Universiteit

4 Leiden
The Netherlands

Advanced statistical tools for SNP arrays : signal calibration, copy

number estimation and single array genotyping
Rippe, R.C.A.

Citation

Rippe, R. C. A. (2012, November 13). Advanced statistical tools for SNP arrays : signal
calibration, copy number estimation and single array genotyping. Retrieved from
https://hdl.handle.net/1887/20118

Version: Not Applicable (or Unknown)

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20118

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20118

Cover Page

The handle http://hdl.handle.net/1887/20118 holds various files of this Leiden University
dissertation.

Author: Rippe, Ralph Christian Alexander

Title: Advanced statistical tools for SNP arrays : signal calibration, copy number
estimation and single array genotyping

Issue Date: 2012-11-13

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20118
https://openaccess.leidenuniv.nl/handle/1887/1�

THE SCALA SOFTWARE SUITE

The SCALA Suite for Single SNP chip analysis provides functions to convert raw
CEL-files to Rdata objects, one for each chip. Furthermore, given a set of high
quality arrays, universal calibration parameters can be computed and applied to
new arrays. Genotypes are called on a single chip with a dedicated function.
Maps of copy numbers and allelic imbalance are also implemented for single

arrays.

7.1 Introduction

SNP (Single Nucleotide Polymorphisms) arrays have two major applications:
genotyping of DNA and studying copy number variations (CNV) and allelic
imbalance. Here we describe integrated R software called SCALA designed
for this purpose. It has a unique combination of properties: it can perform
CEL file conversion, genotyping, copy number mapping and signal calibra-
tion. After using SCALA no further software is needed. In the remainder of
this Introduction we describe the main components of SCALA in more detail.

Genotyping

To estimate all SNP genotypes in a single chip, semi-parametric log-concave
mixtures were proposed in Rippe, Eilers & Meulman (2010). One reason is
that the latter only works effectively on array sets of reasonable size, in order

This chapter is an adapted version of the submitted article:
Rippe, R.C.A,, Eilers, PH.C. and Meulman, J.J. (2012). SCALA: a software suite for single chip
SNP calibration, genotyping and copy number mapping, submitted for publication.

101

7. THE SCALA SOFTWARE SUITE

102

to obtain stable estimates. Furthermore, low minor allele frequencies pose
additional problems. The above is circumvented when genotypes are called
for a single chip. Proposals for small sample sets have been made, also us-
ing mixtures (ALCHEMY by Wright et al., 2010), as well as a combination
of single and multi-array analysis (MAMS by Xiao et al., 2007). Building on
their arguments we have developed an algorithm that performs single array
genotyping. It is based on a two-dimensional mixture of log-concave den-
sities (along the lines of Eilers & Borgdorff, 2007), fitted on 2-dimensional
histograms (Eilers & Marx, 2007). To estimate a mixture with three smooth
components, we use the familiar EM (expectation-maximization) algorithm.
Two steps are repeated until convergence: 1) split the counts y into three
vectors of pseudo-counts, proportional to the current estimate of the mix-
ture components; 2) apply smoothing to the pseudo-counts. Decent starting
estimates for the components are needed. In Rippe et al. (2010) genotype
calls from a multi-array method (CRLMM) and from our single-array method
(SCALA) are compared to a set of consensus genotypes from HapMap. The
number of agreements and differences in terms of homo- and heterozygous
calls showed that SCALA can be used to call genotypes efficiently and effec-
tively. Even SNPs that were not genotyped in HapMap can be genotyped
with reasonable certainty using a single chip. The above model is imple-
mented in the SCALA. genotype function.

Visualization of copy numbers and allelic imbalance

DNA in tumors can show a variety of deviations like allele copy number vari-
ation (CNV) and allelic imbalance. SNP arrays provide a fluorescence signal
for each allele, both of which are assumed to be proportional to the number
of both alleles. Sums (log(a + b)) and ratios (log(b/a)) of these signals can
be plotted, on logarithmic scales, versus positions on chromosomes, to give
a useful graphical representation (like in DNACopy, 2010; Golden Helix, 2011).
These plots can be enhanced in several ways. Here we present an R program,
called SCALA.Map, for this purpose. The program offers smoothing of CNV
and allelic imbalancesignals.

