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1Introduction

In this chapter some background to the data used in this thesis is described,

in both biological and methodological sense. First, a basic discussion on DNA

and the genetics of tumor tissue is given, followed by details on commonly used

SNP measurement technology, to close with different applications of the same

signals. Most of the descriptions are a strongly simplified version of reality, but

this is needed to understand most of the concepts and ideas described in this

thesis.

1.1 Human DNA and disease

Recently a book called "The Emperor of all Maladies: A Biography of Can-
cer" (Mukherjee, 2010) was published. Its message is clear: cancer is a large
problem. In general, increasing amounts of evidence have been gathered that
each case of cancer or tumor development is related to genetics at least to
some extent. More specifically, it has to do with genetic mutations which can
be caused by heritable susceptibility or simply by external factors (mutagens)
like chemicals or radiation. The human body consists of numerous cells and
each of them contains a full copy of our complete DNA. Therefore, there are
a lot of opportunities for problems to occur. Small scale changes (mutations)
in DNA regularly occur and are not harmful per se, since the structure of
DNA has several recovery methods for successful replication. However, if
despite the backups a cell with problematic DNA has reproduced, that DNA
is also copied. Since cell division is a continuous process in order to replace
damaged cells, genetic problems can spread quickly. Mutations occur infre-
quently, while we see the result of the mutations in the form of so-called
polymorphisms, the different DNA variants that can arise from mutations.
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1. Introduction

Figure 1.1: Nucleotides and nucleosides: molecules and bases c©Scientific Commons.

Therefore, to understand this problem better, a more detailed description of
DNA and polymorphisms is given below.

DNA was first discovered in 1869 by the Swiss biochemist J. F. Miescher.
He performed chemical tests on tissue obtained from hospital waste. How-
ever, it was not before 1909 that Ph. Levene formulated the first, but incorrect,
theory about the chemical structure of DNA. He suggested that it was a large
structure of 4 building blocks, the nucleotides. The actual and correct struc-
ture was published in 1953 by Watson & Crick in Nature, to be followed
later by a paper on DNA replication, by the same authors. They based their
publications on X-ray diffraction data (1952) from Rosalind Franklin and col-
leagues. Their combined efforts taught us some valuable lessons.

Healthy (human) DNA is contained in pairs of chromosomes which are
two (long) chains of nucleotides which are referred to using an “alphabet" of
four letters, representing molecules (nucleotides) with the bases (nucleosides)
adenine, cytosine, guanine and thymine. We distinguish purines and pyri-
midines, to which sugar and phosphate groups are attached and together
make up the whole nucleotide. See Figure 1.1 for an illustration. A nucleotide
with a purine base pairs to one with a pyrimidine base. Human DNA holds
about 3 billion of these pairs. Without going into more detail, the chemical
and physical properties of all these bonds cause the polymer to coil up into a

2



1.1. Human DNA and disease

Figure 1.2: DNA: a double helix structure.
Image c©retrieved from https://www.llnl.gov/str/June03/Stubbs.html.

so-called double helix structure, which makes storage of genetic information
very compact and safe. This widely known property is described for example
in Brown (1999) and Griffiths et al. (2002), and is depicted in Figure 1.2.
We can define any (nucleotide) position on a chromosome by counting the
number of nucleotides from a unique end.

Genes are specific sets of nucleotides, which can have very different pur-
poses. Some genes code for expression of certain physical features, like eye
color, hip width or shape of the nose. Others are involved in regulating the
expression of genetic information or serve to simply hold protein structures
together. For organisms other than human the same principles hold, but
with a few differences. For example, in non-human species the number of
chromosome pairs is different from that in humans. Furthermore, where hu-
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1. Introduction

man DNA holds two chromosome copies - two homologues, called diploid -
different numbers of homologues or ploidy also occurs. For example, DNA
from some potato species has sets of four homologues - tetraploid - and the
Drosophila melanogaster (a type of fruit fly) has 4 pairs of chromosomes
(hence is diploid), in which about 75% of (known) human disease genes can
be matched to the fruit fly genome (Reiter et al., 2001). Therefore the latter is
often used as a genetic model for human disease(s) and to study biological
processes such as aging.

The remainder of this introduction and thesis is however restricted to
diploid human DNA and a very specific problem therein: nucleotide poly-
morphisms.

A nucleotide on one of the two chromosome is referred to as an allele
(not to be mistaken for a gene allele, which is a large set of nucleotide base
pairs). At most positions on our chromosomes we will always find the same
nucleotide on both chromosomes. But there are millions of places (about 1 in
every 1000 nucleotides) where we see different allele variations (polymorphic
occurence) due to a mutation on one of the chromosomes. If the allele for
one chromosome is called A and B for the other chromosome and if the
chromosomes are indeed identical, then only pairs AA or BB would occur.
Small changes can also be AB or BA, which cannot be distinguished. When
for a SNP one particular pair of alleles in one person is different from the
population, it is called a mutation. If this mutation occurs in more than 1%
of the population it is called a variation. These variations are known to occur
on specific chromosomal locations, which means that only a small selection
of the whole genome sequence (all base pairs in a row), is of interest. They
are called Single Nucleotide Polymorphisms (SNPs, pronounced as “snips")
and they are being studied extensively in biology and medicine (Adorjan et
al., 2002; Altshuler et al., 2005).

These mutations can have (possibly strong) implications, for example
breast cancer (Chin et al., 2007). Two general classes of mutations in hu-
man DNA are changes in allele copy number (CNV) and imbalance in the
allelic ratio. Further mutational distinctions can be made between dupli-
cations, inversions and deletions (Conrad et al., 2006). Duplication means
that more than two allele copies were found, where two were expected. In
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1.2. SNP chips and recent developments in DNA measurement

contrast to duplication, deletions of specific sections of chromosomes chro-
mosomal sections can occur, in two ways. In the first, a section is lost in one
of the cell reproduction stages. An inversion occurs when a broken chromo-
some is repaired, but (some of) the parts are reversed before actual repair.
Translocations involve ’reordering’ of chromosomal sections.

1.2 SNP chips and recent developments in DNA
measurement

As described before, each nucleotide with base A, C, G or T on one chro-
mosome is complementary to another. This complementarity is used in a
process called hybridization, in which a sequence-specific oligonucleotide
(a sequence of 50 bases or less) binds to the DNA strand under treatment.
The DNA strand contains the SNP of interest. The SNP measurements are
obtained from a photo(n) sensor that captures photons with a given wave-
length from one channel, that are emitted after the hybrid DNA is targeted
by a laser. By laser illumination the molecules change energetic state and
when they fall back to their original state, they emit energy. The result from
the photo sensor is a high-resolution image, which is analyzed and translated
to numeric values. These numbers are then used in downstream analyses. In
the end we have, for one sample, a fluorescence value for each allele in each
SNP. Below, two major platforms are discussed, but more exist.

The first major manufacturer is Affymetrix Affmetrix, 2006), known for its
trademark ’GeneChip’ products. In these single-channel fluorescence chips
four probes with oligonucleotides are used (Figure 1.3), to reduce the influ-
ence of possible miss-matches. The first and second probe interrogate one
direction for the A and B target allele, while the third and fourth interrogate
the opposite direction of the the same alleles. Through the years different
enzymes were used to split the DNA prior to hybridizing in a particular
direction. Measurements are performed on solid surfaces, usually glass or
silicon.

The second manufacturer, started in 2001, is Illumina (Fan et al., 2006).
One implementation that got Illumina to the front of SNP research was the
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1. Introduction

Figure 1.3: An Affymetrix SNP chip. c©Affymetrix.

Figure 1.4: An Illumina 8x12 cell well-plate. c©Illumina.

so-called bead array (top device in Figure 1.4, known as the ’GoldenGate
Genotyping’ technology. One of the trademarks was the use of two-color
fluorescence signals (two-photon excitation fluorometry) using bead arrays,
which are also used in methylation applications (Bibikova et al., 2006). Com-
mon dyes are Cy3 (with a fluorescence emission of 570nm; green light) and
Cy5 (670nm: red light). The main plate consisted of 96 (8 by 12) wells for
the same number of bead arrays, where in each of the wells a different tis-
sue sample or blood sample was analyzed for about 1600 SNPs. These SNPs
were probed on individual beads instead of a solid surface. Later, the SNP
resolution increased to 550.000 in more recent technologies like ’Infinium’.
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1.3. Applications of SNP fluorescence signals

Initial SNP technology for human DNA could target about 1600 SNPs in
the whole genome set. In subsequent years the number of targeted SNPs,
the SNP resolution, gradually increased through 50.000, 100.000, 500.000 to
currently up to 1.200.000 SNPs (full resolution probing) in the most recent
platforms.

Apart from the two platforms discussed above, a number of other plat-
forms exist, e.g. Sequenom, Perlegen, Mip, FP-TDI and InVader. However, due
to their absence in this thesis, their technical properties are not discussed in
further detail.

The latest trend away from SNPs, although not addressed specifically in
the following chapters, does not probe at a high number of SNP positions
but simply analyzes the whole genomic sequence, including all allele pairs in
between currently probed SNP positions. This technique is, unsurprisingly,
called ’whole genome sequencing’. Accompanying challenges for this new
technique come in terms of data storage (several TBs per individual) and
model efficiency (think of memory capacity and computation times).

1.3 Applications of SNP fluorescence signals

The bottom line for the remainder of this thesis, deriving from the above
descriptions, is that, per SNP, we have two fluorescence signals that are pro-
portional to the amount of the respective A and B alleles.

One major application of these DNA measurements is to determine which
specific combination of alleles is found at individual SNP positions. Assume
two channels a and b for the two different alleles, one can measure the double
signal for allele A (AA), indicated by double fluorescence strength in channel
a and low in b, the double strength signal for B (BB, strong channel b and
low a) or equivalent signal strength for each allele (AB, channel a and b in
equal proportions) This process is generally referred to as genotyping or geno-
type calling. Finding an AA or BB genotype is called homozygous; the alleles
are the same for both chromosomes. The AB genotype is called heterozy-
gous. Genotyping of normal (non-tumor) DNA is common practice in e.g.
epidemiology (e.g. Huebner et al., 2007).
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1. Introduction

It comes as no surprise that the genotyping problem was addressed be-
fore. For example, companies that manufacture chemical platforms to mea-
sure DNA composition (described in section 1.2 in more detail) generally pro-
vide their own software to determine genotypes. Third party solutions also
exist, like CRLMM (Carvalho et al., 2007) and BirdSeed (Korn et al., 2008).
Of course many other methods exist. All of these methods rely one way or
another on combined information of multiple reference arrays. Large-scale
efforts have been made to catalog known SNP positions for different sets of
publicly available arrays, in order to create a ’gold standard’ database with
genotypes: HapMap (The International HapMap Consortium, 2003; 2007).
On the other end, there is also a database that contains annotations for each
of these SNPs: BioMart (www.biomart.org).

A second application is to determine deviations from the common com-
position of two alleles in healthy tissue (e.g. Lips et al., 2005). For example,
due to a variety of causes, one (or both) of the alleles may be lost and re-
placed by either ’empty’ DNA, a so-called null-allele, or copied back from
the remaining allele. Alternatively, erroneous extra alleles copies may have
been created during cell division. Checking for changes in the number of
alleles in both chromosome is generally referred to as Copy Number assess-
ment. For example, each chromosome has the same deviation from normal
tissue. A more general case is allelic imbalance, where the number of alleles
is no longer the same for the two chromosomes. The special case of loss of
one allele (out of two) and replacement by the remaining one, hence losing
the possibility of finding a heterozygous genotype, is called allelic imbalance
(as discussed in McCarroll et al., 2006). From section 1.1 it is immediately
clear what the consequences of these problems can be. From this point of
view it is a challenge to accurately estimate breakpoints between chromoso-
mal regions with different numbers of alleles. A related challenge is that of
finding how many allele copies are found in a specific region. A lot of me-
thods have devised for this specific purpose, like FLasso, CGHseg, DNACopy,
VEGA and cumSeg. Several extensive comparisons have been made between
subsets of these methods (Lai et al., (2005); Winchester et al., (2009); Tsuang et
al., (2010); Muggeo et al., (2011) and Morganella et al. (2010)), all concluding
that there is not one procedure that serves all purposes. They collectively

8



1.4. Data format and signal properties

suggest to use multiple methods in conjunction.

For all purposes of SNP signals described above, specialized models exist.
One property found in almost all algorithms, is that decisions are made by
relating allele intensities between multiple arrays, one SNP at the time (e.g.
genotype calls) or by using a set of healthy tissue reference arrays (e.g. CNV
profiling). In contrast to this ’school of thinking’, the methods described in
this thesis use a single array for signal calibration, genotype calling or CNV
profiling. This approach can be very useful in situations where new chips
have to be designed and a large pool of testing and/or reference material is
not available. An example can be found in ALCHEMY by Wright et al. (2010).

1.4 Data format and signal properties

If measurements are performed for an individual, they are performed using a
chip or array. Therefore, from here on we use the term “array” for a biological
sample, instead of the common use as a multidimensional matrix.

A typical collection of arrays can be seen as a data box, containing only
ones and zeros, with three modes: SNPs, arrays and genotypes. Each allele
is associated with only one genotype, and hence has a value of 1 in only one
of the three genotype layers. This implies that 2/3 of the data box depicted
in Figure 1.5 contains no information, or in more statistical terms, is missing.
The missingness is a result of this way of structuring the data. Aggregation
of the three incomplete genotype layers results in a full matrix with mea-
surements for the alleles on all arrays, without genotype information. This
suggests to develop a multi-way model (Kroonenberg, 2008; Smilde et al.,
2004) that can cope with large and structural amounts of missing observa-
tions. For practical reasons we will not. However, the three-dimensional
structure can be used to see and evaluate other interesting properties.

If the technology we described worked perfectly, our story would end
here. In practice we observe a number of interesting and relevant patterns in
normal DNA:

9



1. Introduction

Figure 1.5: SNP data with three modes: SNPs in the rows, samples in the columns
and genotypes in the layers.

1. The strength of the fluorescence signals varies systematically between
SNPs. If a SNP signal is strong, it is strong in all arrays. A weak SNP
signal is weak in all arrays.

2. The strength of the signals varies between biological samples (which is
unavoidable; it is caused by differences in the quality of the biological
material and the efficiency of DNA extraction) and hybridization.

3. Systematic deviations from the theoretical genotype factors 1 and 2 oc-
cur (1 or 2 times the allele).

4. Noise and background signals are present.

The effects described under 1 and 2 are depicted in Figure 1.6. After
sorting it is clear that SNPs that have weaker fluorescence signal compared
to other SNPs, also are relatively weaker in all arrays. There is a similar effect
for arrays, but it is less strong.

1.5 Contributions in this thesis

As valuable as fundamental research is, it is useless without the proper field
of application. By coincidence, a prospective user (group) in the Erasmus

10
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Figure 1.6: Selection of raw SNPs and arrays, based on a small two-color Illumina set.
Left: signals unsorted. Right: both signals sorted for rows and columns of
A allele intensities.

Medical Center became involved in the development of a tailor-made statis-
tical solution. A short discussion evolved into a more extensive project, from
which all parties learned a lot. Detailed communications resulted in more
questions as well as theoretical and procedural suggestions.

This thesis introduces a number of new statistical models and algorithms:

• The SCALA model that contains parameters for estimating the system-
atic effects of SNPs, arrays and genotypes. This model is applied to
both alleles.

• The model leads to an extremely large linear regression problem with
millions of observations and possibly a million parameters or more.
However, it has an extremely sparse structure. A specialized semi-
symbolic algorithm allows exact estimation in very short time.

• Once the parameters of the model have been estimated, they are used to
eliminate the systematic effects, thereby greatly enhancing the quality
of the fluorescence signals. This is called calibration. Further analysis,
like genotyping, or copy number estimation is improved.

• It is common practice to perform genotyping SNP by SNP, using rela-
tively large sets of arrays. In this monograph we break with this tra-
dition and perform genotyping for all SNPs on individual arrays. A

11



1. Introduction

semi-parametric mixture model is fitted, with three component den-
sities, one for each of the AA, AB and BB genotypes. Comparison to
results of established SNP by SNP algorithms, as found on the HapMap
archive shows equal or better performance.

• An interesting part of the SNP practice are so-called waves. When fluo-
rescence signals representing copy numbers are plotted along chromo-
somes and smoothed, a systematic wavelike pattern becomes visible.
A common misunderstanding is that this is a manifestation of a real,
slowly changing, wavelike spatial structure. It is shown that the latter
is not the case: after calibration the waves disappear.

• Copy number variation (CNV) generally occurs in a segment-wise man-
ner. There is a large literature on smoothing and segmentation of CNV
signals, in order to obtain the boundaries of the segments and their lev-
els. A new smoothing algorithm is presented that uses a so-called L0

penalty on jumps between smoothed values. The result is an extremely
sharp segmentation, with extremely smooth segments in between: the
segments are constant.

• It is not possible to apply the same smoother to allelic imbalancesignals,
because several parallel data bands occur. An existing scatterplot
smoother was modified to get sharp segmentation here too.

• The basis of the genotyping method proposed in this monograph is a
display of the ratio of the A and B signals versus their sum (on logarith-
mic scales). Low signals on the sum scale as well as unclear separation
between the three genotype groups on the ratio scale indicate low(er)
chip quality. The proposed approach to individual arrays is very use-
ful to exploit this knowledge to select only the SNP observations of the
highest quality, by a user-defined threshold.

• All models and algorithms are written in R, and combined in a software
suite, called SCALA. SCALA also provides both command-line functions
(for estimation and calibration, as well as genotpying) and a graphical
user interface for interactive (simultaneous) smoothing and plotting of

12



1.6. Thesis outline

CNV and allelic imbalance. It can convert DNA array files from differ-
ent platforms. By user request evaluative and interactive graphs can be
created, as well as customized numerical output.

1.6 Thesis outline

After this introduction follow six additional chapters. Chapter 2 to 7 have
been written as individual papers, and chapter 8 is a discussion chapter. The
software is extensively described in a special section that contains two more
individual papers. These address the implementation of most of the concepts
and models from chapters 2 to 6.

Chapter 2 describes the linear SCALA models that estimate the calibration
parameters. We exploit the structural properties of SNP-specific intensities
over arrays in a model that models an overall genotype parameter (over all
SNPs in the whole set of arrays) for the three genotypes as well as a model
that estimates a set of three genotype parameters for each SNP. Signal cali-
brations using both types of model are derived and illustrated.

Chapter 3 frames genotyping using a single array against common pro-
cedures that call genotypes using a single SNP from multiple arrays. A semi
-parametric model is derived that fits three log-concave densities on a two-
dimensional histogram.

Chapter 4 discusses the possibilities of removing SNP signals of low qual-
ity. Performance for genotyping is assessed in terms of sample call-rate, while
performance for CNV calling is illustrated visually, rather than numerically.
The proposed low signal filter show improvements for both applications.

Chapter 5 shows that so-called in a copy number signal can be removed
effectively using the signal calibration from chapter 2. SNP signals are trans-
formed into aCGH-resembling signals, so that performance by SCALA can
be compared with a specialized method for aCGH signals, NoWaves.

Chapter 6 discusses a single-array L0 penalty signal smoother, ZEN, for
CNV signals. Existing methods either need a set of reference arrays, or in
single array models, small (random) fluctuations in the signal are modelled,

13



1. Introduction

while ideally only significant signal jumps should be modelled. Performance
of the L0 norm is compared to a multi-array method, VEGA and applications
in CNV estimation, estimations of allelic imbalance and scatterplot smooth-
ing are shown.

Chapter 7 showcases the SCALA software suite that was developed based
on the ideas and concepts in Chapter 2 to 6. It provides a short theoretical in-
troduction on the implemented models and functions, then discusses details
and options for each function, and concludes with an extensive example.

Chapter 8 consists of three parts. It provides a short summary, an overall
discussion and suggestions for future research.
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2Correction of Fluorescence Bias on
Affymetrix Genotyping Microarrays

Fluorescence signals obtained from microarrays for SNP genotyping show sys-

tematic strong variations in the levels for SNPs and arrays as well as genotypes.

Linear models that take all three effects into account fit very well. Once the

model parameters have been estimated for a set of reference arrays, they can be

used to calibrate new arrays in a simple way, thereby improving genotyping and

analysis of copy number variations and allelic imbalance.

2.1 Introduction

Probably the largest scale application of fluorescence these days is the use
of microarrays for gene expression, or for genotyping of single nucleotide
polymorphisms (SNPs, pronounced as “snip"). A modern SNP microarray
contains millions of spots or small beads, called probes, that are covered
with small strings of the four nucleotides A, C, G and T that are the building
blocks of DNA. Each string is constructed to be the complement (A to T, C to
G, and vice versa) of the specific sections of the (human) genome on which
SNPs occur.

In a preliminary step, DNA is fragmented by a specific enzyme. The frag-
ments selectively bind (hybridize) to the complementary probes. The amount
that hybridizes is, within certain limits, proportional to the concentration of
the DNA segments. By preparation with biotin before hybridization, and by

This chapter was published as the article:
Rippe, R.C.A., Eilers, P.H.C. and Meulman, J.J. (2012). Correction of Fluorescence
Bias on Affymetrix Genotyping Microarrays, Journal of Chemometrics, 26: 191–196. doi:
10.1002/cem.2436.
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2. Fluorescence Bias

attaching a fluorophore after, it becomes possible to quantify concentrations
by measuring fluorescence intensities. A high-resolution image is formed by
scanning the surface of the array with a laser, and the intensities at the probe
spots are quantified.

SNPs generally have two variants, called alleles, and the probes are selec-
tive to each of the alleles. If we indicate alleles of one SNP by A and B, there
will also be two fluorescence signals for each SNP, which we indicate by a
and b. The DNA of humans (which we consider here), but also that of many
other organisms, is contained in two chromosomes. There are three possi-
ble combinations of alleles, AA, AB and BB. It is not possible to discern BA
from AB, so there is no fourth combination. These combinations are called
genotypes.

SNP arrays have two main applications: 1) genotyping of normal DNA,
and 2) detection of aberrations, so-called copy number variations (CNV), in
tumor DNA. In the first case the result is either AA, AB or BB. Copy number
variations allow, in principle, a combination of any number (from zero to five
or more) of As and Bs. Usually, if these aberrations occur, they occur in many
adjacent positions on the chromosome: whole regions show aberrations in
copy number. Franke et al. (2008) describe CNV and its origin in more
detail.

We expect the signal a to be proportional to the concentration of the A
allele, so only two levels, say a = a′ (genotype AB) and a = 2a′ (genotype
AA) should occur (and a very small background signal in case of genotype
BB). For the b signal we similarly expect b = b′ (genotype AB) and b = 2b′

(genotype BB). Under ideal circumstances, a′ and b′ should be the same for
all SNPs. While working with the fluorescence signals of several types of
SNP arrays, we discovered that this is not the case; a strong SNP-dependent
bias exists. However, the size of this bias, which is characteristic for each
SNP, can be estimated reliably, with a linear regression model, applied to
a training set of microarrays. Once the parameters of the model have been
estimated, they can be used to correct the bias in new arrays, a procedure we
call calibration.

We present two models, one which leads to parameters that can be used
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2.2. Methods

to calibrate a new array without knowledge of the SNP genotypes of a new
biological sample. An extended model uses this information and allows for
somewhat better calibration. However, it can only be used when genotypes
are available, which limits its usefulness to special situations, for instance as
a building block that iteratively combines calibration with genotype estima-
tion.

The main purpose of this paper is to introduce the model, to show the
effect of the calibration procedure, and to illustrate its potential for more pre-
cise copy number estimation. Because the regression model is huge (a million
parameters or more, derived from approximately 50 million data points), we
pay extra attention to efficient calculation.

The organization of the paper is as follows. In the next section we intro-
duce our models, estimation algorithms, model fit and the resulting calibra-
tion. We close the paper with a Discussion.

2.2 Methods

Data

We use Affymetrix microarrays. The source of our data is the HapMap
(www.hapmap.org) archive (The International HapMap Consortium, 2003,
2007). It provides three types of Affymetrix data files, which are mainly dis-
tinguished by the number of SNPs they measure. The oldest platform is the
100k chip, which measures 50.000 SNPs in two different sub-chips: one using
the Hind enzyme to cut the DNA into fragments, the other using the Xba
enzyme. A newer generation is the 500k chip, which measures 2 x 250.000
SNPs using the NSP or STY enzyme respectively. The final and most recent
chip is called SNP6.0, which measures 1.000.000 SNPs in one sample.

We only describe results for the SNP6.0 array, because this is the most
recent one. We also analyzed other types of arrays (100k Hind and Xba, 500k
NSP and STY) and the results were essentially the same.
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2. Fluorescence Bias

Procedures

The image that is obtained by laser scanning is summarized by averaging the
fluorescence intensity over all pixels that belong to one probe. The numbers
are collected in a so-called CEL file. Although, to simplify the presentation,
we described the technology as if there is one probe per SNP allele, in reality
there are four on SNP 6.0 arrays. We simply average the intensities of the
four probes to get one number for each of the two alleles of each SNP. This
gives us two vectors, each of length p.

2.3 Models and estimation

In this section we describe the data in more detail. We first explain prior
transformation of the raw data. Then we develop two models. One we call
“global" because it summarizes the effect of the genotype by just three pa-
rameters (per allele) for all SNPs. The second model is called “local" because
it has three parameters (per allele) for each SNP. We have to fit the models
to very large data matrices (a million SNPs and 90 arrays). We present an
efficient semi-symbolic algorithm.

Two linear models

We denote the number of SNPs by p and the number of arrays (each based
on one biological sample) by n. The raw fluorescence measurements are
contained in two p× n matrices A = [aij] and B = [bij], one for each allele. A
careful study of images of these matrices shows three things:

• Some rows are systematically brighter than others, so each SNP appears
to have its own level of brightness.

• Some columns are brighter than others; this is related to the quality of
the DNA and its handling in the laboratory. Thus, each array has its
own level of brightness.

• Brightness is modulated by the number of alleles (0, 1 or 2).
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2.3. Models and estimation

As a first approximation, it is reasonable to assume multiplicative effects of
SNP level, array level and number of alleles. Hence a linear model for the
logarithms of the fluorescence intensity is expected to work well.

