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6Visualizing genomic changes by seg-
mented smoothing using an L0 penalty

Copy number variations (CNV) and allelic imbalance in tumor tissue can show
strong segmentation. Their graphical presentation can be enhanced by appro-
priate smoothing. Existing signal and scatterplot smoothers do not respect seg-
mentation well. We present novel algorithms that use a penalty on the L0 norm
of differences of neighboring values. Visualization is our main goal, but we
compare classification performance to that of VEGA.

6.1 Introduction

Copy number variations (CNV) and allelic imbalance are common in tumor
tissue, reflecting local deviations from diploidy and heterozygosity. When
they occur, they typically form segments of widely varying length. As a first
step in their analysis, many researchers prefer to have a graphical presenta-
tion of genomic changes, as a kind of map along positions on chromosomes.
Modern high-density SNP arrays make this possible for hundreds of thou-
sands of positions on the (human) genome.

An array delivers two fluorescence signals for each SNP, one, say a, pro-
portional to the dose of one allele, indicated by A, the other, say b, propor-
tional to the dose of the other allele, indicated by B. This is only true in
principle, because noise and differences between fluorophores of different
color can distort the picture to a certain amount. If we ignore these facts for

This chapter is an adapted version of the article:
Rippe, R.C.A., Meulman, J.J. & Eilers, P.H.C. (2012). Visualization of Genomic
Changes by Segmented Smoothing Using an L0 Penalty. PLoS ONE, 7(6): e38230.
doi:10.1371/journal.pone.0038230.
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6. Zero-norm segmented smoothing
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Figure 6.1: Illustrations of copy numbers and allelic ratio, expressed as logarithms,
for healthy and tumor tissue. Left panels: healthy tissue. Right panels:
tumor tissue. Top row: copy numbers. Bottom row: allelic imbalance.

the moment, and consider normal DNA, then the sum of the doses, the copy
number, is 2, for any of the genotypes AA, AB or BB. Hence the sum a + b
should be almost constant. Similarly the ratio b/(a + b) is either 0, 1 or 2;
it is called the B allele frequency (BAF). Because in tumor DNA many types
of changes can occur, leading to any number of A or B alleles from zero to
many, a variety of deviations in CNV and BAF can be found.

We prefer to work with somewhat different combinations of the fluores-
cence signal. One is the log (to base 10) of their sum, log(a+ b), which we ab-
breviate as LAS (log allelic sum). The reason for working with the logarithm
is that usually a quite large range of values of a + b is observed. The other
combination is the logarithm of the allelic ratio, log(b/a), which we will ab-
breviate as LAR (log allelic ratio). Compared to BAF, LAR strongly expands
the scale near 0 and 1, which is crucial when fitting (mixtures of) normal
distributions, as we will do in one stage of our data analysis. Figure 6.1
shows examples of maps of the proposed quantities along chromosome 9 of
a normal and a tumor sample.
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6.1. Introduction

Copy number analysis has received attention from many investigators;
a short overview will follow later in this Introduction. In most cases the
aim is to determine, with a solid statistical basis, segment boundaries and
copy numbers and allelic doses within the segments. A variety of free and
commercial products is available. Yet we believe that there is room for en-
hanced visualization tools, that allow us to inspect data in some depth before
embarking on more formal models. Visualization tools for CNV are widely
known, while such tools for allelic imbalance are rare. Therefore, we feel
that it is most effective to introduce our new idea in the well-explored field
of CNV (LAS) and assess its behavior in depth. Once we have obtained an
understanding of its performance, we extend its application to a new setting
(LAR), for which there are no “gold standard” comparisons available.

In this paper we present a new approach to copy number smoothing,
extending the work of Eilers & De Menezes (2005). The main modification is
to use a roughness penalty on the number of jumps, instead of on the sum of
absolute values of jumps (the L1 norm). We implement it with an L0 norm,
the sum of absolute values of differences raised to the power zero. The result
is much sharper segmentation.