7.2. Functions and implementation

SNP signal intensity calibration

SNP fluorescence signals are not perfect: they contain “noise”. This noise ap-
pears not to be random, implying that it can be modeled in order to correct
for it and so calibrate the intensity signals. A remarkable and useful prop-
erty of fluorescence signals from all types of platforms is that they contain a
specific structure. First, there is the (trivial) difference between arrays, which
most readers are familiar with. However, a similar pattern also holds for indi-
vidual SNPs over sets of arrays, and this is what we exploit here. Given a set
of called genotypes for the current array, one can obtain calibration parame-
ters for arrays and SNPs. These parameters need to be estimated only once
for a given chip type, based on a set of (high quality) arrays. Once a set of
calibration parameters has been estimated, it can be used to calibrate the sig-
nals in any new individual array, without the need of knowing the genotypes.
We estimate « using a set of high quality samples of normal tissue. Estima-
tion of these parameters is implemented in the function SCALA.calibrate.
The calibration is very effective in copy number mapping, but it can also be
used in genotyping. The latter is only offered as an experimental function;
assessment has yet to be performed.

Functions and a graphical user interface

The modules for file conversion, genotyping and calibration are accessed via
regular function calls. Copy number mapping is done through a custom
graphical user interface, which controls the plot settings as well as export
options.

7.2 Functions and implementation

In this section we describe the main function in the software suite. We start
with CEL files conversion, then discuss calibration, genotyping, and finish
with a graphical interface for copy number estimation. Supporting data files
and subfunctions are placed in the relative folder locations ’../Maps’ and

103

7. THE SCALA SOFTWARE SUITE

104

’../Calibration’ (for file conversion), and ’../Support Files’ (for geno-

typing and mapping).

File conversion: SCALA.convert

The software is built around an object of class SCALA, which is a conversion
of a raw CEL file to aggregated fluorescence signals for each allele. The
conversion function is specific for each chip type, but the result is generic.
Currently supported platforms are Affymetrix (100k Hind and Xba, 250k
NSP and STY, and SNP6.0) and [llumina (Infinium). For each Affymetrix chip
type, probe maps from the corresponding BioConductor packages are used
to match the probes for signal aggregation. A call to the function converts
all CEL files of the same type (Affymetrix 250k NSP) in the current working
folder. It is used as

> SCALA.convert(datatype=[type], calibrate=[T/F]),
readfolder=getwd(), savefolder=getwd())

Possible data types that are currently implemented are Affy50kHind,
Affy50kXba, Affy250kNSP, Affy250kSTY and AffySNP6.0, which are self-
explanatory. For successful conversion, if SCALA. convert is located in folder
X:/, then the conversion maps should be placed in X:/Maps. Note that these
files need to be of the same chip type; here all files are Affymetrix 250k NSP
chips. Including other chips will provide errors.

For Illumina arrays we have a function that takes the X-raw and Y-raw
columns. To use these arrays, the X and Y components in the SCALA ob-
ject described below should be replaced with the X-raw and Y-raw columns
from an Illumina data file. The chromosome allocation and position can be
replaced similarly.

Genotype calls are all set by default to NA after file conversion but they can
be added from any other source like HapMap, CRLMM or BirdSeed. Geno-
types from HapMap have to be matched by SNP ids. This is because not all
SNP ids in a sample are genotyped in HapMap with an identical id. There-
fore, adding HapMap genotypes is also not (yet) automated. The required

7.2. Functions and implementation

format is a vector having AA=1, AB=2 and BB=3 for the genotype for each
SNP, with SNPs and genotypes in the same order.

Precomputed calibration sets are also provided for a number of platforms,
so that calibration can already be performed at the file conversion stage.
However, it is also possible to convert a custom set of arrays, add genotypes,
and then compute the calibration parameters from this new set with the func-
tion in section 7.2 and correct the signals manually.

