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Chapter 1

Introduction

It is in our nature to see patterns in things. Humans and other intelligent organisms
do it to learn from the environment. Scientists assess patterns not just to validate
their theories, but also to discover new ones. Business users such as marketeers try to
understand, predict and influence customer behavior. Doctors apply their experience
with previous cases to diagnose patients and choose the most promising treatment.
So it is not surprising that in the academic field concerned with creating artificial
intelligence (AI) there is a keen interest in giving systems capabilities to learn from
experience, rather than providing it with all the knowledge, rules and strategies it
needs to solve a problem. Terms commonly used for this are data mining and knowl-
edge discovery, using automated techniques to discover interesting, meaningful and
actionable patterns hidden in data.

Even though the term only became trendy in academic research in the mid
nineties, data mining or more generally the problem of how to learn from data
has been a topic of interest for a long time. For example, at the dawn of the com-
puting and AI field over 60 years ago McCulloch & Pitts (1943) introduced neural
networks that mimic how the brain learns, and the empirical revolution in science
around four hundred years ago led to an increased interest in developing scientific
methods to derive natural laws and theory from empirical observations. However,
up to until only ten years ago, data mining had hardly left the research labs. Today,
most people get exposed to data mining a couple times a day without even know-
ing: when Googling for a web site, looking at recommendations for books or CDs
at Amazon.com or tuning into their TiVo digital video recorder. And within certain
business areas, such as marketing or risk management, data mining is now common
practice for business end users, not IT.

The themes and topics of this thesis can be explained through the title: ‘On
Data Mining in Context: Cases, Fusion and Evaluation’. The word ‘context’ is used
here with two different angles in mind. Firstly, the word context indicates that the
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8 CHAPTER 1. INTRODUCTION

research presented is motivated by practical applications, mostly from either business
or biomedical domains. This is not to say that we focus on case applications only. We
do aim to develop methodology and algorithms that are generalizable over a number
of problem domains, but our research is driven by the problems and needs of data
mining in practice.

Secondly, the word ‘context’ refers to the process of data mining and knowledge
discovery. We feel that quite a large proportion of academic research effort in data
mining is targeted at the core modeling step in the process, for example by extending
existing or developing new algorithms for prediction, clustering or finding associ-
ation rules. Whilst this is valuable research, we aim to focus more on developing
methodology for supporting the steps preceding or following the core modeling
step, such as objective formulation, data preparation, model & results evaluation
and post-processing & deployment; or focus on the end to end process as a whole.

Without further qualification, this may sound as quite an ambitious research
area for a single thesis. However it should be seen as an overarching research
theme and objective, rather than a single research question. To keep this practical
and meaningful, we will investigate and discuss a selection of specific topics that
fit into the overall theme. In most cases the approach is to explore and introduce
hopefully new ways to look at these problems, identify interesting areas for research
and provide proof of concept examples, rather than producing technically detailed
solutions. Hence this thesis will not contain extensive elaborations and extensions
of algorithms and proofs. That said, barring some illustrative introductory cases in
the second chapter, we aim to go beyond merely applying an existing algorithm or
approach to a single practical problem. We realize that this results in a thesis that
is neither completely business and application focused nor research and algorithm
oriented, and that the discussion of topics will be broad rather than deep. Our
objective is to purposely be on the border of applications and algorithms to contribute
to bridging the gap between data mining practice and research, enabling a more
widespread application of data mining.

1.1 Thesis Theme, Topics and Structure

Let us discuss the topics of this thesis in more detail, using the knowledge discovery
and data mining process as the underlying structure. A generally accepted definition
of data mining is:

“The non-trivial process of identifying valid, novel, potentially use-
ful and ultimately understandable patterns in data” (Fayyad, Piatetsky-
Shapiro, Smyth & Uthurusamy 1996), p. 6.

Note that according to this definition data mining is a process. In the standard,
classical view a number of steps are identified (see figure 1.1). First the problem
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Figure 1.1: The Data Mining Process

needs to be defined in terms of business or scientific goals, and translated into
specific data mining objectives and an analysis approach. The second step is the
data step, sourcing raw data, combining and transforming it so that it can be used
for the data mining task at hand. This is typically the most time consuming step,
unless the process has been completely automated. The third step is the modeling
step, algorithms are used to extract the actual patterns from the data, for predictive or
descriptive data mining. In the fourth step these patterns and models are evaluated in
terms of quality and content. In the final deployment step, the abstracted models are
applied to new data, and the resulting output is combined with other information
to take appropriate action (Chapman, Clinton, Khabaza, Reinartz & Wirth 1999),
(Fayyad et al. 1996).

This standard view of the data mining process has been designed with a relatively
traditional use case in mind, of a data mining expert who carries out a one off project
to build a predictive model or generate useful descriptive patterns. One may for
instance argue that this model doesn’t really cover how to embed data mining in an
organization, it doesn’t address how to create a model or mining factory where a
model library is continuously extended by data miners, coverage of the deployment
steps is weak (i.e. the part of the lifecycle when the resulting models are actually
used) nor does it really seem to fit fully automated, real time learning systems (see
van der Putten (1999b), van der Putten (2002c) and van der Putten (2009) for some
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Process Step Chapter

Planning (and End to End) Chapter 2: Motivating Examples
Data Chapter 3: Data Fusion: More Data to Mine in
Modeling Out of scope for this thesis
Evaluation Chapter 4: Bias Variance Analysis of Real World Learning

Chapter 5: Profiling Novel Algorithms
Deployment Out of scope for this thesis

Table 1.1: Mapping thesis chapters against the data mining process.

non-academic papers addressing these topics). In this thesis however we will adopt
the standard view as it is widely accepted and generally well known, and it is fit for
purpose for organizing the thesis chapters.

To reiterate, the theme of this thesis is data mining in context. The context refers
to the importance of the steps other than the core modeling step, the relevance of
the end to end data mining process and the aim of developing methodologies and
algorithms that are driven by data mining in practice without sacrificing general
applicability across problems. The data mining process itself is thus used to organize
the thesis chapters (see table 1.1).

The objective of chapter 2 is to present selected end to end data mining cases that
will serve as motivating examples for the importance of studying data mining in
context, and identify high level lessons learned and areas for further research. The
remaining chapters in the thesis focus more on specific process steps, research topics
and solutions addressing some of these lessons learned.

The first case in chapter 2 is based on an early paper with examples of using
descriptive and predictive data mining for direct marketing (see the next section for
a full mapping of chapters against publications). This includes an insurance response
modeling case and a review of a number of direct marketing projects from the early
days of commercial data mining. The projects were carried out in the mid nineties,
but the lessons from these cases are still valid today.

The second case is a similar example of introducing data mining to an end user
audience with no data mining or computer science background. The goal in this case
is to predict five year survival probability for head and neck cancer patients. So called
evidence based medicine is becoming more important in the medical field, from
empirically based studies towards medical decision support systems. We present
some explorative predictive modeling results. The performance of the top classifiers
is relatively close, and we carry out a specific analysis to get a better picture of what
is causing any differences in performance.

The third case is concerned with the classification of yeast cells to evaluate
pathogen conditions. This case takes a holistic view by showing the full end to end
process from growing yeast samples, capturing images, feature extraction, super-
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vised and unsupervised data mining and evaluation of the results. For this problem
we demonstrate that all classifiers perform roughly the same; almost perfect perfor-
mance in this case. In practice it can occur quite frequently that problems are either
trivial or too hard to solve, whereas in typical machine learning papers problems are
carefully selected to be ‘interesting’: not too hard nor too easy. That said, it is still an
open question whether the underlying problem is easy to solve (classifying yeasts)
given that the data mining problem is easy (classifying pictures). In our opinion this
is a good example that in practice the translation of the research or business problem
into a data mining problem and approach has a major impact on the results.

The fourth case introduces a real time automatic scene classifier for content based
video retrieval in television archives. In our envisioned approach end users like
archive documentalists, not image processing experts, build classifiers interactively,
by simply indicating positive examples of a scene. A scene defines against which
background a certain action takes place (day or night, city or countryside, inside or
outside etc.). To produce classifiers that are sufficiently reliable we have developed a
procedure for generating problem specific data preprocessors that extract rich, local
semantic features relevant to the specific global settings to be recognized, exploiting
end user knowledge of the world that identifies what building blocks may be useful
to classify the scene . This approach has been successfully applied to a variety of
domains of video content analysis, such as content based video retrieval in television
archives, automated sewer inspection, and porn filtering. In our opinion in most
circumstances the ideal approach would be to let end users create classifiers, because
it will be more scalable – a lot more classifiers can be created in much shorter time,
and it may eventually lead to higher quality classifiers compared to purely data
driven approaches.

Chapter 3 is concerned with the data step in the data mining process. More
specifically we introduce the topic of data fusion, which is not widely studied in data
mining. A common assumption in data mining is that there is a single source data set
to mine in. In practice however, information may be coming from different sources.

Take for instance the marketing domain. The wide majority of data mining
algorithms require a single denormalized table as input, with one row per customer
(examples of exceptions are multi relational data mining and semi structured data
mining techniques). However, for a single customer information may be available
from a variety of sources, for instance operational data systems, analytical data marts,
survey data and competitive information. Linking information together about this
customer can be seen as a simple join problem, or if common keys are missing a
so called record linkage or exact matching problem. In our research however we
focus on the situation when information about different customers (or other entities)
is combined, the so called statistical matching problem. A typical example would
be merging the information from a market survey among 10.000 customers with a
customer database containing 10 million customers, by predicting the answers to the
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survey for each customer in the database. This then results in a single customer table
that can be used as a rich data source for various further data mining exercises.

We introduce the problem in a data mining and database marketing context and
provide an example that demonstrates that it is indeed possible that data fusion can
improve data mining results, by providing a richer, combined data set to mine in.
However we also discuss some of the limitations of data fusion. In addition we
provide a process model for fusion, as a main blueprint for designing a so called
Data Fusion Factory, for fusing data sets following a standardized, industrialized
procedure.

As outlined we focus on steps in the data mining process around the core modeling
step, so chapter 4 is mainly concerned with evaluation, not just of modeling but of
the end to end process. We conducted a field experiment by providing data for
a data mining competition. The CoIL Challenge 2000 attracted a wide variety of
solutions, both in terms of approaches and performance. The goal of the competition
was to predict who would be interested in buying a specific insurance product
and to explain why people would buy. We had selected a problem representative
for real world learning problems (as opposed to many standard machine learning
benchmarks in our view). For instance it was important to align the data mining
approach and evaluation with the business objective to get good results (scoring
rather then classification), the data used was a combination of a few strong predictors
and many irrelevant ones and to make matters worse we made it tempting to overfit
the problem by offering a substantial prize.

Unlike most other competitions, the majority of participants provided a report
describing the path to their solution. We use the framework of bias-variance decom-
position of error to analyze what caused the wide range in prediction performance.
We characterize the challenge problem to make it comparable to other problems
and evaluate why certain methods work or not. We also include an evaluation of
the submitted explanations by a marketing expert. We find that variance is the key
component of error for this problem. Participants use various strategies in data prepa-
ration and model development that reduce variance error, such as attribute selection
and the use of simple, robust and low variance learners like Naive Bayes. Adding
constructed attributes, modeling with complex, weak bias learners and extensive fine
tuning by the participants often increase the variance error.

In chapter 5 a novel algorithm for classification is presented, however the topic of
the chapter is actually model evaluation and profiling. We discuss an approach for
benchmarking and profiling novel classification algorithms. We apply it to AIRS, an
Artificial Immune System algorithm inspired by how the natural immune system rec-
ognizes and remembers intruders. We provide basic benchmarking results for AIRS,
at the date of publication to our knowledge the first such test under standardized
conditions. We then continue by outlining a best practice approach for ‘profiling’ a
novel classifier beyond basic benchmarking.
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The rationale behind this is as follows. From the No Free Lunch theorem we can
conclude, loosely stated, that there is no classification algorithm that will perform
better than all other algorithms across all problem domains. Of course it is possible
to create an algorithm that performs consistently worse, and the main purpose of
basic benchmarking is to provide a baseline test result to rule this worst case out.
Taking the theorem into account, it can be concluded it is not very useful to use
basic benchmarking to prove that some new algorithm is performing better than the
rest; which often is the case in papers introducing a new algorithms. We claim it
will be more relevant to identify when best to apply the novel algorithm and when
not, for instance by relating problem domain properties such as data set size to
relative performance patterns. Another approach to profiling novel algorithms is to
empirically measure the similarity in behavior of the algorithm compared to others.
We present three methods for computing algorithm similarity and find that AIRS
compares to other learners that are similar from a theoretical point of view, but its
behavior also corresponds to some specific other classification methods, which was
a surprising result.

1.2 Publications

All chapters are largely based on previously published materials, which in some
cases have been extended or combined for the purpose of the thesis. Below we list
the specific publications for each chapter:

• Chapter 2: Motivating Examples

– The review of various direct marketing data mining projects appeared
as a chapter in a book on Complexity and Management (van der Putten
1999a). See also van der Putten (2002a) and van der Putten (2002b) for
more extensive discussions of some of the provided examples. In addition
we refer to some related academic and managerial publications in this
section, among others van der Putten (1999b), van der Putten (1999c),
van der Putten (1999d), van der Putten (2002c), van der Putten, Koudijs &
Walker (2004), van der Putten, Koudijs & Walker (2006), van der Putten
(2009).

– The cancer survival classification case was published as an invited chapter
in a book on Head and Neck Cancer targeted at medical professionals
(van der Putten & Kok 2005).

– The yeast classification case was presented at the ICPR and SPIE con-
ferences (Liu, van der Putten, Hagen, Chen, Boekhout & Verbeek 2006),
(van der Putten, Bertens, Liu, Hagen, Boekhout & Verbeek 2007).
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– We introduced the scene classification case in a BNAIC demo paper and
a KDD workshop paper (Israel, van den Broek, van der Putten & den
Uyl 2004a), (Israël, van den Broek, van der Putten & den Uyl 2004b), and
provided a more extensive description in an invited chapter in a handbook
on Multimedia Data Mining (Israël, van den Broek, van der Putten & den
Uyl 2006).

• Chapter 3: Data Fusion: More Data to Mine in

– This chapter is based on a number of conference and workshop papers,
including a SIAM International Conference on Data Mining paper (van der
Putten 2000a), (van der Putten 2000b), (van der Putten, Kok & Gupta
2002b). An earlier version of the SIAM paper was also published as a
MIT Sloan School of Management Working Paper (van der Putten, Kok
& Gupta 2002a). A paper on the process model appeared at the BNAIC
conference (van der Putten, Ramaekers, den Uyl & Kok 2002). In revised
format, the chapter has been accepted for a book on intelligent systems
and soft computing for marketing, to be published in 2010.

• Chapter 4: Bias Variance Analysis of Real World Learning

– This chapter is based on two collections of competition reports (van der
Putten & van Someren 1999), (van der Putten & van Someren 2000) and
a paper in the Machine Learning journal (van der Putten & van Someren
2004).

• Chapter 5: Profiling Novel Algorithms

– This chapter is based on a number of conference papers (van der Putten &
Meng 2005), (Meng, van der Putten & Wang 2005), (van der Putten, Meng
& Kok 2008) along with selected previously unpublished materials.



Chapter 2

Motivating Examples

The overarching theme of this thesis is data mining in context. This refers to the
importance of the steps around the core modeling step and the end to end data mining
process as a whole. It also refers to the idea that we aim to develop methodologies and
algorithms that are applicable and generalizable over a number of problem domains,
but the research is also driven by the problems and needs of data mining in practice.
In this chapter we will describe some data mining cases that will serve as motivating
examples for the importance of studying data mining within this particular context.
The remaining chapters in the thesis focus more on particular research topics and
solutions. Each of the cases will preceded with a short section relating the case to the
thesis.

2.1 Data Mining in Direct Marketing Databases

In direct marketing large amounts of customer data are collected that might have
some complex relation to customer behavior. Data mining techniques can offer
insight in these relations. In this case we give a basic introduction in the application
of data mining to direct marketing. Best practices for data selection, algorithm
selection and evaluation of results are described and illustrated with a number of real
world examples. We suggest two lines of research that we consider important to put
data mining in the hands of the marketeer: automating data mining techniques and
integration of data mining in an open knowledge management framework (van der
Putten 1999a), (van der Putten 2002b).

15
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2.1.1 Introduction

In marketing, there are two opposed approaches to communication: mass media
marketing and direct marketing. In mass media marketing, a single communication
message is broadcast to all potential customers through media such as newspapers,
magazines, outdoor communication, radio or television. Such an approach typically
implies a high waste: only a small proportion of the customers communicated to
will actually be interested in buying the product. Now that competition increases
and markets get more fragmented the problem of waste worsens. Moreover, in spite
of huge investments in market research and media planning, it is still hard to really
quantify the benefits of mass media marketing. At best indications can be given how
many people of what type were reached, but data on customer response is typically
lacking.

These developments have led to an increased popularity of direct marketing, es-
pecially in the sectors of finance, insurance and telecommunication. The ultimate
goal of direct marketing is cost-effective, two-way, one-to-one communication with
individual customers. This is not limited to the web, the majority of direct marketing
communication is still handled by traditional channels such as direct mail, email,
sms and inbound and outbound calls. For effective direct marketing it is essential
to learn present and predict future customer preferences. In today’s business envi-
ronment, customer preferences change dynamically and are too complex to derive
straightforwardly.

Data mining, the continuous analysis of customer behavior patterns, may offer a
flexible solution to this problem (Ling & Li 1998), (Berry & Linoff 1997). In this case
description we will give a practical introduction to data mining for direct marketing
purposes. We will not discuss any theoretical algorithmic issues, nor will we describe
experiments in detail. We only aim to offer a managerial, self contained, tutorial style
introduction to current data mining best practices for direct marketing: how is data
mining commonly applied and evaluated, and which data and algorithms are most
appropriate, given common direct marketing tasks.

