scattering angle

We consider the scattering from a surface deformation ζ(x, y) of charac-
teristic width W and height H large compared to the Fermi wave length
λF. The scattering may then be described by the classical equation of
motion, which is the geodesic equation (8.8).

An electron with wave vector k incident on the deformation with
impact parameter b at an angle θk with the x-axis is scattered by an an-
gle θ(θk, b), resulting in a differential scattering cross section S(θk, θ) =
|db/dθ|. Multiple trajectories may lead to the same scattering angle so
that θ(θk, b) cannot be inverted. Then the function has to be split into
several invertable branches i and the cross section becomes S(θk, θ) =

∑i |dbi(θk, θ)/dθ|.
These quantities may be calculated by numerically solving the geodesic

equation. Analytical progress is possible in the physically relevant regime
H/W ≪ 1 of shallow deformations. As shown in App. 8.A.2, the scat-
tering angle is then given by

θ(θk, b) = −
∫ ∞

−∞
Γ̃

y
xx(x̃, b)dx̃. (8.9)

Here Γ̃λ
µν(x̃, ỹ) is obtained from Γλ

µν(x, y) by a rotation of the coordinate
axes over an angle θk (so that the electron is incident parallel to the x̃-
axis). To leading order in H/W and b/W the scattering angle scales as
θ = O(H2b/W3).
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Figure 8.1. Geodesic trajectory of an electron deflected by a circularly sym-
metric deformation (characteristic width W). The impact parameter b, incident
angle θk, and scattering angle θ are indicated. The blue background shows the
height profile of the Gaussian deformation (8.10).

One simple example is the case of a Gaussian deformation,

ζ(x, y) = H exp[−(x2 + y2)/2W2], (8.10)

which yields (see App. 8.A.3)

θ(θk, b) = −
√

π

2

H2vyz

W3 be−b2/W2

× (cos2 θk + v2
yx sin2 θk),

(8.11)

in the shallow deformation limit. The geometry is depicted in Fig. 8.1.
We will use this example throughout the chapter to illustrate our general
results.

8.3 Calculation of the conductivity

8.3.1 Linearized Boltzmann equation

We investigate how geodesic scattering influences the surface conductiv-
ity σ of the topological insulator. We assume σ ≫ e2/h, so that we may
use a semiclassical Boltzmann equation approach. In the presence of an
external electric field E, the occupation fk = f0(Ek) + gk of the electron
states deviates to first order in E according to the linearized Boltzmann
equation,

∂ f0

∂Ek
evk · E = ∑

k′

Q(k, k′)(gk − gk′). (8.12)
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Here, vk = ∂Ek/h̄∂k is the velocity and Q(k, k′) the scattering rate from
k to k′ (equal to Q(k′, k) because of detailed balance). The sum over
k′ runs over all states of the (d-dimensional) momentum space. In the
continuum limit, ∑k → V

∫

dk/(2π)d, where V is the d-dimensional
volume (d = 2 in our case). Spin degrees of freedom do not contribute
to the sum since the helical surface states have definite spin direction.
Particle conservation leads to the normalization condition

∑
k

gk = 0. (8.13)

The electric field can be eliminated from Eq. (8.12) by means of the
vector mean free path Λk, defined by [8, 11]

gk =
∂ f0

∂Ek
eE · Λk, (8.14)

∑
k′

Q(k, k′)(Λk − Λk′) = vk. (8.15)

For elastic scattering, Q(k, k′) = δ(Ek −Ek′)q(k, k′). Using dk = dk⊥ dSF =
dEkdSF/|h̄vk|, with dSF a Fermi surface element, Eq. (8.15) can be rewrit-
ten in terms of the density of states N(EF ) at the Fermi energy,

N(EF) = (2π)−d
∮

dSF |h̄vk|−1. (8.16)

The integral
∮

dSF extends over the Fermi surface. The result is

VN(EF)〈q(k, k′)(Λk − Λk′)〉k′ = vk, (8.17)

with 〈· · · 〉k denoting the weighted average over the Fermi surface,

〈 f (k)〉k =

∮

dSF f (k)|h̄vk|−1
∮

dSF |h̄vk|−1 . (8.18)

The normalization condition (8.13) becomes 〈Λk〉k = 0.
At zero temperature, the conductivity tensor is given by

σ =
e2

V ∑
k

δ(Ek − EF) vk ⊗ Λk

= e2N(EF)〈vk ⊗ Λk〉k.