Estimating SNP genotypes: SCALA.genotype

After file conversion genotype information is not available (NA), but can be
obtained with the provided calling function. It requires a number of pa-
rameters. First, the number of bins (in both horizontal (xbin) and vertical
(ybin) direction) for the histograms smoother has to be chosen. Second, the
smoothing parameter A has to be set, to determine the amount of smoothing
in the histogram. Third, the initial vertical split levels for the three mixture
components have to be set. These levels are defined in terms of the ratio of
the number of vertical bins. If in Figure 7.3 the number of vertical bins is set
to 100, the split levels for the left panel could be [0.45, 0.55] leading to splits
at bin 45 and 55. Similarly, for the right panel initial split levels might be
[0.50, 0.70]. The number of iterations is limited by nit and the convergence
criterion is set by crit. After invoking the function, the NAs in calls are
replaced with real genotypes by

> SCALA = SCALA.call(data=[name-of-CELfile], model=[],
plot=[T/F], save=[T/F], xbins=[val],
ybins=[val], lambda=[vall], spliti=[vall,
savefolder=[])

As stated before, genotypes can also be added from another source (e.g.
HapMap), but currently no function is provided to do so. If done manu-
ally, make sure that the ordering of the external genotypes matches the SNP
ordering in the object. The column SCALA$rsid can be used for this purpose.

105

7. THE SCALA SOFTWARE SUITE

106

File View

Plot filename: plot.pdf

Set plot folder | Save plot ‘

Select data file | Save settings |

Export Gene list
Export per-SNP list

Chromosome
9

LI

I~ Filter Gene gap? (slow!)

LOH signal Lo

':I

|: = CNV Ban
+— CNV Smoother

=== CNV Threshold

Gene names

i
Iwiiith LOH Bandwidth j
Gene selection LOH Smoother :
LOH Threshold ===

(CNV or LOH)

CMV Call bound

1

[]

CNV penalty
266

LI

CMV Thresheld
0.00

Lo

Choose gene label type: LOH Bandwidth

0.10

" Ensembl

¥ Gene-name _‘_I

Gene selection on : LOH penalty

& oy (00
L

" Imbalance

Choose selection side LOH Thresheld
0.20

L1

¥ Below threshold

" Above threshold

PLOT: Create map | Close plot(s) ‘

Figure 7.1: Graphical User Interface for SCALA.map.

Copy number mapping: SCALA.map

The mapping function set provides a novel way to combine visualization as
well as analysis of both CNV and allelic imbalanceat the same time. The pro-
gram is controlled solely by a graphical user interface (Figure 7.1) based on
RPanel (Bowman et al, 2007). The GUI provides easy access to like chromo-
some selection, threshold signal filtering, the amount of Ly smoothing, the
type of gene labeling (e.g. taken from Ensembl or BiomaRt) to be used and
some Ly detection bandwidths and thresholds. These options can be saved
to a(n .Rdata) file. It also provides the option to save the "tuned" image to
PDF with a filename chosen by the user. Furthermore, it exports signals and
detection results for all SNPs and genes located on the detected chromosome

to a comma-separated table.

7.2. Functions and implementation

Input and output format

The mapping program takes a SCALA object as input. The main components
of the object are shown below:

$ meta :List of 6

..$ fname : chr "name-of-CELfile"

..$ readpath : chr "path-to-readfiles"
..$ savepath : chr "path-to-savefiles"
..$ convertDate: chr "yyyy-mm-dd hh:mm:ss"
..$ calibrated : logi FALSE

.$ callDate : logi NA

$ chr : chr [1:numberofSNPs] "i" '"i" "2" "3"

$ pos : int [1:numberofSNPs] 101 102 103 104 ...

$ rsid : chr [1:numberofSNPs] "rsidi" "rsid2" "rsid3"

$ X : int [1:numberofSNPs] vall val2 val3 vald ...

$Y : int [1:numberofSNPs] vall val2 val3 vald ...