In the first part we will describe the data mining process in a direct marketing
context. A case from insurance is added to give an impression of the practical issues
related to data mining projects, including the evaluation of data mining results. In
the second part we will focus on lessons learned with respect to the selection of
data and algorithms, based on eight data mining projects carried out in co-operation
with the Dutch association for direct marketing, sales promotion and distance selling
(DMSA) (Wagenaar 1997). We conclude with suggesting directions for research.

2.1.2 Data Mining Process and Tasks in Direct Marketing

Data mining can be defined as the extraction of valuable patterns that are hidden
in large amounts of customer data (Fayyad et al. 1996). The end to end process of
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Figure 2.1: The Knowledge Discovery Cycle.

steps involved in data mining is sometimes referred to as the knowledge discovery
cycle (see figure 2.1 and also section 1.1). This includes definition of the objectives,
selection and preparation of the data and evaluation of the results with technical and
business criteria.

Within the loop of a single project, it is not uncommon to go through the knowl-
edge discovery cycle a number of times. For instance, by doing data mining analysis
one might discover that some important data was not selected or was not prepared
in the appropriate format. By performing different data mining projects repeatedly,
an organization starts to learn more and more about customers, contributing to the
‘institutional memory’ of an organization. This can be considered to be a second loop
of learning. Note however that this knowledge is usually not codified, integrated
and disseminated in a systematic way; data mining and knowledge management
tools and technologies supporting institutional learning are typically lacking.

The current success of data mining in businesses is enabled by a number of tech-
nical factors. Growing amounts of customer data are collected and made accessible
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in corporate data warehouses, especially in industries where detailed tracking of cus-
tomer behavior is required for operations or billing anyway. A telecommunications
provider needs to charge its customers for calls and a bank needs carry out all the
transactions that customers request. Powerful new data analysis algorithms are dis-
covered by researchers from statistical pattern recognition and artificial intelligence
fields such as machine learning, neural networks and evolutionary computation.
Today, ordinary office computers are powerful enough to run these advanced data
mining algorithms.

In a direct marketing context, two prototypical data mining objectives can be
distinguished: prediction and description, see sections 2.1.3 and 2.1.4. Prediction
involves predicting unknown or future customer behavior from known customer
attributes. Description aims at discovering human interpretable patterns in the data.
Best practice application of prediction and description in direct marketing are given
below. For a detailed real world example we refer to the insurance case described in
section 2.1.5. More managerial discussions of the data mining process can be found
in van der Putten (1999b), van der Putten (2002c) and van der Putten (2009).

2.1.3 Prediction

The classical case in direct marketing for prediction is response modeling. Usually,
the relative number of customers that responds to untargeted outbound direct mail,
sms or email campaigns is very low (5% or less). Predictive models can be built
to identify the prospects most likely to respond. Historical data about previous
mailings or proxies such as natural product uptake are used to construct the model.
If such information is unavailable, for instance when selecting prospects for a new
product, a test campaign is performed to collect information for a small random
sample from the relevant population in scope. The resulting model can be applied
to filter prospects from the existing customer base or from external address lists
acquired from commercial list brokers.

Although response analysis is by far the most common type of predictive mod-
eling for direct marketing, other applications are promising as well, such as basic
product propensity and usage modeling (see van der Putten (1999c), van der Putten
(1999d)) for a credit card example), customer retention or estimating customer poten-
tial lifetime value (Paauwe, van der Putten & van Wezel 2007), and especially for the
financial services industry, blending marketing decisions with credit risk decisions
(van der Putten et al. 2004), (van der Putten et al. 2006).

2.1.4 Description

A shortcoming of prediction is that it produces models that, to a smaller or larger
extent, may be perceived as black boxes. A response prediction model is useful
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for selecting interesting prospects. But it does not necessarily give the marketeer
more insight into the reasons why these customers respond. Several descriptive data
mining tasks exist that may help out in this case. The main ones we will discuss here
are profiling and segmentation.

Profiling is typically used to answer the question what the discriminating profile
of a specific target group is. A particular approach is to discover which attribute-value
pairs differ significantly between a selection and the database as a whole, or other
reference groups. For example, we considered profiling useful for mining national
media surveys in Holland and Belgium. Every questionnaire contained hundreds
of questions on media interests, product consumption and socio-demographics, so
it was infeasible to construct the profile of deviating attribute values manually. For
example, by using profiling for an analysis of vodka drinkers we found that they
are more often students, drink more Bacardi rum and are more frequent visitors
of cinemas, compared to reference customers (van der Putten 2002a). The same
technique can be used to mine customer databases rather than media surveys as we
will demonstrate in the insurance case below.

In segmentation, the goal is to discover subgroups in data. Customers within
a segment should resemble each other as much as possible, where as the segments
should differ as much as possible. For example, in the vodka case we found out that
the average vodka drinker does not really exist. Instead, subgroups were found that
could be described as ”cocktail drinking teenagers”, ”young student couples” and
”traveling salesmen”. Various approaches to segmentation exist, the main ones are
clustering and projection. In clustering the algorithm partitions the customers into a
finite number of groups itself, in projection high dimensional data about customers
is projected into two or three dimensions, and the user can interactive explore and
label groups of customers in the lower dimensional space (van der Putten 2002a).

2.1.5 Insurance Case

We will illustrate the end to end process and the concepts of predictive and descriptive
data mining with a direct marketing case from insurance. The business objective in
this example was to expand the market for an existing consumer product, a caravan
insurance, with only moderate cost investment. We identified two data mining
objectives: selecting individual prospects and describing existing customers.

Data Selection and Preprocessing

Each customer was characterized by a selection of 85 input attributes plus a target
attribute. The attributes could be divided in two groups. The product usage at-
tributes defined the product portfolio of an individual customer, so these attributes
can be considered to be internal (company owned), behavioral attributes. We also
purchased external socio-demographic survey data that had been collected on zip
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code level. All customers belonging to the same zip code area have the same value
for these attributes. This included information on education, religion, marital status,
profession, social class, house ownership and income. The selection of attributes to
be used was made based on expert domain knowledge and exploratory data analysis
(correlation with attributes to be predicted).

A number of preprocessing steps were taken, some of which are provided directly
by the data mining environment we used for all the experiments (DataDetective, see
www.sentient.nl). Most numerical attributes were transformed to categorical values.
For each attribute, normalization factors were computed so that all attributes had the
same standard deviation. Missing values were identified so that the algorithms that
were going to be used could handle these values correctly.

Response Modeling

To select prospects we constructed a model to predict the likelihood of owning a car-
avan policy given all other attributes. Note that because of practical limitations, this
was a simplification of the ideal model, which would have measured the response to
a test campaign for a random selection of customers, or an alternative approximation
in which the outcome would be propensity to buy a policy in the next n months.
The overall response rates may be higher than the real response on a direct market-
ing campaign, given that ownership has been built up over time, and one must be
cautious to interpret correlation directly as causation (‘leaking predictors’).

A random sample, the training set, was drawn from the customer base. The
training set was used to construct a so called naive Bayes model. We will only
provide an informal description here, see Witten & Frank (2000) for a more formal
textbook description. In a naive Bayes model, the prediction for a given customer is
computed by using the Bayes rule for statistical inference. This rule states how the
probability of a class given data (attribute values for a test instance) can be computed
from the probability of data given a class, the prior probabilities of the classes and
the data (as derived from training data).

For instance let us assume that one of the input attributes defines a customer
segment a customer is in. Now given a test customer with segment equals young
professional we can derive the probability of owning a caravan policy by calculating
on the training data, amongst others, the probability of being a young professional
given that the customer owns a policy. The resulting estimates from each attribute
are combined into a single score by assuming independence across attributes. This
assumption is typically violated in practice, however, as long as the resulting predic-
tions are interpreted as rank scores rather than absolute probabilities, naive Bayes
generally delivers robust results.

A number of attributes were assigned very low importance, so the actual number
of attributes taken into account to compute the resemblance was reduced to ten
attributes using a subset attribute selection method (Correlation Based Feature Subset
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Figure 2.2: Cumulative response chart insurance model.

method (CFS) with best first forward search (Hall & Holmes 2003), (Hall 1999)). The
prediction model was applied to the test set, a random sample of customers, disjoint
with the training set. For each test customer, the response score was computed to
indicate the potential to buy a caravan insurance.

Given a low response rate of 6.0%, a naive prediction model which scores all
records as non-respondents, already achieves 94.0% classification performance. So
this standard data mining measure, which counts the relative numbers of cases for
which the classes were predicted correctly, did not suffice. This suggests that other
evaluation criteria were needed to evaluate the accuracy of the prediction model.

For this kind of analysis, often a cumulative response chart is used (see figure 2.2).
All test instances (records) are ordered from left to right on the x-axis with respect
to their predicted probability of response (or a concordant rank score). If only
the top 10% is mailed, the cumulative response rate RespCumm (relative number
of respondents in mail selection) is 17%, which is almost 3 times higher than the
response rate RespCumr achieved when records are selected randomly. At 25% the
cumulative response rate is still more than twice as high than average (12.7%).

Another way to evaluate the model is shown in figure 2.3. Here the relative part
of all respondents that is found is plotted:

RespCapturedm =
RespCumm ∗ s ∗ n

RespCumr ∗ n
=

RespCumm ∗ s

RespCumr

(2.1)
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Figure 2.3: Captured response (left axis) and profit (right axis) insurance model.

with s selection size and n total number of customers in the test set or deployment set
to select from. If the top 20% customers are selected, almost half of all respondents
(48%) are found. The optimal mail selection size s∗ depends on the cost per mail piece
c and the profit per responder p. Profit (or loss) at s∗ can be computed as the profit
made on responders minus the costs of contacting the selection:

Profits∗ = p ∗ RespCumm ∗ s∗ ∗ n − c ∗ s∗ ∗ n (2.2)

with p the profit per responder (excl. campaign costs) and c the cost per contact. See
figure 2.3 for an example with p=10 Euro, c=1 Euro, n=4,000,000 customers. Note this
is for illustration purposes only, given the remarks made at the start of this section
with respect to the outcome definition.

Descriptive Segmentation of Respondents

Contrary to prediction, descriptive data mining results cannot always be translated
into measurable business results and interpreted in a single, objective manner. There
are few generally accepted algorithm-independent error measures for segmentation
techniques, and even less for profile discovery. In addition the business value result-
ing from descriptive data mining relies more on the way how the marketeer interprets
the descriptions, the conclusions that are drawn and the actions that are taken, which
is typically subjective and may be hard to measure.
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Figure 2.4: Iterative nearest neighbor projection reveals clusters in data. The figure at the right
hand bottom side shows the end result. The user assigns the points to clusters depending
on the final state of the projection and the resulting customer profiles. The projection process
can then be rerun from a new random initialization point to cross check the stability of the
projection and manual clustering. The white points belong to cluster 2.
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In the insurance example, we wanted to find segments of caravan insurance own-
ers which should be marketed with a different tone of voice, across different channels
or using different offers etc. For this we used a custom iterative projection algorithm
based on the principles of metric multidimensional scaling (Borg & Groenen 2005) as
implemented in the data mining tool used. The algorithm projects all owners from
high (95) dimensional space on to two dimensions in a number of steps (see figure
2.4). The process is started by randomly positioning customers in two dimensional
space. Then in each step, every customer performs a nearest neighbor search in high
dimensional space to find similar customers and moves a little bit in the direction of
these neighbors in two dimensional space. A centrifugal force ensures that all cus-
tomers do not end up into a single spot. In the insurance example, after the projection
process converged, we built customer profiles of the resulting clusters. For instance,
if we compared cluster 2 to all customers and the other clusters, we found out that the
cluster contained relatively loyal customers (two car insurance policies, more often
in a high turnover category), who where living in residential areas with a high rate
of privately owned houses and who were more often belonging to a religious, senior
citizen family structure.

2.1.6 DMSA Direct Marketing Cases

In this section we will propose some best practices for data selection and data min-
ing algorithm selection, based on data mining experiences from a variety of direct
marketing projects.

Developing a single data mining algorithm that offers the best peak performance
(e.g. accuracy) on all possible data mining problems might seem a good approach for
research. However the ‘No Free Lunch Theorem’, suggests that such an approach will
probably not be successful. This theorem states that measured over all possible data
sets and cost functions, there can be no single algorithm that performs best (Wolpert
& MacReady 1995). So it makes more sense to identify the requirements for which
a certain class of algorithms performs better. Furthermore, researchers sometimes
assume that the data set is a given. However, the choice of data is probably even more
important than the algorithm used. In the specific context of marketing, it might be
possible to develop best practices for collecting appropriate data.

These issues have been the focus of a research project Sentient Machine Research
has performed in co-operation with the Dutch Organization for Direct Marketing,
Sales Promotion and Distance Selling (DMSA) (Wagenaar 1997). To be more exact,
the objective of the research was to identify under what circumstances and for which
data the relatively ‘new’ data mining algorithms such as neural networks, rule induc-
tion and evolutionary algorithms performed ‘better’ compared to classical statistical
techniques such as linear regression and discriminant analysis. Experiments were
performed in eight real world data mining projects for several organizations, includ-
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Organization Sector Business Objective
Fund 1 charity segmentation fund members
Fund 2 charity upgrading, estimation donation potential
NS transport identifying suspects for prolongation

of railways discount card
ABN AMRO banking selecting prospects for a new service

(balance check by telephone)
VSB banking cross selling saving programs to current

account holders
Readers Digest publishing selecting prospects from a list broker

database
Centraal Beheer insurance selecting potential converters

from a list broker database
NV Databank list broker selecting prospects for marketing

of a new product

Table 2.1: Cases in the DMSA project.

ing banks, insurance companies, publishers, a railway company and charities (see
table 2.1) (Wagenaar 1997). Below, we would like to share some of the lessons learned
from this project.

Collecting the right data

A general result was that the data used was often the most important factor for
the success of the data mining projects, in terms of both benefits and effort. Data
collection was always a critical constraint in project planning. Data preparation
amounted to up to 80% of total work invested. The requirement for what kind of
data to use depends primarily on the nature of the data mining task at hand.

For prediction tasks, the data should possess as much predictive power as possi-
ble. Firstly, the number of attributes plays an important role. The more attributes are
used, the higher the probability becomes that strong predictors are identified, and
non-linearities and multivariate relationship can occur that intelligent techniques can
exploit. On the other hand, the so called ‘curse of dimensionality’ limits the amount
of attributes that can be used. If the number of attributes increases, the density of
the data set in pattern space drops exponentially and complexity of models can grow
linearly or worse (Bishop 1995). Complex models (i.e. a large number of parameters)
have a higher chance of overfitting to the training data and will not perform well on
new data (low generalization), so attribute selection is important.

Secondly, the type of attributes to be used is of importance. The best data to use
is company internal behavioral customer data which relates directly to the products
to be marketed or the customer behavior to be predicted. Examples are product
usage, information requests, response, account balances etc. Traditional marketing
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Figure 2.5: Chart with gains of several projects. Using company internal data on past customer
behavior results in higher gains for response prediction tasks.

attributes such as social class, education, age and gender do not suffice to predict
modern customer behavior. Empirical support for these claims is shown in figure 2.5.
Highest gains were achieved in projects based on data as described above. For
description tasks, however, raw summaries of product usage etc. do not suffice to
inspire marketeers. Descriptive attributes, such as socio-demographic attributes that
are collected at zip code level, should be added. These attributes typically possess
much less predictive power, but offer more insight to marketeers.

Choosing the right algorithm

In the DMSA project, we roughly distinguished between adaptive pattern recog-
nition techniques such as neural networks, rule induction, nearest neighbor and
genetic algorithms and classical linear statistical techniques such as regression and
discriminant analysis. The main advantage of adaptive techniques in general is that
these techniques are able to model highly non linear relationships. Furthermore, it is
often claimed that these algorithms are less parametric, i.e. make less assumptions
about the relation between customer attributes and predicted behavior. For linear
regression for instance, this relation is assumed to be linear, which is a pretty tough
assumption. However, adaptive techniques require implicit assumptions about the
data and relationships to be modeled as well. Also, real world marketing data is often
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Figure 2.6: Creaming the crop with backpropagation neural networks. This graph displays
the lift (RespCumm −RespCumr)/RespCumr for linear regression versus backpropagation neural
networks for one of the DMSA projects.

quite noisy, in which case it is dangerous to try to fit complex non-linear relations,
as one may run the risk of actually fitting noise rather than signal. Practical aspects
such as speed, amount of data preparation needed, understandability and ease of use
and deployment are also important. For example, linear regression is still one of the
fastest algorithms around when it comes to scoring large data sets, and the resulting
models are easier to explain to marketing stakeholders.

Overall we found that when the number of attributes was large enough for non-
linearities to occur, and selection size was sufficiently small, neural networks in
selected cases performed best in ’creaming the crop’: selecting the top customers in a
prediction task (figure 2.6). We achieved cumulative response rates in top selections
that were up to twice as high as the runner up algorithms, which can correspond
to considerable savings. For larger selections, the advantage of neural networks
diminishes. This is reasonable to expect, because the relation between customer
attributes and response for customers that have an average score is very weak. Also
improved performance is certainly not guaranteed as overall performance not only
depends on the ability to discover complex relationships, but also on robustness of
the learner related to the levels of noise in the data. So if the marketeer is mainly
interested in two-way, high quality relations with top customers, which are likely to
be interested in the offer, including adaptive techniques for data mining may make
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sense. If a marketeer is more interested in performing larger mailings to achieve a
high response in absolute numbers, wants to mail a relatively large proportion of the
customer base, and is willing to accept many non responders, classical techniques
such as linear regression will suffice and may be easier to apply.

2.1.7 From Data Mining to Knowledge Discovery

The goal of data mining should be the transition to a learning, customer centric or-
ganization. Customer analysis should be performed on a regular basis, or customers
should even be monitored on line. Prediction should not be limited to response
analysis, but should be a business activity aimed at modeling higher level customer
attributes, needs and attitudes, such as ’willing to take risk’, ’high probability of
ending the relationship’ or ’early adopter’.