(8.19)
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The direct product ⊗ indicates the dyadic tensor with elements [vk]i[Λk]j.
Substitution of Eq. (8.17) for vk and the use of q(k, k′) = q(k′, k) shows
that σ is a symmetric tensor.

For a low density N of scatterers, the scattering rate q(k, k′) can be
related to the differential cross section S of a single scatterer (averaged
over all scatterers). In the two-dimensional case of interest here, the
relation is

N |vk|S(θk, θk′)dθk′ = q(k, k′)
V

(2π)2

dS′
F

|h̄vk′ | , (8.20)

where θk is the angle between vk and the x-axis. The Eq. (8.17) which
determines the vector mean free path then takes the form

N |vk|
∫ 2π

0
dθk′ S(θk, θk′)(Λk − Λk′) = vk. (8.21)

For the solution of this equation (and the interpretation of the re-
sults), it is convenient to follow Ziman [8, 12] and define an anisotropic
relaxation time τ(k) by

1
τ(k)

= V N(EF)〈(1 − v̂k · v̂k′)q(k, k′)〉k′ . (8.22)

Using Eq. (8.20) this can be rewritten as

1
τ(k)

= N |vk|
∫ 2π

0
dθk′ S(θk, θk′)[1 − cos(θk′ − θk)]. (8.23)

8.3.2 Isotropic dispersion relation

For isotropic dispersion relations (when Ek depends only on |k|, so that
the velocity v = vF k̂ is aligned with the wave vector), the linearized
Boltzmann equation can be solved exactly [8]. This applies, for example,
to surfaces perpendicular to the [111] direction of Bi2Se3. We consider
this simplest case first.

Since the deformations do not have a preferred orientation and the
dispersion is isotropic, the average scattering cross section S(θk, θk′)
only depends on the scattering angle θ = θk − θk′ , independently of
the incident direction. The solution to Eq. (8.17) is then Λk = τvk with
a relaxation time τ given by

1
τ

= N vF

∫ 2π

0
dθ S(θ)(1 − cos θ). (8.24)
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Substitution into Eq. (8.19) leads to a scalar conductivity σ given by the
Drude formula,

σ = e2N(EF)v2
F

τ

d
=

e2

h

EF

h̄

τ

2
. (8.25)

In the second equality the density of states N(EF) = EF/(2πh̄2v2
F) of a

Dirac cone with a circular cross section was inserted.
The regime H/W ≪ 1 of shallow surface deformations is character-

ized by predominantly forward scattering (|θ| ≪ 1). Then the relaxation
time (8.24) is given by the second moment of the scattering angle,

1
τ

= 1
2N vF

∫

dθ S(θ)θ2. (8.26)

We substitute the relation S(θ) = 〈|dθ(b)/db|−1〉, where 〈· · · 〉 indicates
an average over the (randomly oriented) scatterers. The integration over
scattering angles θ becomes an integration over impact parameters b,

1
τ

= 1
2N vF

〈

∫

db θ2(b)

〉

. (8.27)

From Eq. (8.9) we infer the scaling 1/τ ∝ W × (H/W)4 of the relax-
ation rate with the characteristic height and width of the surface defor-
mations. (The additional factor of W comes from the integral over b.)
This scaling was first obtained by Dugaev and Petrov [7]. Eq. (8.25)
then gives the scaling of the conductivity

σ = constant × e2

h

EF

h̄

1
N vF

W3

H4 . (8.28)

8.3.3 Anisotropic dispersion relation

We now turn to the case of an anisotropic dispersion relation. There
is then, in general, no closed-form solution of the linearized Boltzmann
equation [13]. One widely used approximation for the conductivity, due
to Ziman [12], has the form

σZiman = e2N(EF)〈vk ⊗ vkτ(k)〉k, (8.29)

with τ(k) the anisotropic relaxation time (8.22). As we will show in the
following, this is a poor approximation for our problem, but fortunately
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it is not needed: In the relevant limit H/W ≪ 1 of scattering from
shallow surface deformations an exact solution becomes possible. For
shallow deformations forward scattering dominates, |θ| = |θk − θk′ | ≪
1. This allows for an expansion of Λk′ around θk, which reduces the
integral equation (8.17) to a differential equation.