$ calls: logi [1:numberofSNPs] NA NA NA NA NA NA NA ...
- attr(x, "class")= chr "SCALA"

Settings are stored in an .controls object can be saved to an .Rdata file. These
settings can be loaded upon GUI startup to recreate exactly the same plot as
before, by using

> SCALA.map(controls = [settings_file])

The exported results contain gene-name, chromosome, start and stop lo-
cation, a detection indicator (indicated by 0 or 1) that shows whether or not
the gene was detected (by either the CNV or imbalance smoother), the ac-
companying Ly values for the CNV and imbalance signal for each SNP as
well as the smoothed CNV and imbalance values for each gene. Filenames
for exported results as well as for the created PDF plot are user-controlled. A
resulting plot window is shown in the example in section 7.3.

107

7. THE SCALA SOFTWARE SUITE

108

Graphical representation

At GUI startup, the plot window is not created immediately; the GUI starts
with either the default settings or previous settings as specified by the user.
The PLOT: Create map button is used to create and update the plot window
after changing settings. The title contains the name of the selected sample
and current chromosome by default, but it is highly adjustable via a separate
window that is called from the menu. An partial plot example is included
in the GUI, in which the main controls and their effect are illustrated. From
left to right, the first panel shows the Ly values for the CNV signal based
on the data shown in the adjacent panel. In the CNV signal panel, the full
CNV signal is given along with the Ly smoother results. In the middle panel,
selected gene names are shown for the chromosomal region(s) that show(s)
abnormalities. The names can be shown for either the CNV or imbalance
signal. To the right of the column with gene names, the imbalance signal is
given (with an L detection band), followed by the accompanying smoother
based on the selected data points. Regions of aberrations are detected relative
to a threshold value (dotted line) that is set by the user, as well as the level of
smoothing and penalty norm power (default: p = 0) in the Ly computations.

Estimating calibration parameters: SCALA.calibrate

The sets of calibration parameters based on a chosen number of arrays (lo-
cated in the current working folder) are obtained (after file conversion) using

> params = SCALA.global(filefolder=getwd(), savefolder=getwd(),

filename=[nameofsavefile], kappa = 1le-8))

with kappa a small additive term to avoid singularity. The « (and p)
vectors can be used to calibrate the original fluorescence signals.

7.3 Illustrative examples

In this example we use 8 high quality reference arrays from Affymetrix
and one brain tumor file from the Erasmus Medical Center, Rotterdam, The

7.3. Illustrative examples

Netherlands (Bralten et al., 2010). The first are used to obtain calibration
parameters, to be applied to the second. We start by setting the R working
directory: > setwd("D:/SCALASuite").

Obtaining calibration parameters

Place the Affymetrix 250k NSP control files in the folder "D:/SCALASuite/01
raw/" and create the folder "D:/SCALASuite/02 raw/". Next we convert all
CEL files in the first folder.

File conversion

We specify the chip type, read and save folder, as well as that #no calibration
should be applied; at this stage, calibration parameters are not yet available.

> source("SCALA.convert.r")

> SCALA.convert(datatype = ’>Affy250kNSP’, calibrate = F,
readfolder = paste(getwd(),’/01 raw’,sep = ""),
savefolder = paste(getwd(),’/02 arrays’,sep = ""))

Converting ctr aff 1.CEL

Converting ctr aff 8.CEL

Now that these files are converted and in stored R format, the next step
is to call the genotypes for each array. After genotyping, it is possible to
estimate the calibration parameters.

Genotype calling
A list of all converted files is obtained from the save directory defined above.
Next the genotyping function is invoked. The semi-parametric estimation

procedure is used, mixture plots for each chip are not requested, and the
histogram is built from 100 by 100 bins.

109

7. THE SCALA SOFTWARE SUITE

110

> source("SCALA.genotype.r")
> fnames = list.files(path=paste(getwd(),"02 arrays",sep=""),
full.names=T)
> for (i in 1:length(fnames)) {
load(fnames[i])
scala = SCALA.genotype(scala=scala, model="s", plot=F, save=T,
xbins = 100, ybins = 100, lambda = 10,
nit=50, crit=le-4, savefolder =
paste(getwd(),"/02 arrays",sep=""))
}
Calling ctr aff 1.CEL

Calling ctr aff 8.CEL

The (partial) result for the first of the 8 Affymetrix arrays shows that
indeed the genotypes (and their cluster probabilities) have been added to the
object and file, as well as the genotyping date.

