Cushing's Syndrome: hormonal secretion patterns, treatment and outcome.
Aken, M.O. van

Citation

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/3748

Note: To cite this publication please use the final published version (if applicable).
Chapter 3

Growth Hormone Secretion in Primary Adrenal Cushing’s Syndrome is Disorderly and Inversely Correlated with Body Mass Index

Maarten O. van Aken 1, Alberto M. Pereira, 1, Marijke Frölich 1, Johannes A. Romijn 1, Hanno Pijl 1, Johannes D Veldhuis 2 and Ferdinand Roelfsema 1

1 Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, the Netherlands and 2 Division of Endocrinology and Metabolism, Mayo Medical and Graduate Schools of Medicine, Mayo Clinic, Rochester, MN 55905.

American Journal of Physiology: Endocrinology and Metabolism 2005;288(1);E63-70
Chapter 3

ABSTRACT

To evaluate the impact on the somatotropic axis of endogenous cortisol excess in the absence of primary pituitary disease, we investigated spontaneous 24-h GH secretion in 12 adult patients with ACTH-independent hypercortisolism. Plasma GH concentration profiles (10 min samples) were analyzed by deconvolution to reconstruct secretion and approximate entropy to quantitate orderliness of the release process. Comparisons were made with a BMI-, age- and gender-matched control group and an age- and gender-matched group of lean controls. GH secretion rates did not differ from BMI-matched controls, but was 2-fold lower compared with lean subjects, mainly caused by a 2.5-fold attenuation of the mean secretory burst mass (P = 0.001). In hypercortisolemic patients, GH secretion was negatively correlated with BMI (R = -0.55, P = 0.005), but not with cortisol secretion. Total serum IGF-I concentrations were similar in the 3 groups. Approximate entropy was increased in patients with Cushing’s syndrome compared with both control groups (vs. BMI-matched P = 0.04; vs. lean P = 0.001), denoting more irregular GH secretion patterns. ApEn in patients correlated directly with cortisol secretion (R = 0.77, P = 0.003). Synchrony between cortisol and GH concentration series were analyzed by cross-correlation, cross-ApEn and copulsatility analyses. Patients showed loss of pattern synchrony compared with BMI-matched controls, but copulsatility was unchanged. We conclude that hyposomatropism in primary adrenal hypercortisolism is only partly explained (~30%) by increased body weight, and that increased GH secretory irregularity and loss of synchrony suggests altered coordinate regulation of GH release.
INTRODUCTION

Cushing’s syndrome is characterized by increased cortisol secretion and is caused by ACTH-dependent cortisol excess (Cushing’s disease or the rare ectopic tumoral ACTH production syndrome) or by ACTH-independent cortisol excess. The latter syndrome is caused by an unilateral adenoma (seldom a carcinoma) and less frequently by ACTH-independent bilateral macronodular adrenal hyperplasia (AIMAH). The latter syndrome is characterized by bilateral nodular enlargement of the adrenal glands and clinical and biochemical signs of cortisol excess with low or undetectable ACTH concentrations (25). The detrimental metabolic consequences of chronic cortisol excess are manifold, and include loss of lean body mass, increased adiposity, bone loss and repression of the thyrotropic, gonadotropic and somatotropic axes. Indeed, the diminished GH response to various stimuli, including insulin-induced hypoglycemia, GHRH, growth hormone secretagogues (GHS) and ghrelin, is well described in pituitary-dependent hypercortisolism (24,30,33,46).

Since obesity, frequently a prominent feature of hypercortisolism, is accompanied by decreased GH response to stimuli and diminished spontaneous GH secretion, it is mandatory that any comparison between the hypercortisolemic state and healthy subjects must include BMI-matched controls. In a previous study in patients with pituitary-dependent hypercortisolism the 24-h GH secretion was negatively correlated to urinary cortisol excretion and the GH secretion regularity was significantly decreased (17). Hypothetically, the GH secretory abnormalities could be the result of the presence of the pituitary adenoma itself, a tumoral product acting as a paracrine signal on the somatotrope or the result of cortisol excess per se on the somatotropic axis.