Copy number smoothing is relatively simple, because, as the top panels
of Figure 6.1 show, we can interpret the data as one (segmented) trend plus
noise. For the allelic ratio the situation is more complicated, because, as the
bottom panels show, we can have one, two or three noisy parallel bands. Our
solution is to adapt the scatterplot smoother of Eilers & Goeman (2004). In
its standard form it computes a histogram on a large two-dimensional grid
and applies a smoother on both axes, thus smearing out the counts in both
directions. The smoother is based on a penalty on the sum of squares (the L2

norm) of differences. We apply the same idea, but replace the penalty in the
direction along the chromosome with one using the L0 norm.

After segmentation with the modified scatterplot smoother, we present
the distribution of LAR, separately for each segment, using histograms and
Gaussian mixtures.

The literature on segmentation of copy number variations is large. It
is a fascinating subject for statistical analysis and it has led to a variety of
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6. Zero-norm segmented smoothing

modeling strategies. We present a short overview of recent work, without
claiming completeness.

The hidden Markov model (HMM) is a natural candidate. Liu et al. (2010)
propose a model with many hidden states, covering copy numbers from zero
to seven. They claim improvements compared to older candidates like Pen-

nCNV (Wang et al., 2007) and QuantiSNP (Colella et al., 2007).

Other models use explicit parameters for the positions of jumps and the
levels of the segments between them. VEGA (Morganella et al., 2010) uses
dynamic programming, while Muggeo & Adelfio (2011) fit a piecewise linear
model by maximum likelihood.

Non-parametric smoothing goes in the opposite direction, by modifying
smoothing algorithms in such a way that they favor a piece-wise constant fit.
MSMAD (Budinska, Gelnarova & Schimek, 2009) is an improvement on the
work of Eilers and De Menezes (2005). The fused LASSO works in a similar
way (Tibshirani & Wang, 2008).

Systematic comparisons of a number of models are available. We mention
Lai et al. (2005), Marenne et al. (2011), Winchester et al. (2009), Tsuang et
al. (2010), and Zhang et al. (2011). Large-scale assessments over platforms,
lab sites and algorithms were made in Bengtsson et al. (2009). The rest of
the paper is organized as follows: in Section 2 we present the algorithms,
using real data to illustrate them. In Section 3 we compare our segmentation,
obtained after automatic selection of the smoothing parameter, with the seg-
mentation from VEGA. In Section 3 we also present applications to clinical
samples, including a comparison with segment calls from external software,
CNAG (Nannya et al., 2005).

As an acronym for our smoother we use ZEN, derived from Zero Expo-
nent Norm, because the L0 norm in the penalty is crucial to its success.

6.2 Statistical methods

In this section we first discuss LAS smoothing with penalized least squares,
based on several types of norms in the difference penalty. We present a
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6.2. Statistical methods

procedure to automatically find a good value for the penalty parameter, using
cross-validation. Then we extend the discussion to segmented scatterplot
smoothing of LAR. In contrast to smoothing methods that use the sum of
squares of absolute values in the norm of the penalty, the objective function of
the ZEN smoother is not convex. There is no guarantee that a (unique) global
minimum will be reached. Yet in practice we see excellent performance. To
increase the confidence of potential users of our methods, we present a short
study of convergence behavior.

Segmented CNV smoothing

Let the data be m data pairs (xi, yi), where xi gives the position of SNP i
(xi < xi+1 for all i) and yi is the copy number signal LAS, log(a + b). We are
going to compute a smooth series z.

Our starting point is a variant of the Whittaker smoother (see also Eilers,
2003). The objective function is

S2 =
m

∑
i=1

(yi − zi)
2 + λ

m

∑
i=2

(zi − zi−1)
2. (6.1)

The first term measures fidelity of z to y, while the second term is a penalty
on roughness of z. The balance between the two is set by the parameter λ; the
larger λ is chosen, the smoother z will be. This smoother rounds off edges as
is illustrated in the top panel in Figure 6.2. This is fine in many applications,
but not here.