Let tij = log(aij), where the logarithms are to base 10. Let the genotypes
be coded in the 3-way indicator matrix H = [hijk], where k ∈ {1, 2, 3} codes
for the genotype; hijk = 1 if SNP i on array j has genotype k, otherwise
hijk = 0. The model is written as

tij = µ + αi + β j +
3

∑
k=1

γkhijk + eij, (2.1)

where µ is the grand mean, αi the effect of SNP i, β j the effect of array j, and
γk the effect of genotype k. For identifiability, we introduce the constraints
∑i αi = 0 and ∑j β j = 0. The error e = [eij] is assumed to have constant
variance. This is a simplifying assumption, but it cannot do much harm. We
are only interested in point estimates of the model parameters, not in their
standard errors.

We call the model in (2.1) the global model, since it has one set of geno-
type parameters (γ) for all SNPs. A refinement is to have separate genotype
parameters for each SNP: Γ = [γik]. We call this the local model, which is
specified as

tij = µ + β j +
3

∑
k=1

γikhijk + eij, (2.2)

where we again require that ∑j β j = 0.

Identical models are used for the B allele, with tij = log(bij). As said, we
are interested in standard errors per se. Nevertheless, it is good to have a
rough estimate. If the estimated α is unreliable, using it for bias correction
might introduce additional variance, with detrimental effects. Let us assume
that we use 90 arrays, obtained from the HapMap site (www.hapmap.org) to
calibrate the model. With many thousands of SNPs, the degrees of freedom
consumed by estimating β and γ are negligible, so α̂ for an individual SNP
is roughly determined by averaging over 90 arrays. Its variance will thus
be approximately 1/90th of the variance of the noise on an individual array.
Hence we conclude that we do not have to worry about introducing extra
variance.
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2. Fluorescence Bias

Parameter estimation

The arrays we are analyzing here cover up to a million SNPs each. To get
parameter estimates, we apply the model to an available set of 90 arrays.
Hence we have millions of data points and a huge number of parameters:
approximately one million for the global model and triple that number for
the local model. Our models can be written as regression models, but ex-
plicit construction of the design matrix and invoking a regression procedure
is not a good idea: the design matrix would have many billions of elements.
However, it is very sparse, so a better solution would be to use sparse matrix
software. We have not tried this approach, so we cannot report on its effec-
tiveness. Instead, we have explored block relaxation and symbolic solutions
of the regression equations.

In both models (2.1) and (2.2) it is easy to compute one set of parameters if
the rest is available. One simply has to average residuals, over SNPs, arrays or
genotypes, dependent on the type of parameters. Departing from reasonable
starting values (averages over SNPs for α = [αi]

p
i=1, averages over arrays for

β = [β j]
n
j=1), one iteratively updates each set of parameters. In the numerical

analysis literature this is known as block relaxation.

Alternatively one can build and solve the normal equations symbolically.
We illustrate this for the local model (2.2). With appropriate C and D, we can
write

t = Cβ + Dγ + e (2.3)

where β contains the n β j parameters in (2.2) and γ = vec(Γ), i.e. the columns
of Γ = [γik] stacked below each other, and t = vec(T). The structure of C
is simple, it can be written as C = In ⊗ 1p, where In is the n × n identity
matrix and 1p is a vector of ones, of length p. The structure of D is more
complex; it consists of n blocks of diagonal matrices. Each block has three
diagonal matrices Djk, one for each layer of H, and each matrix Djk contains
the elements of the jth vector in the kth layer of the 3-way matrix H on its
diagonal. Thus, D has dimensions (n× p)× 3p.
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2.3. Models and estimation

We don’t form C and D explicitly. Instead we study the normal equations[
C′C C′D
D′C D′D

] [
β̂

γ̂

]
=

[
C′t
D′t

]
, (2.4)

or [
V11 V12

V21 V22

] [
β̂

γ̂

]
=

[
f1

f2

]
, (2.5)

where V11 = C′C, V12 = C′D, V21 = D′C, V22 = D′D, f 1 = C′t and
f 2 = C′t. One can prove that C′C = pIn, D′ = H̃ and D′D = F, where H̃
is a matrix formed by placing the three layers of H below each other. F is a
3p by 3p diagonal matrix; its first (second, third) p diagonal elements gives,
for each SNP, the number of times genotype 1 (2, 3) occurs. Furthermore, C′t
contains the sums of the columns of T , while D′t is a stack of three vectors;
the first (second, third) vectors contain the sum, per SNP of the elements of t
corresponding to genotype 1 (2, 3).

From (2.5) follows:
γ̂ = V−1

22 (d2 − V21β̂) (2.6)

and hence
(V11 − V12V−1

22 V21)β̂ = d1 − V12V−1
22 d2. (2.7)

Because V22 is a diagonal matrix, multiplication by V−1
22 boils down to

dividing the elements of a vector or the rows of a matrix by the corresponding
diagonal elements of V22. Hence, it is not hard to compute V11 −V11V−1

12 V21

and to solve for β̂, a vector of moderate length. Additional efficiency can be
realized by exploiting the way V21 is formed. Details on the latter suggestion
are considered outside the scope of the current paper.

In this analysis we have ignored the fact that the system in (2.5) is singular,
because the condition ∑j β j = 0 is not applied. One way to handle this
restriction is to introduce a Lagrange multiplier, λ and extend the objective
function of the model (the sum of squares of differences between observed
and fitted values) with λ ∑j β j. The system of equations (2.8) becomes C′C C′D e

D′C D′D 0
e′ 0 0


 β̂

γ̂

λ

 =

 C′t
D′t
0

 , (2.8)
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2. Fluorescence Bias

where e is a vector of ones and 0 a matrix of zeros.

An somewhat easier solution is to demand the minimum-norm solution
for β, by replacing C′C in (2.5) by C′C + κI with κ a small number. This is
the approach we have chosen, using κ = 10−6.

2.4 Results

In this section we describe model fit and effect of possible model-based cali-
bration using parameters from the two models described above. All compu-
tations were done with R scripts (R Development Core Team, 2012).

Model fit

In our experience the speed of convergence is quite good: from 10 to 30
iterations generally suffice to find changes in the updates in the order of
10−6 (relative size). The constraints on α and β are applied in each iteration.

Running the implementation of the aforementioned symbolic model on
an Intel Core2 Duo 1.4 GHz processor takes about 50 seconds for 90 Affymetrix
100k Hind arrays (105 SNPs). A larger dataset (63 arrays with 106 SNPs from
SNP6) takes 220 seconds.

A typical model fit is shown in Figure 2.1. The standard deviations of
the residuals are approximately 0.063 for the global model and 0.051 for the
local model. These results are for a set of Affymetrix SNP6.0 arrays. Similar
results were obtained for the Affymetrix 100k and 500k arrays. To reduce
visual clutter by too many data points in the scatterplots, results for only one
chromosome are shown.

The random variation around the fitted line is larger for the BB genotype
than for others. The graphs show the fit to the logarithm of the fluorescence
signal for the A allele, which is small if the the genotype is BB, as can be
seen from the positions of the centers of the clouds of observations. It is
well known that constant addtive noise errors appear as increasing relative
to low signal values. From the graphs we can deduct that the assumption of
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Figure 2.1: Results for a selected SNP6.0 array on chromosome 1. Model fit for one
allele (A). Top panels show the fitted versus original signals in the global
model. Bottom panels show the results for the local model. For allele B,
the results are similar.

constant variance of the errors is a simplification, but not an extreme one. We
will return to more advanced error models in the Discussion.

Model-based calibration

From the model we obtain, for each color, either a vector α̂ (global model) or a
matrix Γ̂ (local model). We can use them to calibrate the signals of new arrays.
Assume that we add one or more columns to our data matrix, representing
new SNP arrays, which have not been used for model fitting. Let l indicate
one of these columns. For the global model, we compute t∗il = til − α̂i, to
correct for the SNP effects. If we wish to correct for the array effect, we can
compute β̂l such that ∑i(t∗il − β̂l − µ̂) = 0. In our applications we do not need
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2. Fluorescence Bias

No calibration

s = log(a+b)
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Figure 2.2: Top row: histograms of log(a + b). middle row: scatterplots of log(b)
against log(a). Bottom row: log(a + b) against chromosomal positions.
Standard deviations for raw signal (left), signal after genotype-free calibra-
tion (middle) and genotype-based calibration (right). Genotype-free cali-
bration reduces noise considerably, genotype-based calibration provides a
small further improvement.
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2.4. Results

this calibration, because we study single arrays, but this might not be true in
other applications.

When we do not use the genotypes of the new array, we call this genotype-
free calibration. If the genotypes are available we can use the results of
the local model, by computing t∗il = til − ∑k hilkγik. We call this genotype-
based calibration. To calibrate for the array effect, one computes β̂l such that
∑i(t∗il − β̂l −∑k hilkγ̂ikµ̂) = 0.

In Figure 2.2 we show how calibration improves the bandwidth (standard
deviation) of the SNP signal. Histograms of log(a + b) show reduced stan-
dard deviations, the middle scatterplots show more condensed (genotype)
clusters, and the bottom scatterplots now show log(a + b) against the posi-
tion on the chromosome. The improvement from uncalibrated to genotype-
free calibrated signal is major, while genotype-based calibration provides a
smaller additional improvement.

Genotype-free calibration is less precise, but it can be used for new sam-
ples, for which genotypes generally are not available. We propose that the
model parameters are estimated once for a set of high-quality DNA samples.
The parameters so obtained can be used to calibrate all future arrays.

Genotype-based calibration is less generally useful, but we can envisage a
multi-step procedure in the context of genotyping. The first step for any new
array is to perform genotype-free calibration. The next step is to determine
genotypes using the calibrated signals. Given these genotypes, genotype-
based calibration can be performed, followed by a second round of geno-
typing. Of course, there is the danger of a self-fulfilling prophecy, so only
careful testing can show the performance of this recipe. We consider the
latter outside the scope of the current paper.

In the next section we show how genotype-free calibration might improve
detection of CNV and allelic imbalance along chromosomes.
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2. Fluorescence Bias
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Figure 2.3: CNV plot for chromosome 9, based on an Affymetrix 500k NSP array. Top
panels: normal tissue; bottom panels: brain tumor. The dots show the
(calibrated) signal s.

2.5 Application: CNV and imbalance maps

An application of SNP signals in tumors is to graph signal levels against their
position on the chromosome. Most interesting are copy numbers (the sum
of the a and b signals) and allelic imbalance(their ratio). We show possible
improvements using genotype-free calibration with our model.

Figure 2.3 shows CNV data for chromosome 9, for normal tissue and for a
brain tumor, obtained from the Rotterdam Erasmus Medical Center (Bralten
et al., 2010). Figure 2.4 shows allelic imbalance, log(b/a), before and after
calibration. The improvement is evident.

The correction is more effective when the overall signal is strong, because
then the systematic SNP effects are strong. In low-quality arrays noise is more
dominant, and we cannot correct that with calibration. This can be seen in
the figures 2.3 and 2.4. The sample from Affymetrix is of better quality than
the tumor sample.
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Figure 2.4: Data on chromosome 9. Illustration of improvement in signals for allelic
imbalance after calibration (right panels). In the top panels, we see three
bands (one for each genotype) in a control sample, whereas in the bottom
panels we see just two bands in the left side signal (P-arm). Deviations to
the three-band signal indicate problematic DNA.

2.6 Conclusions and Discussion

We have described two models for systematic effects of SNPs, arrays and
genotypes in fluorescence signals on microarrays. The first model contains
overall genotype effects and the second contains SNP-specific genotype ef-
fects. The parameter estimates following from these models were used to
calibrate the raw fluorescence signals. Calibration removes apparent noise in
signal maps.

The calibration we propose is simple, fast, and effective. Once parameters
for the global model have been estimated, based on a set of high-quality
reference arrays, calibration entails only the correction of probe summaries
by a single number, per allele of each SNP. This has to be done only once,
whether one in interested in genotypes, copy number variations, or both.
Each array can be calibrated in isolation, in less than a second.
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2. Fluorescence Bias

The idea to model systematic effects and using these to calibrate signals,
for improved downstream processing, is not new, see RLMM (Rabbee and
Speed, 2006), BRLMM (Affymetrix, 2006) and CRLMM (Carvalho et al., 2007,
2010). These procedures were developed for genotyping and they have in
common that they demand a relatively large set of arrays to work reliably
and only correct signals for that set. A similar procedure has been developed
for CNV (Bengtsson et al., 2008).

We developed our calibration model for, and applied it to, Affymetrix
microarrays. It will be interesting to see how it will perform for Illumina
arrays. This will be not too hard, because only summary data (per allele, per
SNP) are needed.

One of the assumptions of the model is a constant error variance. As
Figure 2.1 shows, this is only approximately true: the variance appears to
increase for weaker fluorescence signals. This quite common when taking
logarithms. A more advanced approach would be to model the relationship
between expected value of the model fit and the variance and the error, like
in the error model of Rocke and Durbin (2003). Although this would im-
prove the model, we expect little change in the estimated model parameters
if estimation is based on a relatively large number of arrays (like the 90 we
use here).

Our approach is completely pragmatic: we postulate a model, estimate its
parameters, observe a good fit and use the results for calibration. But there
should be a fundamental explanation of the very stable systematic patterns
we observe. Further research is needed for better understanding.

A software package, named SCALA, is presently available from the cor-
responding author. It was written for the R system (R Development Core
Team, 2012), and has been used for all the analyses mentioned in this paper.
We plan to turn it into a Bioconductor package. The software contains a mod-
ule to convert Affymetrix CEL file data to the aggregated signals that were
used in this paper, and a module to estimate the calibration parameters. A
module that creates the copy number and allelic imbalance maps including a
signal smoother is available. There also is a module for genotyping of single
arrays.
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3Single chip genotyping with semi-
parametric log-concave mixtures

The common approach to SNP genotyping is to use (model-based) clustering per
individual SNP, on a set of arrays. Genotyping all SNPs on a single array is much
more attractive, in terms of flexibility, stability and applicability when develop-
ing new chips. A new semi-parametric method, named SCALA, is proposed. It is
based on a mixture model using semi-parametric log-concave densities. Instead
of using the raw data, the mixture is fitted on a two-dimensional histogram,
hence making computation time almost independent on the numbers of SNPs.
Furthermore, the algorithm is effective in low MAF situations.

Comparisons between SCALA and CRLMM with HapMap genotypes show very

reliable calling of single arrays. Some heterozygous genotypes from HapMap

are called homozygous by SCALA and to lesser extent by CRLMM too. Further-

more, HapMap’s NoCalls (NN) could be genotyped by SCALA, mostly with high

probability.

3.1 Introduction

Genotyping algorithms for SNP chips can be partitioned roughly into two
classes: 1) those that call genotypes for individual SNPs for a set of arrays
and 2) those that call all SNPs for a single array.

The first approach is the common one: for each SNP it collects the pairs
of fluorescence intensities for all arrays and applies a clustering algorithm.
This is known as multi-array genotyping. However, one major disadvantage

This chapter is an adapted version of the article:
Rippe, R.C.A., Meulman, J.J. and Eilers, P.H.C. (2012). Reliable single chip genotyping with
semi-parametric log-concave mixtures, PLoS ONE, to appear.
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Figure 3.1: Multi-array genotyping for four separate SNPs in a sample set from the
CEU HapMap population. Top row: a clear three genotype division with-
out minor allele frequency problem. Bottom row: genotype clusters with
minor allele frequency problems.

is that the number of available data points is limited to the number of sam-
ples: fewer data generally yield less reliable results. The latter problem is
especially troubling if the SNP has a very low minor allele frequency (MAF),
the allele that has the lowest frequency in a given population. Low MAFs
are known to have a detrimental effect on downstream analyses. Tabangin
et al. (2009) describe the latter in the genome-wide association scans, but the
results extend to other areas as well. Therefore, HapMap only targets MAFs
with a population occurrence of 5% or higher.

In cases of low MAF, there are very few or even no observations in a given
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3.1. Introduction

Table 3.1: Frequencies of total number of different genotypes, for the set of HapMap
arrays from the CEU population. Genotypes are obtained from HapMap
and from the CRLMM algorithm. 13% shows only one, 25% two, and 62%
three different genotypes.

# of different genotypes 1 2 3 Total
HapMap Calls (raw) 119186 223413 564001 906600
HapMap Calls (%) 13.2 24.6 62.2 100.0
CRLMM Calls (raw) 119666 195061 591873 906600
CRLMM Calls (%) 13.2 21.5 65.3 100.0

cluster. Figure 3.1 compares four SNPs. In the top row we see SNPs that have
a very clear three-genotype structure, while in the bottom row we encounter
genotyping problems. The panel at the left shows just a single cluster, while
the third cluster in the right panel contains only one observation. A data
transformation similar to that used in Illumina Beadstudio was applied. In
this transformation the two signals for the two alleles are first transformed to
polar coordinates (φ, ρ) and displayed on modified scales: 2φ/π and log10(ρ).

It is clear that based on these (90) samples from the Central European
(CEU) population, genotype calls for some SNPs can hardly be made effec-
tively without the use of reference samples. It is this problem that causes a
’No Call’ for some SNPs due to high uncertainty (where the ’No Call’ thresh-
old is set by the software that is used to obtain the calls). For these reasons,
common calling algorithms like BirdSeed (Korn et al., 2008) require 100 or
more samples with known genotypes to train the model, while BRLMM-P

and CRLMM (Carvalho et al., 2007, Rabbee & Speed, 2006) require both a
large number of samples as well as presence of all three genotypes AA, AB
and BB. Table 3.1 shows that for genotypes obtained from HapMap and from
CRLMM in a set of HapMap CEU arrays, a large proportion of SNPs only
have one or two different genotypes: around 35% of the SNPs lack obser-
vations in all three clusters. In the current CEU arrays low MAFs follow a
distribution described in Table 3.1 , which indicates the extreme and discrete
MAF cases; the first column shows monomorphic MAF.
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Figure 3.2: Illustration of signal transformation. Signal a (b) represents allele A (B).
The left panel shows the signals on linear scales. The middle panel shows
the same signals on logarithmic scale. The right panel shows transformed
signals to s = log(a + b) on the x-axis and r = log(b/a) on the y-axis.

To overcome the lack of observations for some SNPs, CRLMM has the
option to include prior information in the model, in case of low MAF: small
genotype clusters are estimated using prior cluster locations. However, in
Figure 3.1 is is clear that clusters for the same genotype in different SNPs are
not in the same location.

The second approach to genotype calling is to determine genotypes based
on the two allele signals for all SNPs on a single array: single-array geno-
typing. We find it convenient to transform the allele channel signals to
s = log(a + b) and r = log(a/b) where a and b are fluorescence signals
for allele A and B respectively (logs are to base 10). After this transforma-
tion (see Figure 3.2), three horizontal clusters are present, which correspond
to the three possible genotypes. In Figure 3.3 results of the transformation
are shown for two typical Affymetrix (HapMap) arrays and two typical Illu-
mina arrays (source: department of Epidemiology, Erasmus Medical Center,
Rotterdam, The Netherlands).

Mixtures have been explored by other researchers. Wright et al. (2010)
describe a procedure called ALCHEMY which does de novo calling for small
sets of samples. For each allele they introduce one-dimensional mixtures of
normal distributions, one component for noise (when the allele is absent)
and the other for the signal (when the allele is present). Wright et al. work
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Figure 3.3: Single HapMap Affymetrix 100k Hind samples (NA06985, NA07055 from
left to right) in top panels, typical Illumina arrays in bottom panels. SNPs
are shown for chromosome 1.

in the context of rice genotyping. They give an instructive overview of the
problems connected to per SNP genotyping, one of them being the absence
of heterozygous genotypes, due to inbreeding.

Along similar lines, Xiao et al. (2007) introduce an approach that com-
bines multi-SNP and multi-array genotyping, called MAMS. Their first step
performs model-based clustering on all SNPs in a single array and the sec-
ond step applies multi-array refinement of selected SNPs with unique hy-
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3. Single Chip Genotyping

bridization properties (different from most SNPs). They fit mixtures of two-
dimensional normal distributions. This is a time-consuming process, so they
have to rely on sampling to get acceptable processing times. Giannoulatou
et al. (2009) describe a single-array genotyping algorithm GenoSNP, but their
procedure and implementation are limited to Illumina chips only.

We will show that excellent platform-independent genotyping can be ob-
tained from single arrays by fitting a mixture of three nonparametric two-
dimensional distributions. We describe a fast algorithm and show its perfor-
mance on HapMap data.

In the next section we describe the theoretical basis of our approach. In
the Appendix we describe how we obtained and pre-processed HapMap data
to be able to measure performance. Section 3.3 presents the results. We finish
with a short Discussion.

3.2 Semi-parametric single-array genotyping

In this section we describe how we fit a mixture of three two-dimensional
semi-parametric log-concave densities to transformed fluorescence signals,
as illustrated in Figure 3.3. In the case of an Affymetrix array the signals
are summaries of probe sets, so we do not try to exploit any patterns in
the signals from the individual probes. The reason is simple: we have no
need for it. To avoid scatter plots becoming almost completely black, we
use data from one chromosome. This is only for illustrational purposes; it
should be understood that all SNPs on one array are genotyped at the same
time. Figure 3.4 illustrates the genotype cluster shapes for a selection of
chromosomes as well the shapes for the complete array. As can be seen, they
are very similar.

We describe in some detail how to fit a mixture of log-concave densities
in one dimension, borrowing from Eilers & Borgdorff (2007). Then we sketch
the procedure in two dimensions.

To compute a smooth density for a one-dimensional data set, we first
construct a histogram with many bins, say n = 100. Let yi denote the count
in bin i of the histogram and let ui be the bin midpoint, with i = 1, . . . , n.
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Figure 3.4: Genotype clusters in HapMap sample NA06985 for five individual chro-
mosomes and genotype clusters over all chromosomes (bottom right
panel). There is only a difference in SNP density, but not in scale or
cluster separation.

The vector of counts is denoted by y = {yi}. We write the expected count
in bin i as µi, and assume that the counts have a Poisson distribution. To be
sure that only positive expectations can occur, we work with η = log(µ). The
vector η is constructed as a sum of B-splines:

ηi = log(µi) =
c

∑
j=1

bj(ui)θj or η = Bθ, (3.1)

where B = [bij] = [bj(ui)] is an (n× c) B-spline basis, with c relatively large,
say 20.

Assuming a Poisson distribution for the counts, we maximize the penal-
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ized log-likelihood

l∗ =
n

∑
i=1

(yi log µi − µi)− λ
c

∑
j=1

(∆3θj)
2/2. (3.2)

The second term is a penalty on the third-order differences of the coefficients.
The parameter λ is used to tune smoothness. The larger λ, the stronger the
influence of the penalty and the smoother the estimated density. This is the
P-spline approach, advocated by Eilers & Marx (1996). They also show that,
with third-order differences in the penalty, ∑i yiik = ∑i µiik, for k = 0, 1,
and 2. This so-called conservation of moments means that, for all values of
λ, ∑i µi = ∑i yi, and that means and variance computed from µ are equal
to those computed from y. The latter property is very important, because
it prevents the non-parametric density estimate µ to deviate much from the
observations. Most smoothers do not have this property; the variance of
the estimated density increases with the smoothness. For components of
mixtures this is an undesirable property.

Smoothness is tuned with the parameter λ. There are ways to optimize
it in a data-driven way, using AIC, but in our application we trust our car-
penter’s eye. The third order differences also have the effect that for larger
values of λ the vector θ tends towards a quadratic series, because for such
a series third order differences vanish and the penalty is zero. Unless the
series of counts y has a manifest J, U, or L shape, θ will approach a mountain
parabola and the estimated density will show a unimodal log-concave shape.
This is a desirable property for components of the mixtures we consider.

Setting the derivative of l∗ equal to zero gives

B′(y− µ) = λD′Dθ, (3.3)

where D is a matrix of contrasts such that Dθ = ∆3θ. Linearization of (3.3)
leads to

(B′W̃ B + λD′D)θ = B′W̃z̃, (3.4)

where z = η + W̃−1
(y − µ) is the working variable, η = Bθ, and W =

diag(µ); θ̃, µ̃ are approximations to the solution of (3.4). This system is
iteratively solved until convergence, which usually is quick (less than ten
iterations).
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3.2. Semi-parametric single-array genotyping

To estimate a mixture with three smooth components, we use the familiar
EM (expectation-maximization) algorithm. Two steps are repeated until con-
vergence: 1) split the counts y into three vectors of pseudo-counts, propor-
tional to the current estimate of the mixture components; 2) apply smooth-
ing to the pseudo-counts. Decent starting estimates for the components are
needed. We will describe them for our application in what follows.

In two dimensions we use the same idea as described above, but now a
two-dimensional histogram is formed, and the log of a density is formed by
a sum of tensor products of B-splines. We sketch the adaptations that have to
be made. Let Y = {yih} be an n1 × n2 matrix of counts in a two-dimensional
n1 × n2 histogram. The center of bin (i, h) is given by (ui, vh). The expected
values are modeled by sums of tensor product B-splines. Two bases are
computed, B1, with c1 columns, based on u and B2, with c2 columns, based
on v. The bases are combined with a c1 × c2 matrix Θ of coefficients, and the
matrix of expected values is computed as

M = exp(B1ΘB2
′). (3.5)

Like in the one-dimensional case, a penalized Poisson log-likelihood is opti-
mized. The penalty is more complex, because both rows and columns of Θ

are penalized. If ||X||F indicates the Frobenius norm of the matrix X, i.e. the
sum of the squares of its elements, the penalty is

Pen = λ1||D1Θ||F/2 + λ2||ΘD2
′||F/2, (3.6)

where D1 and D2 are matrices of the proper dimensions (c1 − 3 × c1 and
c2 − 3× c2) that form third differences.

One could vectorize Y , M and Θ and form the Kronecker product of B2

and B1 to mold the equations into a matrix-vector shape. It is however very
inefficient to do this. Instead, we use the fast GLAM (generalized linear array
model) algorithm (Currie et al., 2006), leading to enormous savings in time
and memory use. The details are a bit involved, so we skip them here.

Our model is flexible enough to adapt to the quite different cluster shapes
of different microarray platforms. Figure 3.5 shows results for an Affymetrix
and for an Illumina array. Left panels show the raw observations, middle
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Figure 3.5: Top row: a typical Affymetrix SNP6.0 array. Bottom row: a typical IIlu-
mina HumanHap550 array. Left panels : a random selection of 3500 SNPs
om chromosome 1 plotted as dots. Middle panels: observations and con-
tour lines of semi-parametric mixture components. Normalized contours
(mode set to 1) are shown at [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8]. Right panels:
a 3D perspective of the smoothed densities.

panels shows the density contours after estimation. The cluster contours
represent the data well. The right panels show the smooth histograms in a
3D representation. Note how in the Illumina panel the density between the
clusters is zero, while in the Affymetrix panel it is not. This can be seen in
the genotyping probabilities as well, as discussed below.