The present study aimed to explore the dynamics of spontaneous diurnal GH secretion in patients with Cushing syndrome, since these patients lack a pituitary adenoma, but otherwise suffer from chronic endogenous cortisol excess. The prime issue is whether such patients display low-amplitude and/or disorderly GH secretion compared with BMI-matched controls, as we previously found in pituitary-dependent hypercortisolism (17).

Subjects and methods

Twelve patients with primary adrenal Cushing’s syndrome were studied. Mean age of the patients was 45.2 ± 4.2 [46.5] yr (mean ± SE, [median]), BMI 25.6 ± 1.4 [24.1] kg/m². The age of the twelve control subjects, matched for age, gender and BMI was 45.3 ±3.7 [45] yr, BMI 26.6 ± 1.6 [24.6] kg/m² (P = 0.85). In addition, another (historical) control cohort, matched for age and gender, but otherwise with a perfectly normal BMI was used as a lean reference group. The BMI in the latter group was 20.8 ± 0.4 [20.8] kg/m² (P=0.03 vs. patients) and their age 42.2 ± 3.5 [39] yr. The diagnosis of primary adrenal Cushing’s syndrome was established by elevated 24-h urinary excretion of free cortisol, subnormal or absent suppression of plasma cortisol after administration of 1 mg dexamethasone overnight,
absent or subnormal suppression of urinary cortisol excretion during a low-dose dexamethasone test and a low or undetectable plasma ACTH concentration. After establishing the biochemical diagnosis of primary adrenal Cushing’s syndrome, a CT-scan or MRI-scan of the adrenal glands was performed, to identify the source of cortisol-overproduction. After the present study was carried out, the patients underwent surgery, with resection of the abnormal adrenal gland(s), resulting in resolution of the Cushing’s syndrome. Histological diagnosis confirmed the presence of an adrenocortical adenoma in 7 patients and macronodular hyperplasia in the remaining five patients. Clinical details are displayed in Table 1. Controls were recruited through advertising in local newspapers. None of the subjects was using any neuroactive drug (including oral contraceptives) for at least three months before the study. All women had stable body weight for at least three months before the study. The purpose, nature, and possible risks of the study were explained to all subjects and written informed consent was obtained. The study protocol was approved by the ethics committee of the Leiden University Medical Center.

Table 1. Clinical characteristics of twelve patients with primary adrenal Cushing’s syndrome.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age</th>
<th>Diagnosis</th>
<th>UCE (nmol/24 h)</th>
<th>Size of adrenal gland(s) cm</th>
<th>No. cortisol pulses/24 h</th>
<th>Cortisol secretion (nmol/24 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f</td>
<td>48</td>
<td>UAA</td>
<td>617</td>
<td>5</td>
<td>19</td>
<td>3730</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>48</td>
<td>UAA</td>
<td>1017</td>
<td>2.8</td>
<td>33</td>
<td>13720</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>43</td>
<td>UAA</td>
<td>300</td>
<td>3.5</td>
<td>34</td>
<td>10060</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>21</td>
<td>UAA</td>
<td>2414</td>
<td>2.5</td>
<td>24</td>
<td>10560</td>
</tr>
<tr>
<td>5</td>
<td>f</td>
<td>40</td>
<td>UAA</td>
<td>1677</td>
<td>2.0</td>
<td>30</td>
<td>22330</td>
</tr>
<tr>
<td>6</td>
<td>m</td>
<td>58</td>
<td>UAA</td>
<td>490</td>
<td>4.8</td>
<td>19</td>
<td>4420</td>
</tr>
<tr>
<td>7</td>
<td>f</td>
<td>25</td>
<td>UAA</td>
<td>1359</td>
<td>5.2</td>
<td>31</td>
<td>8160</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>78</td>
<td>AIMAH</td>
<td>399</td>
<td>right 3 cm, left 2 cm</td>
<td>28</td>
<td>3660</td>
</tr>
<tr>
<td>9</td>
<td>f</td>
<td>41</td>
<td>AIMAH</td>
<td>1031</td>
<td>right 2.5 cm, left 3.4 cm</td>
<td>41</td>
<td>5190</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>48</td>
<td>AIMAH</td>
<td>641</td>
<td>right 2.5 cm, left 5 cm</td>
<td>21</td>
<td>4390</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>50</td>
<td>AIMAH</td>
<td>407</td>
<td>right 2.8 cm, left 2 cm</td>
<td>34</td>
<td>9460</td>
</tr>
<tr>
<td>12</td>
<td>f</td>
<td>45</td>
<td>AIMAH</td>
<td>429</td>
<td>right 4.8 cm, left 4.1 cm</td>
<td>32</td>
<td>14280</td>
</tr>
</tbody>
</table>