Reality is still different. A general problem of most data mining projects is that
data collection is a major bottleneck, data mining algorithms still require a lot of man-
ual parameterization and data preparation and reusability of data mining results is
poor. To shorten the knowledge discovery cycle we suggest two important directions
for research: automating data mining techniques and integration of data mining in
an open knowledge management framework.

Automating Data Mining Algorithms

Although current data mining algorithms generally require less parameters to be set
and less data preparation to be performed than classical statistical algorithms such as
linear regression, users still need to have a low level understanding of how a specific
algorithm works. We identify several possible directions to solve this problem.

First, in a practical approach, one could identify heuristics for making reasonable
choices for specific applications, data mining techniques and steps in the knowledge
discovery cycle. These best practices could be properly documented in some kind
of data mining methodological framework, or ideally, these best practices are incor-
porated in intelligent assistants which guide the user through data preparation and
prediction processes.

There are also less heuristic and more general algorithmic approaches, which
are sometimes referred to as meta learning methods. These methods learn to make
choices which were normally made by the data mining analyst, including deciding on
the best algorithms to use (Aha 1992), (Soares & Brazdil 2000), (Vilalta & Drissi 2002).

Combining Knowledge Management and Data Mining

An important lesson from cognitive psychology is the so called Learning Paradox:
‘He who knows nothing can learn nothing’. Whereas it might be fruitful to aim
at automating the data mining algorithms, research into the direction of a more
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open and integrated framework for storing and reusing data mining processes and
results would be relevant as well, to further facilitate knowledge discovery driven
institutional learning. There have only been a few attempts to introduce knowledge
management to data mining (Wirth, Shearer, Grimmer, Reinartz, Schlösser, Breitner,
Engels & Lindner 1997), (Engels, Lindner & Studer 1997). In our view research
must not focus on a single analysis or algorithm, but on a number of analyses in a
learning organization. For this it is required that analyst and domain knowledge is
represented, a library of data mining results is maintained and intelligent assistance
is offered based on this knowledge base.

2.1.8 Conclusion

Data mining can be a helpful tool for managers and organizations to cope with
a dynamically changing and complex business environment. We identified best
practices for application of data mining for direct marketing, selection of data and
algorithms and evaluation of results. The key to successful application of data mining
will be integration into business processes and information infrastructure .

2.2 Head and Neck Cancer Survival Analysis

The Head and Neck Cancer case is a second example of introducing data mining to
an audience with no data mining or computer science background. The goal in this
case is to predict five year survival probability for head and neck cancer patients. So
called evidence based medicine is becoming more and more important in the medical
field, from empirically based studies towards medical decision support systems.

We benchmark a wide variety of classification algorithms on this problem, re-
sulting in varying accuracies. Whilst this may be sufficient to solve the problem at
hand, this doesn’t provide more insight from a data mining point of view why some
classifiers perform better than others. Therefore we carry out a so called bias variance
analysis to get a better idea of the source of the error (van der Putten & Kok 2005).

2.2.1 Introduction

Today an increasing variety of patient data is becoming available and accessible,
ranging from basic patient characteristics, disease history and standard lab tests to
micro-array measurements. This offers opportunities for an evidence-based medicine
approach to diagnosing and treating head and neck cancer patients.

All this raw data does not necessarily equate to having useful information, on the
contrary, it could lead to an information overflow rather than insight. What doctors
need is high-quality support for making decisions. Data mining techniques can be
used to extract useful knowledge from clinical data, to provide evidence for and



30 CHAPTER 2. MOTIVATING EXAMPLES

thus support medical decision making. In this section we will give a non-technical
overview of what data mining is and how it can be applied in the head and neck
cancer domain.

Let us consider survival rate prediction for head and neck cancer patients. When
building a prognostic model no explicit medical hypothesis is made about the relation
between the data items collected and survival rate. The task of finding the relation
is left to a modeling algorithm. The medical analyst building the model then uses
medical expertise to determine whether the patterns found are truly relevant to the
prediction or perhaps a consequence of the particular way the data as been collected,
data pollution or just a random effect.

Even if regular statistical techniques such as logistic regression are used to build
the model, this example can be seen as a data mining project. For instance, the
focus is on knowledge discovery rather than confirming hypotheses. Furthermore
the patterns found must be useful for medical decision support.

Within the cancer domain data mining is being applied for a long time already.
Examples are the classification of breast tumor cells as benign or malignant, dis-
tinguishing different types of leukemia by mining micro-array data (Golub, Slonim,
Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield &
Lander 1999), (Liu & Kellam 2003) and predicting breast cancer recurrence (Michalski,
Mozetic, Hong & Lavrac 1986). Recent developments in functional genomics and
proteomics have been key drivers for the application and development of biomedical
data mining. The major data mining conferences host specific workshops on biomed-
ical data mining, for instance the BIOKDD workshops at the KDD conferences from
2001-2008 (see for example Lonardi, Chen & Zaki (2008) ) and Bioinformatics work-
shops at ICML-PKDD (for example Ramon, Costa, Florencio & Kok (2008)). Data
mining is not limited to simple data - the same process and techniques are used to
mine imaging data and semi-structured data such as molecular structures, and a hot
topic at the moment is the application of data mining to text such as medical articles.

Survival prediction is an example of a so called predictive data mining task. The
goal here is to assign the right class to a patient, for instance dead or alive in five
years. This is called a classification task, or the task is called a scoring task if the
task is to produce a rank score reflecting the probability to be alive in five years. An
alternative prediction task would be a regression task: the goal here is to predict
some unknown continuous outcome, for instance the number of years that someone
will live from now on. In both cases we need to have some data available on patients
for whom the outcome is known.

2.2.2 The Attribute Space Metaphor

Let us explain classification in more detail using the concept of an attribute space
(or also: pattern space). Assume the goal is to develop a five year survival model.
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Figure 2.7: Classes ‘square’ (dead) and ‘circle’ (alive) in two dimensional attribute space.
Each dimension corresponds to an attribute, for instance ‘age’ and ‘tumor size’. The star
corresponds to a patient for which a prediction needs to be made about probability of survival
after five years.

To develop a model we have a data set of cancer patients available with a known
outcome, deceased or alive five years after admission. For each patient a number of
attributes (variables) are known that can be used to make the prediction, for instance
age, location of the tumor, size of the tumor etc. So the patients can be seen as points
with a certain location in attribute space, with each of the attributes corresponding
to a dimension. Each of the points can be labeled with the outcome class: dead or
alive in five years from now.

In figure 2.7 we have visualized this for two dimensions, assume that ‘square’
means the patient is dead and ‘circle’ alive after five years. It is now easy to see what
the task for the classifier is: separate the classes in attribute space. In this example
the classifier divides up the space in three areas, two of them correspond to the class
deceased and one to class alive. For the new patient indicated by the star in the figure
the classifier will predict class alive.

Note that the classes in the left upper corner are linearly separable: we can
separate them with a single line. However, there are also some deceased patients in
the lower right corner. So we can’t separate the whole space with a single line. This
means that for this example a classifier that creates a single (linear) decision boundary
between classes is sub optimal. The simple binary logistic regression model is an
example of a linear classifier; a wide variety of more advanced regression techniques
are available that can model non-linear decision boundaries.

Also note the two deceased patients (squares) in the middle ‘alive region’. In
real data sets there will be a lot of overlap like this, and drawing different samples
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from a data set will lead to different outcome class distributions in attribute space.
The goal of the classifier however is not to model this particular data set, but rather
the underlying mechanism that is generating this data: the relation between patient
attributes and survival rate in this case. The classifier needs to strike the right balance
between recognizing intricate decision boundaries and not overfitting the data. In
some cases two patients with exactly the same attributes may conflict in terms of class
labels. This is an example of a data point the (theoretical) optimal classifier cannot
even handle, as it only has attribute information available to make its prediction.

There is a whole range of techniques available for building classifiers. We find
the distinction ‘statistical’ versus ‘data mining’ not particularly useful (if even possi-
ble), we rather differentiate the techniques on the ability to model complex decision
boundaries, how easy it is to interpret the model and the risk of overfitting data.
For brevity we have excluded a discussion here, see van der Putten & Kok (2005)
for a non technical comparison of various classification techniques such as nearest
neighbor, neural networks and decision trees, using the attribute space as a common
metaphor.

2.2.3 Evaluating Classifiers

Several procedures exist for evaluating the quality of a classifier; here we distinguish
between internal and external validation methods. Generally it is not advised to
use the entire set of known cases for training. Because of overfitting the risk exists
that the classifier gives excellent results on the training data, but when it is applied
to new cases the results are very poor. If all available data is used for training the
generalization capabilities of the classifier cannot be tested. The simplest internal
evaluation method is hold out validation. One part of the data is used to create the
classifier, the other part is held out to test the performance of the model on cases that
have not been used for training. A more sophisticated internal validation method
is cross validation. In tenfold cross validation for instance, the data set is divided
into ten parts. First a classifier is constructed using the first nine parts and validated
on the tenth part. Then a classifier is built on the first part plus part three through
ten and validated on the second part etc. This process is usually repeated over a
number of runs. This procedure will result in a more accurate estimate of the model
performance.

Generally several types of classifiers with varying parameter settings are tested
out using cross validation, the best classifier is then chosen and retrained on the entire
data set to yield a single model, and the patterns found by the model will be checked
by a domain expert. External validation tests evaluate a classifier on completely
different samples. For instance, a survival rate model discussed in Baatenburg de
Jong, Hermans, Molenaar, Briaire & le Cessie (2001) was built on patients from the
Leiden University Medical Center, but later applied to patients from other hospitals.
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Special evaluation measures exist that decompose the error into different sources
or causes, intrinsic error, bias and variance. For the purpose of brevity we will only
describe these informally in this section (see Geman, Bienenstock & Doursat (1992),
Kohavi & Wolpert (1996), Breiman (1996), (Friedman 1997), Domingos (2000), James
(2003), van der Putten & van Someren (2004) for more formal accounts). The intrinsic
error (or noise) is the unavoidable error, i.e. the error that some ideal classifier would
still have, given the input data that is available. For instance, imagine that two
patients have exactly the same attributes but only one of them dies. As discussed,
even the ideal classifier would, using this data, predict the wrong class for one of the
patients. The bias error is the error due to bias, i.e. limitations in the relationships that
a certain classifier can express or find, even if an infinite number of instances would
be available. For instance linear or logistic regression models with thresholding
essentially create a single hyperplane in pattern space as a decision boundary (i.e.
a line in 2d, a plane in 3d etc.) so more complex patterns will not be recognized.
Finally the variance error is the error due to the fact that only limited data is available.
Instability of a learner on a single data set or overfitting, different results for different
samples from the same data set, will lead to increased variance error.

2.2.4 Leiden University Medical Center Case

In this section we will present some case results. Note that the scope and purpose of
this section is to give an illustrating example of data mining rather than presenting a
thorough medical, statistical or data mining analysis (Baatenburg de Jong et al. 2001),
(van der Putten & Kok 2005).

Objectives and data used

The objective in this case is to provide a prediction of the probability of survival
over the full range of the next ten years. This corresponds to the main question a
patient will have – how much time do I have left, or what is the probability that I
still will be alive in x years. Special statistical survival regression techniques exist
to create models to answer these questions (Harrell 2001). However, to simplify
the explanation of the classification algorithms and the benchmark experiments, we
approximated the objective with the more basic task of classifying whether a patient
will be deceased or alive after five years.

The data set we used was a variant of the data set from Baatenburg de Jong
et al. (2001). It contains 1371 patients with head and neck squamous cell carcinoma
of the oral cavity, the pharynx, and the larynx diagnosed in the Leiden University
Medical Center (LUMC) between 1981 and 1998. From these patients, the prognostic
value of site of the primary tumor, age at diagnosis, gender, cancer staging (T-,
N-, and M-stage), prior malignancies and ACE-27 (co-morbidity, i.e. an indication
of overall physical condition) were known. Patients were staged according to the
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UICC manual and prior malignancies are defined as all preceding malignant tumors
except for basal cell and squamous cell carcinoma of the skin. If contact with the
patient is lost there is an independent and active follow-up by contacting the family
doctor and reconciliation with the Dutch Registry of Births, Deaths and Marriages.
This guarantees that the outcome (dead or alive at a given stage) is as complete as
possible.

We experimented with two versions of the data set, depending on how we treated
the TNM cancer staging data. TNM is a cancer staging system to assess the extent
of cancer in a patients body. T measures the size of the tumor and whether it
has invaded neighboring tissue, N describes regional lymph nodes affected, and M
describes distant metastasis (spread of cancer between parts of the body). In the first
data set T, N and M were measured as separate numerical attributes. In the second
data set T, N and M were grouped into symbolic TNM categories, e.g. T2N0M0.

Modeling approach and results

To gain experience with this data set a wide variety of classifiers have been tested
including logistic regression, nearest neighbor (with 1 and 15 neighbors respectively),
decision trees, decision stumps (trees with only a single split) and neural networks
(single hidden layer, decaying learning rate); see van der Putten & Kok (2005) for
a description of these methods in the context of the head and neck cancer case.
Furthermore we have added some other classifiers: support vector machines, naive
Bayes, decision tables and a bagged decision trees ensemble. All classifiers have been
tested on the two data sets (numerical versus symbolic TNM, see above) with ten
runs of tenfold cross validation: in total 2000 classifiers have been built. We used the
WEKA open source data mining package for the experiments (Witten & Frank 2000).
To simulate a real world setting with time and modeling expertise constraints, and to
avoid that the familiarity of the experimenter with certain algorithms would become
a factor in the performance of the algorithms, we have used default settings unless
stated otherwise.

In figure 2.8 an example of a decision tree generated from this data set is shown
(C4.5 decision tree (Quinlan 1986) on the full set with confidence setting of 0.05).
Note that T, N, age, ACE and prior malignancies have a role to play in this model,
but M status surprisingly enough does not. We can only speculate, but apparently
the first few splits divide the patient population into subgroups within which the M
status does not appear any more as the top indicator, potentially because of strong
correlation with other predictors appearing in the tree. For each of the leaves we
have also calculated the proportion of deceased or alive patients, dependent on the
class label of the leaf.

Tables 2.2 and 2.3 provide an overview of the average and standard deviation
on the classification accuracies for each of the classifiers over all runs (TNM nume-
ric versus symbolic data sets). Classification accuracy is defined as the percentage
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Figure 2.8: Decision tree generated from Head and Neck data (full set)
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Classifier Performance

Neural Network 73.0 ± 4.1
Logistic Regression 72.8 ± 4.0
SVM 72.3 ± 4.1
Naive Bayes 70.9 ± 4.2
Bagged D. Trees 70.0 ± 3.8
Decision Tree 69.4 ± 3.8
Decision Table 69.2 ± 3.6
Decision Stump 67.6 ± 3.4
15 Nearest Neighbor 67.6 ± 4.1
1 Nearest Neighbor 61.1 ± 3.5

Table 2.2: Average and standard deviation
on the classification accuracy for all classi-
fiers (TNM numeric data set)

Classifier Performance

Logistic Regression 71.1 ± 3.6
Neural Network 71.0 ± 3.7
Decision Tree 70.3 ± 3.8
Naive Bayes 70.2 ± 3.9
Bagged D. Trees 69.7 ± 3.9
Decision Table 69.6 ± 3.7
SVM 68.9 ± 3.8
Decision Stump 68.0 ± 3.7
15 Nearest Neighbor 66.5 ± 3.6
1 Nearest Neighbor 62.0 ± 4.4

Table 2.3: Average and standard deviation
on the classification accuracy for all classi-
fiers (TNM symbolic data set)

correct classifications on the hold out validation set. Note that the differences for
most classifiers are quite small given the standard deviation.

The grouping of algorithms in terms of performance is interesting. For instance for
the numeric data set (table 2.2) the top four classifiers are different but all compute
some weighted function over the attributes to generate a probability score for the
predicted class. The model formula is valid over the entire attribute space. The
decision trees, tables and stumps and the nearest neighbor algorithms rather divide
the attribute space up into small regions – the class prediction is generated from this
local region only. It seems that on this data set the latter strategy is performing worse.
In theory, naive Bayes can be seen as a borderline case of both approaches, given that
its key model parameters are estimated for specific values of each attribute, and then
an overall function is applied to these parameters. It is interesting to see that this is
also reflected in the results as naive Bayes is the bottom ranked classifier in the top
four. The models built on the numeric data set outperform the models built on the
symbolic data; apparently these models can exploit the ordinal relationship of these
attributes, this likely leads to more robust models.

To compare the classifiers in more detail we have performed a so called bias
variance analysis. As explained in section 2.2.1, bias variance analysis assumes there
are three potential sources of error, intrinsic error, bias and variance, informally the
unavoidable error, the error due to model representation or search limitations and
the error due to instability of the model over random samples.

In the particular bias variance computation procedure we used, the intrinsic error
is combined with the bias error ((Kohavi & Wolpert 1996); TNM numeric data set,
bias variance decomposition sample size 350). Figures 2.9(a) and 2.9(a) show the
results sorted by bias and variance respectively. Classifiers with high variance are
Decision Stumps, -Tables, -Trees and 1-NN, high bias classifiers are Naive Bayes,
Neural Networks, 1-NN and Logistic Regression. Logistic regression, Naive Bayes,
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Figure 2.9: Bias variance analysis on HNC data: (a) sorted by increasing bias; (b) sorted by
increasing variance; (c) sorted by increasing total error (bias plus variance); and, (d) same sort
order but stacking to 100% to show relative proportion of bias versus variance.
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Figure 2.10: Plot of bias versus variance for a variety of classifiers on the HNC data set (TNM
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SVM and Neural Networks perform well on this data set (figure 2.9(c)). According
to figure 2.9(d) the bias component error is largest, however it should be taken into
account that this includes the intrinsic error, which is unknown but constant across
the classifiers. As can be seen the variance component in relative terms generally
increases when total error becomes larger.