With the notation

Mp(φ) =
∫ 2π

0
dθ S(φ, φ + θ)θp, (8.30)

the expansion to second order of Eq. (8.21) can be written as

M1(φ)
d

dφ
λ(φ) + 1

2 M2(φ)
d2

dφ2 λ(φ) = − 1
N eiφ. (8.31)

We introduced a complex variable λ = Λx + iΛy to combine the two
components of the vector mean free path. Denoting the radius of cur-
vature of the Fermi surface by κ(φ) = dSF/dφ, the normalization condi-
tion (8.13) becomes

∫ 2π

0
dφ

κ(φ)

v(φ)
λ(φ) = 0. (8.32)

Once we have the solution of Eq. (8.31), the conductivity tensor elements
follow from

σxx ± σyy =
e2

h
Re
∫ 2π

0

dφ

2π
e∓iφκ(φ)λ(φ), (8.33a)

σxy = σyx =
e2

h
1
2 Im

∫ 2π

0

dφ

2π
eiφκ(φ)λ(φ). (8.33b)

A further simplification is possible if the average scattering angle
vanishes, M1(φ) = 0. Then the second moment M2(φ) of the scattering
angle is, within the forward scattering approximation, directly related
to the anisotropic relaxation time:

1
τ(φ)

= 1
2N v(φ)M2(φ). (8.34)
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Eq. (8.31) can now be solved in terms of the Fourier transforms

ℓn =
∫ 2π

0

dφ

2π
e−inφv(φ)τ(φ), (8.35a)

κn =
∫ 2π

0

dφ

2π
e−inφκ(φ), (8.35b)

λn =
∫ 2π

0

dφ

2π
e−inφλ(φ), (8.35c)

resulting in

λn =
ℓn−1

n2 + constant× δn,0. (8.36)

The normalization constant can be determined from Eq. (8.32).
Inserting the solution into Eq. (8.33) we obtain the conductivity

σxx ± σyy =
e2

h
Re

∞

∑
n=−∞

ℓn−1κ−n±1

n2 , (8.37a)

σxy = σyx =
e2

h
1
2 Im

∞

∑
n=−∞

ℓn−1κ−n−1

n2 . (8.37b)

For simplicity we have assumed an inversion symmetric Fermi surface,
for which κ±1 = 0 so that the normalization constant in Eq. (8.36) does
not contribute to the conductivity.

In the case of an isotropic Fermi surface, only the Fourier compo-
nents l0 = vFτ and κ0 = kF are nonzero. From Eq. (8.37), we then find
σxy = 0 = σyx, σxx = σyy = (e2/2h)kFvFτ, in agreement with Eq. (8.25).

Comparing with the Ziman approximation (8.29) for the conductiv-
ity in terms of the anisotropic relaxation time, we see that it can be
written in the same form (8.37), but without the factor 1/n2. It therefore
deviates strongly from our forward-scattering limit, except in the case
of an isotropic Fermi surface (when only n = 1 contributes).

8.4 Results

8.4.1 Isotropic dispersion relation

In the shallow deformation limit the conductivity is given by Eq. (8.28),
up to a numerical prefactor of order unity. We have calculated this
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Figure 8.2. Surface conductivity of a topological insulator as a function of the
height H of randomly positioned Gaussian deformations (width W = 10 nm,
density N = 0.1 W−2). We took an isotropic dispersion relation, with in-plane
velocities vx = vy = vF = 5 · 105 m/s, and a smaller out-of-plane velocity
vz = vF/3. The Fermi energy is fixed at EF = 150 meV. As discussed in Sec.
8.5, these are realistic parameter values for the [111] surface of Bi2Se3. Dots
represent numerical results whereas the line shows the shallow deformation
limit (8.38).

prefactor for Gaussian deformations of the form (8.10), randomly dis-
tributed over the surface. We assume that the deformations are shallow,
H/W ≪ 1. For simplicity, we also take the same parameters H and W
for each deformation. From Eqs. (8.11), (8.25), and (8.27) we obtain the
result

σ =
16
√

2
π
√

π

EF

h̄vFN
W3

(HvF/vz)4
e2

h
. (8.38)

The factor vF/vz is there to allow for an out-of-plane velocity vz that
is different from the in-plane velocity vx = vy = vF. The result (8.38)
confirms the scaling behavior (8.28) and gives the numerical prefactor.

To relax the assumption H/W ≪ 1 of shallow deformations, we
solved the geodesic equation (8.8) numerically for the Gaussian case.
The corresponding Christoffel symbols were taken from Eq. (8.48) with
vx = vy = vF. Using the scattering angle θ(b) that we obtained from
the numerics, we calculated the conductivity following from Eqs. (8.24,
8.25).