UAA: unilateral adrenal adenoma. AIMAH: ACTH-independent macronodular adrenal hyperplasia. ¶ Urinary cortisol excretion: normal values < 220 nmol/24 h. The number of significant cortisol pulses and the cortisol secretion rate were determined with deconvolution analysis of the 24-hour cortisol concentration series.

Methods

Patients and control subjects were admitted to the hospital on the day of the study. An indwelling iv. cannula was inserted in a forearm vein at least 60 min before sampling began. Blood samples were withdrawn at 10 min intervals for 24 h, starting at 0900 h. A slow infusion of 0.9% NaCl and heparin (1 U/mL) was used to keep the line open. The subjects were free to ambulate, but not to sleep during
the daytime. Meals were served at 0900, 1230 and 1730 h. Lights were turned off between 2200-2400 h. No sleep monitoring by EEG was used. Plasma for GH and cortisol measurements was collected, centrifuged at 4°C for 10 min, and stored at −20°C until later analysis. The results of the cortisol data were reported in a separate paper (submitted elsewhere); here we use only the 24 h secretion rates in regression analyses.

Assays

Plasma GH concentrations were measured in duplicate using a sensitive time-resolved immunofluorometric assay (Wallac, Inc., Turku, Finland), specific for the 22-kDa GH protein. Human biosynthetic GH (Pharmacia & Upjohn Inc., Uppsala, Sweden) was used as standard calibrated against WHO-IRP 80-505, with a detection limit of 0.03 mU/L and an intra-assay variation coefficient of 1.6-8.4% at plasma values between 0.25-40 mU/L (to convert mU/L to μg/L divide by 2.6). All samples from any subject were run in the same assay.

The serum IGF-I was determined by RIA (Incstar Corp., Stillwater, MN.) with a detection limit of 1.5 nmol/L and an interassay variation coefficient of less than 11%. Plasma cortisol concentrations were measured by RIA (Sorin Biomedica, Milan, Italy). The detection limit of the assay was 25 nmol/l. The interassay variation varied from 2 – 4 % at the concentrations obtained in this study.

CALCULATIONS AND STATISTICS

Deconvolution analysis

A multiparameter deconvolution technique was used to estimate relevant measures of GH secretion from the 24-h serum GH concentration profiles, as described previously (53). Initial estimates of basal GH secretion rate were calculated to approximate the lowest 5% of all plasma GH concentrations in the time series. Peak detection entailed application of 95% statistical confidence intervals to two thirds of all GH secretory peaks considered jointly and individual 95% statistical confidence intervals to the remaining one third smaller pulses, as validated in simulations (12). The following four secretory and clearance measures of interest were estimated: 1) the number and locations of secretory events; 2) the amplitudes of secretory bursts; 3) the durations of randomly dispersed GH secretory bursts; and 4) the endogenous single component subject specific plasma half-life of GH. It was assumed the GH distribution volume and half-life were time and concentration invariant. The following parameters were calculated: Half-duration of secretory bursts (duration of the secretory burst at half-maximal amplitude), hormone half-life, burst frequency, amplitude of the secretory burst (maximal secretory rate attained within a burst), mass secreted per burst, basal secretion rate, pulsatile secretion rate (product of burst frequency and mean burst mass) and total secretion (sum of basal and pulsatile).
Chapter 3