The mixture components give three expected values for bin (i, h) of the
histogram: µih1, µih2 and µih3. From these numbers follow, after division by
their sum, three membership probabilities. The largest of the three, which
we indicate by p̂ih points to which cluster all the observations in the bin
should be assigned. The distribution of p̂ over all bins is a good indicator of
classification confidence. Ideally all p̂ should be very close to one. Of course,
strong confidence does not automatically mean good precision; that can only
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3.3. Comparisons

be assessed by comparison to a standard, as is done in Section 3.3.

Figure 3.6 shows the cumulative distributions of p̂ for the two arrays that
we used as examples in Figure 3.5. Apparently the Illumina array generates
more confidence. Keeping in mind the concentrated clusters in Figure 3.5
this is not a surprise.

The semi-parametric mixture model has a number of parameters that can
be chosen by the user. For the histogram we advise a 100 by 100 grid. The
domain of the histogram is covered by bases of 10+3 cubic B-splines (the ad-
ditional three are for extra boundary splines). For the smoothing parameter
we choose λ = 10. Our tests indicate that larger numbers of either bins or
basis functions only increase computing time, but do not provide different
calls.

To start the EM algorithm, we split the data in three groups by a very sim-
ple procedure. In the plot of log(a/b) vs log(a + b) two horizontal lines are
used to create three sectors (AA, AB and BB). This gives the pseudo-counts
for the first round of density estimation. The positions of the separating lines
are not very critical.

On an average PC, it takes around 20 seconds to call genotypes for a
single Affymetrix SNP6.0 CEL file. Approximately the same time is needed
for other arrays, almost independent of the number of SNPs, because the
data are first summarized by a two-dimensional histogram.

Our genotyping algorithm has been implemented in R (R Development
Core Team, 2012) as part of a larger software system, called SCALA.

3.3 Comparisons

In this section we compare called genotypes from SCALA and CRLMM with
the consensus genotypes from HapMap. We explore call differences and
evaluate SNPs that are not called by CRLMM and HapMap in terms of SCALA
calls.

We use probe set averages of the Affymetrix SNP6.0 CEL-files from the
CEU population, CUPID set. To start the EM algorithm the data are split on
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Figure 3.6: Comparison of semi-parametric probability distributions: symmetric
Affymetrix (left) vs. asymmetric Illumina (right).

the basis of log(b/a). The splitting levels can be inferred visually from one
(representative) array and kept fixed. We used -0.2 and 0.2, but these values
are not critical.

Call agreements

Here we compare genotype calls from SCALA to those from HapMap. Ta-
ble 3.2 shows, as an example, the cross-table for chromosome 1 on array
NA06985. Note that SCALA does not produce NN (NoCalls). SCALA and
HapMap completely agree on the AA and BB genotypes, but not on the het-
erozygotes: 8.4% (633 + 911 divided by the total of column AB) are different;
this is 2.7% of all the SNPs called by HapMap.

HapMap is the best reference to judge genotype calling algorithms, but it
is not a gold standard. To put this in perspective, we consider a small exam-
ple, summarized in Table 3.3 and Figure 3.7. The data are for chromosome
1 on an Affymetrix 100k Hind array (NA06991). The left panel of Figure 3.7
shows all SNPs as a gray cloud and the disagreements between SCALA and
HapMap. Almost all of them lie in the valleys between a homozygous and
the heterozygous clusters, either below (AA) or above (BB) it. Classification
is not reliable in these regions. We suspect that we cannot trust HapMap too

42



3.3. Comparisons

Table 3.2: Cross-tabulation of SCALA genotype calls (rows) and HapMap genotypes
(columns) for chromosome 1 on array NA06989
(CUPID_p_HapMapPT06_GenomeWideSNP_6_A01_183598.CEL).

AA AB BB NN
AA 19029 633 0 97
AB 0 16820 0 139
BB 0 911 19326 110

Table 3.3: Cross-tabulation of SCALA genotype calls (rows) and HapMap genotypes
(columns) for chromosome 1 in Affymetrix 100k Hind: NA06991.

AA AB BB NN
AA 837 12 0 3
AB 0 731 0 9
BB 0 13 826 5

Table 3.4: Call agreement between SCALA (rows) and HapMap (columns), aggregated
over all chromosomes in 70 arrays from the HapMap SNP6.0 CUPID set.
Numbers in percentages of HapMap genotypes; columns add up to 100%.

AA AB BB
AA 99.97 4.99 0.00
AB 0.03 90.11 0.00
BB 0.00 4.90 100.00

much here. Anyway, we don’t see disagreeing AA or BB calls by SCALA that
obviously belong to the AB cluster.

To provide a more general indication, we have calculated cross-tables as
in Table 3.2 for all chromosomes on all 70 arrays in the SNP6.0 CUPID set for
SCALA (Table 3.4) and for CRLMM (Table 3.5). Both tables are normalized to
make column totals equal to 100%.
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3. Single Chip Genotyping

Table 3.5: Call agreement between CRLMM (rows) and HapMap (columns), aggre-
gated over all chromosomes in 70 arrays from the HapMap SNP6.0 CUPID
set. Numbers in percentages of HapMap genotypes; columns add up to
100%.

AA AB BB
AA 100.00 2.85 0.00
AB 0.00 94.52 0.00
BB 0.00 2.59 100.00

Table 3.6: Call agreement between SCALA (rows) and GenoSNP (columns), aggre-
gated over all chromosomes in 20 arrays from the Erasmus Medical Center.
Numbers in percentages of GenoSNP genotypes; columns add up to 100%.

AA AB BB
AA 99.96 0.86 0.00
AB 0.04 98.52 0.02
BB 0.00 0.62 99.98

We have also compared SCALA performance to GenoSNP, that is dedicated
to Illumina arrays. The results on previously mentioned arrays from the
Erasmus Medical Center, provided in Table 3.6, illustrate the power of the
universal genotyping approach in SCALA; it’s performance for asymmetric
arrays compared to a dedicated algorithm is even more favorable than for
symmetric arrays. Equivalent performance is obtained using Illumina arrays
from Staaf et al. (2008).

Furthermore, it is of interest to study the SCALA genotype for those SNPs
that HapMap cannot call. We refer to Table 3.3 and to Figure 3.7 in which
the transformed measurements are depicted. SCALA can confidently assign
them to genotypes (with pmax > 0.95), because only a few points lie at the
boundaries of clusters. We present here only one small example, but it is rep-
resentative for the general pattern. Figure 3.8 shows, using denstrip (Jackson,
2008), how pmax is related to (low) MAF; we see mostly (very) high probabil-
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on Affymetrix 100k Hind array NA06991. Some Hapmap AB genotypes
called as AA (red squares) or BB (green triangles) by SCALA. HapMap NN
calls (circles) can be genotyped with high (open) or low (filled) probability.

ities (dark colored areas) for SNPs with low to very low MAFs.

In summary we found that overall agreement between SCALA and HapMap
is comparable to those from CRLMM. However, for the AB calls from HapMap
we see differences in the direction of both AA and BB labels, for both SCALA

and CRLMM, where the differences for SCALA were about twice as large, up
to 4.99% of all HapMap ABs. However, after visual inspection of their lo-
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Figure 3.8: Dark color: high density, light color: low density. In data for all chromo-
somes, pmax is still high in low to moderate MAF situations, albeit with
somewhat higher variance for lowest MAF.

cation in their single array genotype clustering, for a large number of these
differences it seems almost strange that they were called AB by HapMap:
they lie in or close to the AA or BB cluster in the single array. In addition
we found that for many genotypes that were not called in HapMap, proba-
bly due to problems with minor allele frequencies or low call probabilities,
we could call those SNPs with a probability larger than 0.95 in most cases.
Further visual inspection revealed that those SNPs lie close to the center of
one of the three clusters in a single array setting.

3.4 Conclusion and discussion

We presented a fast novel approach to call SNP genotypes in individual ar-
rays using semi-parametric log-concave mixtures.

To assess performance we compared genotype calls from a multi-array
method (CRLMM) and from our single-array method (SCALA) to a set of con-
sensus genotypes from HapMap. The number of agreements and differences
in terms of homo- and heterozygous calls showed that SCALA can be used to
call genotypes efficiently and effectively. Even SNPs that were not genotyped
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3.4. Conclusion and discussion

in HapMap can be genotyped with reasonable certainty using a single chip.
We also evaluated performance against the single-array algorithm GenoSNP,
dedicated to Illumina chips. Strong agreement was found.

The proposed single chip genotyping approach is therefore very universal
in terms of platforms and cluster shapes, for existing (human DNA) chips,
but also for new technology, since the algorithm can be applied to the first
available chip immediately.
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4Optimal use of low quality SNP samples
by the single array approach

SNP samples from any platform can be of low quality due to many reasons.

We propose to select the highest quality part of the sample using a probability-

based signal threshold. Genotype call rates, call quality as well as visualization

and detection of CNV and allele imbalance can be strongly improved using this

method. For example, call rates can be increased from around 60% to around

90% or higher. Reprocessing these low quality arrays may therefore be unnec-

essary, hence improving research efficiency and reducing sampling costs. Since

the method approaches single arrays, it is also possible to threshold (parts of)

individual chromosomes.

4.1 Introduction

In cancer research, one of two primary goals is to determine the accord-
ing genotype from obtained Single Nucleotide Polymorphism (SNP) signals
(Mao et al., 2007). To quantify SNPs, the strength of fluorescence in two chan-
nels (one for each chromosome in a pair) is measured. The ratio of the signals
for the two alleles determines the genotypes. The sum of these signals can
be used for CNV estimations.

SNPs are measured through different platforms and with different method-
ologies. Major companies like Affymetrix provide platforms as well as their
own software. The major difference between their technologies is found in
the way the fluorescence signals for each allele are produced. Platforms of

This chapter is an adapted version of the article:
Rippe, R.C.A., Eilers, P.H.C. and Meulman, J.J. (2012). Optimal use of low quality SNP arrays by
the single array approach, manuscript.
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4. Low quality SNP samples

varying SNP density are available, ranging from 50.000 (Nicolae et al., 2006)
to 250.000 (Dunbar et al., 2008) to 1.000.000 SNPs (Nishida et al., 2008). Of
course, other platforms exist (e.g. Illumina), but this paper focuses on the
Affymetrix platforms. Throughout the current work we use signals a and b
that are averaged over all probes for the A and B allele.

Genotyping

The most procedure to genotype SNPs is to do clustering per SNP, using mul-
tiple arrays. From a practical point of view this is very unattractive, because
it is almost impossible to monitor the influence of individual arrays on the
results. Rippe et al. (2010) developed a single array genotyping algorithm
with excellent performance on normal tissue arrays (e.g. as used in epidemi-
ology) and as provided by HapMap. Single arrays are easy to judge in terms
of quality, and along the same lines, are easier to have the low quality part of
the signal removed.

Commercial software generally calls genotypes for one SNP, using infor-
mation from multiple arrays. However, taking an alternative perspective by
calling genotypes for all SNPs in an individual array might be more fruitful
than single SNP - multi-array calling (Tikhomirov, Konkashbaev & Nicolae,
2008; Rippe et al., 2010). One advantage is that there are enough data points
available to perform very stable model fitting to obtain the genotype calls
(e.g. 4600 SNPs on chromosome 1 on a 100k Hind array). Problems with
low minor allele frequencies do not occur. Another major advantage is that
besides genotyping, this provides an indication of array quality. For the left
sample in Figure 4.1, genotyping is a clear matter, but for the right one it
isn’t. The SNPs are mostly cluttered in the low signal area, restricting any
genotype separation.

In the described single array approach, a SNP genotype generally follows
from the ratio of two signals (r = log10(b/a)) with a the signal for allele A
and b for allele B. Since the ratio r of the two fluorescence intensities (one for
each allele) determines the genotype, signal noise can deteriorate the quality
of the genotype calls. It is based on a two-dimensional mixture of log-concave
densities (along the lines of Eilers & Borgdorff, 2007), fitted on smoothed 2-
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Figure 4.1: Top row: left panel shows a high quality Affymetrix SNP6.0 control sam-
ple. Right panel shows a low-quality control sample. On the horizontal
axis the sum s = log10(a + b) is shown; higher values (total signal) in-
dicate higher quality. On the y-axis, the ratio of the signals for the two
alleles r = log10(b/a) is shown; this indicates the relative concentration
of fluorescence signals for the two alleles. Genotype cluster contours are
superimposed to illustrate cluster separation; better separation results in
higher call rates. Bottom row: 3-dimensional replication of the same data.
The left panel shows three clear peaks in an otherwise flat landscape,
while the right panel shows one peak in a hilly environment: noise.

dimensional histograms (Eilers & Marx, 2007).

To estimate a mixture with three smooth components in two dimensions,
we use the familiar EM (expectation-maximization) algorithm. Two steps are
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4. Low quality SNP samples

repeated until convergence: 1) split the counts y into three vectors of pseudo-
counts, proportional to the current estimate of the mixture components; 2)
apply smoothing to the pseudo-counts. Decent starting estimates for the
components are needed.

Let Y = {yih} be an n1× n2 matrix of counts in a two-dimensional n1× n2

histogram. The center of bin (i, h) is given by (ui, vh). The expected values
are modeled by sums of tensor product B-splines. Two bases are computed,
B1, with c1 columns, based on u and B2, with c2 columns, based on v. The
bases are combined with a c1 × c2 matrix Θ of coefficients, and the matrix of
expected values is computed as

M = exp(B1ΘB2
′). (4.1)

A penalized Poisson log-likelihood is then optimized. The penalty is com-
plex, because both rows and columns of Θ are penalized. If ||X||F indicates
the Frobenius norm of the matrix X, i.e. the sum of the squares of its ele-
ments, the penalty is

Pen = λ1||D1Θ||F/2 + λ2||ΘD2
′||F/2, (4.2)

where D1 and D2 are matrices of the proper dimensions (c1 − 3 × c1 and
c2− 3× c2) that form third differences. We use third order differences because
for larger λ, the values in Θ move towards a quadratic trend, since in such
a trend third differences no longer exists and hence the penalty becomes
zero. Given the right circumstances we end up with a mixture of log-concave
unimodal shapes.

The final mixture components give three expected values for bin (i, h) of
the histogram: µih1, µih2 and µih3. From these numbers follow, after division
by their sum, three membership probabilities. The largest of the three, which
we indicate by p̂ih points to which cluster all the observations in the bin
should be assigned.

CNV and Allelic Imbalance

If we plot SNP signals according to their chromosomal position, it is easy to
visualize any aberrations in high-quality samples. The s-signal can illustrate
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High quality CNV

s = log(a + b )
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Low quality imbalance

r = log(b a)
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Figure 4.2: High and poor quality examples from Affymetrix 250k NSP tumor arrays.
The two left panels show CNV by plotting the s-signal from Figure 4.1
against chromosomal position. Right two panels show the r-signal against
its chromosomal position. Higher quality samples show clearer patterns.
Here, higher quality was induced using signal calibration.

copy number variations (CNV) (Sebat et al., 2004; Taylor et al., 2008; McCarrol
et al., 2008), while the r-signal can indicate allelic imbalance or loss of het-
erozygosity (LOH) (Beroukhim et al., 2006). Again, having low quality SNP
measurements included, besides inducing low call rates (in normal tissue),
they can distort any clear pattern in either CNV or LOH. Figure 4.2 illustrates
the latter effect. From left to right it shows CNV and allelic imbalancefor a
high and low quality array.

Sample quality and signal calibration

With increases in the number of simultaneous SNP probes (currently up to
106 SNPs) in recent platforms, the absolute number of errors has also in-
creased. In lower-quality samples this effect is boosted even more. This
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4. Low quality SNP samples

problem is illustrated in Figure 4.1 and Figure 4.2, where the left panel shows
a high quality Affymetrix SNP6.0 sample compared to a low quality one on
the right.

Many researchers that work with SNP samples have come across low
quality samples coming in from the lab. Lower sample quality makes it
harder to call genotypes and increase the probability (proportion) of wrong
calls. In commercial software SNPs below a certain probability threshold
would not be called at all (No Call). Individual arrays with too many ’No
Calls’ may be rejected for further analysis. Unfortunately, processing these
samples and their processing still costed money and time.

Rippe et al. (2010, 2012a) described a procedure called SCALA in which
single array genotyping and array calibration are implemented. From their
linear models follow, for each allele, either a parameter vector α = [αi] or a
three-column array Γ = [γij]. See Rippe et al. (2012a) for more information
on how the calibration parameters are obtained. We can use them to com-
pute corrected signals and - if wanted - repeat the estimation of the mixture
model using these ’new’ signals. We call this calibration. In the first case this
translates to x∗ij = xij/10αi . It does not use the genotypes of a new sample, so
we call it genotype-free calibration. In the second case we have x∗ij = xij/10ψ,
where ψ = ∑k hijkγik, which we call genotype-based calibration. Analogous
formulas hold for signal b.

The result of genotype-free calibration for an illustrative array is shown
in Figure 4.3. After calibration the cluster are more condensed.

They also discussed a quality control measure similar to the QC criterion
used in e.g. Affymetrix Genotyping Console. Our approach is also suitable
to save as much information as possible from low quality arrays. In this
paper we propose to select only a part of a low quality array and to perform
genotyping and calibration methods within the SCALA framework on the
remaining data.

Samples can be selected as high or low quality based on their initial call
rate. However, since some call rates are either not provided or not obtained
from the different data sources, we use the single-array method described
above to get an initial call for all samples based on a single method.
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4.1. Introduction

Figure 4.3: Effective genotype-free calibration in a high quality Affymetrix 250k NSP
array.

Threshold SNP selection

To tackle the problem of analyzing low overall quality arrays, we propose a
signal threshold for non-amplified low quality samples (Mead et al., 2008;
Ziegler et al., 2009) to select only those SNPs for which the combination
(s = log10(a + b)) of two allelic signals both exceed a certain threshold value.
This part of the data shows a much clearer genotype separation. This implies
that sample quality is inversely related to the number of SNPs with a low
s-value. The suggested method implies that only a part of the probed SNPs
are analyzed in depth, but still we obtain more information that nothing at
all. Furthermore, in such a sample it is still possible to see larger regions of
aberrations on chromosomal regions. Platforms with a higher SNP density
benefit more from this approach, since after threshold selection the remaining
SNP density is still high enough to perform analyses on.

It is recommended to threshold-select SNPs for one individual array at a
time, since observations removed from one array do not match those selected
in other array, for a very large part.

We will illustrate our approach using samples obtained from GeoDB,
HapMap and the Erasmus Medical Center.
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4. Low quality SNP samples

4.2 Methods

Data

In this work we use data from three different platforms. The Affymetrix 100k
(Hind and XBA) samples are obtained from GeoDB and include samples of
both high and low quality. The Affymetrix 250k NSP (Bralten et al., 2010)
and SNP6.0 (Gravendeel et al., 2009) clinical samples of varying quality were
provided by the Erasmus Medical Center. Poor quality samples were omitted
in these studies, but are included in the current study. The 500k NSP set also
contains 8 high quality reference samples. SNP6.0 reference samples were
obtained from Affymetrix. 500k STY samples are not evaluated due to the
simple fact that no low quality array were avaible.

Genotyping

For the genotyping procedure we chose not to use commercial software, since
this software can contain differences in signal processing (Rabbee & Speed,
2006; Xiao et al., 2007) as well as internal SNP and sample comparison. To
overcome the problem of platform comparability, we use our own genotyping
implementation that is applied on a single array as described in section 4.1.

Call probability as a sample quality measure

Low quality samples can be identified simply by counting the number of
SNPs with an s-value below a certain threshold value, even without genotype
call rates. However, this requires an objective threshold, which is hard to
determine since array base levels may differ for each batch.

Second, the quality of a sample can be measured by the proportion of
called genotypes with a large probability. In commercially available soft-
ware, low-probability calls are rejected and hence result in NC (No Call).
We will use an equivalent measure, based on the genotyping results Q =

max(p1, p2, p3) from the SCALA software. This measure is formulated as the
proportion of called genotypes with a call probability lower than 0.90 (Q90);
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4.2. Methods

the more low-probability calls are obtained, the higher Q90 and the lower the
sample quality. If a platform collection doesn’t contain such samples, 6 sam-
ples with the lowest call rate for that platform were selected. High quality
arrays were available for all platforms.

Thresholding

To perform threshold signal selection, we use the log10 of the sum of the
two allelic signals (s = log10(a + b)). This is the x-axis in Figure 4.1. In
practice, this means that any SNP with an s-value below a given threshold
is completely excluded from further analysis. This can be done for each
chromosome separately or for all array observations at once. We choose to
perform the computations per chromosome, to have better control.

There are two ways to go from here. First, we can use a straightforward
’hard threshold’, which is intuitively very effective. Since the signal quality
is specific for a sample, there is no control on the amount of data that is
removed: in one sample a threshold value of s = 3.0 may exclude 30% of the
data, whereas in a very low quality sample the same threshold may remove
100% of the signals.

A different way to apply thresholding is to use the empirical distribution
function (edf, which is trivial to determine: for a random sample it is the
cumulative distribution function of the values obtained in the sample. It is a
staircase function that is equal to 0 for s < s1 and is equal to 1 for s ≥ sn or

F̂n(s) =
z ≤ s

n
=

1
n

n

∑
i=1

I(Si ≤ s) (4.3)

with z the number of measured elements in the sample.

Suppose we apply a certain threshold value for the s-signal on a given
chromosome. We can restrict the SNP removal to just the one-sided p = 0.90
part of the data. If according to the threshold value all SNPs have to be
removed, we can force the best p = 0.10 below that threshold to always be
kept, so that for allele A we have a∗ = as>p where a∗ and a are of different
lengths (analogous for allele B). This way, there is always some available data
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4. Low quality SNP samples

to provide information about genotypes and/or aberrations. We will use the
latter approach for further analyses.

Calibration

We will assess the effect of threshold selection on calibration (and down-
stream call rates).

Furthermore we will look at calibration effects after we removed low-
signal SNPs and then apply precomputed calibration parameters for the re-
maining SNPs. From these calibrated signals we determine the genotypes.
Given these genotypes, we obtain calibration parameters based on the new
data. Finally, for illustrational purpose, we apply a genotype-based cali-
bration method to obtain the best possible separation and call rates, using
estimated genotypes obtained after genotype-free calibration.

4.3 Results

Call rates for different threshold values

The results for the call rates on uncalibrated chromosome 4 in each of the
platforms, for each percentile in [0, 10, ..., 80, 90] are given in Figure 4.4. For
high quality SNP6 arrays, it is clear that removal of the lower signals is detri-
mental to the overall call rate. This pattern holds for all chromosomes (not
shown). For the other platforms however, call rates remain more or less con-
stant after removal of the lower signals.

In the left panel (high-quality samples) it can be seen that for all platforms
the call rates are high at all threshold levels, but the rates for SNP6 slightly
decrease if too much signal is removed. In the right panel (low quality sam-
ples) we see lower call rates in all platforms. The SNP6.0 platform seems to
benefit the most. This may be due to the fact that in this platform the last
10% still contains 100.000 SNPs. However, both of the Affymetrix 100k (Hind
and XBA) call rates do not seem to suffer very much: they are still very high,
though lower than for their high-quality counterparts at the same threshold

58



4.3. Results

0.0 0.2 0.4 0.6 0.8

90
92

94
96

98
10

0

High quality samples

P−threshold (proportion)

C
al

l R
at

e 
(Q

90
) ● ● ● ● ●

● ● ● ●
●

●

Affymetrix SNP6
Affymetrix 50k Hind
Affymetrix 50k Xba
Affymetrix 250k NSP

0.0 0.2 0.4 0.6 0.8

50
60

70
80

90
10

0

Low quality samples

P−threshold (proportion)

C
al

l R
at

e 
(Q

90
)

●
●

●

●

● ●

●

●
●

●

Figure 4.4: Call rates on chromosome 4 using four different platforms. Left: high
quality samples. Right: low(er) quality samples. Note that call rates in the
left panel ranges from 90 to 100, whereas the right panel ranges from 60
to 100. The dotted line in the left panel indicates the lowerbound of the
y-axis in the left panel.

level. Affymetrix 250k NSP and Affymetrix SNP6.0 have very low call rates.
All three benefit strongly from threshold selection, which seems to be most
effective for the SNP6.0 data. However, the best low-quality SNP6.0 call rate
after thresholding (at 90% cut-off) is still below 90%, and this is lower than
the call rate for a non-thresholded high-quality sample.

Calibration effects

The effects of thresholding on the same low quality samples as used in sec-
tion 4.3, but now after genotype-free calibration, are summarized in Fig-
ure 4.5. In Table 4.1 these call rates are compared with their uncalibrated
counterparts. All platforms show (strong) improvements in call rates using
calibration. The Affymetrix improvements are as expected from the cali-
brated clusters. An example for a 250k NSP sample is shown Figure 4.3.

Furthermore, the ’jump’ in call rates at p = 0.30 for low quality Affymetrix
SNP6 samples indicates after removal of the worst 20% the remaining signal
contains much clearer genotype information, which is however still viable for
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4. Low quality SNP samples

Table 4.1: Results (median error rates) for low-quality samples after genotype-free
calibration. P = (P)roportion of data removed, B = (B)efore calibration, A =
(A)fter calibration.

SNP6 100k Hind 100k Xba 250k NSP
P B A B A B A B A
.0 36.2 19.7 35.5 25.0 13.9 20.7 19.9 5.9
.1 31.4 18.3 38.1 31.3 13.2 17.6 16.2 5.1
.2 24.4 17.0 31.8 28.1 13.9 19.0 14.9 4.7
.3 19.8 4.3 36.9 26.5 14.3 18.1 13.5 4.4
.4 15.1 3.9 31.8 25.4 13.7 15.8 13.0 4.2
.5 13.0 3.7 32.5 24.5 11.2 16.5 12.9 3.9
.6 11.9 3.6 48.8 22.9 11.9 13.9 12.5 3.5
.7 11.1 3.6 16.5 22.9 10.9 12.2 11.7 3.1
.8 10.4 3.6 18.8 17.7 9.9 6.4 11.7 2.8
.9 9.8 3.6 25.8 15.4 6.6 6.1 10.1 1.9

0.0 0.2 0.4 0.6 0.8

60
70

80
90

10
0

Low quality samples

P−threshold (proportion)

C
al

l R
at

e 
(Q

90
)

●

●

●
●

●
●

● ●

●

●

●

Affymetrix SNP6
Affymetrix 50k Hind
Affymetrix 50k Xba
Affymetrix 250k NSP

Figure 4.5: Call rates for low quality samples after genotype-free calibration. Same
samples on chromosome 4.
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4.3. Results

further improvements. The best call rate is still below the lowest call rate for
high quality samples.