To better visualize the relationship between bias and variance we have also created
a bias variance scatterplot (figure 2.10). The tradeoff between bias and variance can
be clearly seen here. The tree based classifiers have a lower bias error than for
instance logistic regression, but this is completely countered by the variance error,
which is up to three times larger for the lower scoring classifiers than for the top
classifiers. In more detail, the standard deviation for the bias component is 0.017,
whereas the standard deviation of the variance component is 0.039, so variance is
a more important source for the difference in error across the various classifiers.
We have also performed a linear regression against these points, this results in the
following equation:

variance = −1.98 × bias + 0.54 (2.3)
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Obviously this is a somewhat artificial analysis, given that this equation will not
be valid across the entire bias variance space. Ignoring this for a moment we can
perform some speculative yet interesting calculations with this equation, for instance
providing an estimate for intrinsic error. Remember that in the method used, bias
includes intrinsic error and the real bias (Kohavi & Wolpert 1996), so it will never
become 0. The (theoretical) ideal classifier will have intrinsic error, but no real bias
and variance (the Bayes error, see van der Putten (1996) for a description). Solving
the equation for zero variance results in a bias estimate of 0.54/1.98 = 0.27. Given that
the real bias will be zero, this provides us an estimate of intrinsic error. i.e. the error
for the ideal classifier, under the assumption that the tradeoff relationship would be
as per the regression equation.

2.2.5 Discussion and Conclusion

In this section we have presented an introductory overview on the application of
data mining for head and neck cancer survival analysis. We simplified the survival
analysis problem to a classification problem and benchmarked a range of classifica-
tion algorithms on the resulting data. To get a better idea why certain classifiers are
performing better than others we evaluated the various sources of error, bias and
variance. Variance is the main cause of differences across classification methods.

Biomedical data mining is one of the fastest growing areas in knowledge discov-
ery. While the field will be maturing we expect a shift of interest from improving the
core classification algorithms to improving the wider applicability of data mining.
This may include more emphasis on automating and supporting the full data mining
process rather than just the core modeling step, generalizing data mining methods to
more types of information from structured to more unstructured data and building
data mining and decision support systems that can easily and reliably be used by
doctors or medical analysts not data mining experts. The latter step will require more
efforts need to be made to blend predictive models for instance with existing medical
knowledge, policy rules and protocols.

The classification algorithms described output class labels (deceased or alive), but
can also generate probabilities, for example the probability to be alive after five years.
As discussed, special purpose regression techniques exist for survival analysis, for
example Cox regression. One of the advantages of these techniques is that they
can take the information of censored patients into account: patients for which the
outcome (dead or alive at year x) cannot be completely determined (Harrell 2001).
A lot of work can still be done to adapt the existing data mining techniques further
specifically to the problem of survival analysis, as has been done in the statistical
community.

A specific research question that we are interested in is how to integrate infor-
mation from different sources. For instance, for prediction of 5-year survival rate
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various data sets are available from different institutions. Is it possible using this
data to develop a prognostic procedure that produces more reliable results than can
be obtained by just using one of these single sets alone? Would this be a matter
of combining information on a data set level by just adding the data sets together
or using a more sophisticated data fusion procedure that fills in information that is
missing in some of the data sets (van der Putten, Kok & Gupta 2002b)? Or would
a better approach be to build separate prognostic models on each single data set
and combine the outputs of these models? Some of our initial experiments seem to
indicate just adding data sets together is sufficient if there is a lot of variety between
data sets, but this may be different if there is more standardization across these sets
(Maat 2006). Given that variance seems to be a major component of error the use of
more data may result in improved classification models, in terms of accuracy and
robustness.

2.3 Detecting Pathogen Yeast Cells in Sample Images

This case reports on an approach towards developing classifiers for detecting virulent
cells in a yeast sample, by using a range of features derived from the shape or density
distribution in an image. The classifier can be used for automating screening and
annotating existing image collections. A purpose of this case is to show an example
for which the core modeling step clearly is just a small part of the overall process and
problem, and choices made outside the modeling step can have a major impact on
the overall success.

We will describe the full end to end process from growing yeast samples, captur-
ing images, derivations of features, supervised and unsupervised data mining and
evaluation of the results. We compare various expertise based and fully automated
methods of feature selection, benchmark a range of classification algorithms and in
general, illustrate the application of data mining to this particular domain.

For one of the problems in this case we demonstrate that all classifiers perform
roughly the same - almost perfect performance. In practice, it can occur quite fre-
quently that problems are either trivial or too hard to solve, whereas in typical
machine learning papers problems are carefully selected to be not too hard nor too
easy. That said, it is still an open question whether the underlying problem is hard
to solve (classifying yeasts), whereas the data mining problem is easy (classifying
pictures). In our opinion, this is a good example that in practice, the translation of
the research or business problem to a data mining problem has a major impact on
the results (Liu et al. 2006), (van der Putten et al. 2007).
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2.3.1 Introduction

Yeast cells come in many appearances, yet only few of them have been identified
as being pathogenic. The virulence of a yeast cell can, in some cases, be derived
from the morphology of the cell. In the pathogenic yeast Cryptococcus neoformans
thicker capsules are believed to be an indicator for virulence for instance. The aim
of our study is to develop a measurement and classification system for the virulence
of cryptococcal yeast cells, using their morphological characteristics, not limited to
capsule thickness alone. The classification is initially based on image features, but
it should be possible to extend the procedure in multi-media-like fashion to include
biochemical and genomic data. By definition, an image classification system depends
on the quality of images and derived features that are fed into it. We therefore take a
rather holistic view on the construction of such a classification system.

Cryptococcus neoformans is a basidiomycetous yeast that can cause meningitis,
meningoencephalitis and pulmonary and skin infections. Infections occur mainly in
immunocompromised patients, for instance HIV-infected patients, transplantation
patients and leukemia patients (Casadevall & Perfect 1998). One of the most signifi-
cant virulence factors of the fungus is the presence of an extra-cellular polysaccharide
capsule (Littman & Tsubura 1959), (Dykstra, Friedman & Murphy 1977), (Chang &
Kwon-Chung 1994), (Bose, Reese, Ory, Janbon & Doering 2003), (Janbon 2004). Com-
plementation of a capsule-deficient mutant clearly showed the relation between the
presence of a capsule and cryptococcal virulence (Chang & Kwon-Chung 1994). The
thickness of the capsule can vary between strains, specific genetic constructs related
to capsule biosynthesis, and between different environmental conditions (Dykstra
et al. 1977), (Casadevall & Perfect 1998), (Zaragoza, Fries & Casadevall 2003).

Although measuring the size and shape of the capsule seems straightforward,
it has not often been applied. Using the morphology of the yeast cells, the ob-
vious analysis is to look at the capsule thickness directly, either by automated or
semi-automated methods (Rivera, Feldmesser, Cammer & Casadevall 1998). Early
attempts may have been hampered by the fact that the staining methods were not
sufficiently developed for good image analysis in that the staining results were not
reproducible. We have experienced such as well in earlier work (Liu et al. 2006).
Newer staining methods have opened possibilities for large scale analysis.

Applying an image analysis driven method will allow for deriving more features
than just the capsule thickness. Rivera et al. (1998) have analyzed samples of mouse
brain and lung infected with C. neoformans to evaluate both capsule thickness and
cell volume. The cells were segmented from the images using hand-tracing. The
features were derived by estimating the radius and computing the features with the
analytical equations of circle area and sphere volume.

However, a fully automated tool has not been presented to date. Given the
relatively simple shapes of cryptococcal cells, an effort to develop such a system
should be undertaken. The extracted features from cell images should inform us
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about the different classes of cryptococcal cells that can be distinguished. Ideally,
a sample is taken from a population, i.e. a yeast culture, and from the features
a distribution of the virulence can be found leading to a further understanding of
the virulent state of a particular culture. Features should not be restricted to capsule
thickness, but extend to a broader range of features that can be extracted from images
of cryptococcal cells.

Such a fully automated approach of image analysis and classification is relatively
new in the field of yeast genomics. It is a desired approach though, as in the near
future such systems will be used in large scale screens. This case presents a first step
towards such a system, with a focus on an analysis of the relative importance of the
derived features. Features and images should be stored in a database, and interop-
erable screening will allow retrieving other features related to the same sample from
other databases. This is the typical trend currently seen in the bioinformatics research,
i.e. an integrative approach of bioinformatics combining information from a broad
panel of related bio-medical, molecular and organismal databases. In summary, this
case presents a holistic description of an end to end process from growing the yeast,
capturing images, image segmentation, feature extraction and classification.

2.3.2 Materials and Methods

The pipeline for experimental data consists of a range of modules passing files and
data (see figure 2.11). The process starts with producing the yeast strains followed by
image acquisition. The images need to be further enhanced first, and then separate
cells are isolated through an image segmentation procedure. For each of the cells,
image features are derived and then fed into various data mining algorithms for
classification and clustering. Below we will describe each of these steps in more
detail.

Producing the Yeast Strains

Preliminary investigations were made using a variety of Cryptococcus strains from
the collection of the CBS Fungal Biodiversity Centre, using some media that are
known to influence capsule size. Among these were Littman medium (Littman 1958),
Golubev medium (Golubev & Manukyan 1979) and the recently described Sabouraud
media with or without MOPS, HEPES, pH5.5 and 7.3, and 1/10 diluted Sabouraud
medium (Zaragoza & Casadevall 2004).

Unfortunately, results obtained using these growing conditions were not optimal.
Therefore, we decided to use Potato Dextrose Agar (PDA: 230 ml potato extract, 20
g dextrose, 15 g agar, 770 ml water, pH 6.6) that according to our experiences at CBS
result in highly mucoid colonies and capsulated yeast cells in many basidiomycete
yeast species. Two C. neoformans strains were used in the final analysis, namely
an acapsular mutant CBS 7926 (Cap 59- mutant of NIH B-3501, E.S. Jacobson) and a
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are passed to another module. The open arrows indicate the flow of files (image in and
measurement file out) as used in the system. ScilImage is used for all image related work;
Weka is used for work related to the classification and clustering
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capsule containing isolate CBS 7936 (Cap 67- mutant of NIH B-3501, E.S. Jacobsen).
The strains were maintained in the gas phase above liquid nitrogen at -135C, subcul-
tured twice at PDA (48 h at 25C) and investigated for capsule size. In addition CBS
6955 (=ATCC 32608 =NIH 191), a Cryptococcus gattii strain, was used in our exper-
iments. This strain was cultured on the standard YPGA medium (1% yeast-extract,
1% peptone, 2% glucose, 2% technical agar 3, all in w/v); the staining procedure for
this strain was equal to the other two strains in this study.

In order to enhance the contrast for the imaging, we used the nigrosine staining
method for our experiments. All yeast cells (CBS 7926, CBS 7936 and CBS 6955) were
stained in 9 µl of 5% (w/v) nigrosine in water. The yeast cultures were inspected
under the microscope to inspect if the culture was indeed according to expectations.
Growth of the yeast culture on agar-plates was tested with a Leica Stereo microscope.
Cultures that were proven to be of good quality were used in the experiments and
slide preparations were obtained.

Staining and Image Acquisition

In the image acquisition phase the focus was to obtain images of sufficient quality
for images analysis. The starting point for this study was to use two dimensional
images. From earlier research with cryptococcal cells we have learned about the
quality of various staining methods. The staining methods that we have focused on
are the so called background staining techniques that do not stain the specimen but
rather enhance the microscopy features by making the background more light dense
(Liu et al. 2006).

Traditionally, yeast biologists were using Indian Ink in the microscopy prepa-
ration. The apparent disadvantage of this staining method in image analysis and
specimen classification is that it is hard to get a reproducible staining. In addition
application of this staining results in blurring of capsule margins. With the nigro-
sine staining method we were able to get reproducible staining with few artifacts.
The staining method also rendered an excellent quality of the visualization of the
yeast cell and its capsule. Moreover, it can be applied as a standard procedure and
therefore it is easily included in the standard workflow in a yeast biology laboratory.

Some examples of images that are obtained with the nigrosine staining can be
found in figure 2.12. Each image is a sample and from each culture at least 20 images
are obtained through random selection over the slide. The operator criterion is that
in a selected field of view, sufficient cells are present. The samples were not taken to
establish the numerical density of the yeast in the specimen preparation.

Figure 2.12 (a) includes cluttered cells that need be separated in the preprocessing
phase so that each cell can be quantified. Figure 2.12 (b) illustrates a budding yeast
cell. The ‘new’ cell is excluded from the analysis: in preprocessing the bud is
separated from the parent cell and the parent cell is used in the analysis. Figure
2.12 (c) depicts a cell that is captured incompletely. Cells on the image border are
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Figure 2.12: Four examples of samples taken from a yeast culture negatively stained with
nigrosine.

excluded from analysis. Figure 2.12 (d) depicts another yeast culture with cluttered
and budding cells as well as cells on the image border.

The slides were prepared for image acquisition on a Zeiss Axioskop with a
PlanApoChromat 63x (NA 1.40) oil lens. The image acquisition was carried out
with an Adimec MXI2P black and white CCD camera mounted on the Zeiss Ax-
ioskop (Zeiss, The Netherlands) and connected to a Pentium 3; the acquisition was
controlled by the Research Assistant (v3) software. The Adimec MXI2P acquires im-
ages with a dynamic range of 8 bits; the images are sized 640x444 pixels and stored
as TIFF files.

Image Preprocessing and Segmentation

Image preprocessing and segmentation is crucial to the experimental set up, given
that it generates the results for the final classification procedures. The processing and
analysis of the images is carried out using the SCIL-Image environment (van Balen,
Koelma, ten Kate, Mosterd & Smeulders 1993). This image processing environment
is an extensible software package well suited to scientific research. To complete the
tasks of the research that is described a range of new routines were added to the
package.

The preprocessing step consists of preparing the images for a segmentation pro-
cedure, so that each individual yeast cell in the image is measured through a number
of features. Ideally the yeast cells are evenly distributed over the microscope slide
and the yeast cells captured in images are nicely separated. This is, however, not
always the case (figure 2.12 (a)-(d)). In the images we find budding cells, i.e., cells in
the process of division, and cells that are cluttered together as well as dead cells. The
classification of yeast cells should be based on features that are derived from single
cells. The effort in the preprocessing and segmentation step is to accomplish that par-
ticular goal. This goal is achieved by applying firstly the appropriate filters (figure
2.13 (b) and (c)); secondly performing the segmentation and thirdly processing each
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segmented image in such a way that only features from single cells are extracted.
This requires application of heuristics in the segmentation process. An image is
successfully processed if each of the cells that are completely visible in the image is
transmitted to the image analysis part and its shape can be measured. Figure 2.13 (e)
is supportive in understanding the segmentation procedure; a cryptococcal yeast cell
consists of a cell body and a thick (or no) capsule. The segmentation is a multi-layered
process as we have to be sure to extract the individual cells in the right way. Below
we list the processes involved in the segmentation procedure in more detail.

The segmentation starts with a straightforward bi-level threshold operation,
which results in a binary image with just the capsules. In this phase of the seg-
mentation it is important that the outer contour of the cell (the outer boundary of the
capsule) is detected accurately. Using propagation a mask is created over the area
that contains the entire cell. Next, of all objects in the image, the objects that touch
the boundary are established and by an XOR operation these are excluded from the
binary image. In doing so, the objects on the boundary, often incomplete shapes, do
not contribute to the measurements (for instance figure 2.12 (c) and (d)). The small
sized objects are removed.

The next step is a labeling operation, so that we can extract and address each
of the cells present in the image. In this phase we have to evaluate whether or
not the cells are cluttered. For this evaluation the characteristic that intact individual
cryptococcal cells are circular is used. This is accomplished with a circularity criterion
which approximates one (1.0) for a circle. Cells that measure as circular are further
segmented for measurement, cells with an aberrant circularity are processed in the
separation module (see figure 2.11).

The circular mask is used to extract each of the labeled cells and perform a precise
segmentation of the capsule (cf. CC in figure 2.13 (e)). This is completed in a buffer
image of just size of the bounding box of the shape. The circular mask, obtained from
the labeling is used in an XOR operation to find the area of the cell body (cf. CB in
figure 2.13 (e)). After segmentation we have obtained two new masks, namely one
for the capsule (CC) and one for the cell body (CB). In figure 2.13 (d) a segmentation
result is depicted by superimposing the contours of CC on the original image. The
masks and the buffer image are passed to the measurement module.

In case the circularity is not approximating 1.0, it is probable that the label rep-
resents a clutter of cells. An example of such a clutter is depicted in figure 2.14 (a)
and in figure 2.14 (b) the binary labeling is shown. These cells need to be separated
in order to be able to use them in the measurement module. To that end, watershed
segmentation is performed by applying a distance transform on the binary image of
the clutter (figure 2.14 (c)) and from the distance image a non-branching skeleton is
derived (figure 2.14 (d)). Superimposing the skeleton on the clutter helps to extract
the maxima. Passing from one maximum to the next detects the minimum where
the cells should be separated. The separation produces a (filled) mask for each of the
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 A  B 
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 Figure 2.13: Imaging of the yeast cell with nigrosine background staining and showing obvious
features from the cell. Figure A (panel, top left), depicts one cell with a dark background. The
complete cell consists of the capsule and the cell body. The capsule is less light dense and thus
using bright-field microscopy appears as white in the image of a yeast cell. The cell depicted
has a relatively large capsule. The next three panels illustrate the steps to segmentation
and the result. Figure B shows the result after filtering and enhancing the capsule so that
through segmentation the total cell can be extracted. Figure C shows the result of filtering
and enhancing the cell body of the yeast cell. Segmentation and XOR on the binary images
produces the required result of a separate measure for the cell body and the capsule. Figure
D shows the result as superimposed on the original image. Figure E (left panel), depicts a
model of the yeast cell with a capsule. Using this schematic drawing the initial features for
the recognition of the pathogen yeast cell can be understood. These features are closest to the
recognition of the biologist. Thickness of capsule and cell radius are illustrated clearly. Db =

diameter cell body, Ct = capsule thickness (in pixel units), rc = radius of cell body, rt = radius
of total cell. CB= Cell body, CC = Capsule. CB and CC are also used for surface area of cell
body and capsule respectively.
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Figure 2.14: The processing pipeline for the segmentation and segmentation of cluttered cells.
Figure A: a group of touching yeast cells as found in figure 2.12 A. Figure B: the result of the
segmentation process. The labeled component would not adhere to the heuristic of circularity
and hence it would be considered a cluster that needs to be separated. Figure C: the distance
transform of 3B showing distinct maxima at the centroids of the individual cells. Figure D: the
skeleton, derived from the distance transform and superimposed on the original image (black
line).

cells in the clutter and the process continues with labeling (figure 2.11). The correctly
separated cells are now processed by the segmentation module and prepared for
measurement.