Approximate Entropy

The univariate approximate entropy (ApEn) statistic was developed to quantify the degree of irregularity, or disorderliness, of a time series (42). Technically, ApEn quantifies the summed logarithmic likelihood that templates (of length m) of patterns in the data that are similar (within r) remain similar (within the same tolerance r) on next incremental comparison and has been formally defined elsewhere (43). The ApEn calculation provides a single non-negative number, which is an ensemble estimate of relative process randomness, wherein larger ApEn values denote greater irregularity, as observed for ACTH in Cushing’s disease, GH in acromegaly, and PRL in prolactinomas (43,51,52). Cross-ApEn (X-ApEn) quantifies joint pattern synchrony between two separate, but parallel time-series after standardization (z-score transformation) (44, 45). In the present analysis, we calculated cross-ApEn between cortisol (leading) and GH, with r=20% of the SD of the individual time-series and m=1. This parameters choice affords sensitive, valid and statistically well-replicated ApEn and cross-ApEn metrics for assessing hormone time-series of this length (44). ApEn and cross-ApEn results are reported as absolute values and as the ratio of the absolute value to that of the mean of 1000 randomly shuffled data series. Ratio values that approach 1.0 thus denote mean empirical randomness.

Copulsatility

Copulsatility between the cortisol and GH time-series was quantified by the hypergeometric (joint binomial) distribution (54). This program calculates the probability that hormone pulses in time-series occur randomly. We used a time-window of 40 min, with cortisol as leading hormone series. The position (time of maximal secretion rate within a pulse) and number of pulses were derived from the deconvolution analyses.

Statistical analysis

Results are expressed as the mean ± SEM. Comparison between groups was done with one-way ANOVA, followed post hoc by Tuckey’s honestly significantly different (HSD) test to contrast means. Derived measures (deconvolution and ApEn) were transformed logarithmically before analysis to limit dispersion of variance. In addition, (stepwise) linear regression was applied to evaluate the relation between relevant variables. Cross-correlation analysis was applied to test for significant time-lagged (linear) synchrony between successive serum concentrations of cortisol and GH, considered pair wise, as described previously (54). Calculations were carried out with Systat (release 11, Systat Software Inc, Richmond, CA). Differences were considered significant for P < 0.05.
RESULTS