Some further investigation shows that the effective combination of cali-
bration and thresholding on the call rates for the 100k Hind, 100k Xba and
250k NSP samples is due to a higher overall quality of the selected low qual-
ity samples, compared to the low quality samples from SNP6.0. High quality
samples however benefit strongly (not shown), with median call rates consis-
tently approaching 99% for all five platforms.

The effects in Table 4.1 also support the assumption that genotype-based
calibration (see section 4.1) is unwise to do: genotype-based calibration re-
quires called genotypes, but these calls can only be made using the original,
poor quality signals. This may introduce erroneous calibration due to erro-
neously called genotypes.

Inspecting aberration profiles

Figure 4.6 shows the effect of threshold selection on signals for profiles of
CNV and allelic imbalance. In this particular section we used data on chro-
mosome 9, since we know that aberrations occur there. The left panels show
CNV detection, and imbalancepatterns are represented in the right panel. At
first sight, in the complete sample the noise in both the left and right pan-
els clearly dominate the data and no patterns can be distinguished at all.
However, with an increase in threshold level, we can see deviations patterns
(like in Figure 4.2) arise. It may seem like we are introducing bias in the
CNV panel. However, matching the remaining signal to the imbalance panel,
we can see that we are in fact removing signal indicating ”complete loss” or
noise. From p = 0.70 and above, aberrational patterns on the ratio-signal r
are visible: in the right panel in which we look at possible imbalance pat-
terns the left (P) arm clearly lacks a heterozygous genotype and ends with
a complete loss of information (looks like a vertical bar). The right arm (Q)
has the expected three genotype bands (homozygous on top and bottom, het-
erozygous in the middle, but it also seems to end with complete loss. These
patterns were not (clearly) visible. Since the thresholding is performed on the
s-signal, this is just signal that is cut off starting from the bottom and there-
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4. Low quality SNP samples

Figure 4.6: Aberration detection. Visual (and statistical) detection in a very low qual-
ity sample improves only after removing 80% of the originally low s-
signal. Left: thresholded CNV signal. Right: thresholded imbalance sig-
nal. For CNV profiles, signal selection is not useful, while it is for allelic
imbalance.

fore it doesn’t benefit from threshold selection. Figure 4.7 shows that when
a lower CNV signal (a deletion) is removed, this does not delete information
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4.4. Discussion

Figure 4.7: Gradient representation of the threshold levels. Lighter dots are removed
in low(er) threshold levels. Left: CNV signal threshold. Right: imbalance
signal thresholds. This illustrates that when a lower CNV signal (a dele-
tion) is removed, this does not delete information about allele loss: it can
still be retrieved from the imbalance panel.

about allele loss: it can still be retrieved from the LOH panel.

4.4 Discussion

We proposed a signal threshold approach to low-quality SNP samples for any
given platform. A distribution-based approach provides a wayto ensure that
one can never accidentally remove all SNPs; the best (1− p) % of the SNPs
remain available. Applying such a threshold selection on low quality samples
(strongly) improves array quality, defined by call rate. Threshold selection
on high-quality samples doesn’t have the same strong effect, but fortunately
these samples do not need thresholding. The same effect holds for the effects
of both genotype-free and genotype-based calibration; if sequentially applied
the sample size is reduced, but the call rate and structural quality improve
(strongly). The same holds for the detection of aberrational CNV andLOH
patterns in low quality data; with increased threshold, the detection also
improves, hopefully improving to a high enough quality level so that patterns
are detectable. However, to provide more insight, numerical analyses should
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4. Low quality SNP samples

be performed.

With respect to the above results and the fact that low-quality samples
still have to be paid for, we suggest to make the best of the situation. The
proposed threshold recovery procedure should be applied and evaluated be-
fore re-sending samples to the lab again. This approach saves money, time
and effort and can be sufficient in many situations.

In this chapter we didn’t include Illumina (Infinium) samples, since these
arrays have asymmetric homozygous clusters, which is probably due to a
dye saturation effect. We are currently looking into this; these results will be
discussed elsewhere.
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5Genomic waves: where they come from,
and how to eliminate them

Genomic waves are an undesirable distortion in copy number variation. It is

generally assumed that they have real physical existence. We show that this is

not true. Fluorescence signal on SNP arrays have a systematic bias, that varies

strongly from SNP to SNP, giving the appearance of noise. Smoothing removes

high frequency variations and so gives the impression of waves. The bias, and

hence the waves, can be estimated and removed by a procedure called SCALA.

5.1 Introduction

Although SNP arrays were originally developed for genotyping of (normal)
DNA, they are also a popular tool for studying copy number variations
(CNV) and allelic imbalancein tumor samples. When studying CNV a per-
sistent nuisance is the occurrence of “genomic waves", which compromise
estimation accuracy due to unclear segment breakpoints. They become vis-
ible when the raw signal, the sum of the fluorescence intensities of the two
alleles is smoothed sufficiently, as shown in Figure 5.2 for four different ar-
rays.

The existence of waves has been reported frequently in both SNP arrays
and aCGH profiles. Several remedies have been proposed. The wave phe-
nomenon was first reported in aCGH profiles by Cardoso et al. (2004) and
subsequently by Nannya et al., (2005) and Marioni et al. (2007). Cardoso et

This chapter is submitted as the article:
Rippe, R.C.A. and Eilers, P.H.C. (2012). Genomic Waves: where they come from, and how to
eliminate them, submitted for publication.
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5. Genomic waves

al. referred to waves as a spatial bias, which they thought was due to non-
constant specificity in the DNA amplification process. However, this idea
was countered when the same pattern was seen in HapMap data. Nannya et
al. introduced an algorithm that accounts for GC content (the percentage of
nitrogenous bases that are either guanine or cytosine), which was extended
in Lepretre et al. (2010). They proposed WACA (waves aCGH correction al-
gorithm) that uses both GC content and size of the DNA fragments to correct
for wave bias. However, Marioni et al. concluded after thorough evaluation
that fitting a lowess curve through the profile was an improvement over GC
correction. Also recently a procedure called NoWaves was proposed (Van de
Wiel et al., 2010) to correct for wave bias in tumor profiles without using GC
content, using ridge regression on (smoothed) normal profiles.

Genomic waves are also found in CNV profiles from SNP arrays, which
are fundamentally different from aCGH profiles, because SNP arrays pro-
vide information on the (genotypes of the) two individual alleles. Komura et
al. (2006) described genomic waves for this type of array and proposed the
Genomic Imbalance Map algorithm that reduces signal noise by accounting
for sequence characteristics of both probes and targets. The aCGH model
from Nannya et al. proved effective for SNP arrays, too. Diskin et al. (2008)
describe an algorithm that first quantifies the genomic waves in terms of GC
content and uses this quantification as a predictor in a regression model.
They also noted that, although commonly observed, genomic waves are not
well understood. Marioni et al. thought it should be seen as spatial autocor-
relation.

In reality autocorrelation does not exist, but is created by smoothing. In
this paper we show that the cause of these waves is the existence of a sys-
tematic bias, characteristic for each allele of each SNP. Without smoothing it
appears as noise but in fact it is reproducible, see Figure 5.1, which shows
highly similar noise in four different arrays. The bias can be estimated as pa-
rameters in a linear model called SCALA (Rippe, Meulman & Eilers, 2012a).
The model parameters can be estimated using an initial set of (high quality)
arrays and the corresponding genotypes. Once the parameters have been es-
timated they can be used to correct these arrays and any new array that will
become available.
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Figure 5.1: The source of the “waves" is systematic bias in the fluorescence signals.
Shown are four different arrays, with highly similar noise. Subtracting the
mean for each SNP (over arrays) for each SNP essentially eliminates the
variation. This only works for normal DNA.

This procedure is easily applicable and therefore we feel it can and should
always be applied.
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Figure 5.2: An illustration of how smoothing produces “waves", although the raw
signals are unstructured. Shown are the first 40 SNPs on chromosome
9. For a clearer display, the positions of the SNPS in the graphs are their
ranks, not their physical positions. The Whittaker smoother is used, with
two values of the parameter λ.

5.2 Methods

Data and preprocessing

We use Affymetrix 250k NSP tumor profiles from the Erasmus Medical Cen-
ter (Bralten et al., 2010) and high quality reference profiles from the same
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Affymetrix platform. Chromosomes 1 to 22 are analyzed. The non-autosomal
chromosomes X and Y are neglected due to the fact that the calibration ap-
proach in SCALA requires signals for two alleles, which is impossible to ob-
tain in the Y chromosome. We start from averages of fluorescence intensity
over probe sets; information on the individual probes is not used. We trans-
form the signals for the two alleles, a and b, to a single profile s = log2(a+ b).

The origin of the waves

A simple illustration of our claim that each SNP shows a reproducible bias
is presented in Figure 5.1. It shows s for the first 40 SNPs (as determined by
their position) of chromosome 9. Four high-quality arrays, to which normal
DNA was hybridized, were used. Each array was centered by subtracting
the mean of s (over the 40 SNPs). To make it easier to see the data for
the individual SNPs, their ranks are used for the horizontal coordinate, and
not their physical position on the chromosome. From the top panel it is
clear that the levels vary strongly from SNP to SNP, but that they are similar
within each individual SNP. If we subtract the means per SNP the lower panel
is obtained which show much smaller variation and almost no systematic
patterns.

This would be a good method to correct data from normal DNA, but copy
number variations are not much studied for normal DNA. However, one can
compute means per SNP for a set of “normal" arrays and use these values for
correcting any other array. In what follows we will present a more advanced
allele-specific correction method.

Smoothing

We use the Whittaker smoother (Whittaker, 1923; Eilers, 2003), assuming
equally spaced pseudo-positions. This is a simplification, but as we only
use the smoothing for illustration, it can do little harm. Results are shown
in Figure 5.2, for two values of the smoothing parameter λ. The Whittaker
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5. Genomic waves

smoother minimizes the penalized sum of squares

Q = ∑
i
(si − zi)

2 + λ ∑
i
(∆2zi)

2,

where z represents the smooth series and ∆ is the operator that forms second
order differences: ∆2zi = (zi − zi−1)− (zi−1 − zi−2).

As Figure 5.2 shows, smoothing leads to “waves", even though the un-
smoothed data make large jumps from SNP to SNP. Because the “waves" are
very similar for the four arrays, it is easy to mistake them for a real spatial
pattern, but actually they are an artifact.

The SCALA model

Let Y be a matrix with logarithms of fluorescence intensities for one allele.
The rows, indexed by i, represent the SNPs and the columns, indexed by j,
the arrays. The SCALA model is defined for any allele signal yij as

yij = µ + αi + β j +
3

∑
k=1

γkhijk + eij (5.1)

where µ is the grand mean, αi describes the overall level of SNP i, β j describes
the overall intensity level of array j, k is the genotype code with 1 = AA,
2 = AB, 3 = BB (we work with normal DNA) and γk is a parameter for
genotype k. The genotypes are coded in H = {hijk}. H is a 3-dimensional
indicator array; for each combination of i and j we have a 1 in layer that is
indicated by the genotype, and 0 in the other layers. To make the model
identifiable we introduce the constraints ∑i αi = 0 and ∑j β j = 0. Details on
the estimation procedure are described in Rippe et al. (2012a).

In correction by SCALA, the model is fitted for each of the two alleles
separately. After fitting, we obtain the parameter vectors α = [αi]. These
obtain corrected signals by

Yc
j = Yj/10α. (5.2)
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Correction by NoWaves , which finds regression coefficients for each SNP
i by

Y =
n

∑
i=1

βiZij + εj (5.3)

with Zj the smoothed (normal) reference profile.

The coefficients β are estimated using ridge shrinkage on the reference
profile parameters, through

β∗ = argmin

 s

∑
j=1

(
Yj −

n

∑
i=1

βiZij

)2

+ δ
n

∑
i=1

β2
i

 (5.4)

with δ the coefficient shrinkage parameter, which is determined through
leave-one-out crossvalidation and hence is sample-dependent. Signal cor-
rection is then ensured by:

Yc
j = Yj −

n

∑
i=1

β∗i Zij. (5.5)

Correction performance

To find a smooth estimate for the CNV profile we use the L2 norm smoother,
as proposed by Whittaker (1923) which minimizes

L2 =
m

∑
i=1

(si − zi)
2 + λ

m

∑
i=2

(zi − zi−1)
2, (5.6)

where the original signal s is of length m and z is the approximate smooth
series of s. The smoothness is determined by λ. Larger λ provides a smoother
series z, but has a worse fit to the data y. It is common practice to find the
optimal amount of smoothing, but here we do not aim to find an optimal
value for λ. We use the P-spline implementation by Eilers & Marx (1996).

To quantify the effect of wave removal we compute the normalized differ-
ence d = ∑i(si − zi) between the raw signal s and the smooth profile z (for
each SNP i) on a given chromosome. Formally, we write

d =
∑ |si − zi|

n
. (5.7)
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For the smooth series z we fix λ = 100. An increase of d indicates more scatter
in the SNP signals, re-lative to the smooth estimate. For detection of constant
segments between sharp breakpoints de-dicated (and better) algorithms are
available, but here we aim for the removal of waves with gradient properties.

5.3 Empirical results

First we visually illustrate the origin of waves and then numerically compare
the models discussed above.

Wave origins

In the left panels in Figure 5.3 the uncorrected signals are shown. Each panel
contains two parts: on the left of the dashed line a healthy chromosome 1
is shown, while to the right of the dashed line a tumor chromosome 9 is
shown. We display only a small selection of observation from one profile
because different tumor patterns in different arrays would clutter the image.
The top and middle row show the profiles for allele a and b separately, the
bottom row shows the actual copy number signal s = log(a + b). The right
column illustrates SCALA correction by αi. It can be seen from Figure 5.3 that
SCALA calibration with just the SNP parameter αi is not effective for signals
from a single allele a or b, but it is for the (logarithm of the) sum. Also note
that all corrections do not remove copy number segments (as seen in the right
part of each panel).

Numerical evaluation

We first visually inspect the results for SCALA and NoWaves. The top pan-
els in Figure 5.4 show waves in an Affymetrix 250k tumor sample for two
selected chromosomes (1 and 9). It is clear that the wave patterns occur on
both healthy (1) and tumor (9) tissue. All panels in Figure 5.4 have the same
scales on both the x and y axes. First, Figure 5.4 shows that after SCALA

calibration (bottom row), the profiles hardly show any waves. The results for
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Figure 5.3: Wave patterns in real data. The horizontal axis shows the position of each
observation in the sequence. The vertical axis shows either log(y) with
y the allele signal for a or b, or log(a + b). Left column: uncalibrated
signals. Right column: signals after SCALA calibration with α. Top panels:
A allele, middle panels: B allele, bottom panels: CNV signal. Left parts of
each panel show a healthy chromosome 1; right parts show an unhealthy
chromosome 9. Smooth profiles are obtained with the Whittaker smoother
(λ = 2000).
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Figure 5.4: Profiles before (top) and after NoWaves (middle) and SCALA (bottom)
calibration.

NoWaves (middle row) are similar to equivalent. Removing the waves from
the signals clearly keeps CNV segments intact and quantifiable. In fact, the
aberrations are the only deviations from the reference level 2n (2 alleles) that
are still visible/detectable.

For the crude data, we find a benchmark d value of 0.60 (0.000-2.662) for
chromosome 1 and 0.59 (0.000 -2.922) for chromosome 9. However, applying
signal calibration based on SCALA, we find d values for both SCALA and
NoWaves of 0.293 with the first ranging (0.000-2.297) and the second (0.000-
2.328) for chromosome 1 and 0.295 (0.000-1.786) against 0.297 (0.000-1.745)
for chromosome 9. Note that any differences between the latter methods are
in the order of 10−3.

Detailed results for chromosome 1 to 22 in several samples, for four dif-
ferent levels of smoothing (λ ∈ 1, 10, 100, 1000) are provided in Appendix A.
Here too, differences between calibration methods are very small, but large
compared to uncalibrated signals.
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5.4 Discussion

We have illustrated that the cause of waves in CNV profiles based on SNP
fluorescence signals is not spatial autocorrelation. Visual and numerical com-
parisons between two signal calibration methods, NoWaves and SCALA were
made. The first method was developed specifically for single aCGH signals,
whereas the second method was developed for two allele channels. The re-
sults for the two methods show almost equal improvements. The fact that
model-based calibration is effective can be explained by the fact that SNP
variation is larger than genotype variation, given that the calibration param-
eters were computed with only 8 profiles. Therefore, the maximum amount
of genotype variation is low by definition.

It can be argued that after transformation to s = log2(a + b), the NoWaves

correction is already effective, so there is no need for a SCALA correction.
However, NoWaves aims solely at wave removal for single channel profiles,
while SCALA aims for allele-level correction, which is impossible for NoWaves.
Another major advantage of SCALA over NoWaves is that the first calibrates
signals with a set of parameters that is calculated only once and can be re-
used in later instances, while the latter method needs to recompute the pro-
jection for every analysis. The smoothed references profiles can of course
be re-used here, too. The SCALA calibration has a very simple nature, sub-
tracting a vector of parameters. Therefore, we argue that it should always
be applied, because it require hardly any time, removes waves and leaves
segmentation intact.

One of the differences between SCALA and other methods is that for bet-
ter correction, instead of GC content it exploits genotypes of the reference
samples from which the calibration parameters are obtained. This introduces
an extra step and thus an extra level of error-proneness. However, since cal-
ibration parameters are estimated using high quality reference samples and
these data the genotype calls can be made very accurately, this does not pose
a threat to the procedure.

It might also be argued that calibration is not necessary when a large
amount of smoothing is applied on the uncalibrated data, since this already
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removes most of the waves. However, in the right panels (Figure 5.4) we
also see that within remaining CNV segments waves still distort the patterns.
This problem is absent in the calibrated signals. Furthermore, applying too
much smoothing on the raw data will in the end smooth out CNV segments.

In the current work we used a smoother based on the L2 norm, but in
Eilers & DeMenezes (2005) the L1 norm is illustrated to be more effective in
CNV detection. A further refinement to the L0 norm was proposed by Rippe
et al (2012b). The latter norms are much more suitable to detect aberrated
regions, since it does not tend to round segment breakpoints (and the L2

does, true to its quadratic nature). However, both the L1 and L0 norm do
not respect the wave curvature and hence are not effective in the specific
application described here.
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6Visualizing genomic changes by seg-
mented smoothing using an L0 penalty

Copy number variations (CNV) and allelic imbalance in tumor tissue can show
strong segmentation. Their graphical presentation can be enhanced by appro-
priate smoothing. Existing signal and scatterplot smoothers do not respect seg-
mentation well. We present novel algorithms that use a penalty on the L0 norm
of differences of neighboring values. Visualization is our main goal, but we
compare classification performance to that of VEGA.

6.1 Introduction

Copy number variations (CNV) and allelic imbalance are common in tumor
tissue, reflecting local deviations from diploidy and heterozygosity. When
they occur, they typically form segments of widely varying length. As a first
step in their analysis, many researchers prefer to have a graphical presenta-
tion of genomic changes, as a kind of map along positions on chromosomes.
Modern high-density SNP arrays make this possible for hundreds of thou-
sands of positions on the (human) genome.

An array delivers two fluorescence signals for each SNP, one, say a, pro-
portional to the dose of one allele, indicated by A, the other, say b, propor-
tional to the dose of the other allele, indicated by B. This is only true in
principle, because noise and differences between fluorophores of different
color can distort the picture to a certain amount. If we ignore these facts for

This chapter is an adapted version of the article:
Rippe, R.C.A., Meulman, J.J. & Eilers, P.H.C. (2012). Visualization of Genomic
Changes by Segmented Smoothing Using an L0 Penalty. PLoS ONE, 7(6): e38230.
doi:10.1371/journal.pone.0038230.

77



6. Zero-norm segmented smoothing
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Figure 6.1: Illustrations of copy numbers and allelic ratio, expressed as logarithms,
for healthy and tumor tissue. Left panels: healthy tissue. Right panels:
tumor tissue. Top row: copy numbers. Bottom row: allelic imbalance.

the moment, and consider normal DNA, then the sum of the doses, the copy
number, is 2, for any of the genotypes AA, AB or BB. Hence the sum a + b
should be almost constant. Similarly the ratio b/(a + b) is either 0, 1 or 2;
it is called the B allele frequency (BAF). Because in tumor DNA many types
of changes can occur, leading to any number of A or B alleles from zero to
many, a variety of deviations in CNV and BAF can be found.

We prefer to work with somewhat different combinations of the fluores-
cence signal. One is the log (to base 10) of their sum, log(a+ b), which we ab-
breviate as LAS (log allelic sum). The reason for working with the logarithm
is that usually a quite large range of values of a + b is observed. The other
combination is the logarithm of the allelic ratio, log(b/a), which we will ab-
breviate as LAR (log allelic ratio). Compared to BAF, LAR strongly expands
the scale near 0 and 1, which is crucial when fitting (mixtures of) normal
distributions, as we will do in one stage of our data analysis. Figure 6.1
shows examples of maps of the proposed quantities along chromosome 9 of
a normal and a tumor sample.
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6.1. Introduction

Copy number analysis has received attention from many investigators;
a short overview will follow later in this Introduction. In most cases the
aim is to determine, with a solid statistical basis, segment boundaries and
copy numbers and allelic doses within the segments. A variety of free and
commercial products is available. Yet we believe that there is room for en-
hanced visualization tools, that allow us to inspect data in some depth before
embarking on more formal models. Visualization tools for CNV are widely
known, while such tools for allelic imbalance are rare. Therefore, we feel
that it is most effective to introduce our new idea in the well-explored field
of CNV (LAS) and assess its behavior in depth. Once we have obtained an
understanding of its performance, we extend its application to a new setting
(LAR), for which there are no “gold standard” comparisons available.

In this paper we present a new approach to copy number smoothing,
extending the work of Eilers & De Menezes (2005). The main modification is
to use a roughness penalty on the number of jumps, instead of on the sum of
absolute values of jumps (the L1 norm). We implement it with an L0 norm,
the sum of absolute values of differences raised to the power zero. The result
is much sharper segmentation.

Copy number smoothing is relatively simple, because, as the top panels
of Figure 6.1 show, we can interpret the data as one (segmented) trend plus
noise. For the allelic ratio the situation is more complicated, because, as the
bottom panels show, we can have one, two or three noisy parallel bands. Our
solution is to adapt the scatterplot smoother of Eilers & Goeman (2004). In
its standard form it computes a histogram on a large two-dimensional grid
and applies a smoother on both axes, thus smearing out the counts in both
directions. The smoother is based on a penalty on the sum of squares (the L2

norm) of differences. We apply the same idea, but replace the penalty in the
direction along the chromosome with one using the L0 norm.

After segmentation with the modified scatterplot smoother, we present
the distribution of LAR, separately for each segment, using histograms and
Gaussian mixtures.

The literature on segmentation of copy number variations is large. It
is a fascinating subject for statistical analysis and it has led to a variety of
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6. Zero-norm segmented smoothing

modeling strategies. We present a short overview of recent work, without
claiming completeness.

The hidden Markov model (HMM) is a natural candidate. Liu et al. (2010)
propose a model with many hidden states, covering copy numbers from zero
to seven. They claim improvements compared to older candidates like Pen-

nCNV (Wang et al., 2007) and QuantiSNP (Colella et al., 2007).

Other models use explicit parameters for the positions of jumps and the
levels of the segments between them. VEGA (Morganella et al., 2010) uses
dynamic programming, while Muggeo & Adelfio (2011) fit a piecewise linear
model by maximum likelihood.

Non-parametric smoothing goes in the opposite direction, by modifying
smoothing algorithms in such a way that they favor a piece-wise constant fit.
MSMAD (Budinska, Gelnarova & Schimek, 2009) is an improvement on the
work of Eilers and De Menezes (2005). The fused LASSO works in a similar
way (Tibshirani & Wang, 2008).

Systematic comparisons of a number of models are available. We mention
Lai et al. (2005), Marenne et al. (2011), Winchester et al. (2009), Tsuang et
al. (2010), and Zhang et al. (2011). Large-scale assessments over platforms,
lab sites and algorithms were made in Bengtsson et al. (2009). The rest of
the paper is organized as follows: in Section 2 we present the algorithms,
using real data to illustrate them. In Section 3 we compare our segmentation,
obtained after automatic selection of the smoothing parameter, with the seg-
mentation from VEGA. In Section 3 we also present applications to clinical
samples, including a comparison with segment calls from external software,
CNAG (Nannya et al., 2005).

As an acronym for our smoother we use ZEN, derived from Zero Expo-
nent Norm, because the L0 norm in the penalty is crucial to its success.

6.2 Statistical methods

In this section we first discuss LAS smoothing with penalized least squares,
based on several types of norms in the difference penalty. We present a
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6.2. Statistical methods

procedure to automatically find a good value for the penalty parameter, using
cross-validation. Then we extend the discussion to segmented scatterplot
smoothing of LAR. In contrast to smoothing methods that use the sum of
squares of absolute values in the norm of the penalty, the objective function of
the ZEN smoother is not convex. There is no guarantee that a (unique) global
minimum will be reached. Yet in practice we see excellent performance. To
increase the confidence of potential users of our methods, we present a short
study of convergence behavior.

Segmented CNV smoothing

Let the data be m data pairs (xi, yi), where xi gives the position of SNP i
(xi < xi+1 for all i) and yi is the copy number signal LAS, log(a + b). We are
going to compute a smooth series z.

Our starting point is a variant of the Whittaker smoother (see also Eilers,
2003). The objective function is

S2 =
m

∑
i=1

(yi − zi)
2 + λ

m

∑
i=2

(zi − zi−1)
2. (6.1)

The first term measures fidelity of z to y, while the second term is a penalty
on roughness of z. The balance between the two is set by the parameter λ; the
larger λ is chosen, the smoother z will be. This smoother rounds off edges as
is illustrated in the top panel in Figure 6.2. This is fine in many applications,
but not here.