As shown in Fig. 8.2, the numerical results deviate from the scaling
(8.38) only for relatively large ratios H/W & 0.5. The deviations are
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oscillatory, due to electron trajectories that circle around the deformation
as depicted in the inset (b) of Fig. 8.2. Inset (a) shows generic trajectories
for electrons scattering off a shallow Gaussian deformation. Notice the
focussing of trajectories as an analogue of gravitational lensing.

8.4.2 Anisotropic dispersion relation

As an example of an anisotropic dispersion relation, we consider elliptic
equi-energy contours Ek = h̄(v2

xk2
x + v2

yk2
y)

1/2 with principal axes x and y.
As in the previous subsection, we investigate shallow Gaussian surface
deformations. These have zero average scattering angle, M1(φ) = 0, and
second moment

M2(φ) =
1
C

(sin2 φ + v2
yx cos2 φ)2. (8.39)

The coefficient C is given by

C =
16
√

2
π
√

π

W3

H4v4
y/v4

z

. (8.40)

From Eq. (8.58) we deduce that Eq. (8.39) actually holds more generally
for any circularly symmetric deformation, the only difference being in
the expression for C.

Using Eqs. (8.34) and (8.35a) one obtains the Fourier coefficients

ℓ±n =
C

N

(

1 − vyx

1 + vyx

)|n|/2
(1 + |n|vyx + v2

yx)

v3
yx

(8.41)

for n even, and zero for n odd. The elliptic dispersion relation leads to

κ(φ) =
EF

h̄vx

vyx

(sin2 φ + v2
yx cos2 φ)3/2

. (8.42)

The Fourier coefficients κn are also nonzero only for n even. (Since their
expressions are rather lengthy, we do not list them here.)

From Eq. (8.37) we find that the off-diagonal components of the con-
ductivity tensor vanish, while the diagonal components are given by

σ{xx
yy} =

e2

h ∑
n≥1

1
2n2 (ℓn+1 ± ℓn−1)(κn+1 ± κn−1). (8.43)
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Figure 8.3. The solid line shows the ratio of conductivities σxx/σyy as a function
of anisotropy vy/vx, calculated from Eq. (8.43). The dashed line corresponds to
the Ziman approximation.

The series converges rapidly.
The ratio σxx/σyy depends only on the anisotropy vyx = vy/vx. It is

plotted in Fig. 8.3. For comparison, we also show the Ziman approxi-
mation σZiman (obtained from the forward-scattering limit (8.43) without
the 1/n2 factor). As expected, it deviates substantially upon increasing
the anisotropy (notice the logarithmic scale).

8.5 Comparison with potential scattering

8.5.1 Carrier density dependence

The energy independence of the mean free path ℓ = vFτ is the hallmark
of geodesic scattering. It implies the square root dependence dependence
σ ∝

√
n of the conductivity on the surface electron density n. This fol-

lows from Eq. (8.28) with EF = h̄vF

√
4πn for an isotropic Dirac cone, or

more generally from the scaling σ ∝ SF for a noncircular Fermi surface
(of area SF ∝

√
n).

As discussed in the context of graphene [3, 14], electrostatic poten-
tial scattering typically gives a faster increase of the conductivity with
increasing carrier density. Coulomb scattering from charged impurities
and resonant scattering from short-range impurities both give a linear
increase σ ∝ n (up to logarithmic factors). Scattering from a potential
landscape with a Gaussian correlator gives an even more rapid increase
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Figure 8.4. Conductivity as a function of carrier density. The influence of three
different sources of scattering is shown: surface deformations (solid line), un-
screened Coulomb impurities (dashed line) and Gaussian correlated potential
fluctuations (dotted line). The parameters used for the plot are given in the
text.

σ ∝ n3/2. Geodesic scattering, with σ ∝ n1/2, would therefore form
the dominant conduction-limiting scattering mechanism at high carrier
densities.

For a quantitative comparison of geodesic and potential scattering,
we consider the [111] surface of Bi2Se3 with Gaussian deformations
given by Eq. (8.38). We take isotropic in-plane velocities vx = vy =
vF = 5 · 105 m/s and a smaller out-of-plane velocity vz = vF/3 [15, 16].
We adopt the following numerical parameters for the deformations from
an experimental image [4]: characteristic width W = 10 nm and height
H = 2 nm, covering 40% of the surface area so N = 1011 cm−2. The
carrier density dependence of the conductivity for geodesic scattering,
following from Eq. (8.38), is plotted in Fig. 8.4 (solid curve).