Quantile smoothing replaces the sum of squares (the L2 norm) by sums
of absolute values (the L1 norm). The objective function is

S1 =
m

∑
i=1
|yi − zi|+ λ

m

∑
i=2
|zi − zi−1|. (6.2)

Notice that now fidelity to the data is measured by the sum of the absolute
values of y− z (median smoothing), not by their squares. This modification
is necessary because a linear programming algorithm is used to compute ẑ.
This increases robustness, but decreases sensitivity to the data, compared to
the L2 norm. Robustness is hardly an issue in CNV studies.
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6. Zero-norm segmented smoothing
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Figure 6.2: Illustration of smoothing with different norms (2,1,0) in the roughness
penalty. Top panel: L2 norm, the Whittaker smoother. Middle panel: L1
norm. Bottom panel: L0 norm. Thinner lines drawn with positive and
negative offsets illustrate the effect non-optimal λ. Top line: λ too large.
Bottom line: λ too small.

As can be seen from the middle panel of Figure 6.2, this modification goes
in the right direction. Segments become more clearly visible, but a number
of undesirable small jumps occur.
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6.2. Statistical methods

We propose the following modification:

Sq =
m

∑
i=1

(yi − zi)
2 + λ

m

∑
i=2
|zi − zi−1|q (6.3)

where q is a number between 0 and 1. Actually we will concentrate on q = 0,
the L0 norm. Essentially this is a penalty on the number of non-zero dif-
ferences between neighboring elements of z. Any positive number raised to
the power 0 gives 1, while by convention 00 = 0. So only non-zero differ-
ences add to the penalty, and all by the same amount, independent of their
size. Our numerical algorithm approximates this behavior. The lower panel
of Figure 6.2 shows results obtained with the proposed smoother.

Computational details

It is easy to find the solution for the Whittaker smoother, using matrix-vector
operations. If D is a matrix that forms first differences, so that if u = Dz =

∆z, ui = zi − zi−1, the objective function can be written as S2 = ||y− z||2 +
λ||Dz||2, with an explicit solution that follows from the linear system (I +
λD′D)ẑ = y. The system is very sparse, which can be exploited in Matlab

or R (we use the package spam), leading to computation times that increase
linearly with the length of the data series.

We propose a simple, but effective, algorithm to minimize Sq, using it-
erated weights in an adapted Whittaker smoother, borrowing from Schloss-
macher (1973). It is clear that |a|q = a2|a|q−2, for any number a. If we do not
know a itself, but an approximation ã, then |a|q ≈ a2|ã|q−2. Using this rela-
tion, we approximate |zi − zi−1|q by vi(zi − zi−1)

2, with vi = |z̃i − z̃i−1|q−2. If
V = diag(v), the system to be solved becomes (I + λD′VD)ẑ = y. This gives
a new approximation to the solution from which new weights are computed.
These steps are iterated until convergence.

The function we try to optimize is non-convex, but with decent starting
values optimization is effective. However, to improve numerical stability
and reduce the number of iterations, we modify the weights somewhat: vi =

[(z̃i− z̃i−1)
2 + β2](q−2)/2, where β is a small number, of the order of 1/10000th
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6. Zero-norm segmented smoothing

of the expected size of the jumps. If β is set not small enough, rounding will
occur near the jumps.

Cross-validation for a good λ

A useful property of the smoother is that it automatically interpolates val-
ues for missing observations if we introduce proper weights. The objective
function is modified to

Sq =
m

∑
i=1

wi(yi − zi)
2 + λ

m

∑
i=2
|zi − zi−1|q (6.4)

For a missing, or left-out, observation we set wi = 0; all other weights are set
to 1. Smoothly interpolated values for z will be computed automatically. The
system to be solved in each iteration becomes

(W + λD′VD)ẑ = Wy,

with W = diag(w).