Daily plasma GH in patients and BMI-matched controls

Secretion profiles of the 24 h plasma GH concentration series of the patients are shown in Fig 1. Deconvolution of the GH profiles revealed no differences in basal GH secretion rate, secretory-burst half duration, burst amplitude, burst mass, half-life, basal secretion, pulsatile secretion and total secretion between the patients and the BMI-matched controls (table 2). GH was secreted in a predominantly pulsatile fashion in patients and in BMI-matched controls as displayed in the figure. In healthy lean controls GH secretion was two-fold higher than in patients, and was accomplished by a 2.5-fold increase in burst mass (P = 0.001) at similar pulse frequency. Total serum IGF-I concentrations were similar in the groups: patients 16.5 ± 3.4 nmol/L, BMI-matched controls 16.8 ± 0.8, and lean controls 20.1 ± 2.2 (ANOVA, P = 0.44).
Table 2. Secretory parameters of the 24 h GH plasma concentration series in twelve patients with ACTH-independent hypercortisolism and control groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patients (n=12)</th>
<th>BMI-matched controls (n=12)</th>
<th>Lean controls (n=12)</th>
<th>P-value vs matched C</th>
<th>P-value vs lean C</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretory rate (mU/L/min)</td>
<td>0.00563 ± 0.0012 [0.0044]</td>
<td>0.0067 ± 0.0009 [0.0062]</td>
<td>0.0116 ± 0.0035 [0.0074]</td>
<td>NS</td>
<td>NS</td>
<td>0.13</td>
</tr>
<tr>
<td>Half-life (min)</td>
<td>14.7 ± 0.6 [15.4]</td>
<td>14.2 ± 0.6 [14.6]</td>
<td>14.7 ± 0.6 [14.8]</td>
<td>NS</td>
<td>NS</td>
<td>0.78</td>
</tr>
<tr>
<td>Secretory-burst half duration (min)</td>
<td>28.2 ± 2.2 [27.0]</td>
<td>25.5 ± 1.7 [26.6]</td>
<td>27.1 ± 1.8 [27.7]</td>
<td>NS</td>
<td>NS</td>
<td>0.62</td>
</tr>
<tr>
<td>No. of secretory bursts/24 h</td>
<td>20.5 ± 0.9 [21]</td>
<td>17.7 ± 1.4 [17]</td>
<td>17.3 ± 1.2 [17.5]</td>
<td>0.10</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>Mean burst interval (min)</td>
<td>71 ± 3 [65]</td>
<td>83 ± 7 [80]</td>
<td>86 ± 6 [84]</td>
<td>0.13</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>Secretory burst amplitude (mU/L/min)</td>
<td>0.178 ± 0.025 [0.172]</td>
<td>0.310 ± 0.047 [0.296]</td>
<td>0.490 ± 0.057 [0.462]</td>
<td>0.11</td>
<td>0.00009</td>
<td>0.0001</td>
</tr>
<tr>
<td>Basal secretion (mU/L/24h)</td>
<td>8.1 ± 1.7 [6.3]</td>
<td>9.6 ± 1.4 [9.1]</td>
<td>16.7 ± 5.1 [10.7]</td>
<td>0.90</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>Pulsatile secretion (mU/L/24h)</td>
<td>102 ± 13 [102]</td>
<td>134 ± 26 [120]</td>
<td>229 ± 36 [190]</td>
<td>0.69</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>Total secretion (mU/L/24h)</td>
<td>110 ± 13 [112]</td>
<td>143 ± 27 [127]</td>
<td>245 ± 40 [200]</td>
<td>0.71</td>
<td>0.007</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Statistical comparisons were made by ANOVA, followed by post hoc Tuckey’s HSD test. Data are expressed as mean ± SE. The median value is shown in brackets. One mU/L = 0.38 µg/L.

GH and meals

The influence of meals on GH concentrations was analyzed by comparing the mean of 10 serial samples preceding lunch and dinner in patients and body weight-matched controls and mean GH in the samples after start of lunch and dinner during 90 min. In patients the mean GH decrease after lunch was 0.48 mU/L (P = 0.03), and in controls 1.16 mU/L (P = 0.006). The mean GH decrease after dinner was 1.51 mU/L in patients (P = 0.04) and in controls 2.19 mU/L (P = 0.02). The mean GH decreases in patients and controls were statistically similar.

Approximate entropy

ApEn in patients was increased, denoting an irregular secretion pattern: patients 0.7386 ± 0.044 vs. BMI-matched controls 0.5271 ± 0.0455 (P = 0.04) and vs. lean controls 0.4492 ± 0.050 (P = 0.001). The ApEn ratio in patients was 0.5102 ± 0.015, 0.4250 ± 0.021 in body weight-matched controls (P=0.016) and 0.3820 ± 0.024 in lean controls (P = 0.0002).