To compare the geodesic scattering to typical potential scatterers, we
also show the corresponding results for scattering from charged impu-
rities (dashed) and Gaussian potential fluctuations (dotted) in Fig. 8.4.

For charged impurities (charge Q = e) we considered the unscreened
Coulomb potential U(r) = (Qe/4πǫ0ǫr)|r|−1, as the extreme case of
a long-ranged potential. We took ǫr = 80 as a typical value for the
dielectric constant and kept the other parameter values as before. The
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semiclassical conductivity is then given by [3, 17]

σ =
e2

h

n

Nc

2πh̄2v2
F

u2
0

, u0 =
Qe

4ǫ0ǫr
. (8.44)

For Fig. 8.4 we used Nc = 2.5 × 1011 cm−2 as the density of impurities.
For a potential landscape with Gaussian correlator (range ξ, dimen-

sionless strength U0),

〈U(r)U(r′)〉 =
U0(h̄vF)

2

2πξ2 exp
(

−|r − r′|2
2ξ2

)

, (8.45)

the conductivity takes the functional form [18]

σ =
e2

h

4πnξ2e4πnξ2

U0I1(4πnξ2)
. (8.46)

(The function I1 is a Bessel function.) For Fig. 8.4 we took U0 = 0.1 and
ξ = W = 10 nm.

The parameter values used in Fig. 8.4 are only for the purpose of
illustration, but the point to make is that geodesic scattering dominates
over potential scattering for large carrier densities.

8.5.2 Anisotropy dependence of conductivity

In the case of an anisotropic (elliptical) dispersion relation the conduc-
tivity will be direction dependent. This situation arises for example if
the surface of Bi2Se3 is not in the [111] direction. Geodesic scattering im-
plies a certain universality for the directionality dependence of the con-
ductivity, if we may assume that the surface deformations are shallow
(H/W ≪ 1) and without a preferential orientation (circularly symmetric
on average). The ratio σxx/σyy is then only a function of vy/vx, indepen-
dent of other parameters (such as electron density or density and height
of the deformations). This universal function is plotted in Fig. 8.3 (solid
curve).

In Fig. 8.5 we compare this result for geodesic scattering with corre-
sponding results for potential scattering. Three typical impurity poten-
tials are considered, of different range: long-ranged unscreened Coulomb
potentials, medium-ranged Gaussian potential fluctuations, and short-
ranged potentials. The conductivities are obtained following the gen-
eral approach of Ref. 19, by first computing the transition rates in Born
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Figure 8.5. Ratios of conductivities along the two main axes of the disper-
sion relation are shown as a function of anisotropy vy/vx. The influence of
four different sources of scattering is shown: surface deformations (solid line),
unscreened Coulomb impurities (dashed line), Gaussian potential fluctuations
(dotted line), and short-ranged potentials (dot-dashed line). The parameters
used for the plot are given in the text.

approximation and then solving numerically the linearized Boltzmann
equation. We took the same material parameter values as in the previous
subsection.

The unscreened Coulomb potential gives a ratio σxx/σyy which de-
pends only on vy/vx (dashed line). For Gaussian potential fluctuations,
the ratio σxx/σyy is a function of both vy/vx and n. It is plotted as a
dotted line in Fig. 8.5 for nξ2 = 1. (If ξ = W = 10 nm this corresponds
to the carrier density n = 1012 cm−2.) In the same figure we also plot
(dot-dashed line) the limit ξ → 0 (at fixed n) of a short-ranged potential.

From the double-logarithmic plot in Fig. 8.5 one can see that there
is an approximate power law dependence, σxx/σyy ∝ (vy/vx)−p, over
at least one decade. The exponent is p ≈ 3.3 for geodesic scattering,
while p = 2 for short-range potential scattering. Scattering from long-
ranged Coulomb impurities or from medium-ranged Gaussian potential
fluctuations gives p < 2.

