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5Genomic waves: where they come from,
and how to eliminate them

Genomic waves are an undesirable distortion in copy number variation. It is

generally assumed that they have real physical existence. We show that this is

not true. Fluorescence signal on SNP arrays have a systematic bias, that varies

strongly from SNP to SNP, giving the appearance of noise. Smoothing removes

high frequency variations and so gives the impression of waves. The bias, and

hence the waves, can be estimated and removed by a procedure called SCALA.

5.1 Introduction

Although SNP arrays were originally developed for genotyping of (normal)
DNA, they are also a popular tool for studying copy number variations
(CNV) and allelic imbalancein tumor samples. When studying CNV a per-
sistent nuisance is the occurrence of “genomic waves", which compromise
estimation accuracy due to unclear segment breakpoints. They become vis-
ible when the raw signal, the sum of the fluorescence intensities of the two
alleles is smoothed sufficiently, as shown in Figure 5.2 for four different ar-
rays.

The existence of waves has been reported frequently in both SNP arrays
and aCGH profiles. Several remedies have been proposed. The wave phe-
nomenon was first reported in aCGH profiles by Cardoso et al. (2004) and
subsequently by Nannya et al., (2005) and Marioni et al. (2007). Cardoso et

This chapter is submitted as the article:
Rippe, R.C.A. and Eilers, P.H.C. (2012). Genomic Waves: where they come from, and how to
eliminate them, submitted for publication.
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5. Genomic waves

al. referred to waves as a spatial bias, which they thought was due to non-
constant specificity in the DNA amplification process. However, this idea
was countered when the same pattern was seen in HapMap data. Nannya et
al. introduced an algorithm that accounts for GC content (the percentage of
nitrogenous bases that are either guanine or cytosine), which was extended
in Lepretre et al. (2010). They proposed WACA (waves aCGH correction al-
gorithm) that uses both GC content and size of the DNA fragments to correct
for wave bias. However, Marioni et al. concluded after thorough evaluation
that fitting a lowess curve through the profile was an improvement over GC
correction. Also recently a procedure called NoWaves was proposed (Van de
Wiel et al., 2010) to correct for wave bias in tumor profiles without using GC
content, using ridge regression on (smoothed) normal profiles.

Genomic waves are also found in CNV profiles from SNP arrays, which
are fundamentally different from aCGH profiles, because SNP arrays pro-
vide information on the (genotypes of the) two individual alleles. Komura et
al. (2006) described genomic waves for this type of array and proposed the
Genomic Imbalance Map algorithm that reduces signal noise by accounting
for sequence characteristics of both probes and targets. The aCGH model
from Nannya et al. proved effective for SNP arrays, too. Diskin et al. (2008)
describe an algorithm that first quantifies the genomic waves in terms of GC
content and uses this quantification as a predictor in a regression model.
They also noted that, although commonly observed, genomic waves are not
well understood. Marioni et al. thought it should be seen as spatial autocor-
relation.

In reality autocorrelation does not exist, but is created by smoothing. In
this paper we show that the cause of these waves is the existence of a sys-
tematic bias, characteristic for each allele of each SNP. Without smoothing it
appears as noise but in fact it is reproducible, see Figure 5.1, which shows
highly similar noise in four different arrays. The bias can be estimated as pa-
rameters in a linear model called SCALA (Rippe, Meulman & Eilers, 2012a).
The model parameters can be estimated using an initial set of (high quality)
arrays and the corresponding genotypes. Once the parameters have been es-
timated they can be used to correct these arrays and any new array that will
become available.
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Figure 5.1: The source of the “waves" is systematic bias in the fluorescence signals.
Shown are four different arrays, with highly similar noise. Subtracting the
mean for each SNP (over arrays) for each SNP essentially eliminates the
variation. This only works for normal DNA.

This procedure is easily applicable and therefore we feel it can and should
always be applied.
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Figure 5.2: An illustration of how smoothing produces “waves", although the raw
signals are unstructured. Shown are the first 40 SNPs on chromosome
9. For a clearer display, the positions of the SNPS in the graphs are their
ranks, not their physical positions. The Whittaker smoother is used, with
two values of the parameter λ.

5.2 Methods

Data and preprocessing

We use Affymetrix 250k NSP tumor profiles from the Erasmus Medical Cen-
ter (Bralten et al., 2010) and high quality reference profiles from the same
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Affymetrix platform. Chromosomes 1 to 22 are analyzed. The non-autosomal
chromosomes X and Y are neglected due to the fact that the calibration ap-
proach in SCALA requires signals for two alleles, which is impossible to ob-
tain in the Y chromosome. We start from averages of fluorescence intensity
over probe sets; information on the individual probes is not used. We trans-
form the signals for the two alleles, a and b, to a single profile s = log2(a+ b).