Factors influencing GH secretion

In a stepwise linear regression analysis the 24 h GH secretion in patients and BMI-matched controls was significantly negatively correlated with BMI (R = -0.55, P = 0.005), as displayed in Fig 2. However, other parameters including cortisol secretion...
rate, free urinary cortisol excretion, age, estradiol, gender and duration of cortisol excess (in patients only) were non-significant predictors. Thus, the variation in total GH secretion was explained by BMI for 30%. In addition, ApEn was significantly and positively correlated ($R = 0.77, P = 0.003$) with the cortisol secretion rate, as displayed in Fig 3, but not with BMI ($R = 0.03$).

Relation between cortisol and GH secretion

Pattern synchrony between cortisol and GH was quantified by cross-ApEn in patients and BMI-matched controls. X-ApEn in patients was 1.648 ± 0.113 and in controls 1.004 ± 0.050 ($P < 0.0001$). The ApEn ratios were 0.8682 ± 0.054 and 0.6134 ± 0.026, respectively ($P < 0.0001$), denoting diminished pattern synchrony in patients. Conventional linear cross-correlation between cortisol (leading) and GH concentrations revealed a negative correlation in control subjects (median -0.30, 95% confidence interval (CI) -0.15 to -0.39), and a mean time lag of 30 min (95% CI 0-65 min), indicating opposite changes in cortisol concentrations.
followed by those of GH. Five of the patients had a positive correlation. Median correlation coefficient was -0.09 with a 95% CI of -0.15 to +0.16. The mean time lag was 75 min, 95% CI 37-100 min. Co-pulsatility of cortisol and GH pulses was statistically highly significant in all patients and in 10 of 12 control subjects (P-values between 10^{-3} to 10^{-13}).

Unilateral vs. bilateral adrenal pathology

BMI, IGF-I and age were comparable in these subgroups. No differences were found in GH secretion parameters as estimated by deconvolution, ApEn and synchrony estimates of GH and cortisol.

DISCUSSION

In this investigation of primary adrenal-cortisol excess, the 24-h GH secretion was comparable to BMI-matched healthy controls, and IGF-I concentrations were similar. However, the regularity of the GH secretory process and the pattern synchrony of cortisol and GH in the patients were clearly diminished.

Stimulated GH release is severely restricted in Cushing’s syndrome, and either no increase or only a small increment is noted after administration of GHRH, GHRP (hexarelin and GHRP-2) and ghrelin (2, 20, 30, 33). Since most of the GH-stimulation studies in Cushing’s syndrome lack body weight-matched controls, the specificity of this finding might be questioned. GH release after reduction of the endogenous somatostatin tonus is also greatly diminished in hypercortisolism, e.g. by pre-treatment with pyridostigmine, arginine infusion, or after abrupt cessation of an iv infusion with somatostatin (13, 28,34). Collectively, these results could point to a (reversible) defect of the pituitary gland, i.e. the somatotropic cell. Indeed, repeated GHRH administration in the hypercortisolemic state leads to potentiation to this hormone (29). Furthermore, administration of acipimox caused a 7-fold increase in GH release after GHRH administration, accompanied by a 3-fold decrease in circulating FFA’s, and almost doubling of spontaneous 24 h GH secretion (31). Finally a hypocaloric diet for 3 days resulted in a 4-fold GH increase after GHRH injection (32).

Similarities with experimental results in obesity are distinct, since it is well-established that GHRH-stimulated GH release is diminished in obesity and increases during caloric restriction and after weight loss (14). Spontaneous 24-h GH secretion is severely restricted in the overweight human and increases or normalizes after weight reduction and during acipimox treatment (23, 41). In other studies, both BMI and abdominal visceral-fat mass predict irregular (disorderly) GH release (12, 50). The basis for this inferred feedback alteration in GH secretion is not known (14).