Quantile smoothing replaces the sum of squares (the L2 norm) by sums
of absolute values (the L1 norm). The objective function is

S1 =
m

∑
i=1
|yi − zi|+ λ

m

∑
i=2
|zi − zi−1|. (6.2)

Notice that now fidelity to the data is measured by the sum of the absolute
values of y− z (median smoothing), not by their squares. This modification
is necessary because a linear programming algorithm is used to compute ẑ.
This increases robustness, but decreases sensitivity to the data, compared to
the L2 norm. Robustness is hardly an issue in CNV studies.
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6. Zero-norm segmented smoothing
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Figure 6.2: Illustration of smoothing with different norms (2,1,0) in the roughness
penalty. Top panel: L2 norm, the Whittaker smoother. Middle panel: L1
norm. Bottom panel: L0 norm. Thinner lines drawn with positive and
negative offsets illustrate the effect non-optimal λ. Top line: λ too large.
Bottom line: λ too small.

As can be seen from the middle panel of Figure 6.2, this modification goes
in the right direction. Segments become more clearly visible, but a number
of undesirable small jumps occur.
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6.2. Statistical methods

We propose the following modification:

Sq =
m

∑
i=1

(yi − zi)
2 + λ

m

∑
i=2
|zi − zi−1|q (6.3)

where q is a number between 0 and 1. Actually we will concentrate on q = 0,
the L0 norm. Essentially this is a penalty on the number of non-zero dif-
ferences between neighboring elements of z. Any positive number raised to
the power 0 gives 1, while by convention 00 = 0. So only non-zero differ-
ences add to the penalty, and all by the same amount, independent of their
size. Our numerical algorithm approximates this behavior. The lower panel
of Figure 6.2 shows results obtained with the proposed smoother.

Computational details

It is easy to find the solution for the Whittaker smoother, using matrix-vector
operations. If D is a matrix that forms first differences, so that if u = Dz =

∆z, ui = zi − zi−1, the objective function can be written as S2 = ||y− z||2 +
λ||Dz||2, with an explicit solution that follows from the linear system (I +
λD′D)ẑ = y. The system is very sparse, which can be exploited in Matlab

or R (we use the package spam), leading to computation times that increase
linearly with the length of the data series.

We propose a simple, but effective, algorithm to minimize Sq, using it-
erated weights in an adapted Whittaker smoother, borrowing from Schloss-
macher (1973). It is clear that |a|q = a2|a|q−2, for any number a. If we do not
know a itself, but an approximation ã, then |a|q ≈ a2|ã|q−2. Using this rela-
tion, we approximate |zi − zi−1|q by vi(zi − zi−1)

2, with vi = |z̃i − z̃i−1|q−2. If
V = diag(v), the system to be solved becomes (I + λD′VD)ẑ = y. This gives
a new approximation to the solution from which new weights are computed.
These steps are iterated until convergence.

The function we try to optimize is non-convex, but with decent starting
values optimization is effective. However, to improve numerical stability
and reduce the number of iterations, we modify the weights somewhat: vi =

[(z̃i− z̃i−1)
2 + β2](q−2)/2, where β is a small number, of the order of 1/10000th
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6. Zero-norm segmented smoothing

of the expected size of the jumps. If β is set not small enough, rounding will
occur near the jumps.

Cross-validation for a good λ

A useful property of the smoother is that it automatically interpolates val-
ues for missing observations if we introduce proper weights. The objective
function is modified to

Sq =
m

∑
i=1

wi(yi − zi)
2 + λ

m

∑
i=2
|zi − zi−1|q (6.4)

For a missing, or left-out, observation we set wi = 0; all other weights are set
to 1. Smoothly interpolated values for z will be computed automatically. The
system to be solved in each iteration becomes

(W + λD′VD)ẑ = Wy,

with W = diag(w).

We exploit this property in cross-validation (CV) to find the optimal smooth-
ing parameter λ. We leave out the even observations, by setting their weights
to zero. We then compute

CV =
√

∑
i
(1− wi)(yi − ẑi)2

for a series of values of λ (a linear sequence for log λ) and search for the
minimum of CV. This simple cross-validation scheme works well in practice.

Notice that the value of λ that minimizes CV should be doubled when
smoothing the complete data. The value of ∑m

i=1 wi(yi − zi)
2 is close to half

that of ∑m
i=1(yi − zi)

2, while the penalty contains all elements of z and so will
have approximately the same value, whatever the weights.

Applying odd/even cross-validation is effective, as is illustrated in Fig-
ure 6.3. For the cross-validated fit values we observe a clear minimum (top
panel), while the smoothed result (bottom panel) looks adequate too, when
judged visually.
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Figure 6.3: Odd-even cross-validation for finding an optimal λ. The selected λ is indi-
cated in the top panel by the vertical broken line. The bottom panel shows
data using (double) the selected λ against the raw data. The doubling is
needed to compensate for leaving out half of the data.

We don’t want to overstate the importance of cross-validation and opti-
mal smoothing in the present application. Our primary goal is visualization
and we expect that the user will play with λ when exploring data. The “opti-
mal" value of λ should only be considered an advice. Because the necessary
computations take little time on a modern PC, interactive use is possible with
attractive speed.

In Section 3 we compare the classification performance of our smoother
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6. Zero-norm segmented smoothing

with that of VEGA, using cross-validation to select λ.

Convergence behavior

The objective function of the smoother is non-convex, because of the L0 norm
in the penalty. Hence there is no guarantee that local minima do not exist,
nor that we will always reach a global minimum. Yet in our experience the
results make a lot of sense when inspected visually. So even if a solution
might not be optimal — and we have no practical means to decide on that —
it can be very useful. In this section we present some details on convergence
behavior, following the iterations of smoothing with the adaptive weights in
the penalty.

Figure 6.4 presents results for a data set with relatively little noise. They
were obtained from the VEGA website (Morganella et al., 2010). We smooth
with λ = 0.2 and show the current estimate of the solution z at five iteration
steps. In the first iteration, all weights, v, in the penalty are equal to 1.
So effectively we have a light Whittaker smoother. After the first iteration
the adaptive weights take effect. As can be seen, after five iterations the
final result has almost been reached. The (logarithms) of the change in the
solution from one iteration to the next are shown in the lower right panel.
The changes are computed as the maximum of the absolute values of the
differences.

In this example sufficient convergence has been reached quickly, certainly
for visualization purposes. In our experience 20 to 40 iterations is typical.
Figure 6.5 shows a noisier data set (also from VEGA), where λ = 0.5. Conver-
gence is slower there.

Segmented scatterplot smoothing

A fast smoother for scatterplots was introduced in Eilers & Goeman (2004).
The principle is to first compute a two-dimensional histogram on a large
grid (say 100 by 100 bins) and to smooth first the columns and then the rows
with a Whittaker smoother having a slightly changed roughness penalty. In
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Figure 6.4: Illustration of convergence behavior in zero-norm smoothing with little
noise. The data are simulated (VEGA package) and contain relatively little
noise. All panels, except the lower-right one, show intermediate solutions,
at the iteration numbers as indicated in the titles of the panels. The lower
right panel shows the largest absolute change in the solution at each iter-
ation. The smoothing parameter is set to λ = 0.2.

order to ensure positive values in the histogram, a combination of a first and
second-order penalty is used. If y represents one column of the histogram,
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Figure 6.5: Illustration of convergence behavior in zero-norm smoothing with mod-
erate noise. Illustration of convergence behavior. The data are simulated
(VEGA package) and contain relatively much noise. All panels, except
the lower-right one show intermediate solutions, at the iteration numbers
as indicated in the titles of the panels. The lower right panel shows the
largest absolute change in the solution at each iteration. The smoothing
parameter is set to λ = 0.5.

that will be smoothed to get z, the objective function is:

Q = |y− z|2 + λ2|D2z|2 + 2λ|D1z|2. (6.5)

88



6.2. Statistical methods
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Position on chromosome (Mb)

s
 =

 lo
g(

b
a

)

0 16 39

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Allele imbalance scatterplot, chromosome 9

Position on chromosome (Mb)

r 
=

 lo
g(

b
a

)

0 16 39

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 16 39

Allele imbalance scatterplot, chromosome 9

Position on chromosome (Mb)

r 
=

 lo
g(

b
a

)

Figure 6.6: Comparing normal and segmented scatterplot smoothing. Top panel
shows the raw observations. Middle panel shows straightforward smooth-
ing: no segmentation. Bottom panel shows segmented smoothing: clear
segments.
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6. Zero-norm segmented smoothing

Notice the combinations of a first (D1) and second order (D2) difference
penalties. A (banded) linear system of equations results:

(I + λ2D′2D2 + 2λD′1D1)ẑ = y. (6.6)

The lower panel of Figure 6.6 shows results obtained with this smoother,
when applied to a scatterplot of (log) allelic ratio against chromosomal po-
sition. The raw observations are shown in the top panel. This would be a
useful display if it showed sharp segment edges like those we obtained for
copy numbers, while maintaining smoothness in the other direction.

For the segmented scatterplot smoother, we keep the original penalty for
the allelic ratio, but for the position we use a penalty based on the L0 norm of
first differences. It will not work to just use that penalty for each row of the
histogram: we get segments, but they will generally be in different places for
different rows. To avoid it we use the same weight matrix V in the penalty
λ|D′1VD1|, but now compute it as the summary of all rows:

1/vj = ∑
i
(zij − zi,j−1)

2/m + β2,

with m the number of rows and β again a small number to increase stability
and speed of convergence. Figure 6.6 (bottom panel) shows a result obtained
in this way. Now we get sharp segment boundaries.

A typical vector v consists mostly of large numbers and a few small ones.
The latter indicate the segment boundaries and these values have been used
to enhance the figure with vertical broken lines at the boundaries.

Once the segment boundaries have been found, it makes sense to plot
histograms of the (log) allelic ratio for each segment separately. They are
shown in Figure 6.6 and 6.8. In addition we fit gaussian mixtures using the
package mclust (Fraley & Raftery, 2007). The centers of the mixture compo-
nents can be used to summarize results and to help the user in interpreting
the observed genomic changes. We do not discuss that here, because we feel
that that would stray us to far away from our primary goal, visualization.

Like the scatterplot smoother of Eilers & Goeman (2004), we see the seg-
mented scatterplot smoother only as a visual aid. We did not try to develop
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6.3. Simulations

an algorithm for automatic choice of the amount of smoothing, nor did we
try to simulate realistic allelic imbalance scenarios to evaluate performance.

6.3 Simulations

A method for visual segmentation is less useful when it remains unclear
whether a correct segmentation is found. In this section we compare perfor-
mance of our smoother with that of VEGA on CNV segment detection.

We use again the simulated data that are provided by Morganella et al.
(2010). It contains simulated CNV data for 22 chromosomes, for each of
which there are 1000 data points generated. For each chromosome random
mutations were generated with a segment length varying between 11 and 25
points. Gain or loss properties for each segment were also randomly selected.
Additionally, these data are provided with 10 levels of noise
(σ ∈ {0.0, 0.1, . . . , 0.9, 1.0}), where σ = 0 indicates perfect data. We will use
these as a reference for segment recovery.

Comparisons between the VEGA method and the proposed L0 norm smoother
are made in terms of precision, recall and associated F-scores. All of these re-
quire True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate
(TNR) and the False Negative Rate (FNR). Hits compared to the noise-free
data are assessed per individual data point. We define a deviation as at least
1% of the largest difference between the smoothed signal and the baseline
normal signal (here: 0). A match is defined as a single observation for which
such a deviation from zero (0) was found in both VEGA and ZEN.

Precision (positive predictive value) is defined as

P =
TPR

TPR + FPR
.

Recall (sensitivity) is defined as

R =
TPR

TPR + FNR
.

F-scores (harmonic mean, interpreted as a weighted average of precision
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6. Zero-norm segmented smoothing

Table 6.1: Comparing ZEN (L0) and VEGA on (P)recision, (R)ecall and (F)-value, using
simulated data.

ZEN VEGA
σ P R F P R F
0.0 1.000 1.000 1.000 1.000 1.000 1.000
0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 0.999 1.000 0.999 1.000 1.000 1.000
0.3 0.976 0.992 0.984 0.989 0.993 0.991
0.4 0.808 0.938 0.864 0.911 0.953 0.931
0.5 0.797 0.912 0.848 0.867 0.916 0.888
0.6 0.635 0.821 0.709 0.675 0.770 0.706
0.7 0.619 0.797 0.687 0.669 0.794 0.721
0.8 0.601 0.818 0.687 0.630 0.785 0.685
0.9 0.530 0.614 0.536 0.469 0.741 0.565
1.0 0.485 0.593 0.514 0.465 0.752 0.559

and recall) are given by the combination of P and R:

F = 2
P× R
P + R

.

We present results for method comparison on the simulation data, cross-
validation effectiveness and convergence. They are summarized in Table 6.1.
Note that for the F-scores, 1 = best performance and 0 = worst performance.
The best performing method is indicated in bold font. It can be seen that
for no and very little amount of noise (0.1), performance for the L0 norm
and VEGA are equivalent. Increasing the noise levels VEGA seems to perform
slightly better. For noise level 0.6, VEGA wins for precision, but not for Recall
and F-score. For even higher levels of noise, there is no clear winner. How-
ever, these levels of noise are not very interesting, since real-life data of this
quality would not be analyzed.
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6.4. Applications

6.4 Applications

In this section we discuss two applications: smoothing of CNV signals (as in
the above study) and scatterplot smoothing combined with segmented mix-
ture estimation. The data were obtained in the Erasmus University Medical
Center and concern several types of brain tumors (Bralten et al., 2010). In the
examples below, we use tumor samples named GBM 139.CEL, GBM 180.CEL,
GBM 203-2.CEL and GBM 254.CEL. Since this research focuses largely on chro-
mosome 9, we only use signals on this chromosome in our illustrations.

Figure 6.7 shows smoothing of copy number variations in GBM 139.CEL,
using odd-even cross-validation to select a good λ. There is not much to
say about this result: the segmentation conforms to our visual impression of
what the data tell us. Remarkable is the rather narrow segment at 28 MB that
is detected.

ZEN smoothing of the allelic ratio in GBM 139.CEL is shown in Figure 6.8.
Most segment boundaries, but not all, correspond to those found in the copy
number signal.

Although ZEN performance was already addressed, we also compared
our copy number results to results from dedicated copy number software,
CNAG (Nannya et al., 2005). In Figure 6.9 we show copy number maps for
selected interesting regions on chromosome 9, and we show the correspond-
ing segmented allelic imbalancemap for the four samples mentioned above.
In Figure 6.10 it shows that CNAG provides equivalent results on the same
selected regions, but with less noise in the smoother. Therefore, we argue
that ZEN outperforms VEGA.

The adaptive weights in the penalty are small where jumps occur, and
so they indicate segment boundaries. This was done to produce Figure 6.11,
where histograms and estimated normal mixtures are shown. The package
mclust was used to estimate the mixtures. It chooses the number of compo-
nents (which we limited to maximally four) based on BIC. Apparently the
two components of the mixture in the top-right panel have longer tails than a
normal distribution, and mclust uses the sum of a narrow and a wide normal
distribution to approximate them.
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Figure 6.7: ZEN smoothing of CNV in tumor data (sample GBM139.CEL). Top panel:
cross-validation profile and location of minimum (at broken vertical line).
Bottom panel: data and fit, using λ = 0.08 (double the value indicated by
cross-validation, to correct for leaving out half of the data).

6.5 Discussion

Smoothing algorithms generally have two components: one to measure the
fidelity to the data, the other a penalty on roughness of the result. For the
first term typically a sum of squares or of absolute values of residuals (i.e.
data minus fit) is being used. To measure roughness, the size of the differ-
ences between adjacent fitted values is an effective and attractive choice. The
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Figure 6.8: ZEN smoothing of log allelic ratio (sample GBM 139.CEL). The vertical
broken lines indicate the segment boundaries, as computed from the adap-
tive weights in the penalty. The smoothing parameters (λ) are 0.01 for
position and 0.5 for log allelic ratio.

way these differences are being expressed has a large influence on the shape
of the fitted curve. Eilers & DeMenezes (2005) showed that a variant of the
Whittaker smoother, using the L1 norm in the penalty on differences, is at-
tractive for copy number smoothing, because it can deliver constant segments
with relatively sharp jumps in between.

We propose to use the L0 norm, essentially the count of the number of
jumps. To make computation practical, we also present an algorithm based
on iteratively re-computed weights in a sum-of-squares penalty. This turns
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Figure 6.9: Examples of smoothed CNV and allelic imbance in clinical samples, using
ZEN. First and third row show CNV profiles, second and fourth rows
show the matching segmented allelic imbalance plots.

out to be effective: very sharp jumps between segments are obtained.

Because our algorithm can automatically interpolate missing data, it is
possible to use a simple odd-even scheme for cross-validation, to automati-
cally choose the amount of smoothing. However, we propose cross-validation
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6.5. Discussion

Figure 6.10: Examples of smoothed CNV in clinical samples, using CNAG software.
Panels show CNV profiles for the samples mentioned in the panel titles.
The smoothed signals show unexepected jumps (GBM180) and unclear
level overestimations (GBM203-2).
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Figure 6.11: Histograms and estimated normal mixtures for the log allelic ratio. Esti-
mations are separate for each of the five segments that were derived from
the scatterplot smoother in Figure 6.8.

only as a guide to find a good ball park for the penalty parameter, because
fast and easy visualization is our main goal.

We use cross-validation-based smoothing to compare classification per-
formance in a little contest with VEGA, using the simulated data that come
with that software. The performance of our smoother is quite close to that of
VEGA. This should give users the confidence that the segments they get are
realistic ones.
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6.5. Discussion

The objective function of the proposed smoother is non-convex. In princi-
ple this is a cause for worries: we can never be sure that the global minimum
was found. In practice we have seen that we always get very good results,
as judged by visual inspection. To give some insight, we presented a few
illustrations of how intermediate results converge towards the final solution.

A plot of copy numbers along a chromosome contains only one “curve"
as a noisy band with jumps. A plot of allelic imbalanceis different: at any
position from one to three bands can be present. Jumps are present too
and there the number of bands as well as their positions can change. The
smoothing algorithm for copy numbers will not work on such data. Instead
we modified the scatterplot smoother of Eilers & Goeman (2004), which is
based on smoothing rows and columns of a two-dimensional histogram by
penalized least squares. One of the penalties was changed, to accept itera-
tively recomputed weights, like in the copy number smoother. The weights
are based on summaries of the columns of the histogram, to have the same
segment boundaries in all rows. The approach is rather ad-hoc, as there is
no explicit objective function to minimize, but the results look attractive and
computation is fast, allowing interactive use.

Segmented smoothing of allelic imbalance can indicate boundaries that
are not visible in copy numbers. An example is copy number-neutral loss of
heterozygosity. It makes sense to study histograms of the (log of the) allelic
ratio for each separate segment in the plot. In addition to histograms we also
propose fitting of mixtures of normal distributions. The package mclust gives
good results.

In summary, we believe that we have extended the toolbox for explo-
ration of copy number variation and allelic imbalance with attractive new
instruments. All computation was done in R (R Development Core Team,
2012) and the programs are available from the first author on request (Rippe
et al., submitted).
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7The SCALA software suite

The SCALA Suite for Single SNP chip analysis provides functions to convert raw

CEL-files to Rdata objects, one for each chip. Furthermore, given a set of high

quality arrays, universal calibration parameters can be computed and applied to

new arrays. Genotypes are called on a single chip with a dedicated function.

Maps of copy numbers and allelic imbalance are also implemented for single

arrays.

7.1 Introduction

SNP (Single Nucleotide Polymorphisms) arrays have two major applications:
genotyping of DNA and studying copy number variations (CNV) and allelic
imbalance. Here we describe integrated R software called SCALA designed
for this purpose. It has a unique combination of properties: it can perform
CEL file conversion, genotyping, copy number mapping and signal calibra-
tion. After using SCALA no further software is needed. In the remainder of
this Introduction we describe the main components of SCALA in more detail.

Genotyping

To estimate all SNP genotypes in a single chip, semi-parametric log-concave
mixtures were proposed in Rippe, Eilers & Meulman (2010). One reason is
that the latter only works effectively on array sets of reasonable size, in order

This chapter is an adapted version of the submitted article:
Rippe, R.C.A., Eilers, P.H.C. and Meulman, J.J. (2012). SCALA: a software suite for single chip
SNP calibration, genotyping and copy number mapping, submitted for publication.
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7. The SCALA software suite

to obtain stable estimates. Furthermore, low minor allele frequencies pose
additional problems. The above is circumvented when genotypes are called
for a single chip. Proposals for small sample sets have been made, also us-
ing mixtures (ALCHEMY by Wright et al., 2010), as well as a combination
of single and multi-array analysis (MAMS by Xiao et al., 2007). Building on
their arguments we have developed an algorithm that performs single array
genotyping. It is based on a two-dimensional mixture of log-concave den-
sities (along the lines of Eilers & Borgdorff, 2007), fitted on 2-dimensional
histograms (Eilers & Marx, 2007). To estimate a mixture with three smooth
components, we use the familiar EM (expectation-maximization) algorithm.
Two steps are repeated until convergence: 1) split the counts y into three
vectors of pseudo-counts, proportional to the current estimate of the mix-
ture components; 2) apply smoothing to the pseudo-counts. Decent starting
estimates for the components are needed. In Rippe et al. (2010) genotype
calls from a multi-array method (CRLMM) and from our single-array method
(SCALA) are compared to a set of consensus genotypes from HapMap. The
number of agreements and differences in terms of homo- and heterozygous
calls showed that SCALA can be used to call genotypes efficiently and effec-
tively. Even SNPs that were not genotyped in HapMap can be genotyped
with reasonable certainty using a single chip. The above model is imple-
mented in the SCALA.genotype function.

Visualization of copy numbers and allelic imbalance

DNA in tumors can show a variety of deviations like allele copy number vari-
ation (CNV) and allelic imbalance. SNP arrays provide a fluorescence signal
for each allele, both of which are assumed to be proportional to the number
of both alleles. Sums (log(a + b)) and ratios (log(b/a)) of these signals can
be plotted, on logarithmic scales, versus positions on chromosomes, to give
a useful graphical representation (like in DNACopy, 2010; Golden Helix, 2011).
These plots can be enhanced in several ways. Here we present an R program,
called SCALA.Map, for this purpose. The program offers smoothing of CNV
and allelic imbalancesignals.
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7.2. Functions and implementation

SNP signal intensity calibration

SNP fluorescence signals are not perfect: they contain “noise”. This noise ap-
pears not to be random, implying that it can be modeled in order to correct
for it and so calibrate the intensity signals. A remarkable and useful prop-
erty of fluorescence signals from all types of platforms is that they contain a
specific structure. First, there is the (trivial) difference between arrays, which
most readers are familiar with. However, a similar pattern also holds for indi-
vidual SNPs over sets of arrays, and this is what we exploit here. Given a set
of called genotypes for the current array, one can obtain calibration parame-
ters for arrays and SNPs. These parameters need to be estimated only once
for a given chip type, based on a set of (high quality) arrays. Once a set of
calibration parameters has been estimated, it can be used to calibrate the sig-
nals in any new individual array, without the need of knowing the genotypes.
We estimate α using a set of high quality samples of normal tissue. Estima-
tion of these parameters is implemented in the function SCALA.calibrate.
The calibration is very effective in copy number mapping, but it can also be
used in genotyping. The latter is only offered as an experimental function;
assessment has yet to be performed.

Functions and a graphical user interface

The modules for file conversion, genotyping and calibration are accessed via
regular function calls. Copy number mapping is done through a custom
graphical user interface, which controls the plot settings as well as export
options.

7.2 Functions and implementation

In this section we describe the main function in the software suite. We start
with CEL files conversion, then discuss calibration, genotyping, and finish
with a graphical interface for copy number estimation. Supporting data files
and subfunctions are placed in the relative folder locations '../Maps' and
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7. The SCALA software suite

'../Calibration' (for file conversion), and '../Support Files' (for geno-
typing and mapping).

File conversion: SCALA.convert

The software is built around an object of class SCALA, which is a conversion
of a raw CEL file to aggregated fluorescence signals for each allele. The
conversion function is specific for each chip type, but the result is generic.
Currently supported platforms are Affymetrix (100k Hind and Xba, 250k
NSP and STY, and SNP6.0) and Illumina (Infinium). For each Affymetrix chip
type, probe maps from the corresponding BioConductor packages are used
to match the probes for signal aggregation. A call to the function converts
all CEL files of the same type (Affymetrix 250k NSP) in the current working
folder. It is used as

> SCALA.convert(datatype=[type], calibrate=[T/F]),

readfolder=getwd(), savefolder=getwd() )

Possible data types that are currently implemented are Affy50kHind,
Affy50kXba, Affy250kNSP, Affy250kSTY and AffySNP6.0, which are self-
explanatory. For successful conversion, if SCALA.convert is located in folder
X:/, then the conversion maps should be placed in X:/Maps. Note that these
files need to be of the same chip type; here all files are Affymetrix 250k NSP
chips. Including other chips will provide errors.

For Illumina arrays we have a function that takes the X-raw and Y-raw

columns. To use these arrays, the X and Y components in the SCALA ob-
ject described below should be replaced with the X-raw and Y-raw columns
from an Illumina data file. The chromosome allocation and position can be
replaced similarly.

Genotype calls are all set by default to NA after file conversion but they can
be added from any other source like HapMap, CRLMM or BirdSeed. Geno-
types from HapMap have to be matched by SNP ids. This is because not all
SNP ids in a sample are genotyped in HapMap with an identical id. There-
fore, adding HapMap genotypes is also not (yet) automated. The required
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format is a vector having AA=1, AB=2 and BB=3 for the genotype for each
SNP, with SNPs and genotypes in the same order.

Precomputed calibration sets are also provided for a number of platforms,
so that calibration can already be performed at the file conversion stage.
However, it is also possible to convert a custom set of arrays, add genotypes,
and then compute the calibration parameters from this new set with the func-
tion in section 7.2 and correct the signals manually.