The individual cells that are extracted are used to determine the training/test set
for classification. There is a range of features that can be measured from the shape
of the cell and more specifically the capsule of the cell. In routine practice, the yeast
biologist will evaluate capsule thickness through the microscope and possibly relate
that to the radius of the cell. From digitized images, however, many more features
can be derived. We will apply the measurements on the results from the segmentation
procedure which are: a buffer image with the density image of one cell (for instance
figure 2.13 (a)) and two masks, i.e., one for the cell body (CB) and one for the capsule
(CC).

Feature Extraction

Initial analysis is directed to the features the biologist will check when examining
a sample of a yeast culture. As indicated in the introduction, the thickness of the
capsule may be an indication of the level of virulence of a particular yeast isolate.
Therefore, this feature needs to be analyzed in a reproducible manner. As capsule
size is easily made objective by digital measurement, relative measures are computed
comparable to what the yeast biologist does routinely by investigating yeast cells by
bright field microscopy using negatively stained cells. In figure 2.13 (e) a schematic
drawing is given to illustrate the measurement of the capsule thickness.
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We have taken the image moments as a starting point of our analysis and as the
objects are relatively simple shapes these moments provide sufficient information for
a classification on the basis of shape. From the image moments a set of features is
derived that is used in the classifications and clustering.

In a two-dimensional density image, the image moments are expressed as:

mpq =

"
xpyq f (x, y)dxdy (2.4)

where p + q indicates the order of the moment. For the case of a sampled image of
size N ×M this translates to:

Mpq =

N−1
∑

x=0

M−1
∑

y=0

xpyq f (x, y) (2.5)

One should realize that in case of images with binary objects, the function f (x, y) filters
all irrelevant image information. In the case of binary images the image moments
provide information on the geometrical distribution of a point set. The moments are
made translation invariant by centering on the mean of the distribution. The mean
is computed from the zero and first order moments. The centralized moments are
expressed as:

µpq =

N−1
∑

x=0

M−1
∑

y=0

(x − x̄)p(y − ȳ)q f (x, y) (2.6)

The first order moment in a binary image equals the object area; so the µ00 of CB is
the area (in pixels) taken by CB and µ00 of CC is the area of the capsule. The sum
of these zero order moments is the total area of the cell and thus we can express the
relative area of CB and CC in terms of zero order moments as:

Arel
CB =

µCB
00

µCB
00
+ µCC

00

(2.7a)

Arel
CC =

µCC
00

µCB
00
+ µCC

00

(2.7b)

Instead of deriving rt and rc (cf. 2.13 (e)) from the area by using the analytical equation
of a circle we use the data to find radii in the shape. These are the semi-major and
semi-minor axis of the distribution, also known as the moments of inertia. The
semi-minor and -major axes are computed (Verbeek 1995) (Verbeek 1999) from the
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centralized second order moments as:

α =

√

√

√

√

2(µ20 + µ02 +

√

(µ20 − µ02)2 + 4µ2
11

)

µ00
(2.8a)

β =

√

√

√

√

2(µ20 + µ02 −
√

(µ20 − µ02)2 + 4µ2
11

)

µ00
(2.8b)

In the same manner the relative thickness is derived from the semi-major and semi-
minor axis:

T
rel−major

CC
=

αcc

αCB + αCC
(2.9a)

Trel−minor
CC =

βcc

βCB + βCC
(2.9b)

Besides the major and minor axis we can derive a radius of gyration in both the x
direction, the y direction and additional unified form:

γCC
x =

√

µ20

µ2
00

(2.10a)

γCC
y =

√

µ02

µ2
00

(2.10b)

γCC
xy =

√

µ20 + µ02

µ2
00

(2.10c)

The third order moments relate to the skewness of the distribution in both the x and
y direction as follows (Verbeek 1995):

SkCC
x =

µ30

3

√

µ2
20

(2.11a)

SkCC
y =

µ03

3

√

µ2
02

(2.11b)

The kurtosis (peakedness) is derived from the fourth order moments in both the x
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and y direction as follows:

KCC
x =

µ40

µ2
20

− 3 (2.12a)

KCC
y =

µ04

µ2
02

− 3 (2.12b)

From the moments a set of 7 invariants can be derived (Hu 1962), (Gonzales & Woods
1993). These invariants are computed through a normalization of the centralized
moments. We use the first four invariants; we will express the invariants in terms of
normalized moments without further addressing the normalization step.

The first and second invariant are derived from second order moments; the third
and fourth invariants are computed from third order moments:

φ1 = η20 + η02 (2.13)

φ2 = (η20 − η02)2 + 4η11 (2.14)

φ3 = (η30 − 3η12)2 + (3η21 − η03)2 (2.15)

φ4 = (η30 + η12)2 + (η21 + η03)2 (2.16)

In our experiments the moments are computed for both the binary image and the
gray-value images. The binary images are the cell body (CB) and the cell capsule
(CC), both available from the segmentation. In addition, the binary images are used
to mask out the gray-values under the area of CB and CC respectively, so that these
can be used to compute a gray-value moment set.

The equations 2.4-2.16 provide a lot of features that require computation of the
centralized moment-set (eq. 2.6), thus the moment sets are first transposed to the
centralized form. This is accomplished for CB in binary and gray-value images as
well as CC in binary and gray-value images. The binary measurements are related
to the geometrical distribution of the shape whereas the gray-value measurements,
in the way applied in our experiments, are related to the density distribution under
the shape. All features are derived from the centralized moments and formulated
for the CC; in all cases the feature is mutatis mutandis derived for the CB.

In addition, the relative area and relative thickness have been introduced to rule
out the effect of the size of the cell. The relative area (eqs. 2.7) is derived from the zero
order moment (in the binary case equal to area) and the relative thickness (eqs. 2.9)
is derived from the semi-major and the semi-minor axis (cf. eqs. 2.8).

2.3.3 Experiments

Clustering and classification is carried out using the WEKA data mining toolkit
which incorporates a wide variety of pattern recognition methodologies. Different
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methods are easily compared and data import is dealt with through standard file
formats. Feature selection, clustering and classification modules from WEKA were
used to complete this study (Witten & Frank 2000).

As stated before, the goal from a biological perspective is to classify yeast cells
into potentially virulent and non-virulent classes. We approximated this objective
by building classifiers that can distinguish between different classes of yeast cells
that resemble either virulent or non-virulent classes, with respectively thick or thin
capsules. The image data set that we have used to conduct our experiments is
sufficient in a proof of concept setting.

A wide variety of clustering and classification models have been built to inves-
tigate the usefulness of the various features generated by the image preprocessing
phase, ranging from features that measure capsule size directly to the more abstract
moment invariants. For completeness we also experimented with various types of
classification algorithms, though we feel that at this stage this is not a major factor in
the quality of the final classifier.

A major point we would like to mention, is that distinguishing between images
may not be the same as distinguishing between categories of yeast cells. For instance,
differences can be caused by varying environmental conditions when growing the
cells, or can result from staining, image acquisition, feature extraction and other pre-
processing steps. It is crucial to control these conditions as much as possible, which
is only achievable to a certain extent. The rise of collaborative web collections of
images may make matters rather worse than better, as image production becomes
more separated from image distribution and analysis, and collections become het-
erogeneous. So, in addition, it is essential to focus on feature extractors that extract
the right type of information, i.e. focusing on cell characteristics, and this was a core
issue we have kept in mind for our entire approach.

Three sets of images were available: a Cryptococcus neoformans strain with thick
capsules (7936), a Cryptococcus neoformans mutant with thin capsules (7926) and
a related strain, namely Cryptococcus gattii (6955) also with a thick capsule. This
allows us to zoom in on detecting cell characteristics that are typically associated
with virulence. The third set of images comes from a different strain (6955) which
allowed us to check the performance of classifiers if more classes are introduced. We
performed a univariate analysis to estimate the predictive power of each attribute,
using the information gain measure. To explore the usefulness of the set of attributes
from a multivariate point of view we carried out a clustering on the data sets and
evaluated the mapping of classes to resulted clusters. We then created an array
of classification models using the procedure outlined below. All these experiments
were carried out for the two-class (7926 vs. 7936) and three-class problem (7926, 7936,
6955).

As discussed the image preprocessing procedure produces an instance for each
cell, resulting in a number of instances for each of the classes 7926, 7936 and 6955.
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A number of features produced by the preprocessing procedure were deemed either
irrelevant for classification (f.e. x,y position), not invariant (f.e. size, area and radius)
or prone to measuring differences in imaging or preprocessing conditions rather
than cell characteristics (f.e. distributional characteristics of the inner part of the
cell; same for binary images of the capsule). The remaining set of attributes, the
base set, included gyration (x, y, unified for binary and gray values, cf., eqs. 2.10);
variance, skewness (cf. eqs. 2.11) and kurtosis (cf. eqs. 2.12) of the distribution of
the capsule; the first and second moment invariants (cf. eqs. 2.13, 2.14; binary and
gray); surface inner area compared to entire cell (cf. eqs 2.7, binary and gray) and
thickness of capsule compared to entire cell (cf. eqs. 2.9; binary). To investigate the
contribution of various attributes, classification models were built on ten different
subsets of attributes, see the results section for details.

As discussed both clustering and classification experiments were carried out. For
the clustering experiments we used standard k-means clustering with two, respec-
tively, three clusters and created a matrix to compare the distribution of classes over
these clusters. The classification algorithms applied were decision stumps (split on a
single attribute), J48/C45 decision trees, naive Bayes, 1-nearest neighbor and 5-nearest
neighbor. For the latter three algorithms we investigated two variants, one using all
attributes available, and one based on selecting the most important attributes first.
Attribute selection was performed on train sets only using the correlation based
feature subset method (CFS) with best first forward search (Hall & Holmes 2003),
(Hall 1999), (Witten & Frank 2000). Classifiers were evaluated based on ten runs of
tenfold cross validation for each classification algorithm - attribute set combination.

2.3.4 Results

Below we present the results of our experiments. Without sufficient results in the
image processing modules no classification would be possible, therefore, we first
summarize the results obtained through preprocessing and segmentation. A number
of clustering and classification experiments are summarized in tables 2.4 to 2.7; the
specific focus of the classifications and the content of the tables is discussed in the
second part of this section.

Preprocessing and segmentation

For the experiments described in total 84 images were processed. The images con-
tained fully separated as well as cluttered cells. For the CBS 6955 cells 18 images were
processed and 75 cells were extracted, for CBS 7926 cells 30 images were processed
and 136 cells were extracted, whereas for CBS 7936 cells 36 images were processed
and 66 cells were extracted. The difference in numbers in the CBS 7936 and CBS 7926
is caused by the fact that CBS 7926 is a mutant strain with significantly smaller size
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Two class problem

Attribute Eq. Info
Gain

φ1 CC-g 2.13 0.91
φ1 CB-b 2.13 0.91
φ2 CB-g 2.14 0.91
rel. area CC-g 2.7b 0.87
φ1 CC-b 2.13 0.87
rel. area CC-b 2.7b 0.87
rel. thickness α CC-b 2.9a 0.87
rel. thickness β CC-b 2.9b 0.87
kurtosis y CC-g 2.12b 0.80
kurtosis x CC-g 2.12a 0.75
φ3 CB-g 2.15 0.70
φ4 CB-g 2.16 0.66
gyration ratio CC-b 2.10c 0.56
gyration x CC-b 2.10a 0.56
gyration y CC-b 2.10b 0.56

Three class problem

Attribute Eq. Info
Gain

φ1 CB-g 2.13 1.23
φ1 CC-g 2.13 1.00
φ2 CB-g 2.14 1.00
φ1 CC-b 2.13 0.97
rel. area CB-b 2.7a 0.97
rel. thickness α CC-b 2.9a 0.97
rel. thickness β CC-b 2.9b 0.97
rel. area CC-g 2.7b 0.94
kurtosis y CC-g 2.12b 0.86
φ3 CB-g 2.15 0.81
φ4 CB-g 2.16 0.77
kurtosis x CC-g 2.12a 0.68
skewness y CC-g 2.11b 0.56
gyration y CB-g 2.10b 0.55
gyration ratio CC-b 2.10c 0.52

Table 2.4: Predictive power of the attributes for the two-class (7936; 7936) and three-class
(6955; 7936; 7926) classification tasks, measured in information gain on the full data set (15 top
predictors out of 50).

as they practically do not have a capsule; apparently more of these cells were present
in one sample.

For each of the image sets (6955, 7926, and 7936) the results of cells that were
successfully segmented and measured were saved to flat files. These files were
imported in the classification environment. The files contain a large number of
features some of which are not relevant for the classifications we have pursued in our
experiments. A selection was made on the basis of information gain measurements
of the features.

Clustering and classification results

Now we present the results for the various data mining experiments. First, we
assessed the predictive power of individual attributes by calculating the information
gain over the full training data (Witten & Frank 2000), see table 2.4 (15 top predictors
out of 50). The abbreviations of figure 2.13 E are used to indicate the measurement at
hand; a suffix b is added if it concerns measurement of a binary object, whereas a suffix
of g is added if the measurement concerns a gray-value object. The corresponding
equation number is given in the second column. It is interesting to note the dominance
of grayscale over binary image attributes. There is no clear winner between inner
area and capsule attributes. The first and second moments invariants (equations 2.13,
2.14) dominate the top predictors.

The results of the clustering experiments can be found in table 2.5. If clusters
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Cluster 1 Cluster 2

7926 0 136
7936 66 0

Cluster 1 Cluster 2 Cluster 3

7926 130 0 6
7936 0 64 2
6955 0 28 47

Cluster 1 Cluster 2

7926 134 2
7936 0 66
6955 0 75

Table 2.5: Allocation of classes over clusters for two class – two cluster, three class – three
cluster and three class – two cluster experiments respectively.

emerge that have a natural mapping to classes, it provides evidence that a good set of
attributes is used to separate the classes. Note that this is a sufficient, not a necessary
condition: in theory it is unlikely, but still possible, that classes are easily separable,
but distributed over a multitude of clusters. However in our case there is a very
good mapping from clusters to classes. It is also interesting to note that if we use two
clusters on the three class problem, both classes with relatively thick cells (7936 and
6955) are grouped into a single cluster.

Finally, classifiers were built for the two-class and three-class classification prob-
lem, see table 2.6 and table 2.7 for the results. Classifiers were built using different
combinations of attributes and classifiers; the base set of attributes is described in
section 2.6. The attribute set was varied across using binary (description ends with
b), gray level (ends with g) or both binary and gray value features (ends in all). Fur-
thermore, we differentiate between using all base features, relative area only, relative
thickness only and moments only.

It is quite clear from the two class results that image classes seem to be perfectly
separable. As highlighted before, this does not guarantee that we can perfectly
distinguish between the two classes of cells because in principle there could be other
causes for differences between images. That said, from visual inspection it is clear
that both classes of cells are quite different. Furthermore, the cluster experiments
have shown that the two most similar classes end up in a single cluster when forced
by the clustering algorithm (i.e. 7936, 6955). Note furthermore that a simple single
split is sufficient for good performance (decision stump) and that this result is robust
across the various sets of attributes. It is actually quite common in both very hard
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Decision J48 Naive 1-NN 5-NN
Stump Bayes

Attribute Set % σ % σ % σ % σ % σ
Base set, all 99.4 1.9 99.0 2.3 99.5 1.5 100.0 0.0 100.0 0.0
Base set, b 98.5 2.5 99.0 2.3 99.5 1.5 100.0 0.0 100.0 0.0
Eq. 2.4 (CB, CC),b 98.5 2.5 99.0 2.3 97.8 2.9 98.5 2.5 98.6 2.8
Eq. 2.6 (CC),b 98.5 2.5 99.0 2.1 98.0 2.9 98.3 2.7 98.6 2.8
Eq. 2.10-13, b 98.5 2.5 99.0 2.3 98.9 2.3 99.5 1.6 99.5 1.5
Base set, g 100.0 0.0 99.4 1.9 100.0 0.0 100.0 0.0 100.0 0.0
Eq. 2.4 (CB, CC),g 99.4 1.6 98.9 2.3 98.6 2.5 99.0 2.1 99.2 1.9
Eq. 2.6 (CC),g 98.5 2.5 98.9 2.5 98.0 2.9 98.5 2.5 98.5 3.0
Eq. 2.10-13, g 100.0 0.0 99.4 1.9 100.0 0.0 100.0 0.5 100.0 0.5
Eq. 2.10-13, all 99.4 1.9 99.0 2.3 99.5 1.5 100.0 0.0 100.0 0.5

Naive Bayes 1-NN 5-NN

Attribute Set % σ % σ % σ
Base set, all 99.7 1.2 100.0 0.0 100.0 0.0
Base set, b 100.0 0.0 100.0 0.0 100.0 0.0
Eq. 2.4 (CB, CC),b 97.8 2.9 98.5 2.5 98.6 2.8
Eq. 2.6 (CC),b 98.0 2.9 98.3 2.7 98.6 2.8
Eq. 2.10-13, b 100.0 0.5 100.0 0.0 99.0 2.0
Base set, g 100.0 0.0 100.0 0.0 100.0 0.0
Eq. 2.4 (CB, CC),g 98.6 2.5 99.0 2.1 99.2 1.9
Eq. 2.6 (CC),g 98.0 2.9 98.5 2.5 98.5 3.0
Eq. 2.10-13, g 100.0 0.0 100.0 0.5 100.0 0.5
Eq. 2.10-13, all 100.0 0.0 100.0 0.5 100.0 0.5