Reports on spontaneous GH secretion in Cushing’s syndrome, as studied with 24 h blood sampling protocols, are scarce. In one such contribution, Magiakou studied
15 patients with hypercortisolism (14 pituitary-dependent and one with primary bilateral pigmented nodular hyperplasia), of whom 6 patients were prepubertal. They described severely depressed GH secretion compared with normal-weight controls, mainly caused by decreased pulse amplitude, but with unchanged pulse frequency (35). The intriguing observation was that the expected restoration of GH secretion after curative pituitary surgery failed to occur, notwithstanding significant weight loss and normalization of BMI in the 50% of the patients, who had preoperatively increased values. These observations suggest that (visceral) obesity is an important determinant of GH secretion in Cushing’s syndrome, irrespective of its etiology, but apparently after pituitary surgery other factors play (or still play) a role in the diminished GH secretion.

We established a significant negative relationship between BMI and GH secretion in pituitary-independent hypercortisolism and in the matched controls. BMI, however, explained only 30% of the variability in GH, suggesting that other mechanisms likely contribute to the observed hyposomatotropism, as discussed above. It is unfortunate that we had no data on visceral fat mass in our patients and controls, because most likely, a higher correlation coefficient would have been found. Nevertheless, we did not find a relation between the degree of cortisol excess and GH secretion rate, as we previously found for pituitary-dependent hypercortisolism (17). A conspicuous difference in clinical presentation between the two forms of the syndrome was the very high cortisol secretion rate in some of the (male) Cushing’s disease patients, which could explain the divergent results.

Compared with lean controls our patients had a 50% reduction in pulsatile GH secretion, exclusively caused by secretory-burst amplitude decrement. In the absence of a significant change in basal (non-pulsatile) secretion this observation is compatible with heightened somatostatin inhibition (3), decreased hypothalamic GHRH secretion, a defect in the GHRH/GH secretagogue receptor signalling or direct non-receptor-related GH inhibition. Experimental evidence, mainly obtained in the rat, has demonstrated that high doses of glucocorticoids decrease the expression of hypothalamic GHRH mRNA, and increase that of somatostatin (11, 14, 27). On the other hand, dexamethasone increased mRNA of the GHRH receptor and the GH secretagogue receptor, which certainly explains the dexamethasone-potentiation of GH release after GHRH in the human and in the rat (26, 37, 49), but not the diminished GH response to GHRH/GHS during chronic glucocorticoid excess. Accordingly, the amount and duration of cortisol excess appear to be important.

Other mechanisms might limit GH secretion in chronic hypercortisolism. For instance, in the rat dexamethasone administration decreased mitosis and increased apoptosis of pituitary cells (38). If such a mechanism is also present in the human somatotrope, this might (partly) explain the extended time (one year or more) it takes for restoration of GH secretion in most of the (adult) patients after surgical cure of Cushing’s syndrome (18, 21, 49). Nonetheless, permanent damage to the somatotrope appears to be the rule rather than exception in childhood-onset
Cushing’s disease after surgery and radiation treatment (4). Another mechanism potentially relevant for the inhibitory effect of glucocorticoids on GH secretion is via the action of annexin 1. This peptide is a mediator of the anti-inflammatory actions of glucocorticoids and has significant effects on cell growth, differentiation, apoptosis, membrane fusion, endocytosis and exocytosis (22). This peptide, widely distributed in the body, is also present in the folliculostellate cells in the pituitary gland, but not in the pituicytes, and exerts its GH-suppressing effect on the somatotrope via a paracrine mechanism at a point distal to the formation of cyclic AMP and Ca ion entry (48). However, the same mediator has also a centrally stimulatory effect on GH (40). Finally, leptin might also be involved in the GH regulation. Circulating leptin concentrations in Cushing’s syndrome are disproportionately increased compared with BMI-matched healthy controls (7, 15, 36). Short-term fasting in Cushing’s syndrome did not restore normal leptin levels, and GH secretion remained blunted (19). However, several recent clinical studies suggest that a direct role for leptin in GH regulation is rather limited. In morbidly obese patients treated by biliopancreatic diversion changes in insulin levels predicted changes in leptin levels and the somatotropic axis (8). Also observations in patients with homozygous and heterozygous leptin gene mutations indicate that GH secretion is correlated with adiposity (39). Finally, r-metHuleptin administration in healthy lean men did not prevent fasting-induced augmentation of GH pulsatility or decline in free IGF-I levels, but restored in part total IGF-I levels (5).