> str(scala)

List of 8
$ meta :List of 7
..$ fname : chr "ctr aff 1.CEL"
..$ callDate : chr "2011-09-12 22:16:46"

$ calls: num [1:262264] 3 231223331 ...
$ W : num [1:262264, 1:3] 1.96e-10 2.15e-04 2.57e-08 1.00 ...
- attr(*, "class")= chr "SCALA"

Calibration function

Now that genotypes are available, we estimate the calibration parameters for
this chip type by

> source("SCALA.calibrate.r")

7.3. Illustrative examples

> params = SCALA.calibrate(
filefolder=paste(getwd(),"/02 arrays",sep=""),
savefolder=getwd(),
filename="scala.global.Rdata",

kappa=1e-8)

The generic result (object) has the following structure:

> str(params)

List of 7

$ celfiles: chr [1:numberofFiles] "name-of-CELfile"

$ alphaX : num [1:numberofSNPs] numl num2 num3 ...

$ alphaY : num [1:numberofSNPs] numl num2 num3 ...

$ betaX : num [1:numberofFiles] numl num2 num3 ...
$ betaY : num [1:numberofFiles] numl num2 num3 ...
$ gammaX : num [1:3] numl num2 num3

$ gammaY : num [1:3] numl num2 num3

We then extract and store the calibration parameters for later use:

> alphaX = paramsalphaX;alphaY = paramsalpha¥
> save(alphaX, alphaY, file = paste(getwd(),"/Calibration/",
"Affy250kNSP.Rdata",sep="")

Copy numbers in a new glioblastoma array

The vectors just saved will be applied to a tumor tissue chip.

> SCALA.convert(datatype = ’>Affy250kNSP’, calibrate = T,
readfolder = paste(getwd(),’/01 raw’,sep = ""),

savefolder = paste(getwd(),’/02 arrays’,sep = ""))

Converting GBM 139.CEL

111

7. THE SCALA SOFTWARE SUITE

GBM 139.CEL chromosome 9

Lo CNV signal imbalance signal

1 AL589743.4-2

' AC118278.2
Fo AL589182.4-1
[~ AL159986.22
1 AL589182.4-4
AL512310.4-1
VN1R7P
AL512310.4-3
OR4Q3
ORAK13
ORAL1

OR4K17 L
OR11H6 .
RP3-41617.3 E

SNX19P | |
PDE6B
OR4K11P
AY269186.2
ATPSI
AL050303.9
AL050303.5
AC019257.3-1
KBTBD11
CHLL
AL109748.5

T
20

40

AP001466.6

RP11-306H5.1
AP001466.1

RP1-20B11.2
WFS1

CNTN6
AL033381.2-2

Position on chromosome (Mb)

RPL23AP38

ANGPT2
AL158139.26
AP006284.2-1
AF130249.1
NIPA2

T
100

AF127936.3
AF127936.6
AF127577.8
AF228730.8
RP1-90J20.2
AF228730.7
AF127577.11
AF127577.12
AJ006998.2
ORT7E125P
AC026882.1
RAD23BLP

T
120

AC134878.3-1
AL589743.4-2
AC118278.2

' AL589182.4-1

L e p s T
1505 -2 -1 0 1 2 -10 -05 00 05 100 0.3

T
140

s =log(a +b) r = log(b/a)

Figure 7.2: Example of a SCALA.map image. On the far left, it shows the CNV Ly
signal smoother and to its right the raw CNV signal. The middle part
shows the selected gene names. The rightmost parts show the signal for
allelic imbalance and its Ly signal smoother. Here, SCALA.Map is set here
to detect aberrated regions on the CNV signal, identifying one problematic
region and the genes it contains.

After file conversion, we start the GUI with predefined settings (in
SCALA .map-controlsGBM139.Rdata’). To obtain the plot window (and im-
plicitly perform all computations), click the appropriate button.

> source("SCALA.map.r")

112

7.4. Technical model details

> SCALA.map(controls=’SCALA.map-controlsGBM139.Rdata’)
Selections: .. done!
Plotting: .. done!

Computations: .. done!