Table 2.6: Classification accuracy and standard deviation (tenfold ten runs) for various combi-
nations of attributes and classifiers (two class problem). Top table shows results without and
bottom table with attribute selection.
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Decision J48 Naive 1-NN 5-NN
Stump Bayes

Attribute Set % σ % σ % σ % σ % σ
Base set, all 76.2 1.7 95.1 3.7 91.9 4.8 96.2 3.4 94.5 4.0
Base set, b 74.3 2.9 91.7 5.0 87.6 5.6 91.8 4.5 92.6 4.7
Eq. 2.4 (CB, CC),b 74.3 2.9 73.8 3.6 75.0 5.6 82.1 5.8 78.3 6.6
Eq. 2.6 (CC),b 74.3 2.9 73.6 3.5 73.0 5.6 78.1 6.4 78.2 6.4
Eq. 2.10-13, b 74.5 2.8 81.7 5.9 83.1 5.9 81.7 5.8 81.3 6.1
Base set, g 76.2 1.7 94.9 3.8 94.6 4.4 97.3 3.0 95.2 3.7
Eq. 2.4 (CB, CC),g 72.9 3.6 84.0 5.7 79.6 6.5 79.7 6.8 83.6 6.1
Eq. 2.6 (CC),g 74.5 2.8 73.4 3.5 73.4 5.4 77.3 7.4 77.6 6.6
Eq. 2.10-13, g 76.2 1.7 88.1 4.9 87.3 5.4 83.8 6.1 81.3 5.8
Eq. 2.10-13, all 76.2 1.7 90.1 5.7 84.0 5.6 81.2 6.6 84.6 6.0

Naive Bayes 1-NN 5-NN

Attribute Set % σ % σ % σ
Base set, all 93.4 4.9 97.0 3.3 96.1 3.6
Base set, b 88.2 4.9 93.0 4.3 94.1 3.8
Eq. 2.4 (CB, CC),b 75.0 5.6 82.1 5.8 78.3 6.6
Eq. 2.6 (CC),b 73.0 5.6 78.1 6.4 78.2 6.4
Eq. 2.10-13, b 81.6 5.9 82.0 6.3 82.9 6.3
Base set, g 96.2 3.8 97.6 2.7 96.7 3.0
Eq. 2.4 (CB, CC),g 79.6 6.5 79.7 6.8 83.6 6.1
Eq. 2.6 (CC),g 73.4 5.4 77.3 7.4 77.6 6.6
Eq. 2.10-13, g 87.3 5.4 83.8 6.1 81.3 5.8
Eq. 2.10-13, all 82.2 6.0 83.6 5.3 84.4 5.8

Table 2.7: Classification accuracy and standard deviation (tenfold ten runs) for various com-
binations of attributes and classifiers (three class problem). Top table shows results without
and bottom table with attribute selection.

and very easy real world data mining problems that simple models produce accurate
and robust results (Holte 1993), (van der Putten & van Someren 2004).

To make the classification a bit less trivial we have also built classifiers to separate
all three classes. As can be seen from table 2.7 the classification accuracy goes down
for many attribute set - classification algorithm combinations. However, for some it
is still possible to get near perfect results. It is interesting to note that the classifiers
on moment invariants generally perform better than classifiers built on metrics that
more or less directly aim to measure capsule thickness (relative area of the inner part;
thickness of the capsule). This demonstrates that there is more to a cell than just the
capsule thickness.

Furthermore, grayscale features seem to outperform features derived from binary
images. This suggests there is more to a cell image than a binary shape. The relatively
high performance of 1 nearest neighbor (1-NN) is also noteworthy. We do not have
a definitive explanation for this, however, 1-NN tends to perform well if there are
‘exceptions to the rule’ that are actually not outliers, but valid examples of a class.
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2.3.5 Discussion and Conclusion

We have described the development of a classification system for a capsulated
pathogenic yeast. Apart from being successful in its own right, it serves as an
example to other systems in the ingredients that are used and the emphasis on each
of the parts that make up the system: i.e., the specimen preparation, the image ac-
quisition, the image processing and analysis and the classification including feature
selection.

The outcome for the different features with respect to the classification is intrigu-
ing. If we go by the judgment of the yeast biologist we would have to let the capsule
features relating to geometry dominate. This is, however, not unambiguously found
in the feature selection. Rather than binary features, the first and second moment
invariants are shown to be important in the classifications. One should realize that
these features were derived from a masked gray-value image. For these features the
density distribution is only considered at the masked geometry, i.e., CB and CC. The
precise mechanisms that make features discriminative can’t be concluded from these
experiments. New, controlled, experiments should be designed to get further insight
in these features.

The three class experiments provide interesting findings. The third strain (6955)
corresponds to the C. neoformans stain (7936) in that it has clearly visible (thick)
capsules; genetically, however, these strains are different. The imaging conditions
of 7926 and 7936 were more or less similar; the 6955 strain was captured under
different conditions. One could be tempted to conclude that the results for the three
clusters and the classification experiments may be weakened by this fact, since the
classification and clustering models could be focusing on imaging conditions rather
than yeast cell differences. Yet, we observe that when the three classes are forced
into two clusters, the 6955 class is correctly grouped with the 7936 class, which
indicates that the models and underlying attributes are detecting cell differences, not
just differences in imaging conditions. On the basis of these experiments we can’t
draw definitive conclusions on the influence of the imaging conditions. It would,
however, certainly be interesting to further investigate which of the features are truly
invariant.

In our experiments we have controlled for all parameters other than the particu-
lar yeast strain used (yeast strain production, staining, image acquisition, automated
segmentation and feature analysis etc.). This allows us to conclude us with ap-
propriate level of confidence that with our methods we are not just differentiating
between images, but also between the yeast strains. That said, large historical image
collections are generally not produced under controlled conditions. An important
next step would be to make the classification problem more complex by adding more
noise, using images that have been captured under a wide variety of conditions. This
will require more robust classifiers and methodologies to ensure that true differences
between classes are learned and not just ’accidental’ differences between images.
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The results presented are based on bright field images of negatively stained spec-
imen preparations. Recently, antibodies against the cryptococcal capsule have be-
come available. If these antibodies are tagged with fluorescent dyes, the acquisition
can be done based of fluorescence microscopy and consequently the segmentation
procedure can be further improved and simplified. Moreover, instead of the 2D
approach that has been applied in our experiments, Confocal Laser Scanning Mi-
croscopy (CLSM) could be used to be able to include 3D-features. The issue of
separation of cells can, in that case, be solved by other means. The use of 3D–images
will, however, require using other features, as the approach taken can’t be translated
directly from the 2D-case.

We have focused on the image features to discriminate between potentially vir-
ulent and non-virulent cells. From the point of view of content-based multimedia
retrieval we will be moving in the direction of solutions where the yeast biologist ac-
tively includes more and different data in the analysis. This requires that researchers
are able to have a lot of different search, navigation and browsing dimensions to
access the data. Some of these will be lower level, syntactic, but others will be more
high level semantic categories (like virulent/non virulent) that have an important
connotation to the biologist. Prior to the analysis, data should be submitted to a
database that will incorporate direct links to the relevant bio-molecular repositories
(Bei, Belmamoune & Verbeek 2006). With respect to classifiers this will dictate these
to be built for a wide array of classes. Ideally, automated classification procedures
can be developed so that an end user, like a biologist, instead of a data miner, can
create and train classifiers (see also the next case).

The tool presented here will allow automated analysis of capsular characteristics
of many cryptococcal cells of isolates of different phenotypic or genetic background.
This will be particularly useful when gene knock out strains of C. neoformans are
being prepared and need to be analyzed for pathogenicity-related features. As stated
earlier, the capsule is one of the most important characteristics to that respect. Fur-
thermore, automated feature extraction and comparison of capsular characteristics
will allow integrative studies where capsular characteristics are being compared with
other features, which may be either phenotypic or genetic in nature. Among these
are rates of melanization, expression profiles of virulence-related proteins, growth
rates at different temperatures and substrates, assimilation patterns of carbohydrates,
nitrogen compounds or vitamins, susceptibility to antifungals, genotypic data on the
various subtypes known to exist in the species, and more importantly, extensive
collections of transcriptome data as revealed by microarray analysis.

In conclusion, we have presented a holistic overview of an end to end process for
classifying yeast cells using image features with the ultimate goal to detect pathogen
conditions. Previous studies were based on manual measurement of capsule thick-
ness and cell area in the binary image, but no automated procedures existed.

By carefully controlling the conditions we were able to show that through a
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largely automated procedure we could distinguish between a yeast strain and its
mutant (7936, 7926), which simulate respectively pathogenic or non-pathogenic cells.
We have shown that there are more predictive features than simply thickness and
area in the binary image, some related to the density distribution in the image, or
under the shape of interest, in particular the first and second moment invariants.
Furthermore, we have shown that when we introduce noise in the form of a third
class of a distinctly different strain this is clustered in the proper class and classifiers
that need to distinguish between the three classes still achieve acceptable accuracy.

We have identified various application scenarios and associated challenges for
extending the solution, such as identifying more semantically interesting classes be-
yond pathogenicity, making classifiers more robust for heterogeneous sets of images
and developing methodologies enabling biologists rather than data miners to de-
velop classification modules for the purpose of content based image classification,
annotation and retrieval.

2.4 Video Classification by End Users

This fourth case introduces a real time automatic scene classifier for content-based
video retrieval. In our envisioned approach end users such as television archive
documentalists, not image processing experts, build classifiers interactively, by sim-
ply indicating positive examples of a scene. Classification consists of a two stage
procedure. First, small image fragments called patches are classified into building
block classes (e.g., buildings, water, grass, crowd, skin). Second, frequency vectors
of these patch classifications are fed into a second classifier for global scene classifi-
cation (e.g., city, inside/outside, countryside). The first stage classifiers can be seen
as a set of highly specialized, trained feature detectors, as an alternative to letting an
image processing expert determine abstract features a priori. The end user or domain
expert thus builds a visual alphabet that can be used to describe the video footage in
features that are relevant for the task at hand. We present results for experiments on
a variety of patch and image classes. The scene classifier approach has been success-
fully applied to other domains of video content analysis, such as content based video
retrieval in television archives, automated sewer inspection, and porn filtering.

In our opinion in most circumstances the Holy Grail in video classification and in
data mining in general, would be to let end users create classifiers, primarily because
it will be more scalable; more classifiers can be created in shorter time by more people.
Also, end users are problem domain experts and may use their knowledge to choose
the right semantic features to recognize top level scenes, thus creating niche specific
classifiers that can beat purely data and abstract feature driven approaches (van der
Putten 1999e), (Israel et al. 2004a), (Israël et al. 2004b), (Israël et al. 2006).
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2.4.1 Introduction

This work has been done as part of the EU Vicar project (IST). The aim of this project
was to develop a real time automated video indexing, classification, annotation, and
retrieval system. Vicar was developed in close cooperation with leading German,
Austrian, Swedish, and Dutch broadcasting companies. These companies generally
store millions of hours of video material in their archives. To increase sales and reuse
of this material, efficient and effective video search with optimal hit rates is essential.
Outside the archive but inside a broadcasting environment, large amounts of video
material are managed as well, such as news feeds and raw footage, materials that an
archive traditionally not even has access to (van der Putten 1999e), (Israël et al. 2004b).

Generally, only a fraction of the content is annotated manually and these descrip-
tions are typically rather compact. Any system to support video search must be able
to index, classify, and annotate the material extensively, so that efficient mining and
search may be conducted using the index rather than the video itself. Furthermore,
these indices, classifications, and annotations must abstract from the pure syntactical
appearance of the video pixels to capture the semantics of what the video is about
(e.g. as an idealized example, a description such as ‘a shot of Obama jogging in a
park’).

Within Vicar a variety of visual events is recognized, including shots, camera
motion, person motion, persons, and faces, specific objects, etc. In this chapter
we will focus on the automated classification of visual scenes. For searching and
browsing video scenes, classifiers that extract the background setting in which events
take place are a key component. Examples of scenes are indoor, outdoor, day, night,
countryside, city, demonstration, and so on. The amount of classes to be learned
is generally quite large – tens to hundreds – and not known beforehand. So, it
is generally not feasible to let an image processing expert build a special purpose
classifier for each class.

Using our envisioned approach, an end user like an archive documentalist or a
video editor can build classifiers by simply showing positive examples of a specific
scene category. In addition, an end user may also construct classifiers for small image
fragments to simplify the detection of high level global scenes, again just by showing
examples (e.g., trees, buildings, and road).

We call these image fragments patches. The patch classifiers actually provide
the input for the classification of the scene as a whole. The patch classifiers can
be seen as automatically trained data preprocessors generating semantically rich
features, highly relevant to the global scenes to be classified, as an alternative to an
image processing expert selecting a set of abstract features e.g., wavelets, Fourier
transforms). This removes the dependency on having an image processing expert
available and as such decreases the time to market for new classifiers to be built
and drastically increases the volume of classifiers that can be made available. But
whilst volume of models and time to market are key benefits, there could also be



62 CHAPTER 2. MOTIVATING EXAMPLES

a quality benefit. The interactive procedure is a way to exploit a priori knowledge
the documentalist may have about the real world, rather than relying on a purely
data driven or abstract image processing approach. In essence, the end user builds
a visual alphabet that can be used to describe the world in terms that matter to the
task at hand, which may result in models that beat more traditional classifiers.

Note that the scene is classified without relying on explicit object recognition.
This is important because a usable indexing system should run at least an order
of magnitude faster than real time, whereas object recognition is computationally
intensive. More fundamentally, we believe that certain classes of semantically rich
information can be perceived directly from the video stream rather than indirectly
by building on a large number of lower levels of slowly increasing complexity. This
position is inspired by Gibson’s ideas on direct perception (Gibson 1979). Gibson
claims that even simple animals may be able to pick up niche specific and complex
observations (e.g., prey or predator) directly from the input without going through
several indirect stages of abstract processing.

This section is expository and meant to give a non-technical introduction into
our methodology. A high level overview of our approach is given in section 2.4.2,
and sections 2.4.3 and 2.4.4 discuss related work and positioning of our method.
Section 2.4.5 provides more detail on the low level color and texture features used
and section 2.4.6 specifies the classification algorithms used. Experimental results for
patch and scene classification are given in section 2.4.6 and are discussed in section
2.4.7. We then describe three applications in which scene classification technology
has been embedded (section 2.4.8). We finish with a conclusion (section 2.4.9).

2.4.2 Approach

In Vicar a separate module is responsible for detecting the breaks between shots.
Then for each shot a small number of representative key frames is extracted, thus
generating a storyboard of the video. These frames (or a small section of video
around these key frames) are input to the scene classifier.

The scene classifier essentially follows a two stage procedure: (i) Small image
segments are classified into patch categories (e.g., trees, buildings, and road) and
(ii) these classifications are used to classify the scene of the picture as a whole (e.g.,
interior, street and forest). The patch classes that are recognized can be seen as an
alphabet of basic visual elements to describe the picture as a whole.

In more detail, first a high level segmentation of the image takes place. This
could be some intelligent procedure recognizing arbitrarily shaped segments, but
for our purposes we simply divide images up into a regular n by m grid, say 3
by 2 grid segments for instance. Next, from each segment patches (i.e., groups
of adjacent pixels within an image, described by a specific local pixel distribution,
brightness, and color) are sampled. Again, some intelligent sampling mechanism
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Figure 2.15: Screenshots visualizing the first phase of the scene classification process. From
top to bottom, left to right: the images with a 4 × 3 grid over it, extraction of the patches from
a grid cell, classification of the patches, and the resulting “patch image” with its legend.

could be used to recognize arbitrarily sized patches. However, we divided each grid
segment by a second grid, into regular size image fragments, ignoring any partial
patches sampled from the boundary. These patches are then classified into several
patch categories, using color and texture features (see section 2.4.5). See figure 2.15,
for a visualization of this approach. For each segment, a frequency vector of patch
classifications is calculated. Then, these patch classification vectors are concatenated
to preserve some of the global location information (e.g., sky above and grass below)
and fed into the final scene classifier. Various classifiers have been used to classify
the patches and the entire picture, including k-nearest neighbor and backpropagation
neural networks.
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2.4.3 Related Work

Literature on scene classification is relatively limited. Early retrieval systems like
QBIC (Niblack, Barber, Equitz, Flickner, Glasman, Petkovic, Yanker & Faloutos 1993),
(Flickner, Sawhney, Niblack, Ashley, Huang, Dom, Gorkani, Hafner, Lee, Petkovic,
Steele & Yanker 1995), VisualSEEk (Smith & Chang 1997), PicHunter (Cox, Miller,
Minka & Papathomas 2000), PicToSeek (Gevers & Smeulders 2000), and SIMPLIcity
(Wang 2001) as well as more recent systems such as MARVEL (IBM Research 2005),
M4ART (van den Broek, Kok, Schouten & Hoenkamp 2006), and the system proposed
by Wu, Rahman & Chow (2005), use color, shape, and texture representations for
picture search. Minka & Picard (1996), Picard (1995) and Picard & Minka (1995)
extended Photobook with capabilities for classifying patches into so-called ‘stuff’
categories (e.g., grass, sky, sand, and stone), using a set of competing classification
models (society of models approach). In Blobworld, pictures are segmented into
regions with coherent texture and color of arbitrary shape (‘blobs’) and the user can
search on specific blobs rather than the low level characteristics of the full picture
(Belongie, Carson, Greenspan & Malik 1997), (Carson, Belongie, Greenspan & Malik
2002). However, these blobs are not classified into stuff nor scene categories (Belongie
et al. 1997, Carson et al. 2002). Campbell et al also segment pictures into arbitrarily
shaped regions and then use a neural network to classify the patches into stuff-like
categories such as building, road, and vegetation (Campbell, Mackeown, Thomas &
Troscianko 1996), (Campbell, Mackeown, Thomas & Troscianko 1997).