GH concentration fell after meals in patients and in controls. Theoretically, one might expect a diminished inhibitory action in patients, because of decreased hypothalamic GHRH expression, and increased somatostatin expression, as discussed above (11, 14, 27). The differences between patients and controls were not significant (P-values ~ 0.60), suggesting that lack of power was not responsible.

A conspicuous and specific observation was the decreased regularity of GH secretion measured using ApEn, as previously described in patients with ACTH-producing pituitary adenomas (17). The degree of irregularity of GH release in patients with adrenal cortisol excess was significantly greater than that estimated in obese controls. The ApEn statistic quantitates the relative linearity or reproducibility of subordinate (nonpulsatile) secretory patterns in neurohormone time series, which in turn mirrors feedforward and feedback adjustments driven by (patho) physiological changes in interglandular communication. The validity of ApEn to this end has been established in theoretical and experimental contexts (9, 55, 56). In view of the unchanged IGF-I feedback signal in the patients, decreased regularity of GH secretion could reflect impaired coordinate control of GH secretion by somatostatin, GHRH and ghrelin and/or altered pituitary responsiveness to these peptides (9,10). Available data do not address the reversibility of disorderly GH release due to endogenous adrenal cortisol excess with presumptively normal premorbid hypothalamic-pituitary function.

The 24-hour concentration profiles allowed an appraisal of possible coordinate secretion of cortisol with GH. In normal subjects we found a reciprocal relationship
between these two hormones, as previously demonstrated in mid-luteal phase-women and in children (1, 6). The inverse relationship might be explained by the known ability of glucocorticoids to suppress GH secretion, possibly via heightened somatostatinergic tone (14). In patients the correlation between the two hormones was smaller, and even positive in 5 subjects. Indeed, abolishment of the cortisol-GH correlation can be induced by fasting in adult healthy women, while a positive correlation is seen in children with congenital adrenal hyperplasia under glucocorticoid substitution therapy (1, 6). Changes of cortisol patterns as observed during the stress of caloric deprivation, and by definition non-physiological glucocorticoid substitution therapy lead to desynchronization of hormone secretion patterns, as we now also described for endogenous primary adrenal hypercorticism. The loss of inter-axis synchrony in our patients is corroborated by (lag-independent) cross-ApEn analysis. Disruption of pattern synchrony of GH and cortisol is also seen during fasting in adult women. Interestingly and not previously reported was the loss of synchrony between GH and cortisol in 15 patients with ACTH-dependent hypercorticism (45, 47). In these patients cross-ApEn was 1.640 ± 0.068, thus greatly elevated to a similar degree as the adrenal form of hypercorticism (P = 0.000013 vs. controls, and P = 0.99 vs. adrenal hypercorticism). Collectively, these results indicate that endogenous hypercorticism leads to disruption of cortisol-GH synchrony, irrespective of its cause. Notwithstanding the obvious loss in synchrony, copulsatility of cortisol and GH remained strong. This finding is somewhat surprising, since tumoral cortisol secretion in patients with adrenal adenoma is ACTH-independent, and could therefore indicate that cortisol feedback is involved in the temporal timing of GH pulses. At present, no other data in literature are available to support this hypothetical view.

In summary, patients with primary adrenal Cushing’s syndrome exhibit moderate hyposomatotropism, as demonstrated by decreased GH pulsatile secretion, which is only partly (~ 30%) explained by adiposity. This observation in combination with disruption of GH pattern regularity and synchrony points to impaired net peptidyl-drive of orderly somatotrope secretion.
REFERENCES

GH secretion in Cushing’s syndrome