The origin of the waves

A simple illustration of our claim that each SNP shows a reproducible bias
is presented in Figure 5.1. It shows s for the first 40 SNPs (as determined by
their position) of chromosome 9. Four high-quality arrays, to which normal
DNA was hybridized, were used. Each array was centered by subtracting
the mean of s (over the 40 SNPs). To make it easier to see the data for
the individual SNPs, their ranks are used for the horizontal coordinate, and
not their physical position on the chromosome. From the top panel it is
clear that the levels vary strongly from SNP to SNP, but that they are similar
within each individual SNP. If we subtract the means per SNP the lower panel
is obtained which show much smaller variation and almost no systematic
patterns.

This would be a good method to correct data from normal DNA, but copy
number variations are not much studied for normal DNA. However, one can
compute means per SNP for a set of “normal" arrays and use these values for
correcting any other array. In what follows we will present a more advanced
allele-specific correction method.

Smoothing

We use the Whittaker smoother (Whittaker, 1923; Eilers, 2003), assuming
equally spaced pseudo-positions. This is a simplification, but as we only
use the smoothing for illustration, it can do little harm. Results are shown
in Figure 5.2, for two values of the smoothing parameter λ. The Whittaker
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5. Genomic waves

smoother minimizes the penalized sum of squares

Q = ∑
i
(si − zi)

2 + λ ∑
i
(∆2zi)

2,

where z represents the smooth series and ∆ is the operator that forms second
order differences: ∆2zi = (zi − zi−1)− (zi−1 − zi−2).

As Figure 5.2 shows, smoothing leads to “waves", even though the un-
smoothed data make large jumps from SNP to SNP. Because the “waves" are
very similar for the four arrays, it is easy to mistake them for a real spatial
pattern, but actually they are an artifact.

The SCALA model

Let Y be a matrix with logarithms of fluorescence intensities for one allele.
The rows, indexed by i, represent the SNPs and the columns, indexed by j,
the arrays. The SCALA model is defined for any allele signal yij as

yij = µ + αi + β j +
3

∑
k=1

γkhijk + eij (5.1)

where µ is the grand mean, αi describes the overall level of SNP i, β j describes
the overall intensity level of array j, k is the genotype code with 1 = AA,
2 = AB, 3 = BB (we work with normal DNA) and γk is a parameter for
genotype k. The genotypes are coded in H = {hijk}. H is a 3-dimensional
indicator array; for each combination of i and j we have a 1 in layer that is
indicated by the genotype, and 0 in the other layers. To make the model
identifiable we introduce the constraints ∑i αi = 0 and ∑j β j = 0. Details on
the estimation procedure are described in Rippe et al. (2012a).

In correction by SCALA, the model is fitted for each of the two alleles
separately. After fitting, we obtain the parameter vectors α = [αi]. These
obtain corrected signals by

Yc
j = Yj/10α. (5.2)
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Correction by NoWaves , which finds regression coefficients for each SNP
i by

Y =
n

∑
i=1

βiZij + εj (5.3)

with Zj the smoothed (normal) reference profile.

The coefficients β are estimated using ridge shrinkage on the reference
profile parameters, through

β∗ = argmin

 s

∑
j=1

(
Yj −

n

∑
i=1

βiZij

)2

+ δ
n

∑
i=1

β2
i

 (5.4)

with δ the coefficient shrinkage parameter, which is determined through
leave-one-out crossvalidation and hence is sample-dependent. Signal cor-
rection is then ensured by:

Yc
j = Yj −

n

∑
i=1

β∗i Zij. (5.5)

Correction performance

To find a smooth estimate for the CNV profile we use the L2 norm smoother,
as proposed by Whittaker (1923) which minimizes

L2 =
m

∑
i=1

(si − zi)
2 + λ

m

∑
i=2

(zi − zi−1)
2, (5.6)

where the original signal s is of length m and z is the approximate smooth
series of s. The smoothness is determined by λ. Larger λ provides a smoother
series z, but has a worse fit to the data y. It is common practice to find the
optimal amount of smoothing, but here we do not aim to find an optimal
value for λ. We use the P-spline implementation by Eilers & Marx (1996).

To quantify the effect of wave removal we compute the normalized differ-
ence d = ∑i(si − zi) between the raw signal s and the smooth profile z (for
each SNP i) on a given chromosome. Formally, we write

d =
∑ |si − zi|

n
. (5.7)
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5. Genomic waves

For the smooth series z we fix λ = 100. An increase of d indicates more scatter
in the SNP signals, re-lative to the smooth estimate. For detection of constant
segments between sharp breakpoints de-dicated (and better) algorithms are
available, but here we aim for the removal of waves with gradient properties.

5.3 Empirical results

First we visually illustrate the origin of waves and then numerically compare
the models discussed above.