The resulting plot for chromosome 9 is given in Figure 7.2. It shows a
small CNV region that has less than 2 alleles present. 27 genes are contained
in that region of chromosome 9. The white space is the centromere. A similar
detection can be performed on the imbalance signal by simply changing the
GUI options to this purpose. Saving the settings used to obtain the current
plot can be done by clicking the "save settings" button. Exporting the detec-
tion show in the plot can be either per gene or per SNP, depending on the
selected button. For button location, see Figure 7.1.

7.4 Technical model details

Semi-parametric genotyping

Let Y = {y;} be an ny x ny matrix of counts in a two-dimensional n; x ny
histogram. The center of bin (i, h) is given by (u;, v;). The expected values
are modeled by sums of tensor product B-splines. Two bases are computed,
B1, with ¢; columns, based on u and B,, with ¢y columns, based on v. The
bases are combined with a ¢; X ¢; matrix © of coefficients, and the matrix of
expected values is computed as

M = exp(B1©B)). (7.1)

A penalized Poisson log-likelihood is then optimized. The penalty is com-
plex, because both rows and columns of ® are penalized. If || X||r indicates
the Frobenius norm of the matrix X, i.e. the sum of the squares of its ele-
ments, the penalty is

Pen = Aq||D1®||/2 + A, ||@D}||F/2, (7.2)

where D; and D; are matrices of the proper dimensions (c; — 3 X ¢; and
¢» — 3 X ¢p) that form third differences.

113

7. THE SCALA SOFTWARE SUITE

114

Affymetrix (71312 SNPs) lllumina (42075 SNPs)

o ~

—

n -
—~ oS —_
Y Y
2 2 o
j=2) j=2]
k<) b o
il [T
@ x

S 4

1 r‘q |

o

i

1 o

)
T T T T T T T T T
25 3.0 35 4.0 25 3.0 35 4.0 4.5
S =log(a+b) S =log(a+b)

Figure 7.3: Raw data with estimated smooth densities. Left panel: a typical (sym-
metric) Affymetrix array. Right: a typical (asymmetric) Illumina array.
Contours, normalized to 1, are overlayed for [0.02,0.05,0.1,0.2,0.5,0.8] (left)
and [0.01,0.02,0.05,0.1,0.2,0.5,0.8] (right).

The mixture components give three expected values for bin (i, /) of the
histogram: p;pq, pip and pj3. From these numbers follow, after division by
their sum, three membership probabilities. The largest of the three, which
we indicate by p;; points to which cluster all the observations in the bin
should be assigned. The result of this algorithm is depicted in Figure 7.3,
where contours of the fitted densities are shown for an Affymetrix (left) and
[lumina (right) array.

In Rippe et al. (2010) genotype calls from a multi-array method (CRLMM)
and from our single-array method (SCALA) are compared to a set of consen-
sus genotypes from HapMap. The number of agreements and differences in
terms of homo- and heterozygous calls showed that SCALA can be used to
call genotypes efficiently and effectively. Even SNPs that were not genotyped
in HapMap can be genotyped with reasonable certainty using a single chip.
The above model is implemented in the SCALA.call function.

7.4. Technical model details

Copy number signal smoother

To obtain smooth estimates of the data, a method derived from Eilers and
DeMenezes (2005) is applied. In Rippe et al. (2012b), the algorithm of Eilers
and DeMenezes has been improved in at least two ways: 1) a least squares
measure of fit to increase sensitivities and 2) and an Ly norm penalty to
reduce the number of jumps. The formal model is given in (7.3).

m
i—z)*+AY |z —zialf (7.3)
1 i=2

Sq =

M

1

with y the original data and z the smoothed signal. A is again a tuning
parameter that controls amount of smoothness. Furthermore, q can be any
number between 0 and 2. Here, g = 0, essentially a penalty on the number
of non-zero difference between neighboring elements of z, while in Eilers &
DeMenezes (2005), g = 1.

For CNV signal smoothing all observations are used. For allelic imbalance
a selection of observations within a user-defined bandwidth is used.