Some papers are available on classification of the scene of the picture as a whole.
Lipson, Grimson & Sinha (1997) recognize a limited set of scenes (mountains, moun-
tain lakes, waterfalls, and fields) by deriving the global scene configuration of a
picture and matching it to a handcrafted model template. For example, the template
for a snowy mountain states that the bottom range of a picture is dark, the middle
range very light and the top range has medium luminance. Ratan & Grimson (1997)
extend this work by learning the templates automatically. The templates are built
using the dominant color-luminance combinations and their spatial relations in im-
ages of a specific scene category. They present results for fields and mountains only.
Both papers only report results for retrieval tasks, not for classification.

Oliva & Torralba (2001) defined global characteristics (or semantic axes) of a scene
(e.g., vertical – horizontal, open – closed, and natural – artificial), for discriminating
between, for example, city scenes and nature scenes. These characteristics are used
to organize and sort pictures rather than classify them. Gorkani & Picard (1994)
classified city versus nature scenes. The algorithms used to extract the relevant
features were specific for these scenes (i.e., global texture orientation). In addition,
Szummer & Picard (1998) classified indoor and outdoor scenes. They first classified
local segments as indoor or outdoor, and then classified the whole image as such. Both
classifiers performed well, but it is not known whether these approaches generalize
to other scene categories.
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2.4.4 Positioning the Visual Alphabet Method

Our method uses the local patch classification as input for the classification of the
scene as a whole. To our knowledge only Fung and Loe (Fung & Loe 1999a, Fung
& Loe 1999b) reported a similar approach. Note that the final scene classifier only
has access to patch class labels. From the point of view of the final classifier, the
patch classifiers are feature extractors that supply semantically rich and relevant
input rather than generic syntactic color and texture information. Moreover, the
patch classifiers are trained rather than being feature extractors a priori selected by
an image processing expert.

So, our method differs and improves on the general applicability for a variety
of scene categories, without the need to select different and task specific feature
extraction algorithms, for each classification task. Moreover, we used computation-
ally cheap algorithms, enabling real time scene classification. A more fundamental
difference is that we allow end users to add knowledge of the real world to the classi-
fication and retrieval engines, which means that it should be possible to outperform
any purely data driven approach, even if it is based on optimal classifiers. This is
important given the fact that image processing expertise is scarce and not available
to end users, but knowledge of the world is abundant.

2.4.5 Patch Features

In this section, we discuss the patch features as used for patch classification. These
provide the foundation for the scene classifier. In order of appearance, we discuss:
(i) color quantization using a new distributed histogram technique, and histogram
configurations (ii) human color categories, color spaces, and the segmentation of the
HSI color space, and (iii) an algorithm used to determine the textural features used.

Distributed Color Histograms

At the core of many color matching algorithms lies a technique based on histogram
matching. This is no different for the current scene classification system. Let us,
therefore, define a color histogram of size n. Then, each pixel j present in an image,
has to be assigned to a bin (or bucket) b. The bin bi, with i ∈ {0,n − 1}, for a pixel j
with value x j, is determined using:

βi =
x j

s
(2.17)

where x j is the value of pixel j and s is the size of the intervals, with s determined as
follows:

s =
max(x) − min(x)

n
(2.18)
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with max(x) and min(x) respectively the maximum and minimum value x j can take.
For convenience, equation 2.18 is substituted into equation 2.17, which yields:

βi =
n · x j

max(x) − min(x)
(2.19)

Now, bi is defined as the integer part of the decimal number βi.
As for each conversion from an originally analog to a digital (discrete) repre-

sentation, one has to determine the precision of the discretization and with that the
position of the boundaries between different elements of the discrete representation.
In order to cope with this problem, we distributed each pixel over three bins, instead
of assigning it to one bin.

Let us consider an image with p pixels that has to be distributed over n bins.
Further, we define min(bi) and max(bi) as the borders of bin i (bi). Then, when
considering an image pixel by pixel, the update of the histogram for each of these
pixels, is done as follows:

bi + = 1 (2.20)

bi−1 + = 1 −
|x j −min(bi)|

max(bi) −min(bi)
(2.21)

bi+1 + = 1 −
|x j −max(bi)|

max(bi) −min(bi)
(2.22)

where min(bi) ≤ x j ≤ max(bi),with i ∈ {0,n− 1} and j ∈ {0, p− 1}. Please note that this
approach can be applied on all histograms, but its effect becomes stronger with the
decline in the number of bins a histogram consists of.

Histogram Configurations

Several histogram configurations have been presented over the years (van den Broek,
van Rikxoort & Schouten 2005). For example, the PicHunter (Cox et al. 2000) image
retrieval engine uses a HSV(4 × 4 × 4) (i.e., 4 Hues, 4 Saturations, and 4 Values)
quantization method. In Smith & Chang (1995) a HSV(18 × 3 × 3) bin quantization
scheme is described. The QBIC configuration used 4096 bins (Niblack et al. 1993),
Flickner et al. (1995) uses RGB(16×16×16). For more detailed discussions concerning
color quantization we refer to Prasad, Gupta & Biswas (2001), Redfield, Nechyba,
Harris & Arroyo (2001), Schettini, Ciocca & Zuffi (2001), van den Broek, van Rikxoort
& Schouten (2005)

Histogram matching on a large number of bins, has a major advantage: Regardless
of the color space used during the quantization process, the histogram matching will
have a high precision. Disadvantages of our approach are its high computational
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complexity and poor generalization. When a coarse color quantization is performed,
these disadvantages can be solved. So, since the system should work real-time and
the classifiers have to be able to generalize over images, a coarse color quantization
is needed. However, to ensure an acceptable precision, it is key that human color
perception is taken into account during quantization. The combination of color space
and the histogram configuration is crucial for the acceptance of the results by the user.

Human Color Categories

Forsyth & Ponse (2002) state: “It is surprisingly difficult to predict what colors a
human will see in a complex scene; this is one of the many difficulties that make it
hard to produce really good color reproduction systems.” From literature it is known
that people use a limited set of color categories (Berlin & Kay 1969), (Goldstone 1995),
(Kay 1999), (Roberson, Davies & Davidoff 2000), (Derefeldt, Swartling, Berggrund &
Bodrogi 2004), (van den Broek & van Rikxoort 2005). A color category can be defined
as a fuzzy notion of some set of colors. People use these categories when thinking
of or speaking about colors or when they recall colors from memory. Research from
various fields of science emphasizes the importance of focal colors in human color
perception. The use of this knowledge may provide the means for bridging the
semantic gap that exists in image and video classification.

No exact definition of the number exists nor is the exact content of human color cat-
egories known. However, all research mentions a limited number of color categories:
ranging between 11 (Berlin & Kay 1969), (van den Broek, Kisters & Vuurpijl 2005) and
30 (Derefeldt & Swartling 1995), where most evidence is found for 11 color categories.
We conducted some limited experiments with subjective categories (categories in-
dicated by humans) but these did not give better results to 16 evenly distributed
categories, so for simplicity we used this categorization. Now that we have defined
a coarse 16 bin color histogram to define color with, we need a color space on which
it can be applied.

Color Spaces

No color quantization can be done without a color representation. Color is mostly
represented as tuples of (typically three) numbers, conform certain specifications
(that we name a color space). One can describe color spaces using two important
notions: perceptual uniformity and device dependency. Perceptually uniform means
that two colors that are equally distant in the color space are perceptually equally
distant. A color space is device dependent when the actual color displayed depends
on the device used.

The RGB color space is the most used color space for computer graphics. It is
device dependent and not perceptually uniform. The conversion from a RGB image
to a gray value image simply takes the sum of the R, G and B values and divides the
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Figure 2.16: Left: The relation between the RGB and the HSI color space, from the perspective
of the RGB color space. Right: The cylinder shaped representation of the HSI (hue, saturation,
and intensity) color space, as used in this research.

result by three. The HSI / HSV (Hue, Saturation, and Intensity / Value) color spaces
are more closely related to human color perception than the RGB color space, but are
still not perceptual uniform. In addition, they are device-dependent. Hue is the color
component of the HSI color space. When Saturation is set to 0, Hue is undefined and
the Intensity / Value-axis represents the gray-scale image. Despite the fact that the
HSI and HSV color spaces are not perceptually uniform, they are found to perform as
good of better than perceptual uniform spaces such as CIE LUV (Lin & Zhang 2000).
Therefore, we have chosen to use the HSI color space. Hereby, we took into account
human perceptual limitations. If Saturation was below 0.2, Intensity was below 0.12,
or Intensity was above 0.94, then the Hue value has not been taken into account,
because for these Saturation and Intensity values the Hue is not visible as a color.
Since image and video material is defined in the RGB color space, we needed to
convert this color space to the HSI color space. This was done as follows (Gevers &
Smeulders 1999):
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H = arctan
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I =
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3
(2.25)

Note that, all H, S, and I values were normalized to values between 0 and 1.

Segmentation of the HSI Color Space

Our 16 color categories are defined by an equal division of the Hue axis of the
HSI color space, since the Hue represents color. So far, only color was defined and
luminance is ignored. Luminance is represented by the Intensity axis of the HSI
color space. Again we have chosen for a coarse quantization: the Intensity-axis is
divided into six equal segments. The original RGB color coordinates were converted
to Hue and Intensity coordinates by equations 2.23 and 2.25, as adopted from Gevers
& Smeulders (1999).

Next, for both the Hue and the Intensity histogram, using equation 2.19 each pixel
is assigned to a bin. Finally equations 2.20, 2.21, 2.22 are applied on both histograms
to update these. Since both histograms were a coarse quantization this method (i)
is computationally cheap (making real-time classification possible) and (ii) facilitates
in generalization by classifiers.

Texture

In addition to color, texture can be analyzed. Let us define texture as a repetitive
arrangement of pixels values that either is perceived or can be described as such. For
texture analysis, in most cases the Intensity of the pixels is used, hereby ignoring their
color. Several techniques can be used to determine the patterns that may be perceived
from the image (Rosenfeld 2001), (Palm 2004),(van den Broek & van Rikxoort 2005),
(van Rikxoort, van den Broek & Schouten 2005), (van den Broek, van Rikxoort, Kok
& Schouten 2006).

Most texture analysis methods derive textural features from the image, instead
of describing arrangements of the individual pixels. This reduces the computational
costs significantly, which is essential for applications working real time. Therefore,
we used a texture algorithm that extracts three textual features for each position of
a mask that is run over the image. Here, the size of the mask determines the ratio
between local and global texture analysis. The position of the mask is defined by its
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central pixel. Note that the mask is a square of n × n pixels, with n being an odd
integer.

For each pixel of the mask, the difference between both its horizontal neighbors as
well as the difference between its vertical neighbors is determined. (p, q) denotes the
elements (i.e., pixels) of the image with (i, j) being the coordinates of the pixels located
in a mask, surrounding an image pixel (p, q). Function f determines the normalized
value of pixel (i, j) for a chosen color channel (i.e., H, S, or I), using equations 2.23,
2.24, and 2.25. Using the algorithm below, for each mask M11, M12, and M22 are
determined, defining the symmetric covariance matrix M.

foreach(p, q) ∈ Image
foreach(i, j) ∈Mask(p, q)

Sum + = f (i, j)
SqSum + = f (i, j)2

M11 + = ( f (i + 1, j) − f (i − 1, j))2

M12 + = ( f (i, j + 1) − f (i, j − 1))2

M22 + = ( f (i + 1, j) − f (i − 1, j)) · ( f (i, j + 1) − f (i, j − 1))

Let ev1 and ev2 be the eigenvalues of M. Given this algorithm, three textural features
can be determined:

F1 = SqSum − Sum2 (2.26)

F2 =
min{ev1, ev2}
max{ev1, ev2}

(2.27)

F3 = max{ev1, ev2} (2.28)

F1 (see equation 2.26) can be identified as the variance (σ2), indicating the global
amount of texture present in the image. The other two features, F2 and F3 (see
equations 2.27 and 2.28), indicate the structure of the texture available.

If ev1 and ev2 differ significantly, stretched structures are present (e.g., lines).
When ev1 and ev2 have a similar value (i.e., F2 approximates 1; see equation 2.27),
texture is isotropic. In the case both ev1 and ev2 are large (i.e., both F2 and F3 are large;
see equation 2.27 and 2.28), clear structure is present, without a clear direction. In
the case ev1 and ev2 are both small (i.e., F2 is large and F3 is small; see equation 2.27
and 2.28), smooth texture is present. Moreover, F2 and F3 are rotation-invariant.

Hence, this triplet of textural features provides a good indication for the textural
properties of images, both locally and globally. In addition, it is computationally
cheap and, therefore, very useful for real time content-based video retrieval. For
more details, see for example Jähne (1997) on structure tensors. More recent work on
nonlinear structure tensors has been presented by Brox, Weickert, Burgeth & Mrázek
(2006).
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2.4.6 Experiments and Results

In the previous section relevant features were introduced. These features were used
for the first phase of classification: the classification of patches, resulting in a fre-
quency vector of patch classes for each grid cell. In the second phase of classification,
a classifier is used to classify the whole image. The input for the classifier is the
concatenation of all frequency vectors of patch classes for each grid cell. So, two
phases exist, each using their own classifier. We have experimented with two types
of classifiers: A k-nearest neighbor classifier and a backpropagation neural network.

The advantage of k-nearest neighbor is that it is a lazy method, i.e. the models
need no retraining. This is an important advantage given that we envisage an
interactive learning application. However, given that k-nearest neighbor does not
abstract a model from the data, it suffers more from the curse of dimensionality and
will need more data to provide accurate and robust results. The neural network
needs training, parameter optimization and performance tuning. However, it can
provide good results on smaller data sets providing that the degrees of freedom in
the model are properly controlled. The experiments all used a selection of images
from the Corel image database as test bed.

Patch Classification

We will now discuss the patch classification experiments and results. Further below,
the classification results of the image as a whole are discussed.

Each of the patches had to be classified to one of the nine patch categories defined
(i.e., building, crowd, grass, road, sand, skin, sky, tree, and water). First, a k-nearest
neighbor classifier was used for classification. This is because it is a generic classifi-
cation method. In addition, it could indicate whether a more complex classification
method would be needed. However, the classification performance was poor. There-
fore, we have chosen to use a backpropagation neural network for the classification
of the grid cells, with nine output nodes (as many as there were patch classes). For
each of the nine patch classes both a train and a test set were randomly defined, with a
size ranging from 950 to 2,500 patches per category. The neural network architecture
was as follows: 25 input, 30 hidden, and 9 output nodes. The network ran 5,000
training cycles with a learning rate of 0.007.

With a patch size of 16× 16, the patch classifier had an overall precision of 87.5%.
The patch class crowd was confused with the patch class building in 5.19% of the
cases. Sand and skin were also confused. Sand was classified as skin in 8.80% of the
cases and skin was classified as sand in 7.16% of the cases. However, with a precision
of 76.13% the patch class road appeared the hardest to classify. In the remaining
23.87% of the cases road was confused with one of the other eight patch classes,
with percentages ranging from 1.55% to 5.81%. The complete results can be found in
table 2.8.
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Table 2.9 shows the results for a 8 × 8 patch classifier in one of our experiments.
The 16 × 16 patch classifier clearly outperforms the 8 × 8 patch classifier with an
overall precision of 87.5% versus 74.1%. So, the overall precision for the 8 × 8 patch
classifier decreases with 13.4% compared to the precision of the 16 × 16 classifier.
The decline in precision for each category, is as follows: sand 22.16%, water 21.26%,
building 17.81%, skin 17.48%, crowd 17.44%, tree 16.8%, and road 7.16%. Only for
the categories grass and sky the classification was similar for both patch sizes. Note
that figure 2.15 presents a screenshot of the system, illustrating both the division of an
image into grids. The classified patches are resembled by small squares in different
grayscales.

So far, we have only discussed patch classification in general. However, it was
applied on each grid cell separately: for each grid cell, each patch was classified to
a patch category. Next, the frequency of occurrence of each patch class, for each
grid cell, was determined. Hence, each grid cell could be represented as a frequency
vector of the nine patch classes. This served as input for the next phase of processing:
scene classification, as is discussed in the next subsection.

Scene Classification

The system had to be able to distinguish between eight categories of scenes, relevant
for the Vicar project: interiors, city / street, forest, agriculture / countryside, desert,
sea, portrait, and crowds. In pilot experiments several grid sizes were tested: a
3 × 2 grid gave the best results. The input of the classifiers were the normalized and
concatenated grid vectors. The elements of each of these vectors represented the
frequency of occurrence of each of the reference patches, as they were determined in
the patch classification (see section 2.4.6).

Again, first a k-nearest neighbor classifier was used for classification. Similarly to
the patch classification, the k-nearest neighbor classifier had a low precision. There-
fore, we have chosen to use a neural network for the classification of the complete
images, with eight output nodes (as many as there were scene classes). For each of
the eight scene classes both a train and a test set were randomly defined. The train
sets consisted of 199, 198, or 197 images. For all scene classes, the test sets consisted
of 50 images. The neural network architecture was as follows: 63 input, 50 hidden,
and 8 output nodes. The network ran 2,000 training cycles with a learning rate of
0.01.

