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8Discussion

This chapter provides a short review of the preceding chapters and restates why

single array genotyping should be applied more widely. Furthermore, it ad-

dresses some open problems, illustrates new ideas in extension of the current

chapters and points out benefits of the proposed methods.

8.1 Advantages of single array analysis

One of the main themes in this thesis was the propagation to switch to single
array genotyping, as opposed to single SNP, multi-array genotyping, which
is the current common practice. The approach has a number of advantages,
which are summarized below.

Single array genotyping is fast and flexible, due to its semi-parametric
approach. It is insensitive to differences in sample size, and depends only
on user-chosen dimensions of the underlying histogram. The process is very
easy to monitor, since it requires tracking only one sample at a time.

Along the same lines, it also allows for better quality control, because the
overall level of the signals is an indication of data quality. Because quality
control is easy, the procedure is also highly suitable for use in development
of small series of chips, for example when devising new layout to research
“new” organisms. Furthermore, the procedure is readily available in open
source software, in the SCALA software suite.
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8. Discussion

8.2 A short review

The theme of this thesis can be summarized in a few words: "better data
analysis for SNP arrays". The five main chapters present efficient and effec-
tive solutions to many problems that are encountered in practice. They are
reviewed concisely.

SNP platforms provide a variety of opportunities as well as challenges.
Fluorescence signals from these platforms have structural properties: over-
all fluorescence levels differ not just between arrays, but also between SNPs
within one array. The SCALA model, discussed in Chapter 2, contains pa-
rameters for estimating the systematic effects of SNPs, arrays and genotypes.
This large regression model is applied to both alleles separately, and delivers
a million parameters or more. However, due to its extremely sparse struc-
ture, a specialized semi-symbolic algorithm allows exact estimation in a very
short time. Model fit is highly adequate in terms of (standard deviation) of
residuals. Once the parameters of the model have been estimated, they are
used to eliminate the systematic effects, thereby greatly enhancing the qual-
ity of the fluorescence signals. We call this calibration and apply it in a later
chapter.

In Chapter 5 it is shown that the signal calibration is also useful for cor-
rection of genomic waves, visible as a systematic pattern when plotting flu-
orescence signals along chromosomes and smoothed. Calibration removes
these waves. Because the model used to obtain calibration parameters does
not model spatial autocorrelation, the results of calibration imply that wave
patterns in reality are not caused by not spatial autocorrelation. Furthermore,
noise in the signals is reduced. When compared to a dedicated wave correc-
tion model, NoWaves, performance is equal, but the proposed calibration is
more efficient. NoWaves requires reference samples for each array subject to
correction, while SCALA applies calibration parameters that were estimated
at some prior point in time.

One application of SNP fluorescence signals is to determine SNP geno-
types. In Chapter 3 we break with common practice and perform genotyp-
ing for all SNPs on individual arrays. A semi-parametric mixture model is
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8.2. A short review

estimated, with three component densities, one for each of the AA, AB and
BB genotypes. Comparison to results of SNP by SNP algorithms (CRLMM) as
well as a de-facto standard, as found on the HapMap archives, show equal or
better performance. Furthermore, where traditional methods do not provide
reliable estimates for all scenarios, i.e. low probabilities, for low Minor Allele
Frequencies (MAF) due to small or missing components, the estimates from
the single array model have higher probabilities and additionally provide
genotypes for SNPs that were not called by HapMap. The current model is
suitable for different platforms as well as chips with different densities.

Throughout the chapters, genotyping is based on a display of the ratio
of the A and B signals versus their sum (on logarithmic scales). Low signals
on the sum scale, as well as unclear separation between the three genotype
groups on the ratio scale indicate low(er) chip quality. Applying calibration
before single array genotyping, as described in Chapter 4, allows us to exploit
this knowledge to select only the SNP observations of the highest quality, by
a user-defined threshold. This results in higher genotyping probabilities for
the selected high-quality observations on low(er) quality arrays.

Another application of the fluorescence signals is the estimation of pro-
files of copy number changes. These changes generally occur in a segment-
wise manner along chromosomes. There is a large literature on smoothing
and segmentation of CNV signals, all with the goal to obtain the boundaries
of the segments and their levels. A new smoothing algorithm was presented
in Chapter 6. The model uses a so-called L0 penalty on jumps between
smoothed values and is therefore referred to as the Zero Exponent Norm,
ZEN. The result is an extremely sharp segmentation. A similar segmentation
also holds for allelic imbalance signals. However, it is not possible to apply
the same smoother to allelic imbalance signals, because several parallel data
bands occur. Therefore, we modified an existing scatterplot smoother to use
the L0 penalty in one direction and the L2 norm in the other, in order to get
sharp segmentation here too.