We exploit this property in cross-validation (CV) to find the optimal smooth-
ing parameter λ. We leave out the even observations, by setting their weights
to zero. We then compute

CV =
√

∑
i
(1− wi)(yi − ẑi)2

for a series of values of λ (a linear sequence for log λ) and search for the
minimum of CV. This simple cross-validation scheme works well in practice.

Notice that the value of λ that minimizes CV should be doubled when
smoothing the complete data. The value of ∑m

i=1 wi(yi − zi)
2 is close to half

that of ∑m
i=1(yi − zi)

2, while the penalty contains all elements of z and so will
have approximately the same value, whatever the weights.

Applying odd/even cross-validation is effective, as is illustrated in Fig-
ure 6.3. For the cross-validated fit values we observe a clear minimum (top
panel), while the smoothed result (bottom panel) looks adequate too, when
judged visually.
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6.2. Statistical methods
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Figure 6.3: Odd-even cross-validation for finding an optimal λ. The selected λ is indi-
cated in the top panel by the vertical broken line. The bottom panel shows
data using (double) the selected λ against the raw data. The doubling is
needed to compensate for leaving out half of the data.

We don’t want to overstate the importance of cross-validation and opti-
mal smoothing in the present application. Our primary goal is visualization
and we expect that the user will play with λ when exploring data. The “opti-
mal" value of λ should only be considered an advice. Because the necessary
computations take little time on a modern PC, interactive use is possible with
attractive speed.

In Section 3 we compare the classification performance of our smoother
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6. Zero-norm segmented smoothing

with that of VEGA, using cross-validation to select λ.

Convergence behavior

The objective function of the smoother is non-convex, because of the L0 norm
in the penalty. Hence there is no guarantee that local minima do not exist,
nor that we will always reach a global minimum. Yet in our experience the
results make a lot of sense when inspected visually. So even if a solution
might not be optimal — and we have no practical means to decide on that —
it can be very useful. In this section we present some details on convergence
behavior, following the iterations of smoothing with the adaptive weights in
the penalty.

Figure 6.4 presents results for a data set with relatively little noise. They
were obtained from the VEGA website (Morganella et al., 2010). We smooth
with λ = 0.2 and show the current estimate of the solution z at five iteration
steps. In the first iteration, all weights, v, in the penalty are equal to 1.
So effectively we have a light Whittaker smoother. After the first iteration
the adaptive weights take effect. As can be seen, after five iterations the
final result has almost been reached. The (logarithms) of the change in the
solution from one iteration to the next are shown in the lower right panel.
The changes are computed as the maximum of the absolute values of the
differences.

In this example sufficient convergence has been reached quickly, certainly
for visualization purposes. In our experience 20 to 40 iterations is typical.
Figure 6.5 shows a noisier data set (also from VEGA), where λ = 0.5. Conver-
gence is slower there.

Segmented scatterplot smoothing

A fast smoother for scatterplots was introduced in Eilers & Goeman (2004).
The principle is to first compute a two-dimensional histogram on a large
grid (say 100 by 100 bins) and to smooth first the columns and then the rows
with a Whittaker smoother having a slightly changed roughness penalty. In
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6.2. Statistical methods
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Figure 6.4: Illustration of convergence behavior in zero-norm smoothing with little
noise. The data are simulated (VEGA package) and contain relatively little
noise. All panels, except the lower-right one, show intermediate solutions,
at the iteration numbers as indicated in the titles of the panels. The lower
right panel shows the largest absolute change in the solution at each iter-
ation. The smoothing parameter is set to λ = 0.2.

order to ensure positive values in the histogram, a combination of a first and
second-order penalty is used. If y represents one column of the histogram,
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Figure 6.5: Illustration of convergence behavior in zero-norm smoothing with mod-
erate noise. Illustration of convergence behavior. The data are simulated
(VEGA package) and contain relatively much noise. All panels, except
the lower-right one show intermediate solutions, at the iteration numbers
as indicated in the titles of the panels. The lower right panel shows the
largest absolute change in the solution at each iteration. The smoothing
parameter is set to λ = 0.5.