Wave origins

In the left panels in Figure 5.3 the uncorrected signals are shown. Each panel
contains two parts: on the left of the dashed line a healthy chromosome 1
is shown, while to the right of the dashed line a tumor chromosome 9 is
shown. We display only a small selection of observation from one profile
because different tumor patterns in different arrays would clutter the image.
The top and middle row show the profiles for allele a and b separately, the
bottom row shows the actual copy number signal s = log(a + b). The right
column illustrates SCALA correction by αi. It can be seen from Figure 5.3 that
SCALA calibration with just the SNP parameter αi is not effective for signals
from a single allele a or b, but it is for the (logarithm of the) sum. Also note
that all corrections do not remove copy number segments (as seen in the right
part of each panel).

Numerical evaluation

We first visually inspect the results for SCALA and NoWaves. The top pan-
els in Figure 5.4 show waves in an Affymetrix 250k tumor sample for two
selected chromosomes (1 and 9). It is clear that the wave patterns occur on
both healthy (1) and tumor (9) tissue. All panels in Figure 5.4 have the same
scales on both the x and y axes. First, Figure 5.4 shows that after SCALA

calibration (bottom row), the profiles hardly show any waves. The results for
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Figure 5.3: Wave patterns in real data. The horizontal axis shows the position of each
observation in the sequence. The vertical axis shows either log(y) with
y the allele signal for a or b, or log(a + b). Left column: uncalibrated
signals. Right column: signals after SCALA calibration with α. Top panels:
A allele, middle panels: B allele, bottom panels: CNV signal. Left parts of
each panel show a healthy chromosome 1; right parts show an unhealthy
chromosome 9. Smooth profiles are obtained with the Whittaker smoother
(λ = 2000).
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Figure 5.4: Profiles before (top) and after NoWaves (middle) and SCALA (bottom)
calibration.

NoWaves (middle row) are similar to equivalent. Removing the waves from
the signals clearly keeps CNV segments intact and quantifiable. In fact, the
aberrations are the only deviations from the reference level 2n (2 alleles) that
are still visible/detectable.

For the crude data, we find a benchmark d value of 0.60 (0.000-2.662) for
chromosome 1 and 0.59 (0.000 -2.922) for chromosome 9. However, applying
signal calibration based on SCALA, we find d values for both SCALA and
NoWaves of 0.293 with the first ranging (0.000-2.297) and the second (0.000-
2.328) for chromosome 1 and 0.295 (0.000-1.786) against 0.297 (0.000-1.745)
for chromosome 9. Note that any differences between the latter methods are
in the order of 10−3.

Detailed results for chromosome 1 to 22 in several samples, for four dif-
ferent levels of smoothing (λ ∈ 1, 10, 100, 1000) are provided in Appendix A.
Here too, differences between calibration methods are very small, but large
compared to uncalibrated signals.
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5.4 Discussion

We have illustrated that the cause of waves in CNV profiles based on SNP
fluorescence signals is not spatial autocorrelation. Visual and numerical com-
parisons between two signal calibration methods, NoWaves and SCALA were
made. The first method was developed specifically for single aCGH signals,
whereas the second method was developed for two allele channels. The re-
sults for the two methods show almost equal improvements. The fact that
model-based calibration is effective can be explained by the fact that SNP
variation is larger than genotype variation, given that the calibration param-
eters were computed with only 8 profiles. Therefore, the maximum amount
of genotype variation is low by definition.

It can be argued that after transformation to s = log2(a + b), the NoWaves

correction is already effective, so there is no need for a SCALA correction.
However, NoWaves aims solely at wave removal for single channel profiles,
while SCALA aims for allele-level correction, which is impossible for NoWaves.
Another major advantage of SCALA over NoWaves is that the first calibrates
signals with a set of parameters that is calculated only once and can be re-
used in later instances, while the latter method needs to recompute the pro-
jection for every analysis. The smoothed references profiles can of course
be re-used here, too. The SCALA calibration has a very simple nature, sub-
tracting a vector of parameters. Therefore, we argue that it should always
be applied, because it require hardly any time, removes waves and leaves
segmentation intact.

One of the differences between SCALA and other methods is that for bet-
ter correction, instead of GC content it exploits genotypes of the reference
samples from which the calibration parameters are obtained. This introduces
an extra step and thus an extra level of error-proneness. However, since cal-
ibration parameters are estimated using high quality reference samples and
these data the genotype calls can be made very accurately, this does not pose
a threat to the procedure.

It might also be argued that calibration is not necessary when a large
amount of smoothing is applied on the uncalibrated data, since this already
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5. Genomic waves

removes most of the waves. However, in the right panels (Figure 5.4) we
also see that within remaining CNV segments waves still distort the patterns.
This problem is absent in the calibrated signals. Furthermore, applying too
much smoothing on the raw data will in the end smooth out CNV segments.

In the current work we used a smoother based on the L2 norm, but in
Eilers & DeMenezes (2005) the L1 norm is illustrated to be more effective in
CNV detection. A further refinement to the L0 norm was proposed by Rippe
et al (2012b). The latter norms are much more suitable to detect aberrated
regions, since it does not tend to round segment breakpoints (and the L2

does, true to its quadratic nature). However, both the L1 and L0 norm do
not respect the wave curvature and hence are not effective in the specific
application described here.
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