Estimating SNP genotypes: SCALA.genotype

After file conversion genotype information is not available (NA), but can be
obtained with the provided calling function. It requires a number of pa-
rameters. First, the number of bins (in both horizontal (xbin) and vertical
(ybin) direction) for the histograms smoother has to be chosen. Second, the
smoothing parameter λ has to be set, to determine the amount of smoothing
in the histogram. Third, the initial vertical split levels for the three mixture
components have to be set. These levels are defined in terms of the ratio of
the number of vertical bins. If in Figure 7.3 the number of vertical bins is set
to 100, the split levels for the left panel could be [0.45, 0.55] leading to splits
at bin 45 and 55. Similarly, for the right panel initial split levels might be
[0.50, 0.70]. The number of iterations is limited by nit and the convergence
criterion is set by crit. After invoking the function, the NAs in calls are
replaced with real genotypes by

> SCALA = SCALA.call(data=[name-of-CELfile], model=[],

plot=[T/F], save=[T/F], xbins=[val],

ybins=[val], lambda=[val], split1=[val],

savefolder=[])

As stated before, genotypes can also be added from another source (e.g.
HapMap), but currently no function is provided to do so. If done manu-
ally, make sure that the ordering of the external genotypes matches the SNP
ordering in the object. The column SCALA$rsid can be used for this purpose.
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Figure 7.1: Graphical User Interface for SCALA.map.

Copy number mapping: SCALA.map

The mapping function set provides a novel way to combine visualization as
well as analysis of both CNV and allelic imbalanceat the same time. The pro-
gram is controlled solely by a graphical user interface (Figure 7.1) based on
RPanel (Bowman et al, 2007). The GUI provides easy access to like chromo-
some selection, threshold signal filtering, the amount of L0 smoothing, the
type of gene labeling (e.g. taken from Ensembl or BiomaRt) to be used and
some L0 detection bandwidths and thresholds. These options can be saved
to a(n .Rdata) file. It also provides the option to save the "tuned" image to
PDF with a filename chosen by the user. Furthermore, it exports signals and
detection results for all SNPs and genes located on the detected chromosome
to a comma-separated table.
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Input and output format

The mapping program takes a SCALA object as input. The main components
of the object are shown below:

$ meta :List of 6

..$ fname : chr "name-of-CELfile"

..$ readpath : chr "path-to-readfiles"

..$ savepath : chr "path-to-savefiles"

..$ convertDate: chr "yyyy-mm-dd hh:mm:ss"

..$ calibrated : logi FALSE

..$ callDate : logi NA

$ chr : chr [1:numberofSNPs] "1" "1" "2" "3" ...

$ pos : int [1:numberofSNPs] 101 102 103 104 ...

$ rsid : chr [1:numberofSNPs] "rsid1" "rsid2" "rsid3" ...

$ X : int [1:numberofSNPs] val1 val2 val3 val4 ...

$ Y : int [1:numberofSNPs] val1 val2 val3 val4 ...

$ calls: logi [1:numberofSNPs] NA NA NA NA NA NA NA ...

- attr(*, "class")= chr "SCALA"

Settings are stored in an .controls object can be saved to an .Rdata file. These
settings can be loaded upon GUI startup to recreate exactly the same plot as
before, by using

> SCALA.map(controls = [settings_file])

The exported results contain gene-name, chromosome, start and stop lo-
cation, a detection indicator (indicated by 0 or 1) that shows whether or not
the gene was detected (by either the CNV or imbalance smoother), the ac-
companying L0 values for the CNV and imbalance signal for each SNP as
well as the smoothed CNV and imbalance values for each gene. Filenames
for exported results as well as for the created PDF plot are user-controlled. A
resulting plot window is shown in the example in section 7.3.
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Graphical representation

At GUI startup, the plot window is not created immediately; the GUI starts
with either the default settings or previous settings as specified by the user.
The PLOT: Create map button is used to create and update the plot window
after changing settings. The title contains the name of the selected sample
and current chromosome by default, but it is highly adjustable via a separate
window that is called from the menu. An partial plot example is included
in the GUI, in which the main controls and their effect are illustrated. From
left to right, the first panel shows the L0 values for the CNV signal based
on the data shown in the adjacent panel. In the CNV signal panel, the full
CNV signal is given along with the L0 smoother results. In the middle panel,
selected gene names are shown for the chromosomal region(s) that show(s)
abnormalities. The names can be shown for either the CNV or imbalance
signal. To the right of the column with gene names, the imbalance signal is
given (with an L0 detection band), followed by the accompanying smoother
based on the selected data points. Regions of aberrations are detected relative
to a threshold value (dotted line) that is set by the user, as well as the level of
smoothing and penalty norm power (default: p = 0) in the L0 computations.

Estimating calibration parameters: SCALA.calibrate

The sets of calibration parameters based on a chosen number of arrays (lo-
cated in the current working folder) are obtained (after file conversion) using

> params = SCALA.global(filefolder=getwd(), savefolder=getwd(),

filename=[nameofsavefile], kappa = 1e-8))

with kappa a small additive term to avoid singularity. The α (and β)
vectors can be used to calibrate the original fluorescence signals.

7.3 Illustrative examples

In this example we use 8 high quality reference arrays from Affymetrix
and one brain tumor file from the Erasmus Medical Center, Rotterdam, The
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Netherlands (Bralten et al., 2010). The first are used to obtain calibration
parameters, to be applied to the second. We start by setting the R working
directory: > setwd("D:/SCALASuite").

Obtaining calibration parameters

Place the Affymetrix 250k NSP control files in the folder "D:/SCALASuite/01
raw/" and create the folder "D:/SCALASuite/02 raw/". Next we convert all
CEL files in the first folder.

File conversion

We specify the chip type, read and save folder, as well as that no calibration
should be applied; at this stage, calibration parameters are not yet available.

> source("SCALA.convert.r")

> SCALA.convert(datatype = 'Affy250kNSP', calibrate = F,

readfolder = paste(getwd(),'/01 raw',sep = ""),

savefolder = paste(getwd(),'/02 arrays',sep = ""))

Converting ctr aff 1.CEL
...

Converting ctr aff 8.CEL

Now that these files are converted and in stored R format, the next step
is to call the genotypes for each array. After genotyping, it is possible to
estimate the calibration parameters.

Genotype calling

A list of all converted files is obtained from the save directory defined above.
Next the genotyping function is invoked. The semi-parametric estimation
procedure is used, mixture plots for each chip are not requested, and the
histogram is built from 100 by 100 bins.
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> source("SCALA.genotype.r")

> fnames = list.files(path=paste(getwd(),"02 arrays",sep=""),

full.names=T)

> for (i in 1:length(fnames)) {

load(fnames[i])

scala = SCALA.genotype(scala=scala, model="s", plot=F, save=T,

xbins = 100, ybins = 100, lambda = 10,

nit=50, crit=1e-4, savefolder =

paste(getwd(),"/02 arrays",sep=""))

}

Calling ctr aff 1.CEL
...

Calling ctr aff 8.CEL

The (partial) result for the first of the 8 Affymetrix arrays shows that
indeed the genotypes (and their cluster probabilities) have been added to the
object and file, as well as the genotyping date.

> str(scala)

List of 8

$ meta :List of 7

..$ fname : chr "ctr aff 1.CEL"

..

..$ callDate : chr "2011-09-12 22:16:46"

..

$ calls: num [1:262264] 3 2 3 1 2 2 3 3 3 1 ...

$ W : num [1:262264, 1:3] 1.96e-10 2.15e-04 2.57e-08 1.00 ...

- attr(*, "class")= chr "SCALA"

Calibration function

Now that genotypes are available, we estimate the calibration parameters for
this chip type by

> source("SCALA.calibrate.r")
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> params = SCALA.calibrate(

filefolder=paste(getwd(),"/02 arrays",sep=""),

savefolder=getwd(),

filename="scala.global.Rdata",

kappa=1e-8)

The generic result (object) has the following structure:

> str(params)

List of 7

$ celfiles: chr [1:numberofFiles] "name-of-CELfile" ...

$ alphaX : num [1:numberofSNPs] num1 num2 num3 ...

$ alphaY : num [1:numberofSNPs] num1 num2 num3 ...

$ betaX : num [1:numberofFiles] num1 num2 num3 ...

$ betaY : num [1:numberofFiles] num1 num2 num3 ...

$ gammaX : num [1:3] num1 num2 num3

$ gammaY : num [1:3] num1 num2 num3

We then extract and store the calibration parameters for later use:

> alphaX = paramsalphaX; alphaY = paramsalphaY
> save(alphaX, alphaY, file = paste(getwd(),"/Calibration/",

"Affy250kNSP.Rdata",sep="")

Copy numbers in a new glioblastoma array

The vectors just saved will be applied to a tumor tissue chip.

> SCALA.convert(datatype = 'Affy250kNSP', calibrate = T,

readfolder = paste(getwd(),'/01 raw',sep = ""),

savefolder = paste(getwd(),'/02 arrays',sep = ""))

Converting GBM 139.CEL
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Figure 7.2: Example of a SCALA.map image. On the far left, it shows the CNV L0
signal smoother and to its right the raw CNV signal. The middle part
shows the selected gene names. The rightmost parts show the signal for
allelic imbalance and its L0 signal smoother. Here, SCALA.Map is set here
to detect aberrated regions on the CNV signal, identifying one problematic
region and the genes it contains.

After file conversion, we start the GUI with predefined settings (in
SCALA.map-controlsGBM139.Rdata'). To obtain the plot window (and im-
plicitly perform all computations), click the appropriate button.

> source("SCALA.map.r")
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> SCALA.map(controls='SCALA.map-controlsGBM139.Rdata')

Selections: .. done!

Plotting: .. done!

Computations: .. done!

The resulting plot for chromosome 9 is given in Figure 7.2. It shows a
small CNV region that has less than 2 alleles present. 27 genes are contained
in that region of chromosome 9. The white space is the centromere. A similar
detection can be performed on the imbalance signal by simply changing the
GUI options to this purpose. Saving the settings used to obtain the current
plot can be done by clicking the "save settings" button. Exporting the detec-
tion show in the plot can be either per gene or per SNP, depending on the
selected button. For button location, see Figure 7.1.

7.4 Technical model details

Semi-parametric genotyping

Let Y = {yih} be an n1 × n2 matrix of counts in a two-dimensional n1 × n2

histogram. The center of bin (i, h) is given by (ui, vh). The expected values
are modeled by sums of tensor product B-splines. Two bases are computed,
B1, with c1 columns, based on u and B2, with c2 columns, based on v. The
bases are combined with a c1 × c2 matrix Θ of coefficients, and the matrix of
expected values is computed as

M = exp(B1ΘB′2). (7.1)

A penalized Poisson log-likelihood is then optimized. The penalty is com-
plex, because both rows and columns of Θ are penalized. If ||X||F indicates
the Frobenius norm of the matrix X, i.e. the sum of the squares of its ele-
ments, the penalty is

Pen = λ1||D1Θ||F/2 + λ2||ΘD′2||F/2, (7.2)

where D1 and D2 are matrices of the proper dimensions (c1 − 3 × c1 and
c2 − 3× c2) that form third differences.
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7. The SCALA software suite
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Figure 7.3: Raw data with estimated smooth densities. Left panel: a typical (sym-
metric) Affymetrix array. Right: a typical (asymmetric) Illumina array.
Contours, normalized to 1, are overlayed for [0.02,0.05,0.1,0.2,0.5,0.8] (left)
and [0.01,0.02,0.05,0.1,0.2,0.5,0.8] (right).

The mixture components give three expected values for bin (i, h) of the
histogram: µih1, µih2 and µih3. From these numbers follow, after division by
their sum, three membership probabilities. The largest of the three, which
we indicate by p̂ih points to which cluster all the observations in the bin
should be assigned. The result of this algorithm is depicted in Figure 7.3,
where contours of the fitted densities are shown for an Affymetrix (left) and
Illumina (right) array.

In Rippe et al. (2010) genotype calls from a multi-array method (CRLMM)
and from our single-array method (SCALA) are compared to a set of consen-
sus genotypes from HapMap. The number of agreements and differences in
terms of homo- and heterozygous calls showed that SCALA can be used to
call genotypes efficiently and effectively. Even SNPs that were not genotyped
in HapMap can be genotyped with reasonable certainty using a single chip.
The above model is implemented in the SCALA.call function.
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7.4. Technical model details

Copy number signal smoother

To obtain smooth estimates of the data, a method derived from Eilers and
DeMenezes (2005) is applied. In Rippe et al. (2012b), the algorithm of Eilers
and DeMenezes has been improved in at least two ways: 1) a least squares
measure of fit to increase sensitivities and 2) and an L0 norm penalty to
reduce the number of jumps. The formal model is given in (7.3).

Sq =
m

∑
i=1

(yi − zi)
2 + λ

m

∑
i=2
|zi − zi−1|q (7.3)

with y the original data and z the smoothed signal. λ is again a tuning
parameter that controls amount of smoothness. Furthermore, q can be any
number between 0 and 2. Here, q = 0, essentially a penalty on the number
of non-zero difference between neighboring elements of z, while in Eilers &
DeMenezes (2005), q = 1.

For CNV signal smoothing all observations are used. For allelic imbalance
a selection of observations within a user-defined bandwidth is used.

SNP signal intensity calibration

Consider one allele. Assuming that SNP i has a specific intensity level ai,
and that array j has a normalization factor bj, a reasonable model for the
intensity fluorescence signal is given by xij = aibjuij + εij, with i = 1, ..., m
and j = 1, ..., n and where uij represents the number of copies of the allele
(0, 1 or 2) and εij represents the error. We do not specify a distribution of ε.
Instead we will use signals on a logarithmic scale (base 10), with yij = log xij.
A similar model holds for the other allele.

For the moment we assume the genotypes to be given, so we can formu-
late a linear model:

yij = µ + αi + β j +
3

∑
k=1

γkhijk + eij. (7.4)

where µ is the grand mean, αi the level of SNP i, and β j the level of array j;
k indexes the genotype (1 = AA, 2 = AB, 3 = BB) and γk is a parameter for
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7. The SCALA software suite
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Figure 7.4: Calibration results for chromosome 1 in array NA06985 from the HapMap
CEU population. Left: signals before calibration. Right: signals after
genotype-free calibration. In the right panel, note the change in x-axis
range, after calibration.

genotype k. The genotypes are coded with the indicator array H = {hijk};
for each combination of i and j we have a 1 in the array cell that corresponds
to the genotype k, and 0 in the other cells. To make the model identifiable
we introduce the constraints ∑i αi = 0 and ∑j β j = 0. We call this the global
model, since all SNPs share the same genotype parameters γ.

Further theoretical and technical details on the implementation of model (7.4)
are discussed in Rippe et al., (2012a).

The α parameters that represent the levels of the SNPs are used to cali-
brate the intensities on a new array, by computing x∗ij = xij/10α

i . This is done
for each allele separately. Note that genotypes are not used, hence we call it
’genotype-free calibration’.

Figure 7.4 illustrates the results of calibration for chromosome 1 in an
Affymetrix 100k Hind sample (NA06985) from the complete CEU population,
retrieved from the HapMap database (HapMap Consortium, 2007). We show
the signal combination log(a + b) against log(b/a), for all SNPs in a single
chip. It is clear that a strong reduction of the ’noise’ is obtained.
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7.5. Discussion

7.5 Discussion

We have described a set of programs that perform signal calibration, geno-
typing and copy number mapping for individual SNP chips. In situations
with novel species and chips (Wright et al., 2010) this approach can be very
useful: the first available chip can be genotyped or inspected for copy num-
bers immediately.

When genotyping, the software uses a sum-and-ratio transformation (x =

log(a+ b) and y = log(b/a)) of the raw signals, before computing the smoothed
2D histogram. These transformations are hard coded. It can however be ar-
gued that other transformations can or should be used. With respect to the
horizontal axis, x = log(a× b) can be used, for example. We state that this
alternative doesn’t influence the genotype calls, since it only stretches the
observations in horizontal direction. Furthermore, this algorithm calls geno-
types for a whole chip (all chromosomes) at once. A discussion of genotyp-
ing individual chromosomes versus the whole genome is presented in Rippe,
Eilers & Meulman (2010).

SCALA.Map provides a method to map SNPs on their chromosomal posi-
tion both visually and statistically, using signals that indicate CNV and allelic
imbalance. It integrates visual analysis with L0 signal smoothers, which are
all user-controlled and very easy to use. Quantification of the CNV or al-
lelic imbalance regions is implicitly done via the L0 norm. Furthermore,
the software has several customization and export options. Intended addi-
tions and extensions are probability-based signal thresholding (i.e. to re-
move ’rubbish’ signal for low quality samples by taking only signals above
a user-defined threshold value into account). Cross-validation to determine
the optimal amount of smoothing as well as a segmented scatterplot (both
described in Rippe et al., 2012b)). are candidates for implementation. Fur-
thermore, in the same paper a method for segmented imbalance estimation
using segment-wise mixtures is proposed. We feel that this idea still deserves
further attention before final implementation.
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8Discussion

This chapter provides a short review of the preceding chapters and restates why

single array genotyping should be applied more widely. Furthermore, it ad-

dresses some open problems, illustrates new ideas in extension of the current

chapters and points out benefits of the proposed methods.

8.1 Advantages of single array analysis

One of the main themes in this thesis was the propagation to switch to single
array genotyping, as opposed to single SNP, multi-array genotyping, which
is the current common practice. The approach has a number of advantages,
which are summarized below.

Single array genotyping is fast and flexible, due to its semi-parametric
approach. It is insensitive to differences in sample size, and depends only
on user-chosen dimensions of the underlying histogram. The process is very
easy to monitor, since it requires tracking only one sample at a time.

Along the same lines, it also allows for better quality control, because the
overall level of the signals is an indication of data quality. Because quality
control is easy, the procedure is also highly suitable for use in development
of small series of chips, for example when devising new layout to research
“new” organisms. Furthermore, the procedure is readily available in open
source software, in the SCALA software suite.
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8.2 A short review

The theme of this thesis can be summarized in a few words: "better data
analysis for SNP arrays". The five main chapters present efficient and effec-
tive solutions to many problems that are encountered in practice. They are
reviewed concisely.

SNP platforms provide a variety of opportunities as well as challenges.
Fluorescence signals from these platforms have structural properties: over-
all fluorescence levels differ not just between arrays, but also between SNPs
within one array. The SCALA model, discussed in Chapter 2, contains pa-
rameters for estimating the systematic effects of SNPs, arrays and genotypes.
This large regression model is applied to both alleles separately, and delivers
a million parameters or more. However, due to its extremely sparse struc-
ture, a specialized semi-symbolic algorithm allows exact estimation in a very
short time. Model fit is highly adequate in terms of (standard deviation) of
residuals. Once the parameters of the model have been estimated, they are
used to eliminate the systematic effects, thereby greatly enhancing the qual-
ity of the fluorescence signals. We call this calibration and apply it in a later
chapter.

In Chapter 5 it is shown that the signal calibration is also useful for cor-
rection of genomic waves, visible as a systematic pattern when plotting flu-
orescence signals along chromosomes and smoothed. Calibration removes
these waves. Because the model used to obtain calibration parameters does
not model spatial autocorrelation, the results of calibration imply that wave
patterns in reality are not caused by not spatial autocorrelation. Furthermore,
noise in the signals is reduced. When compared to a dedicated wave correc-
tion model, NoWaves, performance is equal, but the proposed calibration is
more efficient. NoWaves requires reference samples for each array subject to
correction, while SCALA applies calibration parameters that were estimated
at some prior point in time.

One application of SNP fluorescence signals is to determine SNP geno-
types. In Chapter 3 we break with common practice and perform genotyp-
ing for all SNPs on individual arrays. A semi-parametric mixture model is
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estimated, with three component densities, one for each of the AA, AB and
BB genotypes. Comparison to results of SNP by SNP algorithms (CRLMM) as
well as a de-facto standard, as found on the HapMap archives, show equal or
better performance. Furthermore, where traditional methods do not provide
reliable estimates for all scenarios, i.e. low probabilities, for low Minor Allele
Frequencies (MAF) due to small or missing components, the estimates from
the single array model have higher probabilities and additionally provide
genotypes for SNPs that were not called by HapMap. The current model is
suitable for different platforms as well as chips with different densities.

Throughout the chapters, genotyping is based on a display of the ratio
of the A and B signals versus their sum (on logarithmic scales). Low signals
on the sum scale, as well as unclear separation between the three genotype
groups on the ratio scale indicate low(er) chip quality. Applying calibration
before single array genotyping, as described in Chapter 4, allows us to exploit
this knowledge to select only the SNP observations of the highest quality, by
a user-defined threshold. This results in higher genotyping probabilities for
the selected high-quality observations on low(er) quality arrays.

Another application of the fluorescence signals is the estimation of pro-
files of copy number changes. These changes generally occur in a segment-
wise manner along chromosomes. There is a large literature on smoothing
and segmentation of CNV signals, all with the goal to obtain the boundaries
of the segments and their levels. A new smoothing algorithm was presented
in Chapter 6. The model uses a so-called L0 penalty on jumps between
smoothed values and is therefore referred to as the Zero Exponent Norm,
ZEN. The result is an extremely sharp segmentation. A similar segmentation
also holds for allelic imbalance signals. However, it is not possible to apply
the same smoother to allelic imbalance signals, because several parallel data
bands occur. Therefore, we modified an existing scatterplot smoother to use
the L0 penalty in one direction and the L2 norm in the other, in order to get
sharp segmentation here too.

All models and algorithm are written in R, and are combined in a software
suite, The SCALA suite (Chapter 7). It provides both command-line functions
(for estimation and calibration, as well as genotpying) and a graphical user
interface for interactive (simultaneous) smoothing and plotting of CNV and
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Figure 8.1: An Illumina array with asymmetric signals before and after calibration.
Clusters are not condensed, but tails appear.

allelic imbalance.

8.3 Ideas for future research

Although the previous chapters have addressed specific questions and prob-
lems, there are still open questions and new directions to be explored. Below,
a few are discussed.

Calibration of asymmetric fluorescences signals

In Chapter 3, a method was developed for single array signal calibration. This
method was tested extensively for Affymetrix arrays, which have strong sym-
metric properties when looking at a single array. However, it was also men-
tioned that e.g. the asymmetric signals from the Illumina Infinium platform
was not evaluated due to problems with signal calibration. Unfortunately,
no explanation was provided as for why the calibration doesn’t work, except
for the fact that Illumina (but others too) uses two-color fluorescence, where
Affymetrix uses just one. It seems that the resulting wavelength differences
are at the heart of the asymmetry. In the near future we aim to provide more
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insight into the positive and negative aspects of asymmetric signals and pro-
pose a solution for the less desirable ones. After calibration, the clusters are
not condensed like for Affymetrix, but seem to obtain a swallow-like shape
(Figure 8.1). The tails appear after calibration and compromise quality of the
genotype calls.

Staaf et al. (2008) used quantile normalization using reference arrays to
overcome the asymmetry. However, in practice their approach is not effective
in a single ratio-sum transformation since they use a set of arrays to find
a symmetric transformation within the given set (Bolstad, Irizarry & Speed,
2003). Still, a part of the solution for asymmetry in fluorescence signals before
calibration may be found here.

Extended models

A possible model extension is to perform simultaneously modeling of geno-
types, copy number profiles and calibration parameters. An example in
which independent estimations for genotypes and CNV have been combined
in a single representation is shown for chromosome 9 in Figure 8.2. We refer
to the model as the Michelin model, because this representation of the data
has similarities to the profile on a (car) tire. However, calling all genotypes at
once for such a sample will induce errors. For better clarification, the com-
plete chromosome is split into the tumorous P-arm and healthy Q-arm in
Figure 8.3. The top panel shows the healthy tissue with constant CNV and
full allelic balance, and has clear genotypes. The three separate views are
shown in the left panels in Figure 8.4. The bottom panel however shows the
tumor tissue, showing CNV and allelic imbalance. These are shown in the
right panels in Figure 8.4. Genotyping this arm at once will be largely incor-
rect, because one number of genotype clusters is estimated, while a different
number of clusters for each segment in this arm would be more appropriate.

The core principle behind this idea is that it is possible to have a differ-
ent genotype component mixture for each copy number or allelic imbalance
segment. Mixtures of 1, 2 or 3 components can occur in different segments.
It then is possible to fit a log-concave component mixture per segment, as a
fundamental approach to “interactions” between CNV and genotypes. An
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Figure 8.2: Three models combined in one SNP signal representation: 1) CNV profiles
(top view), 2) Allelic imbalance (right side view) and 3) Genotyping (front
side view).

124



8.3. Ideas for future research

Figure 8.3: Combined SNP model for normal (top) and diseased (bottom) tissue.
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Figure 8.4: Combined SNP model in single view orientations. Left column shows
healthy tissue; right column shows tumor tissue. The top panel shows a
CNV profile, the middel panel shows allelic imbalance, and the bottom
panel shows genotypes.
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Figure 8.5: Genotype representation of the data within segments. Mixtures of one
(top right), two (top left and bottom left) and three (bottom right) compo-
nents can be distinguished.

illustration is given in Figure 8.5. This approach will provide some mathe-
matical challenges in terms of overfitting or overparametrization.

Figure 8.5 also indicates why it is better to use both the ratio and the
sum dimension for genotyping, instead of just the ratio, because the latter
would provide genotype densities that are too wide. The bottom right panel
provides a clear demonstration. Using the sum dimension in addition allows
for more accurate estimations.
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Samenvatting

Single Nucleotide Polymorphisms (SNPs) zijn variaties in het DNA, een
enkele nucleotide groot. Dat is de officiële benaming wanneer een of beide al-
lelen (één voor elk chromosoom) variëren bij meer dan 1% van de bevolking.
Vaak zijn dergelijke polymorfismen onschuldig, maar in slechtere gevallen
kunnen ze tumoren veroorzaken of tenminste de ontwikkeling ervan beïn-
vloeden. Het is om die reden dat al jaren op steeds grotere schaal onderzoek
wordt gedaan naar de aanwezigheid, vorm en effecten van deze SNPs. Het
is van belang te achterhalen welke allel-combinatie (het genotype) aanwezig
is en of er afwijkingen zijn van het normale aantal van twee allelen. Deze
afwijkingen staan bekend als copy number variaties.