that will be smoothed to get z, the objective function is:

Q = |y− z|2 + λ2|D2z|2 + 2λ|D1z|2. (6.5)
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Figure 6.6: Comparing normal and segmented scatterplot smoothing. Top panel
shows the raw observations. Middle panel shows straightforward smooth-
ing: no segmentation. Bottom panel shows segmented smoothing: clear
segments.
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6. Zero-norm segmented smoothing

Notice the combinations of a first (D1) and second order (D2) difference
penalties. A (banded) linear system of equations results:

(I + λ2D′2D2 + 2λD′1D1)ẑ = y. (6.6)

The lower panel of Figure 6.6 shows results obtained with this smoother,
when applied to a scatterplot of (log) allelic ratio against chromosomal po-
sition. The raw observations are shown in the top panel. This would be a
useful display if it showed sharp segment edges like those we obtained for
copy numbers, while maintaining smoothness in the other direction.

For the segmented scatterplot smoother, we keep the original penalty for
the allelic ratio, but for the position we use a penalty based on the L0 norm of
first differences. It will not work to just use that penalty for each row of the
histogram: we get segments, but they will generally be in different places for
different rows. To avoid it we use the same weight matrix V in the penalty
λ|D′1VD1|, but now compute it as the summary of all rows:

1/vj = ∑
i
(zij − zi,j−1)

2/m + β2,

with m the number of rows and β again a small number to increase stability
and speed of convergence. Figure 6.6 (bottom panel) shows a result obtained
in this way. Now we get sharp segment boundaries.

A typical vector v consists mostly of large numbers and a few small ones.
The latter indicate the segment boundaries and these values have been used
to enhance the figure with vertical broken lines at the boundaries.

Once the segment boundaries have been found, it makes sense to plot
histograms of the (log) allelic ratio for each segment separately. They are
shown in Figure 6.6 and 6.8. In addition we fit gaussian mixtures using the
package mclust (Fraley & Raftery, 2007). The centers of the mixture compo-
nents can be used to summarize results and to help the user in interpreting
the observed genomic changes. We do not discuss that here, because we feel
that that would stray us to far away from our primary goal, visualization.

Like the scatterplot smoother of Eilers & Goeman (2004), we see the seg-
mented scatterplot smoother only as a visual aid. We did not try to develop
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6.3. Simulations

an algorithm for automatic choice of the amount of smoothing, nor did we
try to simulate realistic allelic imbalance scenarios to evaluate performance.

6.3 Simulations

A method for visual segmentation is less useful when it remains unclear
whether a correct segmentation is found. In this section we compare perfor-
mance of our smoother with that of VEGA on CNV segment detection.

We use again the simulated data that are provided by Morganella et al.
(2010). It contains simulated CNV data for 22 chromosomes, for each of
which there are 1000 data points generated. For each chromosome random
mutations were generated with a segment length varying between 11 and 25
points. Gain or loss properties for each segment were also randomly selected.
Additionally, these data are provided with 10 levels of noise
(σ ∈ {0.0, 0.1, . . . , 0.9, 1.0}), where σ = 0 indicates perfect data. We will use
these as a reference for segment recovery.

Comparisons between the VEGA method and the proposed L0 norm smoother
are made in terms of precision, recall and associated F-scores. All of these re-
quire True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate
(TNR) and the False Negative Rate (FNR). Hits compared to the noise-free
data are assessed per individual data point. We define a deviation as at least
1% of the largest difference between the smoothed signal and the baseline
normal signal (here: 0). A match is defined as a single observation for which
such a deviation from zero (0) was found in both VEGA and ZEN.

Precision (positive predictive value) is defined as

P =
TPR

TPR + FPR
.

Recall (sensitivity) is defined as

R =
TPR

TPR + FNR
.