Anisotropic charge transport in the presence of unscreened Coulomb
impurities for an elliptic dispersion relation was also discussed in the
context of strained graphene [20]. There it was argued that σxx/σyy ∝

(vy/vx)−2 on the basis of a power-counting argument. Our numerical
solution of the Boltzmann equation gives a smaller exponent p ≈ 1.3 in
that case.
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To conclude, charge transport dominated by surface deformations
has a much stronger anisotropy dependence than that governed by im-
purity potentials. This highly anisotropic transport behavior is a distinct
characteristic of geodesic scattering.
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Appendix 8.A Calculation of scattering cross section

8.A.1 Christoffel symbols in rotated basis

In order to calculate the scattering angle in the geometry of Fig. 8.1, it
is convenient to rotate the coordinate axis in the x − y plane such that
the electron is incident parallel to the x-axis. Under the linear transfor-
mation from x, y to x̃ = x cos θk + y sin θk, ỹ = −x sin θk + y cos θk, the
Christoffel symbol Γλ

µν transforms to

Γ̃λ
µν(x̃, ỹ) =

∂x̃λ

∂xλ′ Γλ′
µ′ν′(x, y)

∂xµ′

∂x̃µ

∂xν′

∂x̃ν
. (8.47)

Using the expressions (8.4), (8.5), (8.7) for metric tensor and Christof-
fel symbols, we arrive at

Γ̃x
µν = D−1 ∂2ζ

∂x̃µ∂x̃ν

[

v2
xz

∂ζ

∂x̃
− (v2

xz − v2
yz) sin θk

(

∂ζ

∂x̃
sin θk +

∂ζ

∂ỹ
cos θk

)]

,

(8.48a)

Γ̃
y
µν = D−1 ∂2ζ

∂x̃µ∂x̃ν

[

v2
yz

∂ζ

∂ỹ
− (v2

xz − v2
yz) sin θk

(

∂ζ

∂x̃
cos θk −

∂ζ

∂ỹ
sin θk

)]

.

(8.48b)

The factor D from Eq. (8.5d), written in terms of the rotated coordinates,
reads

D = 1 + v2
xz

(

∂ζ

∂x̃
cos θk −

∂ζ

∂ỹ
sin θk

)2

+ v2
yz

(

∂ζ

∂x̃
sin θk +

∂ζ

∂ỹ
cos θk

)2

.

(8.49)
The Christoffel symbols (8.48) appear in the geodesic equation for

the rotated coordinates,

d2 x̃λ

dτ2 + Γ̃λ
µν

dx̃µ

dτ

dx̃ν

dτ
= 0. (8.50)

8.A.2 Geodesic equation for shallow deformation

The geodesic equation (8.50) can be considerably simplified in the shal-
low deformation limit H/W ≪ 1. Let us consider a particle incident on
a deformation along the x̃-direction from −∞ with impact parameter b
and velocity

v = vxvy(v2
y cos2 θk + v2

x sin2 θk)
−1/2. (8.51)
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Since the derivative dỹ/dτ is smaller than dx̃/dτ by a factor (H/W)2,
we can drop this derivative from the geodesic equation. The result is

d2 x̃

dτ2 + Γ̃x
xx

(

dx̃

dτ

)2

= 0, (8.52a)

d2ỹ

dτ2 + Γ̃
y
xx

(

dx̃

dτ

)2

= 0. (8.52b)

Furthermore, since dx̃/dτ = v[1 + O(H/W)2], we can write d/dτ =
vd/dx̃. This leads to

d2ỹ

dx̃2 = −Γ̃
y
xx. (8.53)

The scattering angle θ ≪ 1 is obtained from θ = limx̃→∞ dỹ/dx̃,
hence

θ(θk, b) = −
∫ ∞

−∞
Γ̃

y
xx dx̃

∣

∣

ỹ→b
. (8.54)

Inserting Eq. (8.48b) into Eq. (8.54) and noting that D = 1 + O(H/W)2,
we obtain the scattering angle to leading order in H/W,

θ(θk, b) = −
∫ ∞

−∞
dx̃

[(

α
∂ζ

∂ỹ
− γ

∂ζ

∂x̃

)

∂2ζ

∂x̃2

]

ỹ→b

. (8.55)

We abbreviated

α = v2
yz cos2 θk + v2

xz sin2 θk, (8.56a)

γ = (v2
xz − v2

yz) sin θk cos θk. (8.56b)

8.A.3 Circularly symmetric deformation

For a circularly symmetric height profile ζ(x, y), dependent only on r =
√

x2 + y2 =
√

x̃2 + ỹ2, the term proportional to γ in Eq. (8.55) vanishes
(because it is an integral over an odd function of x̃). The expression for
the scattering angle thus simplifies further to

θ(θk, b) = −α
∫ ∞

−∞
dx

[

∂ζ

∂y

∂2ζ

∂x2

]

y→b

. (8.57)
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For the Gaussian deformation (8.10) we obtain the scattering angle (8.11)
given in the main text.