SNP signal intensity calibration

Consider one allele. Assuming that SNP i has a specific intensity level a;,
and that array j has a normalization factor b;, a reasonable model for the
intensity fluorescence signal is given by x;; = a;bju;; + €, with i = 1,...,m
and j = 1,..,n and where u;; represents the number of copies of the allele
(0, 1 or 2) and €;; represents the error. We do not specify a distribution of €.
Instead we will use signals on a logarithmic scale (base 10), with y;; = log x;;.
A similar model holds for the other allele.

For the moment we assume the genotypes to be given, so we can formu-
late a linear model:

3
Yij = g ai+ B+ Y vihi + e (7.4)
k=1

where p is the grand mean, «; the level of SNP i, and §; the level of array j;
k indexes the genotype (1 = AA, 2 = AB, 3 = BB) and -y is a parameter for

115

7. THE SCALA SOFTWARE SUITE

116

Uncalibrated on log scales Uncalibrated on Ratio-Sum Genotype—free calibration

0.5
L
05

log(b)
log(b/a)
0.0
log(b/a)
0.0

r

r
r

-05
L
-0.5

1.0

-1.0
L

25 3.0 35 4.0 32 34 36 38 40 42 44 32 34 36 38 40 42 44
s =log(a) s =log(a +b) s =log(a+b)

Figure 7.4: Calibration results for chromosome 1 in array NA06985 from the HapMap
CEU population. Left: signals before calibration. Right: signals after
genotype-free calibration. In the right panel, note the change in x-axis
range, after calibration.

genotype k. The genotypes are coded with the indicator array H = {h;j};
for each combination of i and j we have a 1 in the array cell that corresponds
to the genotype k, and 0 in the other cells. To make the model identifiable
we introduce the constraints } ; «; = 0 and Y B;j = 0. We call this the global
model, since all SNPs share the same genotype parameters 7.

Further theoretical and technical details on the implementation of model (7.4)
are discussed in Rippe et al., (2012a).

The a parameters that represent the levels of the SNPs are used to cali-
brate the intensities on a new array, by computing x7; = x;;/107. This is done
for each allele separately. Note that genotypes are not used, hence we call it
‘genotype-free calibration’.

Figure 7.4 illustrates the results of calibration for chromosome 1 in an
Affymetrix 100k Hind sample (NA06985) from the complete CEU population,
retrieved from the HapMap database (HapMap Consortium, 2007). We show
the signal combination log(a + b) against log(b/a), for all SNPs in a single
chip. It is clear that a strong reduction of the ‘noise’ is obtained.

7.5. Discussion

7.5 Discussion

We have described a set of programs that perform signal calibration, geno-
typing and copy number mapping for individual SNP chips. In situations
with novel species and chips (Wright et al., 2010) this approach can be very
useful: the first available chip can be genotyped or inspected for copy num-
bers immediately.

When genotyping, the software uses a sum-and-ratio transformation (x =

log(a+0b) and y = log(b/a)) of the raw signals, before computing the smoothed

2D histogram. These transformations are hard coded. It can however be ar-
gued that other transformations can or should be used. With respect to the
horizontal axis, x = log(a x b) can be used, for example. We state that this
alternative doesn’t influence the genotype calls, since it only stretches the
observations in horizontal direction. Furthermore, this algorithm calls geno-
types for a whole chip (all chromosomes) at once. A discussion of genotyp-
ing individual chromosomes versus the whole genome is presented in Rippe,
Eilers & Meulman (2010).

SCALA.Map provides a method to map SNPs on their chromosomal posi-
tion both visually and statistically, using signals that indicate CNV and allelic
imbalance. It integrates visual analysis with Ly signal smoothers, which are
all user-controlled and very easy to use. Quantification of the CNV or al-
lelic imbalance regions is implicitly done via the Ly norm. Furthermore,
the software has several customization and export options. Intended addi-
tions and extensions are probability-based signal thresholding (i.e. to re-
move ‘rubbish’ signal for low quality samples by taking only signals above
a user-defined threshold value into account). Cross-validation to determine
the optimal amount of smoothing as well as a segmented scatterplot (both
described in Rippe et al., 2012b)). are candidates for implementation. Fur-
thermore, in the same paper a method for segmented imbalance estimation
using segment-wise mixtures is proposed. We feel that this idea still deserves
further attention before final implementation.

117