Verschillende fabrikanten maken platforms die SNPs kunnen analyseren.
In alle gevallen wordt hiervoor gebruik gemaakt van selectieve hybridiza-
tie: er wordt gekeken naar specifieke posities op het genoom (en een aantal
posities daaromheen vanwege stabiliteit van de reactie). Aan de moleculen
worden zogeheten fluoroforen verbonden als labels om uit de resulterende
fluorescenties de concentraties van de allelen A en B te bepalen. Sommige
fabrikanten gebruiken één fluorofoor (bijvoorbeeld Affymetrix), andere twee
(bijvoorbeeld Illumina). De mate waarin de twee fluorescentiesignalen wor-
den geobserveerd geven de doses van de allelen A en B weer. Veel A en
weinig B geeft genotype AA, omgekeerd geeft genotype BB en gelijke doses
geeft AB. De totale dosis in gezond DNA bedraagt dus in principe 2.

In de praktijk blijkt dat deze signalen structurele eigenschappen bezitten.
Als in één monster het signaal voor een SNP relatief sterk is ten opzichte
van dat van andere SNPs in hetzelfde monster, blijkt diezelfde SNP deze
eigenschap ook te hebben in andere monsters. Dit gegeven, in combinatie
met verschillen tussen monsters en gegeven de verschillende signaalsterk-
tes voor de alleldoses van elke SNP, maakt de signaalvariatie op niveau van
individuele SNPs modelleerbaar. Een model hiervoor, SCALA (SNP Calibra-

137



Samenvatting

tion Algorithm), wordt in dit proefschrift geïntroduceerd. Het schat onder-
meer het systematische effectniveau en corrigeert daarvoor: calibratie. Het
SCALA model onderscheidt twee mogelijkheden: 1) het schatten van de ef-
fecten zonder dat er genotypen bekend zijn (genotype-vrije calibratie) of 2)
het per genotype schatten van een set van effectparameters voor elke SNP
(genotype-gebaseerde calibratie). De laatste aanpak vereist dus wel dat het
genotype van elke SNP in het betreffende monster bekend is. De geschatte
effecten zijn stabiel binnen één type array. Ze gelden (dus) ook voor nieuwe
arrays, en dit maakt calibratie mogelijk. Het toepassen van calibratie met
de geschatte effecten uit één van bovengenoemde opties verkleint de spreid-
ing in de signalen sterk, terwijl de alleldoses voor SNPs verhoudingsgewijs
gelijk blijven en tevens de regionen met afwijkingen van twee allelen beter
zichtbaar worden: de calibratie is effectief. Merk op dat de bovenstaande cal-
ibratie kan worden toegepast op onafhankelijke, nieuwe, monsters, ongeacht
wel of niet bekende genotypen.

Het bepalen van genotypen uit de alleldoses is niet geheel triviaal. Hier-
bij wordt binnen één enkel monster gekeken naar de dose-verhouding tussen
alle SNPs in dit individu. Het voordeel is dat er altijd voldoende observaties
zijn voor het stabiel schatten van het gekozen model. Na transformatie van
de signalen voor A en B is een puntenwolk zichtbaar met daarin drie clusters,
die de genotypen AA, AB en BB vertegenwoordigen. De gebruikte methode
is semi-parametrisch: er worden geen specifieke aannames gedaan over de
vorm van de clusters. Het principe achter het model is dat alle punten in
een vlak worden omgezet naar een 2-dimensioneel histogram. Op de tel-
waarden wordt een logconcaaf dichtheidsmodel geschat voor elk van de drie
genotype-clusters. Een groot voordeel van deze aanpak is dat het ongevoelig
is voor zowel verschillen in de vorm van de clusters als voor toename van
aantal metingen: het histogram houdt dezelfde afmeting. Bovendien is het
algoritme zelf zeer efficiënt, waardoor het model zowel uit inhoudelijk als
praktisch oogpunt interessant is.

De beschreven aanpak is de zogenaamde ’single-array’ methodiek en wordt
in dit proefschrift geïntroduceerd. Het contrasteert met de tot nu toe gang-
bare ’multi-array’ methodiek. In het geval van genotypering wil dat zeggen:
voor elke individuele SNP wordt in een aantal monsters (tientallen tot zelfs
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duizenden) gekeken naar de verhouding van de signalen voor elk allel. Er
worden dus meerdere monsters gebruikt voor onderlinge referentie. De
kwaliteit en stabiliteit van het resultaat hangt af van de hoeveelheid beschik-
bare gegevens, ergo van het aantal monsters. In de praktijk blijkt dat het
’single array’ schatten van genotypen minstens zo goed presteert als de tra-
ditionele ’multi-array’ methoden, wanneer we beide resultaten vergelijken
met genotypen uit HapMap. Een echte gouden standaard bestaat niet, maar
HapMap is een database die voor een aantal standaardmonsters ook de geno-
typen geeft, die zijn afgeleid uit een aantal algoritmen en op basis van een
aantal platforms. Daarnaast kunnen door het werken met enkelvoudige ar-
rays ook een aantal SNPs geclassificeerd worden, terwijl andere methoden
dat niet konden (HapMap geeft voor deze SNPs bijvoorbeeld een ’NoCall’).

De eerder genoemde signaalcalibratie is ook nuttig in het geval van geno-
typering voor monsters met lage kwaliteit. Calibratie van de signalen leidt tot
sterk verlaagde onzekerheid in het bepalen van het genotype, voor platforms
van verschillende SNP-dichtheden.

In ongezond DNA kunnen variaties in kopienummer en allel-onbalans
worden geobserveerd. Voor de doses van allelen A en B betekent dit dat ze
ook 0 (0), 1 (A0 of 0B), 3 (AAA, ABB, etc) of meer keren voor kunnen komen.
In het schatten van deze totale alleldoses wordt gebruik gemaakt van een
signaalsmoother die de observaties voor één monster gladstrijkt, zonder hi-
erbij rekening te (hoeven) houden met referentieprofielen. Dit idee werkt,
omdat in het geval van doses voor meer of minder dan twee allelen het to-
tale signaal (de som van (log) a en (log) b) ook hoger of lager is dan in het
geval van normaal weefsel (twee allelen). Het resulterende ’hoogte’-profiel
van het monster is om deze redenen veel gebruikt. Echter, de effectiviteit
van dit gladde profiel hangt af van de gekozen smoother. Een smoother die
het aantal sprongen tussen segmenten bestraft (een penalty met de L0 norm)
vindt de afwijkende regionen, maar detecteert niet de ruis tussen regionen
van verschillende niveaus. Een smoother die alleen de hoogte van signaal-
sprongen bestraft (een L1 penalty) detecteert deze ruis wel, met als gevolg
een onnodig onrustig profiel binnen regionen.

Voor het bepalen van de absolute alleldoses kunnen profielen van refer-
entiemonsters (met gezond DNA, dus twee allelen) worden gebruikt. Hier is
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dat echter niet nodig: een vergelijking van de penalty met L0 norm met een
ander model (VEGA) laat zien dat met de eerste zeer goede resultaten kun-
nen worden behaald. Bovendien zijn er indicaties dat de eerdergenoemde
signaalcalibratie een verbetering van segmentering in de profielen kan oplev-
eren. Tenslotte is de L0 norm in de penalty ook nuttig voor het maken van
gladde puntenwolken: door in één richting de bestraffing te gebruiken, wordt
er per histogram-segment een gladde benadering gevonden.

Een uitbreiding van de bovengenoemde penalty naar een model voor het
schatten van profielen voor allel-onbalans ligt hiermee voor de hand. De
praktijk is echter weerbarstiger: hiervoor zijn een aantal extra stappen (en de
daarmee gepaarde onzekerheid) nodig. Een eerste aanzet wordt gedaan door
per segment een mengsel van verdelingen te schatten.

Vanzelfsprekend ligt er naar aanleiding van bovenstaande nog veel open
voor de toekomst. Uitbreidingen van de toepassing van de voorgestelde
technieken kunnen liggen in (tetraploïde) gewassen zoals aardappelen, prei,
rozen, en sommige vissoorten zoals zalm.

Verder is een interessante invalshoek om tegelijkertijd genotypen, copy
number-profielen en calibratieparameters te schatten. Tenslotte kan mogelijk
het vervangen van “harde genotypen” door de kansen daarop de effectiviteit
van het calibratiemodel verder verhogen.
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Single Nucleotide Polymorphisms (SNPs) are small variations in DNA, in
single nucleotides. This is the official name when one or both alleles (one
for each chromosome) vary in 1% or more of the population. Many of these
polymorphisms are innocent, but in worse cases they can constitute tumor
development. For this (and other) reasons research on the presence, form and
effects of these SNPs was performed on an increasing scale in recent years. It
is important to know which combination of alleles (the genotype) is present
and whether there are deviations from the normal number of two alleles. The
latter deviations are known as copy number variations.

Different manufacturers deliver platforms for SNP analysis. In all cases
a process called selective hybridization is applied: probes selectively react
(hybridize) to specific positions on the genome. Fluorophores are attached
to specific molecules to label them and use the resulting fluorescence signals
to determine allele A and B concentrations. Some manufacturers use one
fluorophore (Affymetrix), others use two (Illumina). The amount of observed
fluorescence represent the (relative) dose of the alleles. High signal for A and
low for B indicates genotype AA, and vice versa for the BB genotype. Equal
signals, thus equal doses, indicate genotype AB. Hence the total allele dosage
in healthy DNA equals 2.

It practice it appears that these signals have some structural properties.
If in one sample the signal for a single SNP is relatively bright compared
to that of other SNPs, an equivalent proportionality also extends to other
samples. This, combined with differences between samples and given the
signal differences relating to allele doses (genotypes), implies that the afore-
mentioned properties can be modeled. A model that does so, SCALA (Signal
Calibration Algorithm) is introduced in this thesis. It estimates the systematic
effectlevel for each SNP and corrects for it: calibration. SCALA distinguishes
two variants: 1) estimating effects that allow for calibration independent of
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genotypes (genotype-free calibration) and 2) estimating effects conditional
on genotype, hence allowing for genotype-specific calibration. The latter ap-
proach requires known genotypes in order to be applied. The estimated
effects are stable within one type of chip: they hold for new arrays and hence
allow for calibration. Applying calibration with the estimated effects from
one of the variants reduces variance, while dose ratios remain intact and
chromosomal regions with deviations from dose 2 are clearer.

Determining genotypes from allele dosage is not completely trivial. Here,
we look at allele dose ratio for all SNPs within one individual. The main
advantage is that we never suffer from cluster imbalance due to low minor
allele frequencies. After transformation of the signals for A and B we observe
data scatter with three distinct clusters, representing the genotypes AA, AB
and BB. The method is of semi-parametric nature, hence not making assump-
tions on the cluster shapes. The idea is that the data are transformed into a
2-dimensional histogram. On the obtained counts we fit a logconcave density
model for each of the three clusters. This way, the model is also insensitive
to increases of the number of observations: the histogram has unchanged
dimensions. The model itself is also highly efficient.

The described approach is a so-called “single array” method and is intro-
duced in this thesis. It contrasts with mainstream methods that are “multi-
array”. In case of genotyping that means that each individual SNP is geno-
typed in a set of arrays, based on the same dosage ratio. Hence the results
and their quality depend on the amount of available observations, i.e. the
number of arrays. In practice the proposed single array method has at least
equivalent performance when comparing both branches to HapMap geno-
types. There is no gold standard, but HapMap is a database that provides
derived genotypes — from a few algorithms — for a set of reference arrays.
Furthermore, working with single arrays allows for genotyping of SNPs that
would be otherwise undetermined.

The previously mentioned signal calibration is also useful is case of low
quality arrays. After calibration we observe strongly improved cluster sepa-
ration, and therefore decreased calling uncertainty, for different platforms.

In unhealthy DNA variations on the total allele dosage 2 can be found.
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Dosage for alleles A and B can also be 0, 1, 3 or more, resulting e.g. in
genotypes 0, A0, 0B, AAA or ABB. When estimating these dosage profiles
along positions on the chromosome a signal smoother is used that irons out
small differences due to signal variation. The usability of this profile depends
on the smoother used. A smoother that penalizes the number of changes
between segments (a penalty with L0 norm) finds only those changes, and
nothing else, while penalizing the size of the changes also picks up noise.

Here, reference profiles with healthy DNA, thus dosage 2 can be used.
However, in practice it is sometimes hard to obtain these samples. A com-
parison to VEGA shows that using an L0 norm in the penalty gives reliable re-
sults even without reference data. The penalty can also be used in smoothed
scatterplots; by using it in one direction we obtain smoother approximations
per segment.

An extension of this penalty to a model for allelic imbalance seems ob-
vious. However, in practice it is not: it requires additional steps, thereby
increasing uncertainty. A first attempt is given by fitting a mixture of distri-
butions on histograms per segment.

Some directions are left untouched. For example, extrapolations of the
techniques to tetraploid DNA (e.g. in potatoes, leek, roses and some species
of fish, like salmon. Another interesting approach is to jointly model genoypes,
copy numbers and calibration parameters. Replacing the hard-called geno-
types by their fuzzy counterparts (the genotype probabilities) may further
increase model effectiveness.
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AFluorescence bias:
calibration result tables

Affymetrix 100k Hind

Table A.1: Results for linear models fitted on Affymetrix 100k Hind. Global model
(3.1) is indicated by G. Local model (3.2) is indicated by L. Improvement of
L over G is indicated by D, where D=(G-L)/G *100. Rows: chromosomes.
Columns: Global (G), Local (L), Difference (D).

AA (G) AB (G) BB (G) AA (L) AB (L) BB (L) D(AA) D(AB) D(BB)
1 0.064 0.079 0.082 0.056 0.054 0.058 12.636 31.439 29.573
2 0.064 0.080 0.080 0.057 0.055 0.056 11.466 31.410 30.893
3 0.064 0.078 0.082 0.056 0.054 0.055 12.550 31.194 32.255
4 0.064 0.080 0.080 0.056 0.054 0.056 11.266 31.844 30.190
5 0.064 0.079 0.082 0.057 0.055 0.056 11.885 30.018 31.568
6 0.065 0.079 0.086 0.056 0.055 0.057 13.250 30.765 33.516
7 0.066 0.079 0.084 0.058 0.055 0.056 12.369 29.732 33.689
8 0.063 0.077 0.080 0.056 0.055 0.056 11.718 29.350 30.075
9 0.063 0.078 0.082 0.055 0.054 0.054 12.543 30.289 34.396

10 0.064 0.077 0.081 0.056 0.053 0.055 12.484 31.148 32.682
11 0.064 0.079 0.082 0.056 0.054 0.057 12.617 30.849 30.972
12 0.064 0.078 0.081 0.056 0.055 0.055 12.069 30.381 32.807
13 0.064 0.079 0.083 0.056 0.055 0.057 12.168 30.638 32.039
14 0.065 0.080 0.081 0.057 0.055 0.056 12.259 31.339 30.680
15 0.063 0.078 0.081 0.055 0.054 0.056 11.921 30.768 30.721
16 0.064 0.076 0.080 0.056 0.054 0.056 12.611 29.531 29.702
17 0.065 0.077 0.082 0.056 0.055 0.058 13.008 28.968 29.521
18 0.064 0.078 0.079 0.058 0.055 0.057 9.578 29.753 28.458
19 0.065 0.076 0.087 0.057 0.054 0.064 12.138 28.911 26.581
20 0.064 0.079 0.082 0.056 0.055 0.058 13.100 30.296 29.698
21 0.066 0.079 0.086 0.058 0.057 0.063 12.429 28.648 26.434
22 0.070 0.084 0.084 0.060 0.056 0.056 14.437 32.807 33.557

147



A. Fluorescence bias: calibration result tables

Affymetrix 100k Xba

Table A.2: Results for linear models fitted on Affymetrix 100k Xba. Global model (3.1)
is indicated by G. Local model (3.2) is indicated by L. Improvement of L
over G is indicated by D, where D=(G-L)/G *100. Rows: chromosomes.
Columns: Global (G), Local (L), Difference (D).

AA (G) AB (G) BB (G) AA (L) AB (L) BB (L) D(AA) D(AB) D(BB)
1 0.064 0.079 0.092 0.053 0.050 0.061 17.229 36.306 33.778
2 0.063 0.078 0.091 0.053 0.050 0.060 16.184 36.388 34.178
3 0.062 0.077 0.093 0.050 0.049 0.060 18.109 35.428 35.488
4 0.063 0.076 0.088 0.053 0.050 0.059 14.543 35.152 33.280
5 0.064 0.078 0.093 0.052 0.050 0.060 17.832 35.968 34.820
6 0.065 0.077 0.093 0.054 0.050 0.060 17.791 34.720 35.291
7 0.063 0.079 0.093 0.053 0.050 0.059 16.759 36.039 36.285
8 0.064 0.076 0.092 0.053 0.049 0.061 16.696 34.499 33.859
9 0.063 0.077 0.091 0.052 0.050 0.061 17.069 35.527 33.610

10 0.064 0.077 0.092 0.054 0.050 0.061 16.098 35.668 34.034
11 0.063 0.078 0.090 0.052 0.050 0.060 17.135 35.276 33.261
12 0.062 0.079 0.092 0.051 0.050 0.060 17.405 36.609 34.303
13 0.062 0.075 0.089 0.052 0.049 0.059 15.186 34.321 33.141
14 0.065 0.081 0.092 0.054 0.051 0.060 16.738 37.005 34.370
15 0.063 0.076 0.094 0.053 0.049 0.064 15.142 35.686 31.605
16 0.067 0.078 0.093 0.056 0.049 0.061 17.378 37.282 34.810
17 0.063 0.080 0.093 0.052 0.049 0.061 18.379 38.781 34.504
18 0.063 0.076 0.092 0.052 0.049 0.062 17.531 35.769 32.556
19 0.064 0.080 0.089 0.053 0.054 0.061 18.100 32.901 31.616
20 0.063 0.076 0.092 0.052 0.050 0.061 17.229 33.644 32.981
21 0.063 0.078 0.091 0.054 0.052 0.058 14.833 33.170 36.242
22 0.069 0.083 0.097 0.060 0.055 0.065 12.195 34.227 33.194
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Affymetrix 500k NSP

Table A.3: Results for linear models fitted on Affymetrix 500k NSP. Global model (3.1)
is indicated by G. Local model (3.2) is indicated by L. Improvement of L
over G is indicated by D, where D=(G-L)/G *100. Rows: chromosomes.
Columns: Global (G), Local (L), Difference (D).

AA (G) AB (G) BB (G) AA (L) AB (L) BB (L) D(AA) D(AB) D(BB)
1 0.056 0.071 0.085 0.047 0.053 0.066 16.086 26.054 22.280
2 0.056 0.071 0.085 0.047 0.053 0.066 15.852 26.208 22.844
3 0.057 0.070 0.086 0.048 0.052 0.065 15.806 25.745 23.601
4 0.056 0.072 0.085 0.048 0.054 0.067 15.330 24.969 22.022
5 0.056 0.072 0.086 0.047 0.053 0.066 16.106 25.606 23.190
6 0.056 0.071 0.086 0.047 0.053 0.066 16.179 26.166 23.653
7 0.057 0.071 0.086 0.048 0.053 0.066 16.577 25.104 23.919
8 0.056 0.071 0.085 0.047 0.053 0.065 16.588 25.174 23.247
9 0.057 0.071 0.086 0.048 0.053 0.067 16.005 25.574 22.699

10 0.056 0.072 0.085 0.047 0.053 0.066 15.288 26.221 21.970
11 0.057 0.071 0.086 0.048 0.053 0.066 15.990 25.585 22.985
12 0.056 0.071 0.085 0.047 0.053 0.065 15.792 25.442 23.168
13 0.056 0.072 0.085 0.047 0.054 0.065 16.220 25.312 23.620
14 0.057 0.073 0.085 0.048 0.054 0.065 15.966 26.126 23.845
15 0.056 0.071 0.085 0.047 0.053 0.066 16.171 25.817 22.068
16 0.056 0.070 0.084 0.047 0.052 0.064 16.116 26.055 23.642
17 0.056 0.068 0.086 0.046 0.050 0.066 16.258 26.315 23.259
18 0.056 0.071 0.085 0.047 0.053 0.065 15.924 24.556 23.179
19 0.056 0.072 0.085 0.048 0.054 0.066 15.222 24.762 22.596
20 0.056 0.068 0.085 0.048 0.050 0.066 15.138 26.028 21.611
21 0.056 0.072 0.087 0.048 0.054 0.069 15.379 24.683 20.829
22 0.056 0.072 0.086 0.048 0.055 0.068 14.331 24.456 21.003
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Affymetrix 500k STY

Table A.4: Results for linear models fitted on Affymetrix 500k STY. Global model (3.1)
is indicated by G. Local model (3.2) is indicated by L. Improvement of L
over G is indicated by D, where D=(G-L)/G *100. Rows: chromosomes.
Columns: Global (G), Local (L), Difference (D).

AA (G) AB (G) BB (G) AA (L) AB (L) BB (L) D(AA) D(AB) D(BB)
1 0.058 0.070 0.081 0.051 0.049 0.062 12.637 29.184 23.774
2 0.059 0.069 0.081 0.051 0.049 0.061 12.732 28.980 24.618
3 0.059 0.068 0.082 0.051 0.049 0.061 13.275 28.572 25.530
4 0.058 0.069 0.081 0.051 0.049 0.061 11.988 28.515 24.337
5 0.059 0.069 0.082 0.051 0.049 0.061 13.166 29.210 25.382
6 0.059 0.069 0.083 0.051 0.049 0.063 13.419 29.090 24.622
7 0.059 0.069 0.082 0.051 0.049 0.061 13.662 28.678 25.219
8 0.059 0.069 0.081 0.051 0.049 0.061 12.746 29.379 24.440
9 0.059 0.069 0.081 0.052 0.049 0.061 12.303 29.300 24.560

10 0.059 0.069 0.080 0.052 0.049 0.061 12.290 29.601 23.334
11 0.059 0.069 0.082 0.051 0.049 0.061 13.327 28.616 24.832
12 0.059 0.069 0.082 0.051 0.049 0.062 12.856 29.549 24.441
13 0.059 0.069 0.080 0.052 0.049 0.060 11.927 29.020 24.631
14 0.058 0.070 0.081 0.051 0.049 0.062 12.346 29.496 23.564
15 0.059 0.068 0.081 0.051 0.049 0.060 12.290 28.291 25.577
16 0.059 0.068 0.081 0.052 0.048 0.061 12.784 29.296 24.526
17 0.059 0.070 0.083 0.052 0.049 0.063 12.979 29.850 23.222
18 0.058 0.070 0.081 0.051 0.050 0.061 12.455 28.635 24.401
19 0.059 0.069 0.083 0.051 0.049 0.064 13.654 29.261 22.808
20 0.059 0.068 0.081 0.051 0.048 0.061 13.047 29.260 24.870
21 0.060 0.070 0.083 0.052 0.050 0.062 13.088 28.143 25.301
22 0.060 0.070 0.080 0.053 0.050 0.061 12.155 28.656 23.503

150



Affymetrix SNP6.0

Table A.5: Results for linear models fitted on Affymetrix SNP6.0. Global model (3.1)
is indicated by G. Local model (3.2) is indicated by L. Improvement of L
over G is indicated by D, where D=(G-L)/G *100. Rows: chromosomes.
Columns: Global (G), Local (L), Difference (D).

AA (G) AB (G) BB (G) AA (L) AB (L) BB (L) D(AA) D(AB) D(BB)
1 0.063 0.087 0.089 0.052 0.064 0.060 18.148 25.624 32.323
2 0.064 0.087 0.088 0.052 0.066 0.059 18.503 24.126 33.239
3 0.064 0.086 0.089 0.052 0.065 0.059 18.177 24.676 32.900
4 0.065 0.088 0.088 0.053 0.067 0.058 17.883 23.174 33.588
5 0.064 0.086 0.089 0.052 0.065 0.059 17.800 24.526 32.892
6 0.064 0.087 0.089 0.053 0.065 0.060 17.789 24.709 32.729
7 0.064 0.086 0.089 0.052 0.065 0.060 18.187 24.282 32.781
8 0.064 0.086 0.089 0.052 0.064 0.060 18.377 24.935 32.905
9 0.064 0.086 0.089 0.052 0.065 0.060 18.461 24.477 32.663

10 0.063 0.087 0.089 0.051 0.065 0.060 18.111 25.382 32.453
11 0.064 0.088 0.088 0.052 0.067 0.059 18.515 23.982 33.351
12 0.063 0.087 0.088 0.052 0.065 0.060 18.071 24.768 32.577
13 0.064 0.088 0.088 0.053 0.067 0.058 17.412 23.015 33.601
14 0.064 0.088 0.088 0.052 0.066 0.059 18.228 24.975 33.177
15 0.063 0.085 0.089 0.051 0.063 0.060 18.018 25.994 32.369
16 0.062 0.085 0.090 0.051 0.062 0.061 18.160 27.055 32.015
17 0.062 0.086 0.091 0.051 0.064 0.062 18.480 25.964 31.926
18 0.064 0.087 0.088 0.053 0.066 0.059 17.634 24.218 33.173
19 0.063 0.085 0.092 0.050 0.064 0.063 19.627 25.199 31.754
20 0.063 0.087 0.089 0.051 0.064 0.060 18.693 26.814 32.625
21 0.065 0.087 0.088 0.053 0.067 0.059 17.904 22.514 33.437
22 0.064 0.086 0.090 0.051 0.063 0.061 19.160 26.448 31.553
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Preparation of HapMap data for genotyping comparisons

In this section we describe the data set used in our comparisons, model set-
tings for genotype calling, as well as the translation step to match HapMap
calls to our {AA, AB, BB} format.

We compare genotype calls to those of Phase III. We only compare calls
to SNPs that have matching ’RSid’s. almost half of the total. We disregard
the four allelotypes (A,C,G,T) and refer to homozygous genotypes as AA or
BB and the heterozygous as AB.