The entire dependence of the scattering angle θ on the angle of inci-
dence θk is contained in the prefactor α. This implies that the moments
Mp =

∫

db θp of the scattering angle depend on the angle of incidence
as

Mp(θk) = cpαp = cpv
p
xz(sin2 θk + v2

yx cos2 θk)p, (8.58)

with cp a coefficient independent of θk.
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Samenvatting

Een topologische fase van de materie is bijzonder omdat zij optreedt
zonder breking van enige symmetrie. De topologische fase is gekarakte-
riseerd door een zogenaamde topologische invariant — een geheel getal
dat niet gevoelig is voor kleine verstoringen van de Hamiltoniaan. Een
gevolg hiervan is dat de topologische fase geleidende oppervlaktetoe-
standen heeft, die niet gevoelig zijn voor wanorde en andere onvolko-
menheden. Een verscheidenheid aan bijzondere transportverschijnselen
treedt op tengevolge van de topologie. In dit werk onderzoeken wij het
samenspel van topologie en onvolkomenheden, in het bijzonder met het
oog op transportverschijnselen.

Het eerste deel van het proefschrift behandelt supergeleidende syste-
men, waar de topologie voor oppervlaktetoestanden zorgt die beschermd
worden door de supergeleidende gap. De één-dimensionale topolo-
gische supergeleiders zijn vooral interessant. Zij kunnen gerealiseerd
worden in samengestelde structuren van halfgeleiders en supergeleiders
en bezitten gebonden Majorana-toestanden aan hun uiteinden — dat
zijn deeltjes met energie nul die gelijk zijn aan hun anti-deeltje. Deze
Majorana-toestanden zijn veelbelovend voor de realisatie van een topo-
logisch quantumgeheugen.

De algemene transporteigenschappen van supergeleidende systemen
en hun afhankelijkheid van symmetrie kan analytisch worden onder-
zocht met behulp van toevallig gekozen verstrooiingsmatrices. Met het
oog hierop onderzoeken wij in hoofdstuk twee de supergeleidende cir-
culaire ensembles van de toevalsmatrixtheorie. In het derde hoofdstuk
generaliseren wij deze bekende ensembles door de fasen van verschil-
lende topologie te onderscheiden. Dit stelt ons in staat om de invloed
van topologie te bepalen op de supergeleidende transporteigenschap-
pen. In het bijzonder onderzoeken wij of de Majorana-fermionen in de
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Andreev-geleiding van NS-juncties tussen een normaal metaal en een
supergeleider herkenbaar zijn.

In het vierde hoofdstuk wordt een experiment voorgesteld waarmee
een topologische supergeleider onomstotelijk kan worden aangetoond,
gebruik makend van een quantumpuntcontact dat aan een supergelei-
dende draad is bevestigd. De aanwezigheid van een topologische fase
wordt aangegeven door de quantisatie van de geleiding in de limiet van
een enkel geleidingskanaal. De niet-topologische (triviale) supergelei-
der, daarentegen, heeft dan geleidingsvermogen nul. Het voordeel van
deze proef boven de gebruikelijke tunnelproef is een sterk verminderde
gevoeligheid voor spanning en temperatuur.

In het vijfde hoofdstuk wenden we ons tot de zogenaamde nodale
supergeleiders, en introduceren we een verstrooiingstheorie voor hun
topologische eigenschappen. Hoewel zij geen gap hebben, kan men
toch een verscheidenheid aan topologische eigenschappen definiëren,
die zoals we zullen zien, een sterk effect hebben op de transporteigen-
schappen.

In het tweede deel van het proefschrift verschuift onze aandacht van
de topologische supergeleiders naar de topologische isolatoren. In de
eerste twee hoofdstukken van dit tweede deel behandelen we de locali-
satie van elektronen in de buurt van een topologische fase-overgang. In
twee-dimensionale systemen zonder tijdomkeersymmetrie, zorgt wan-
orde voor localisatie van de golffuncties — de zogenaamde Anderson-
localisatie. Bij de topologische fase-overgang divergeert de localisatie-
lengte met een universele kritische exponent.