All models and algorithm are written in R, and are combined in a software
suite, The SCALA suite (Chapter 7). It provides both command-line functions
(for estimation and calibration, as well as genotpying) and a graphical user
interface for interactive (simultaneous) smoothing and plotting of CNV and
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8. Discussion

Figure 8.1: An Illumina array with asymmetric signals before and after calibration.
Clusters are not condensed, but tails appear.

allelic imbalance.

8.3 Ideas for future research

Although the previous chapters have addressed specific questions and prob-
lems, there are still open questions and new directions to be explored. Below,
a few are discussed.

Calibration of asymmetric fluorescences signals

In Chapter 3, a method was developed for single array signal calibration. This
method was tested extensively for Affymetrix arrays, which have strong sym-
metric properties when looking at a single array. However, it was also men-
tioned that e.g. the asymmetric signals from the Illumina Infinium platform
was not evaluated due to problems with signal calibration. Unfortunately,
no explanation was provided as for why the calibration doesn’t work, except
for the fact that Illumina (but others too) uses two-color fluorescence, where
Affymetrix uses just one. It seems that the resulting wavelength differences
are at the heart of the asymmetry. In the near future we aim to provide more
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insight into the positive and negative aspects of asymmetric signals and pro-
pose a solution for the less desirable ones. After calibration, the clusters are
not condensed like for Affymetrix, but seem to obtain a swallow-like shape
(Figure 8.1). The tails appear after calibration and compromise quality of the
genotype calls.

Staaf et al. (2008) used quantile normalization using reference arrays to
overcome the asymmetry. However, in practice their approach is not effective
in a single ratio-sum transformation since they use a set of arrays to find
a symmetric transformation within the given set (Bolstad, Irizarry & Speed,
2003). Still, a part of the solution for asymmetry in fluorescence signals before
calibration may be found here.

Extended models

A possible model extension is to perform simultaneously modeling of geno-
types, copy number profiles and calibration parameters. An example in
which independent estimations for genotypes and CNV have been combined
in a single representation is shown for chromosome 9 in Figure 8.2. We refer
to the model as the Michelin model, because this representation of the data
has similarities to the profile on a (car) tire. However, calling all genotypes at
once for such a sample will induce errors. For better clarification, the com-
plete chromosome is split into the tumorous P-arm and healthy Q-arm in
Figure 8.3. The top panel shows the healthy tissue with constant CNV and
full allelic balance, and has clear genotypes. The three separate views are
shown in the left panels in Figure 8.4. The bottom panel however shows the
tumor tissue, showing CNV and allelic imbalance. These are shown in the
right panels in Figure 8.4. Genotyping this arm at once will be largely incor-
rect, because one number of genotype clusters is estimated, while a different
number of clusters for each segment in this arm would be more appropriate.

The core principle behind this idea is that it is possible to have a differ-
ent genotype component mixture for each copy number or allelic imbalance
segment. Mixtures of 1, 2 or 3 components can occur in different segments.
It then is possible to fit a log-concave component mixture per segment, as a
fundamental approach to “interactions” between CNV and genotypes. An
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Figure 8.2: Three models combined in one SNP signal representation: 1) CNV profiles
(top view), 2) Allelic imbalance (right side view) and 3) Genotyping (front
side view).
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Figure 8.3: Combined SNP model for normal (top) and diseased (bottom) tissue.
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Figure 8.4: Combined SNP model in single view orientations. Left column shows
healthy tissue; right column shows tumor tissue. The top panel shows a
CNV profile, the middel panel shows allelic imbalance, and the bottom
panel shows genotypes.
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Figure 8.5: Genotype representation of the data within segments. Mixtures of one
(top right), two (top left and bottom left) and three (bottom right) compo-
nents can be distinguished.

illustration is given in Figure 8.5. This approach will provide some mathe-
matical challenges in terms of overfitting or overparametrization.

Figure 8.5 also indicates why it is better to use both the ratio and the
sum dimension for genotyping, instead of just the ratio, because the latter
would provide genotype densities that are too wide. The bottom right panel
provides a clear demonstration. Using the sum dimension in addition allows
for more accurate estimations.
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