F-scores (harmonic mean, interpreted as a weighted average of precision
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6. Zero-norm segmented smoothing

Table 6.1: Comparing ZEN (L0) and VEGA on (P)recision, (R)ecall and (F)-value, using
simulated data.

ZEN VEGA
σ P R F P R F
0.0 1.000 1.000 1.000 1.000 1.000 1.000
0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 0.999 1.000 0.999 1.000 1.000 1.000
0.3 0.976 0.992 0.984 0.989 0.993 0.991
0.4 0.808 0.938 0.864 0.911 0.953 0.931
0.5 0.797 0.912 0.848 0.867 0.916 0.888
0.6 0.635 0.821 0.709 0.675 0.770 0.706
0.7 0.619 0.797 0.687 0.669 0.794 0.721
0.8 0.601 0.818 0.687 0.630 0.785 0.685
0.9 0.530 0.614 0.536 0.469 0.741 0.565
1.0 0.485 0.593 0.514 0.465 0.752 0.559

and recall) are given by the combination of P and R:

F = 2
P× R
P + R

.

We present results for method comparison on the simulation data, cross-
validation effectiveness and convergence. They are summarized in Table 6.1.
Note that for the F-scores, 1 = best performance and 0 = worst performance.
The best performing method is indicated in bold font. It can be seen that
for no and very little amount of noise (0.1), performance for the L0 norm
and VEGA are equivalent. Increasing the noise levels VEGA seems to perform
slightly better. For noise level 0.6, VEGA wins for precision, but not for Recall
and F-score. For even higher levels of noise, there is no clear winner. How-
ever, these levels of noise are not very interesting, since real-life data of this
quality would not be analyzed.
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6.4. Applications

6.4 Applications

In this section we discuss two applications: smoothing of CNV signals (as in
the above study) and scatterplot smoothing combined with segmented mix-
ture estimation. The data were obtained in the Erasmus University Medical
Center and concern several types of brain tumors (Bralten et al., 2010). In the
examples below, we use tumor samples named GBM 139.CEL, GBM 180.CEL,
GBM 203-2.CEL and GBM 254.CEL. Since this research focuses largely on chro-
mosome 9, we only use signals on this chromosome in our illustrations.

Figure 6.7 shows smoothing of copy number variations in GBM 139.CEL,
using odd-even cross-validation to select a good λ. There is not much to
say about this result: the segmentation conforms to our visual impression of
what the data tell us. Remarkable is the rather narrow segment at 28 MB that
is detected.

ZEN smoothing of the allelic ratio in GBM 139.CEL is shown in Figure 6.8.
Most segment boundaries, but not all, correspond to those found in the copy
number signal.

Although ZEN performance was already addressed, we also compared
our copy number results to results from dedicated copy number software,
CNAG (Nannya et al., 2005). In Figure 6.9 we show copy number maps for
selected interesting regions on chromosome 9, and we show the correspond-
ing segmented allelic imbalancemap for the four samples mentioned above.
In Figure 6.10 it shows that CNAG provides equivalent results on the same
selected regions, but with less noise in the smoother. Therefore, we argue
that ZEN outperforms VEGA.

The adaptive weights in the penalty are small where jumps occur, and
so they indicate segment boundaries. This was done to produce Figure 6.11,
where histograms and estimated normal mixtures are shown. The package
mclust was used to estimate the mixtures. It chooses the number of compo-
nents (which we limited to maximally four) based on BIC. Apparently the
two components of the mixture in the top-right panel have longer tails than a
normal distribution, and mclust uses the sum of a narrow and a wide normal
distribution to approximate them.
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Figure 6.7: ZEN smoothing of CNV in tumor data (sample GBM139.CEL). Top panel:
cross-validation profile and location of minimum (at broken vertical line).
Bottom panel: data and fit, using λ = 0.08 (double the value indicated by
cross-validation, to correct for leaving out half of the data).