In hoofdstuk zes introduceren we een nieuwe methode om deze de-
localisatie te bestuderen in de universaliteitsklasse van het quantum
Hall-effect. Deze zogenaamde stroboscopische methode is heel effi-
ciënt voor numerieke berekeningen en maakt het mogelijk om meer-
dimensionale systemen te bestuderen in één ruimtelijke dimensie. In
hoofdstuk zeven breiden we onze methode uit naar de universaliteits-
klasse van het quantum spin-Hall-effect (een twee-dimensionaal sys-
teem met tijdomkeersymmetrie). Het fasediagram verschilt van dat van
het quantum Hall-effect, omdat de fase-overgang via een metallische
fase optreedt. In beide universaliteitsklassen berekenen we de kritische
exponent.

In het laatste hoofdstuk van het proefschrift gaan we over naar de
drie-dimensionale topologische isolatoren, die gekenmerkt zijn door een
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topologisch beschermd geleidend oppervlak. Omdat de elektronen het
oppervlak moeten volgen, bewegen zij als het ware in een gekromde
ruimte. Dan treedt zogenaamde geodesische verstrooiing op, die leidt
tot een nieuwe bijdrage aan de oppervlakteweerstand ten gevolge van
oppervlakteruwheid.
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Summary

Topological phases of matter are exceptional because they do not arise
due to a symmetry breaking mechanism. Instead they are character-
ized by topological invariants – integer numbers that are insensitive to
small perturbations of the Hamiltonian. As a consequence they support
conducting surface states that are protected against disorder and other
imperfections. Furthermore, a variety of unusual transport properties
arise due to the presence of topology. In this work the interplay be-
tween topology and sample imperfections is investigated with a focus
on transport phenomena.

The first part of the thesis treats superconducting systems, where
topology leads to boundary states that are protected by a superconduct-
ing gap. Among the topological superconductors, one-dimensional sys-
tems are of particular interest. They can be realized in semiconductor -
superconductor heterostructures, and support Majorana bound states at
their ends – zero energy particles that are their own anti-particles. These
Majorana states are regarded as promising candidates for the realization
of a topological quantum memory.

The generic transport properties of superconducting systems and
their dependence on symmetries can be studied analytically using ran-
dom scattering matrices. To this end, the superconducting circular en-
sembles of random-matrix theory are studied in chapter two. In the
third chapter we generalize these known ensembles by distinguishing
between phases of different topology. This enables us to determine the
influence of topology on the superconducting transport properties. In
particular the signatures of Majorana fermions in the Andreev conduc-
tance of disordered normal-superconductor (NS) junctions are analyzed.

The fourth chapter proposes a setup for the unambiguous detection
of topological superconductivity: a quantum point contact attached to
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a superconducting wire. The signature of the topological phase is a
quantized conductance in the single-channel limit. In contrast, the con-
ductance is forced to be zero for a trivial superconductor. The advantage
of this setup over the usual tunnel contact setup is a strongly reduced
sensitivity to finite voltage or temperature.

In the fifth chapter we move over to nodal superconductors, intro-
ducing a scattering formulation for their topology. Although they are
gapless, a variety of lower dimensional topological invariants can be de-
fined that, as we show, have strong impact on the transport properties
of these systems.

In the second half of the thesis the focus shifts from topological su-
perconductors to topological insulators. The first two chapters of this
part are concerned with the localization properties of electrons close to
topological phase transitions. In two-dimensional systems without time
reversal symmetry, disorder forces the electronic wave functions to lo-
calize – a phenomenon called Anderson localization. At the topological
phase transition the localization length of the wave function diverges
with a universal critical exponent.

In chapter six we introduce a new approach to investigate this delo-
calization behavior in the quantum Hall universality class, using a stro-
boscopic model. This method is computationally efficient and makes it
possible to study higher-dimensional systems in one spatial dimension.
In chapter seven we extend our description to the quantum spin Hall
universality class (two-dimensional systems with time-reversal symme-
try). Its phase diagram is different from that of the quantum Hall effect,
because the phase transition happens via a metallic phase. For both
universality classes we calculate the critical exponent numerically.

In the final chapter of the thesis we go over to three-dimensional
topological insulators, which are characterized by a topologically pro-
tected metallic surface. Since electrons moving on this surface are con-
strained to follow its geometry, they effectively live in a curved space
and are thus subject to geodesic scattering. This leads to a novel contri-
bution to the resistance of the surface, caused by surface roughness.
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