To match our calls to those from HapMap, we need to use the same al-
phabet. HapMap calls are translated to A and B labels using the following R

(R Development Core Team, 2011) code:

# create translation vector with default 5

# code contains the SCALA genotype calls

# rssel is a selection vector for matching SNP ids

# from HapMap SNP list, but in the SCALA ordering

# STEP 1:

d = code[rssel]*0 + 5

# sort scala calls for available rs-ids in HapMap

# rsidt is the working list of HapMap rsids

# STEP 2:

a = code[rssel][order(rsidt[rssel])]

# get aligned HapMap calls matched to rs-ids.

# hapmap is a dataframe with SNPs in rows,
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# and arrays in colums

# hmsel is the SNP id list for the HapMap ordering

# STEP 3:

b = hapmap[hmsel,samp+3][order(hapmap$rs[hmsel])]

# now a contains scala calls and

# contains hapmap calls for matching SNP id

# get all heterozygous calls

# STEP 4:

selhetero = (b!='AA' & b!='CC' & b!='GG' & b!='TT')

# anything not homozygous is translated to 2 (AB)

# STEP 5:

d[selhetero] = 2

# assign aligned homozygous calls

# STEP 6:

d[a==1 & !selhetero] = 1

d[a==3 & !selhetero] = 3

# keep NoCall seperate for later evaluation

# STEP 7:

d[b=='NN'] = 4

Since genotype calls AA from either method are highly unlikely to be mis-
taken for BB, we can apply the above forced classification from the HapMap
homozygous genotype calls into homozygous calls from SCALA.
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Fit statistic
Numerical comparison in all following tables are defined as

d =
∑ |si − zi|

n
(C.1)

with d the normalized difference between the raw signal s and the smooth
profile z (for each SNP i) on a given chromosome.

Output columns
Detailed results are provided for two tumor samples (GBM 139 and GBM

180). Results contain, for each chromosome, the difference for uncorrected
data (Raw), after SCALA correction and after NoWaves correction. For both
arrays, these tables are given for 4 levels of smoothing: λ ∈ (1, 10, 100, 1000).
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C. Waves correction: result tables

C.1 Sample GBM 139

Table C.1: Sample GBM 139; Raw vs SCALA vs NoWaves.
All chromosomes for λ = 1.

Chromosome Raw 1 SCALA 1 NoWaves 1
1 0.595 0.291 0.291
2 0.595 0.292 0.292
3 0.588 0.279 0.280
4 0.592 0.289 0.290
5 0.596 0.293 0.293
6 0.595 0.288 0.288
7 0.598 0.295 0.296
8 0.586 0.289 0.289
9 0.584 0.290 0.291
10 0.589 0.287 0.287
11 0.591 0.283 0.284
12 0.594 0.290 0.291
13 0.586 0.279 0.280
14 0.583 0.271 0.272
15 0.594 0.286 0.287
16 0.581 0.287 0.287
17 0.581 0.279 0.280
18 0.582 0.281 0.281
19 0.572 0.284 0.285
20 0.591 0.291 0.292
21 0.579 0.279 0.279
22 0.566 0.280 0.280
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C.1. Sample GBM 139

Table C.2: Sample GBM 139; Raw vs SCALA vs NoWaves.
All chromosomes for λ = 10.

Chromosome Raw 10 SCALA 10 NoWaves 10
1 0.598 0.292 0.292
2 0.597 0.293 0.293
3 0.590 0.280 0.281
4 0.594 0.290 0.291
5 0.598 0.294 0.294
6 0.598 0.289 0.290
7 0.601 0.296 0.297
8 0.588 0.290 0.291
9 0.589 0.293 0.294
10 0.592 0.289 0.289
11 0.595 0.285 0.286
12 0.598 0.292 0.293
13 0.589 0.280 0.281
14 0.587 0.273 0.274
15 0.601 0.288 0.289
16 0.587 0.290 0.289
17 0.589 0.282 0.283
18 0.586 0.283 0.284
19 0.583 0.289 0.290
20 0.598 0.295 0.295
21 0.587 0.284 0.284
22 0.583 0.286 0.286
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Table C.3: Sample GBM 139; Raw vs SCALA vs NoWaves.
All chromosomes for λ = 100.

Chromosome Raw 100 SCALA 100 NoWaves 100
1 0.600 0.293 0.293
2 0.600 0.293 0.294
3 0.592 0.281 0.282
4 0.596 0.291 0.291
5 0.601 0.294 0.294
6 0.600 0.290 0.291
7 0.603 0.298 0.298
8 0.592 0.292 0.292
9 0.593 0.295 0.297
10 0.594 0.290 0.290
11 0.598 0.287 0.287
12 0.600 0.293 0.294
13 0.592 0.281 0.282
14 0.590 0.274 0.275
15 0.607 0.290 0.291
16 0.591 0.292 0.292
17 0.594 0.285 0.285
18 0.591 0.285 0.286
19 0.592 0.293 0.293
20 0.603 0.297 0.297
21 0.592 0.287 0.287
22 0.594 0.290 0.289
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C.1. Sample GBM 139

Table C.4: Sample GBM 139; Raw vs SCALA vs NoWaves.
All chromosomes for λ = 1000.

Chromosome Raw 1000 SCALA 1000 NoWaves 1000
1 0.602 0.293 0.293
2 0.603 0.294 0.295
3 0.594 0.281 0.282
4 0.599 0.291 0.292
5 0.603 0.295 0.295
6 0.602 0.291 0.292
7 0.605 0.298 0.299
8 0.594 0.293 0.293
9 0.598 0.299 0.300
10 0.597 0.291 0.291
11 0.601 0.288 0.289
12 0.602 0.295 0.295
13 0.593 0.282 0.283
14 0.592 0.276 0.277
15 0.610 0.292 0.292
16 0.594 0.293 0.293
17 0.598 0.286 0.287
18 0.594 0.286 0.287
19 0.599 0.295 0.296
20 0.606 0.298 0.298
21 0.596 0.289 0.289
22 0.603 0.293 0.292
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C. Waves correction: result tables

C.2 Sample GBM 180

Table C.5: Sample GBM 180; Raw vs SCALA vs NoWaves.
All chromosomes for λ = 1.

Chromosome Raw 1 SCALA 1 NoWaves 1
1 0.622 0.299 0.300
2 0.620 0.300 0.301
3 0.620 0.297 0.298
4 0.620 0.299 0.300
5 0.624 0.302 0.303
6 0.618 0.296 0.297
7 0.639 0.310 0.311
8 0.611 0.297 0.297
9 0.628 0.312 0.313
10 0.619 0.297 0.298
11 0.615 0.295 0.296
12 0.639 0.315 0.315
13 0.620 0.298 0.299
14 0.620 0.292 0.293
15 0.642 0.312 0.312
16 0.626 0.309 0.310
17 0.611 0.290 0.292
18 0.614 0.294 0.295
19 0.613 0.296 0.297
20 0.620 0.300 0.300
21 0.617 0.301 0.301
22 0.617 0.304 0.304
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C.2. Sample GBM 180

Table C.6: Sample GBM 180; Raw vs SCALA vs NoWaves.
All chromosomes for λ = 10.

Chromosome Raw 10 SCALA 10 NoWaves 10
1 0.624 0.300 0.301
2 0.623 0.302 0.302
3 0.623 0.299 0.300
4 0.622 0.300 0.301
5 0.627 0.304 0.304
6 0.621 0.297 0.298
7 0.642 0.311 0.312
8 0.614 0.298 0.299
9 0.633 0.314 0.315
10 0.622 0.299 0.300
11 0.620 0.297 0.298
12 0.643 0.316 0.317
13 0.624 0.300 0.301
14 0.625 0.294 0.295
15 0.650 0.315 0.315
16 0.631 0.312 0.312
17 0.619 0.294 0.295
18 0.619 0.297 0.297
19 0.626 0.302 0.303
20 0.627 0.303 0.304
21 0.627 0.306 0.306
22 0.634 0.311 0.311
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C. Waves correction: result tables

Table C.7: Sample GBM 180; Raw vs SCALA vs NoWaves.
All chromosomes for λ = 100.

Chromosome Raw 100 SCALA 100 NoWaves 100
1 0.627 0.302 0.302
2 0.625 0.302 0.303
3 0.625 0.300 0.301
4 0.625 0.301 0.302
5 0.629 0.305 0.305
6 0.623 0.298 0.299
7 0.645 0.312 0.313
8 0.617 0.299 0.300
9 0.637 0.316 0.317
10 0.625 0.300 0.301
11 0.623 0.298 0.299
12 0.646 0.318 0.318
13 0.626 0.301 0.302
14 0.628 0.296 0.297
15 0.655 0.317 0.317
16 0.636 0.314 0.314
17 0.624 0.296 0.297
18 0.623 0.299 0.300
19 0.636 0.306 0.307
20 0.632 0.305 0.305
21 0.633 0.310 0.310
22 0.648 0.316 0.317
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C.2. Sample GBM 180

Table C.8: Sample GBM 180; Raw vs SCALA vs NoWaves.
All chromosomes for λ = 1000.

Chromosome Raw 1000 SCALA 1000 NoWaves 1000
1 0.629 0.302 0.303
2 0.628 0.303 0.304
3 0.626 0.301 0.301
4 0.626 0.302 0.302
5 0.631 0.305 0.306
6 0.625 0.299 0.300
7 0.647 0.313 0.314
8 0.619 0.300 0.301
9 0.640 0.319 0.319
10 0.628 0.301 0.302
11 0.625 0.299 0.300
12 0.648 0.319 0.320
13 0.628 0.302 0.303
14 0.630 0.297 0.298
15 0.659 0.318 0.319
16 0.639 0.315 0.315
17 0.628 0.298 0.299
18 0.626 0.300 0.301
19 0.644 0.309 0.310
20 0.636 0.306 0.307
21 0.638 0.313 0.314
22 0.658 0.320 0.320
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D.1 Introduction

This software suite is a collection of programs that were created for and during a PhD
project on calibration and genotyping of SNP signals. The whole framework is built
on a set of two signals (one for each allele).

Signals from SNP arrays are not perfect; they contain noise. However, in practice
this ’noise’ has some very structural properties that can be modeled and exploited. It
is not hard to imagine that in one SNP array, some SNPs of a particular genotype have
a lower signal than other SNPs (of the same genotype). However, we noticed that a
SNP with a lower signal behaves similarly in other arrays (of the same platform)
as well. Add this to the fact that each array has its own overall signal level and that
genotypes are (obviously) expressed in different signal levels for each allele, and there
is a strong basis for a model.

The SCALA software models the effects described above. Signals after calibration
are much more condensed, which can be beneficial in applications like genotyping
(for a single array) and maps of copy numbers and loss of heterozygosity. The latter
is not (yet) contained in this suite.

It contains a function for CEL-file conversion to the format used in SCALA (single
signal per allele, no probe level information), a function to perform single array geno-
typing using semi-parametric mixtures on a smoothed 2-dimensional histogram, and
a function to obtain signal calibration parameters.

Currently, the software handles mainly Affymetrix CEL files. To be more specific:
it handles both enzymes from the 100k platform and both enzymes from the 500k
platform, as well as SNP6.0 arrays.

Calibration

To illlustrate the calibration possibilities mentioned above, we provide a graphical
example in Figure 1. Starting out with the uncalibrated averaged signals a and b

165



D. Manual: SCALA Suite

for allele A and B, we take s = log(a + b) on the horizontal axis and r = log(b/a)
on the vertical axis (left panel). This orientation provides three SNP clusters: two
for the homozygous genotypes AA (bottom) and BB (top), and one for the heterozy-
gous genotype (middle). Without calibration (after plain signal conversion) this panel
shows a lot of noise. However, we can reduce it in the data by using the set of α pa-
rameters from the SCALA model (middle panel) or by using Γ from the local model
(right panel).

The software can perform global calibration at the conversion stage. The software
also provides α sets after model fitting, so that users can perform calibration manually
at any later stage.
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D.2. The SCALA object class

D.2 The SCALA object class

We defined an object of class SCALA. Not because of object-specific print or plot
functions (at this time), but simply to add structure to the results obtained from the
different functions contained in this suite. Each of the functions add information to
the object. A final object (after conversion, with calibrated signals, and genotyping)
has the following structure:

> str(scala)

List of 10

$ meta :List of 6

..$ fname : chr "ctr aff 1.CEL"

..$ readpath : chr "D:/Documents/Werk/000 SCALA Suite/01 raw"

..$ savepath : chr "D:/Documents/Werk/000 SCALA Suite/02 arrays"

..$ convertDate: chr "2010-12-30 11:21:06"

..$ calibrated : logi TRUE

..$ callDate : chr "2010-12-30 12:32:56"

$ chr : chr [1:262264] "20" "4" "14" "1" ...

$ pos : int [1:262264] 47874178 104894961 51975831 21039991 56554433 ...

$ rsid : chr [1:262264] "rs16994928" "rs233978" "rs2249922" "rs7553394" ...

$ X : int [1:262264] 267 637 291 2081 772 809 328 421 277 1046 ...

$ Y : int [1:262264] 1023 776 801 333 989 1043 1398 1359 1183 396 ...

$ Xc : int [1:262264] 365 722 313 1174 802 804 308 335 303 1157 ...

$ Yc : int [1:262264] 1234 799 979 315 806 835 1218 1242 1094 364 ...

$ calls: num [1:262264] 3 2 3 1 2 2 3 3 3 1 ...

$ W : num [1:262264, 1:3] 1.96e-10 2.15e-04 2.57e-08 1.00 1.72e-04 ...

- attr(*, "class")= chr "SCALA"

The calibration models and (GUI-based) mapping function currently do not add
to the object.
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D.3 SCALA.convert: CEL file conversion

Description:

This function converts raw CEL files into aggregated signals X for allele A and Y for
allele B.

Usage:

SCALA.convert(datatype='Affy250kNSP',calibrate=F,

readfolder=paste(getwd(),'/01 raw',sep=''),

savefolder=paste(getwd(),'/02 arrays',sep=''))

Arguments:

datatype : ’Affy50kHIND’ (default), ’Affy50kXBA’
’Affy250NSP’ , ’Affy250STY’
’AffySNP6.0’

calibrate : TRUE (default), FALSE
readfolder : defaults to getwd()
savefolder : defaults to getwd()

Details:

The resulting SCALA object is automatically saved to the specified savefolder, to a file
that matches [scala$meta$fname].Rdata.

If calibrate is set to T, calibration is indicated and two vectors ($Xc and $Yc)
containing the calibrated signals are added after the original signals $X and $Y. The
following additions and changes are made:

..$ calibrated : logi TRUE

..

$ Xc : int [1:262264] 365 722 313 1174 802 804 308 335 303 1157 ...

$ Yc : int [1:262264] 1234 799 979 315 806 835 1218 1242 1094 364 ...

168



D.3. SCALA.convert: CEL file conversion

See also:

SCALA.call, SCALA.global

Examples:

scala = SCALA.convert('Affy250kNSP',F,

readfolder=paste(getwd(),'/01 raw',sep=''),

savefolder=paste(getwd(),'/02 arrays',sep=''))

str(scala)

List of 7

$ meta :List of 6

..$ fname : chr "ctr aff 1.CEL"

..$ readpath : chr "D:/Documents/Werk/000 SCALA Suite/01 raw"

..$ savepath : chr "D:/Documents/Werk/000 SCALA Suite/02 arrays"

..$ convertDate: chr "2010-12-30 11:21:06"

..$ calibrated : logi FALSE

..$ callDate : logi NA

$ chr : chr [1:262264] "20" "4" "14" "1" ...

$ pos : int [1:262264] 47874178 104894961 51975831 21039991 56554433 ...

$ rsid : chr [1:262264] "rs16994928" "rs233978" "rs2249922" "rs7553394" ...

$ X : int [1:262264] 267 637 291 2081 772 809 328 421 277 1046 ...

$ Y : int [1:262264] 1023 776 801 333 989 1043 1398 1359 1183 396 ...

$ calls: logi [1:262264] NA NA NA NA NA NA NA NA ...

- attr(*, "class")= chr "SCALA"
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D.4 SCALA.global: calibration

Description:

This function reads all arrays in the readfolder and assumes called genotypes in the
SCALA objects.

Usage:

params = SCALA.global(filefolder=getwd(), savefolder=getwd(),

filename = scala.glob.Rdata, kappa = 1e-8)

Arguments:

�lefolder : defaults to getwd()
savefolder : defaults to getwd()
�lename : defaults to scala.glob.Rdata
kappa : set value to add to avoid singularity (1e-8)

Details:

The resulting calibration parameters are returned in a separate object, instead of being
added to the SCALA object. The reason for this is that the parameters are based on
multiple arrays and hence should be added to each array used to obtain the calibration
set.

The fields in params match to α, β and γ in the model explained in the appendix.
The α values can be used to calibrate the original signal by taking

Xc = X/10α.

An equivalent approach can be taken for the Y signal. This is the calibration that
be performed during CEL file conversion, for the currently implemented platforms.
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See also:

SCALA.convert, SCALA.call

Examples:

params = SCALA.global()

str(params)

List of 7

$ celfiles: chr [1:10] "ctr aff 1.CEL.Rdata" "ctr aff 2.CEL.Rdata" ...

$ alphaX : num [1:262217] -0.157 -0.0438 -0.0422 0.311 0.0699 ...

$ alphaY : num [1:262217] -0.041653 0.016274 -0.062808 0.00015 ...

$ betaX : num [1:10] 0.1303 -0.2242 0.1149 0.1248 0.0783 ...

$ betaY : num [1:10] 0.114 -0.239 0.1 0.11 0.066 ...

$ gammaX : num [1:3] 0.1822 0.0392 -0.2508

$ gammaY : num [1:3] -0.2505 0.0922 0.2386
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D.5 SCALA.call: single array genotyping

Description:

To obtain genotype calls based on a single array, this function ’does the trick’. It uses
a mixture of three semi-parametric log-concave densities and classifies each SNP into
the cluster with the highest probablility.

Usage:

SCALA.call(scala=scala, model='s', plot=F, save=T, xbins = 100,

ybins = 100, lambda = 10, nit=50, crit=1e-4,

savefolder=paste(getwd(),'/02 arrays',sep=''))

Arguments:

scala : expects the SCALA object as described above
model : 's': use semi-parametric model, anything other than 's'

will revert to a mixture of three parametric regression
models using the �exmix package ('s' )

plot : plot single array mixture (FALSE)
save : save resulting object to file TRUE
xbins : # of histogram bins to use on x-axis (100)
ybins : # of histogram bins to use on y-axis (100)

lambda : sets amount of smoothing in the histogram (10)
nit : set maximum # of mixture iterations (50)
crit : sets convergence threshold (1e-4)

savefolder : defaults to getwd()

Details:

Genotype calls from any source (e.g. HapMap or CRLMM) can be added by simply
replacing the $calls vector with the external calls (with AA = 1, AB = 2 and BB = 3).
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D.5. SCALA.call: single array genotyping

The result is a change in one meta-tag ($meta$callDate) and addition of two list
elements $calls and $W to the SCALA object.

..$ callDate : chr "2010-12-30 12:32:56"

..

$ calls: num [1:262264] 3 2 3 1 2 2 3 3 3 1 ...

$ W : num [1:262264, 1:3] 1.96e-10 2.15e-04 2.57e-08 1.00 1.72e-04 ...

See also:

SCALA.convert, SCALA.global

Examples:

scala = SCALA.call(scala, xbins = 75, ybins = 75, lambda = 5)
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D.6 SCALA.map: CNV / LOH mapping

Description:

The CNV and LOH analyses that are performed detect which genes in either the CNV
or LOH signal fall below (or above) the expected threshold number of alleles that is
set by the user. The selection results of this detection can be saved either per SNP or
per gene. Exported results are saved in .csv format.

The mapping function is fully GUI-controlled (using the rpanel package), not com-
mandline.
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Using the GUI the user can

- select the chromosome to analyze,

- choose whether the signal subject to evaluate indicates CNV or lOH,

- where and under what number the analysis figure should be saved,

- choose between Ensembl codes or gene names in selected chromosome regions,

- adapt the signal smoother between power 0 and 2 and

- change plot (title) properties.

Usage:

SCALA.map(controls=NA)

Arguments:

This function currently only take 1 argument: a saved ’settings’ file from a previous
analysis.

Details:

The function call simply starts the GUI and doesn’t perform any analysis until a
SCALA class object is read. If calibrated signals are present, the program uses these
automatically, if the $meta$calibrated is set to T.

The exported results file (.csv) contains a number of fields, summarized in the
following Table.

See also:

SCALA.convert, SCALA.global, SCALA.call

SCALA.map(controls='lastrun.Rdata')

The resulting SCALA.map plot:
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SNP id : Database SNP id (’rsid’)
CNV sig : CNV signal value for each SNP
LOH sig : LOH signal value for each SNP
Position : SNP position on the chromosome
Chrom : Chromosome the SNP is located on

Z : Smoothed CNV value for each SNP
SNP selected : Indicator whether the SNP exceeds the user-defined threshold

N-level : Copy Number level for each SNP
GeneBio : BioMart name of the gene containing the SNP
GeneENS : Ensembl name of the gene containing the SNP
G-Start : Starting position of the gene
G-Stop : Ending position of the gene

Gene selected : Indicator whether this gene exceeds the user-defined threshold
Mean CNV : The mean CNV signal in the gene

Mean Z : Mean CNV smoother value in the gene
Mean LOH : Mean LOH signal in the gene

Mean G : Mean LOH smoother value in the gene
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D.6. SCALA.map: CNV / LOH mapping
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D.7 Appendix: The SCALA model

Theory

The SCALA model aims to find calibration values for the averaged allele intensities
for each SNP.

Let tij = log(aij), where the logarithms are to base 10. Let the genotypes be coded
in the 3-way indicator matrix H = [hijk], where k ∈ {1, 2, 3} codes for the genotype.
hijk = 1 if SNP i on array j has genotype k, otherwise hijk = 0. The first, global, model
is written as

tij = µ + αi + β j +
3

∑
k=1

γkhijk + eij, (D.1)

where µ is the grand mean, αi the effect of SNP i, and β j the effect of array j, and γk
the effect of genotype k. For identifiability, we introduce the constraints ∑i αi = 0 and
∑j β j = 0. The error e = [eij] is assumed to have constant variance. The model has
one set of genotype parameters (γ) for all SNPs.

A refinement is to have separate genotype parameters for each SNP: Γ = [γik]. We
call this the local model, which is specified as

tij = µ + β j +
3

∑
k=1

γikhijk + eij, (D.2)

where we again require that ∑j β j = 0.

Identical models are used for the B allele, with tij = log(bij).

Implementation

For the latter model, with appropriate C and D, we can write

t = Cβ + Dγ + e (D.3)

where β contains the n β j parameters in (D.2) and γ = vec(Γ), i.e. the columns of
Γ = [γik] stacked below each other, and t = vec(T). The structure of C is simple, it
can be written as C = In ⊗ 1p, where In is the n× n identity matrix and 1p is a vector
of ones, of length p. The structure of D is more complex; it consists of n blocks of
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diagonal matrices. Each block has three diagonal matrices Djk, one for each layer of
H, and each matrix Djk contains the elements of the jth vector in the kth layer of the
3-way matrix H on its diagonal. Thus, D has dimensions (n× p)× 3p.

We do not form C and D explicitly. Instead we study the normal equations[
C′C C′D
D′C D′D

] [
β̂

γ̂

]
=

[
C′t
D′t

]
, (D.4)

or [
V11 V12

V21 V22

] [
β̂

γ̂

]
=

[
f1

f2

]
, (D.5)

where V11 = C′C, V12 = C′D, V21 = D′C, V22 = D′D, f 1 = C′t and f 2 = C′t.
One can prove that C′C = pIn, D′ = H̃ and D′D = F, where H̃ is a matrix formed
by placing the three layers of H below each other. F is a 3p by 3p diagonal matrix;
its first (second, third) p diagonal elements gives, for each SNP, the number of times
genotype 1 (2, 3) occurs. Furthermore, C′t contains the sums of the columns of T ,
while D′t is a stack of three vectors; the first (second, third) vectors contain the sum,
per SNP of the elements of t corresponding to genotype 1 (2, 3).

From (D.5) it follows:
γ̂ = V−1

22 (d2 − V21 β̂) (D.6)

and hence
(V11 − V12V−1

22 V21)β̂ = d1 − V12V−1
22 d2. (D.7)

Because V22 is a diagonal matrix, multiplication by V−1
22 boils down to dividing the

elements of a vector or the rows of a matrix by the corresponding diagonal elements
of V22. Hence, it is not hard to compute V11 −V11V−1

12 V21 and to solve for β̂, a vector
of moderate length. Additional efficiency can be realized by exploiting the way V21

is formed. Details on the latter suggestion are considered outside the scope of the
current paper.

In this analysis we have ignored the fact that the system in (D.5) is singular, be-

cause the condition ∑j β j = 0 is not applied. An easy way out is to demand the

minimum-norm solution for β, by replacing C′C in (D.5) by C′C + κI with κ a small

number.
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Stellingen
behorende bij het proefschrift “Advanced statistical models for SNP arrays:
Signal calibration, copy number estimation and single array genotyping”,
van Ralph C.A. Rippe

1. Systematische afwijkingen in fluorescentiesignalen op SNP ar-
rays kunnen worden gecorrigeerd met de parameters van een
linear regressiemodel (dit proefschrift).

2. Het genotyperen van enkelvoudige SNP monsters doet in be-
trouwbaarheid niet onder voor gevestigde methoden voor sets
van monsters (dit proefschrift).

3. De doelfunctie van de ZEN smoother is niet convex, dus is een
globaal minimum niet gegarandeerd. Toch werkt het algoritme
in de praktijk uitstekend (dit proefschrift).

4. Golfpatronen in copy number profielen op basis van SNP fluores-
centiesignalen worden onterecht als ruimtelijk effect gezien: deze
“waves” zijn artefacten en kunnen worden gecorrigeerd zonder
verlies van inhoudelijke informatie over het profiel (dit proefschrift).

5. Recente verschuivingen van SNP chips met hoge resoluties naar
platforms voor sequencing van het volledige genoom hebben tot
nu toe niet geleid tot nieuwe inzichten.

6. Men vreesde voor kwalijke gevolgen voor bijvoorbeeld verzek-
eringsnemers door het gebruik van DNA-gegevens om levens-
verwachting te voorspellen. Die vrees lijkt ongegrond.

7. Toenemende modelcomplexiteit draagt niet automatisch bij aan
kennis op toegepast niveau.



8. Het zichtbaar maken van nieuw werk, door implementatie in
toegankelijke software, is essentieel in methoden- en statistiek–
ontwikkeling.

9. In een “hot” onderzoeksgebied heeft de “in-crowd” de neiging
nieuwe en/of andere inzichten van buiten de groep tegen te houden.

10. Indirect bewijs suggereert dat elke toegevoegde supervisor de
projectcomplexiteit meer dan verdubbelt.

11. Het leven is wreder dan de dood; niet voor hen die sterven, maar
voor hen die achterblijven.