6.5 Discussion

Smoothing algorithms generally have two components: one to measure the
fidelity to the data, the other a penalty on roughness of the result. For the
first term typically a sum of squares or of absolute values of residuals (i.e.
data minus fit) is being used. To measure roughness, the size of the differ-
ences between adjacent fitted values is an effective and attractive choice. The
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Figure 6.8: ZEN smoothing of log allelic ratio (sample GBM 139.CEL). The vertical
broken lines indicate the segment boundaries, as computed from the adap-
tive weights in the penalty. The smoothing parameters (λ) are 0.01 for
position and 0.5 for log allelic ratio.

way these differences are being expressed has a large influence on the shape
of the fitted curve. Eilers & DeMenezes (2005) showed that a variant of the
Whittaker smoother, using the L1 norm in the penalty on differences, is at-
tractive for copy number smoothing, because it can deliver constant segments
with relatively sharp jumps in between.

We propose to use the L0 norm, essentially the count of the number of
jumps. To make computation practical, we also present an algorithm based
on iteratively re-computed weights in a sum-of-squares penalty. This turns
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Figure 6.9: Examples of smoothed CNV and allelic imbance in clinical samples, using
ZEN. First and third row show CNV profiles, second and fourth rows
show the matching segmented allelic imbalance plots.

out to be effective: very sharp jumps between segments are obtained.

Because our algorithm can automatically interpolate missing data, it is
possible to use a simple odd-even scheme for cross-validation, to automati-
cally choose the amount of smoothing. However, we propose cross-validation
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6.5. Discussion

Figure 6.10: Examples of smoothed CNV in clinical samples, using CNAG software.
Panels show CNV profiles for the samples mentioned in the panel titles.
The smoothed signals show unexepected jumps (GBM180) and unclear
level overestimations (GBM203-2).
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Figure 6.11: Histograms and estimated normal mixtures for the log allelic ratio. Esti-
mations are separate for each of the five segments that were derived from
the scatterplot smoother in Figure 6.8.

only as a guide to find a good ball park for the penalty parameter, because
fast and easy visualization is our main goal.

We use cross-validation-based smoothing to compare classification per-
formance in a little contest with VEGA, using the simulated data that come
with that software. The performance of our smoother is quite close to that of
VEGA. This should give users the confidence that the segments they get are
realistic ones.
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6.5. Discussion

The objective function of the proposed smoother is non-convex. In princi-
ple this is a cause for worries: we can never be sure that the global minimum
was found. In practice we have seen that we always get very good results,
as judged by visual inspection. To give some insight, we presented a few
illustrations of how intermediate results converge towards the final solution.

A plot of copy numbers along a chromosome contains only one “curve"
as a noisy band with jumps. A plot of allelic imbalanceis different: at any
position from one to three bands can be present. Jumps are present too
and there the number of bands as well as their positions can change. The
smoothing algorithm for copy numbers will not work on such data. Instead
we modified the scatterplot smoother of Eilers & Goeman (2004), which is
based on smoothing rows and columns of a two-dimensional histogram by
penalized least squares. One of the penalties was changed, to accept itera-
tively recomputed weights, like in the copy number smoother. The weights
are based on summaries of the columns of the histogram, to have the same
segment boundaries in all rows. The approach is rather ad-hoc, as there is
no explicit objective function to minimize, but the results look attractive and
computation is fast, allowing interactive use.

Segmented smoothing of allelic imbalance can indicate boundaries that
are not visible in copy numbers. An example is copy number-neutral loss of
heterozygosity. It makes sense to study histograms of the (log of the) allelic
ratio for each separate segment in the plot. In addition to histograms we also
propose fitting of mixtures of normal distributions. The package mclust gives
good results.

In summary, we believe that we have extended the toolbox for explo-
ration of copy number variation and allelic imbalance with attractive new
instruments. All computation was done in R (R Development Core Team,
2012) and the programs are available from the first author on request (Rippe
et al., submitted).
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