The image classifier was able to classify 73.8% of the images correct. Interior (82%)
was confused with city/street in 8.0% and with crowds in 6.0% of the cases. City/street
was correctly classified in 70.0% of the cases and confused with interior (10%), with
country (8.0%), and with crowds (6.0%). Forest (80%) was confused with sea (8.0%).
Country was very often (28.0%) confused with forest and was sometimes confused
with either city/street (6.0%) or desert (10%), which resulted in a low precision: 54.0%.
In addition, also desert had a low precision of classification (64%); it was confused
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buil- crowd grass road sand skin sky tree water un-
ding known

building 89.23 3.02 0.09 1.11 1.02 0.60 0.38 3.70 0.85 0.00
crowd 5.19 87.25 0.19 1.81 0.44 0.50 0.38 2.94 0.06 1.25
grass 0.00 0.00 94.73 0.73 0.60 0.00 0.00 3.00 0.93 0.00
road 1.55 5.48 2.84 76.13 1.55 1.74 1.81 5.81 3.10 0.00
sand 1.84 0.88 2.24 1.44 83.68 8.80 0.24 0.00 0.64 0.24
skin 0.32 2.53 0.00 0.63 7.16 89.37 0.00 0.00 0.00 0.00
sky 0.21 0.00 0.00 2.57 0.93 0.00 91.71 0.36 3.86 0.36
tree 1.12 3.44 2.60 0.32 0.16 0.24 0.56 88.44 0.84 2.28
water 0.00 0.00 4.00 4.44 0.52 0.00 3.04 0.44 87.26 0.30

Table 2.8: Confusion matrix of the patch (size: 16× 16) classification for the test set. Thex-axis
shows the actual category, the y-axis shows the predicted category.

buil- crowd grass road sand skin sky tree water un-
ding known

building 71.42 9.00 0.85 2.69 2.43 2.86 0.26 6.53 0.77 3.20
crowd 10.38 69.81 1.13 1.56 2.13 5.56 0.69 6.44 0.19 2.13
grass 0.80 0.07 93.87 0.73 0.07 0.73 1.20 1.20 0.87 0.47
road 2.65 5.81 2.45 68.97 2.97 1.87 5.48 3.10 4.52 2.19
sand 3.44 3.12 2.88 1.84 61.52 15.20 8.80 0.16 2.80 0.24
skin 1.16 7.79 0.42 0.11 13.47 71.89 4.42 0.11 0.11 0.53
sky 0.00 0.00 0.00 0.29 1.36 2.57 91.43 0.07 4.07 0.21
tree 4.56 11.08 8.20 1.88 0.52 0.76 0.24 71.64 0.56 0.56
water 0.37 0.52 3.26 9.78 3.85 3.85 11.41 0.52 66.00 0.44

Table 2.9: Confusion matrix of the patch (size: 8 × 8) classification for the test set. The x-axis
shows the actual category, the y-axis shows the predicted category.

with: interior (8.0%), city/street (6.0%), and with country (10%). Sea, portraits, and
crowds had a classification precision of 80.0%. Sea was confused with city/street in
14%, portraits were confused with interior in 8.0% of the cases, and crowds were
confused with city/street in 14.0% of the cases. In table 2.10 the complete results for
each category separately are presented.

2.4.7 Discussion

Let us start with discussing the patch and scene classification results, before more
moving on to more general topics.

For patch classification, two patch sizes have been applied. The 16 × 16 patch
classifier gave clearly a much higher precision than the 8 × 8 patch classifier. Our
explanation is that a 16×16 patch can contain more information of a (visual) category
than a 8 × 8 patch. Therefore, some textures can’t be described in a 8 × 8 patch (e.g.,
patches of buildings). A category such as grass, on the other hand, performed well
with 8×8 patches. This is due to its high frequency of horizontal lines that fit in a 8×8
patch. Therefore, the final tests were carried out with the 16×16 patch size, resulting
in an average result of 87,5% correct. Campbell and Picard reported similar results
(Campbell et al. 1997), (Picard 1995), (Picard & Minka 1995) . However, our method
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Interior City/street Forest Country Desert Sea Portraits Crowds
Interior 82.0 8.0 2.0 0.0 0.0 0.0 2.0 6.0
City/street 10.0 70.0 4.0 8.0 0.0 0.0 2.0 6.0
Forest 2.0 4.0 80.0 2.0 2.0 8.0 0.0 2.0
Country 0.0 6.0 28.0 54.0 10.0 0.0 0.0 2.0
Desert 8.0 6.0 2.0 10.0 64.0 4.0 4.0 2.0
Sea 4.0 14.0 0.0 2.0 0.0 80.0 0.0 0.0
Portraits 8.0 0.0 0.0 4.0 4.0 2.0 80.0 2.0
Crowds 4.0 14.0 0.0 0.0 2.0 0.0 0.0 80.0

Table 2.10: Confusion matrix of the scene classification for the test set. The x-axis shows the
actual category, the y-axis shows the predicted category.

has advantages in terms of a much lower computational complexity. Moreover, the
classified patches themselves are intermediate image representations and can be used
for image classification, image segmentation as well as for image matching.

A challenge is the collection of training material for the patch classes to be rec-
ognized. Consequently, the development of an automatic scene classification system
requires substantial effort since for all relevant patch classes, sets of reference patches
have to be manually collected. For a given class, the other classes act as coun-
terexamples. We are currently looking into several directions to reduce this burden.
One approach would be to generate more counterexamples by combining existing
patches. Another direction is the use of one class classification algorithms that only
require positive examples (Tax 2001).

The second phase of the system consists of the classification of the image rep-
resentation, using the concatenated frequency patch vectors of the grid cells. An
average performance of 73.8% was achieved. The least performing class is country
with 54% correct. What strikes immediately, when looking at the detailed results in
table 2.9, is that this category is confused in 28% of cases with the category forest and
in 10% of cases with the category desert. The latter confusions can be explained by
the strong visual resemblance between the three categories, which is reflected in the
corresponding image representations from these different categories. To solve such
confusions, the number of patch categories could be increased. This would increase
the discriminating power of the representations. Note that if a user searches on the
index rather than on the class label, the search engine may very well be able to search
on images that are a mix of multiple patches and scenes.

To make the system truly interactive, classifiers are needed that offer the flexibility
of k-nearest neighbor (no or very simple training) but the accuracy of more complex
techniques. We have experimented with learning algorithms such as naive Bayes,
but the results have not been promising yet. Furthermore, one could exploit the in-
teractivity of the system more, for instance by adding any misclassification identified
by the user to the training data. Finally, the semantic indices are not only useful for
search but may be used as input for other mining tasks. An example would be to use
index clustering to support navigation through clusters of similar video material.



2.4. VIDEO CLASSIFICATION BY END USERS 75

2.4.8 Applications

The scene classifier has been embedded into the VICAR system for content based
video retrieval. In addition, the same visual alphabet approach has been used for
other video classification applications such as porn filtering, sewage inspection and
skin infection detection. The initial versions of these classifiers were built within very
short time frames and with sufficient classification accuracy. This provides further
evidence that our approach is a generally applicable method to quickly build robust
domain specific classifiers. One of the reasons for its success in these areas, is its user-
centered approach: the system can easily learn knowledge of the domain involved,
by showing it new patch types and so creating a new visual alphabet, simply by
selecting the relevant regions or areas in the image. In this section we will describe a
number of these applications in a bit more detail.

Vicar Video Navigator

The scene classifier has been integrated into the Vicar Video Navigator. This system
utilizes text-based search, either through manual annotations or through automat-
ically generated classifications such as the global scene labels. As a result, Vicar
returns the best matching key frames along with information about the associated
video. In addition, a user can refine the search by combining a query by image with
text-based search (van der Putten 1999e).

The query by image can either be carried out on local characteristics (appearance)
or may include content based query by image. In the first case, the index consisting
of the concatenated patch classification vectors is included in the search. In the latter
case, the resulting index of scores on the global scene classifiers is used (content).

In figure 2.17 and 2.18, an example search is shown from a custom made web
application based on the Vicar technology: the first screenshot shows one of the key
frames that has been retrieved from the archive using the (automatically annotated)
keyword countryside. An extra keyword person (also automatically annotated) is
added in the search, as well as the content index of the image. In the second screenshot
the results of the combined queries are shown: persons with a similar background
scene as the query image.

Porn Filtering

To test the general applicability of our approach we built a new classifier to distin-
guish pornographic from non pornographic pictures. Within half a day a classifier
was constructed with a precision of over 80%. As a follow up, a project for porn
filtering was started within the EU Safer Internet Action Plan (IAP) program. Within
this project, SCOFI, a real time classification system was built, which has been run-
ning in several schools in Greece, England, Germany and Iceland. The porn image
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Figure 2.17: A query for video material.

Figure 2.18: The result of a query for video material.
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Figure 2.19: Different components of the SCOFI system: authentication server, text filtering
server and porn image classification server

classifier is combined with a text classifier and integrated with a smart cards enabled
authentication server to enable safe web surfing (see figure 2.19). The text classifier
and the proxy server have been developed by Demokritos, Greece, and are part of
the FilterX system (Chandrinos, Androutsopoulos, Paliouras & Spyropoulos 2000).

For this application of the system, we first created image representations using the
patch classification network as mentioned in section 2.4.6. With these image repre-
sentations we trained the second phase classifier, using 8000 positive (pornographic)
and 8000 negative (non pornographic) examples. The results: the system was able to
detect 92% of the pornographic images in a diverse image collection of 2000 positive
examples and 2000 negative examples (which includes non pornographic pictures of
people). There were 8% false positives (images that are not pornographic, are iden-
tified as pornographic images) and 8% false negatives. Examples of false positives
were close ups of faces and pictures of deserts and fires. For a description of the com-
plete results, we refer to Israël (1999). To improve results, within the SCOFI project a
Vicar module was used that detects close ups of faces. The integrated SCOFI system
that combines text and image classification has a performance of 0% overblocking
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Figure 2.20: A spherical grid is placed on video footage of a sewer.

(i.e., 100% correct on non pornographic web pages) and 1% underblocking (i.e., 99%
correct on pornographic web pages). As such it is used as a real time filter for filtering
pornography on the Internet, in several schools throughout Europe.

Sewer Inspection

Our image classification approach is also applied to support the inspection of sew-
ers in the RESEW project (EU GROWTH program for competitive and sustainable
growth). Many European cities are spending increasing amounts to improve their
sewage systems, so the inspection of deteriorating structures is becoming more and
more important.

Currently, robots are used for sewer inspection, but these are completely con-
trolled by operators and the video material that is collected is analyzed manually,
which is a costly, time consuming and an error prone process. For instance, a UK
based waste water utility company taking part in the project has 7,000 recent tapes
of video material available, corresponding to thousands of kilometers of sewers.
Real time, autonomous monitoring of the entire system would increase the need of
automated analysis even further.

Automated and integrated systems for damage identification and structural as-
sessment that are based on video analysis can be used to increase the speed and
accuracy of the inspection and evaluation process and lower the cost. To prove
the feasibility of the above the project partners have delivered an integrated and
automated detection, classification, structural assessment and rehabilitation method
selection system for sewers based on the processing of Closed Circuit Television
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(CCTV) inspection tapes. The research prototype provides the user with an easy, fast
and accurate method of sewer assessment. It consists of an intuitive interface to the
sewage network with typical Geographic Information System functionality, a digital
archive of indexed CCTV inspection tapes and a classification module to analyze
video material for defects.

The RESEW classification method builds on the approach presented in this chap-
ter. The primary goal of the classifier is to detect longitudinal cracks. First the central
’tunnel eye’ is detected and a spherical rather than rectangular grid is placed around
it (see figure 2.20; separate specialized modules extract the sewer joints and any
CCTV text).

Neural networks are used to classify the extracted patches into crack and non
crack classes. For this local patch classification we achieved an accuracy of 86.9%,
with balanced train, validation and test sets of 40,000, 18,562 and 20,262 instances
respectively. In the next stage, patch class histograms along the vanishing direction
are classified to detect global longitudinal cracks. As an alternative method, a region
growing approach is used that takes patch class probabilities as input. The latter
approach generally produces more favorable results.

The environment is designed to be utilized in several utility contexts (water
networks, sewer networks) where different engineering models are developed (e.g.
structural reliability models for water pipes, reliability models taking into account
seismic risk, safety models based on digital imagery of sewer interior, rehabilitation
models for the previous). The system may be adapted to fit the needs of CCTV
inspection of boreholes, shafts, gas and oil pipelines and other construction sectors.
Going forward, the methods for analyzing the video material can also be used to
build autonomous sewer robots that can explore sewage systems more or less inde-
pendently.

2.4.9 Conclusion

In the work presented here, a general scene classifier is introduced that does not
rely on computationally expensive object recognition. The features that provide the
input for the final scene classification are generated by a set of patch classifiers that
are learned rather than predefined, and specific for the scenes to be recognized rather
than general.

Though the results on different scene categories can still be improved, the current
system can successfully be applied as a generic methodology for creating domain
specific image classifiers for content-based retrieval and filtering. This is demon-
strated by its success in various applications such as the Vicar Video Navigator video
search engine, the SCOFI real time filter for pornographic image material on the
Internet and the RESEW sewer inspection system.
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2.5 Lessons Learned

To summarize let us review some of the lessons learned in this chapter in relation to
the thesis topics.

The first case is basically a non technical introduction in data mining, for an
audience with no data mining or computer science background, in this example
marketeers. This provides an inside out view of data mining, starting with the
context rather than the technology. One of the findings of this study was that there
were no clear winners in terms of prediction algorithms used across the overall range
of problems. Only for specific problems, for specific data sets and only in the top
segments, non linear algorithms such as neural networks were better able to ’cream
the crop’. This is an indication for the need of evaluation methods that go beyond
basic accuracy, and the need for methods to characterize a problem or algorithm
rather than just assuming there is a silver bullet algorithm that will consistently beat
the rest.

The second case is also example of an introduction of data mining for end users.
This case appeared in a handbook for medical practitioners on head and neck cancer
prognosis. The goal in this case is to predict five year survival probability for head
and neck cancer patients. Evidence based medicine is becoming more important in
the medical field, from empirically based studies towards medical decision support
systems. As in the first case, for the specific data used in the experiments, the core
modeling step is of lesser importance, as the top scoring models are relatively close
in terms of performance. To explain the differences in classifiers we have performed
a so called bias variance analysis. This demonstrates that for this problem the so
called variance component of error is more important than bias for explaining the
differences in performance across classification methods. This implies for instance
that the emphasis should be on using simple, stable learners that base its parameter
estimates on large number of instances rather than techniques that exploit complex,
local relationships in data. A particular problem in this domain is that there are
generally a number of data sets available from various hospitals or institutions, and
each research group creates models on this data in isolation. So there is a need for
procedures and end to end methodologies that combine or exploit data from various
sources in a safe manner.

The third case discusses the classification of yeast cells to evaluate pathogen
conditions. This case shows the full end to end process from growing yeast samples,
capturing images, feature extraction, supervised and unsupervised data mining and
evaluation of the results. Again for this problem we demonstrate that all classifiers
perform roughly the same almost perfect performance. That said, it is still an open
question whether the underlying problem is easy to solve (classifying yeasts) whereas
the data mining problem is easy (classifying pictures). In our opinion this is a good
example that in practice the particular translation of the research or business problem
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into a data mining problem has a major impact on the results.
The fourth case introduces a real time automatic scene classifier for content based

video retrieval. In our envisioned approach end users like documentalists, not image
processing experts, build classifiers interactively, by simply indicating positive exam-
ples of a scene. To produce classifiers that are sufficiently reliable we have developed
a procedure for generating problem specific data preprocessors. This approach has
been successfully applied to other domains of video content analysis, such as content
based video retrieval in television archives, automated sewer inspection, and porn
filtering. In our opinion in most circumstances the ideal approach would be to let
end users create classifiers, primarily because it will be more scalable; a lot more
classifiers can be created in much shorter time.

In the remaining chapters we will address a number of specific research topics
that are driven from applications similar to the ones above, but we aim to go beyond
a single case or problem. One of the aims of this chapter was to show there is much
more to data mining than just applying an algorithm to a data set. As a consequence,
we feel that data mining research should not be limited to improving core modeling
algorithms. Therefore the next chapters address specific topics concerning the end
to end process (chapter 4), steps preceding modeling (the data step, chapter 3) and
the steps following it (model evaluation and profiling, chapters 4 and 5).
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Chapter 3

Data Fusion: More Data to Mine
in

With no data, there is nothing to mine in. Multiple of sources of data can exist,
and linking this data together can be non trivial. Assume we are given an instance,
representing for example a customer or patient. The problem of merging information
from different sources about this particular instance, assuming it can’t be done with
simple joins, is also called the exact matching problem (Radner, Rich, Gonzalez,
Jabine & Muller 1980). Intelligent techniques are then used to determine what pieces
of information from the various sources are concerned with a particular instance. In
contrast, enriching the data for this instance with information from other instances is
called a statistical matching or data fusion problem, which is the topic of this chapter.
This can be seen as a form of data enrichment.

In literature data fusion is almost exclusively used in a market research or socio-
economic survey context, to merge information from various samples with different
sets of interview questions, in order to reduce the response burden or to connect
survey data that has previously not been studied jointly. The resulting surveys
are then typically mined using simple techniques such as cross tabulations and
correlation analysis. However in data mining a more common task is prediction, so
it is interesting to study whether it is possible to build better models by using data
that has been enriched by data fusion. This is the topic of the research presented in
this chapter, and it is based on papers that at the time of publication were the first
to study it in this context (van der Putten 2000a), (van der Putten 2000b), (van der
Putten, Kok & Gupta 2002a), (van der Putten, Kok & Gupta 2002b).

The goal of this research is not primarily to develop new algorithms, but to
introduce data fusion to the data mining community by a proof of principle that
demonstrates data fusion can add value for predictive modeling – which should not
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be confused with a conclusion that it always will. As a leading example we focus on
database marketing, however the results will generalize to any case where there is
an interest to enrich data that will then be used for predictive modeling. The chapter
also includes a short summary of a process model we developed for using data fusion
in database marketing (van der Putten, Ramaekers, den Uyl & Kok 2002).

3.1 Introduction

Data mining papers often start with claiming that the exponential growth in the
amount of data provides great opportunities for data mining. Reality can be dif-
ferent though. In real world applications, the number of sources over which this
information is fragmented can grow at an even faster rate, resulting in barriers to
widespread application of data mining and missed business opportunities. Let us
illustrate this paradox with a motivating example from database marketing.

In marketing, direct forms of communication are becoming more popular. In-
stead of broadcasting a single message to all customers through traditional mass
media such as television and print, customers receive personalized offers through
the most appropriate channels, inbound (the customer contacts the company) and
outbound (the company contacts the customer), in batch and real time. So it becomes
more important to gather information about media consumption, attitudes, product
propensity etc. at an individual level (van der Putten 1999a). Basic, company specific
customer information resides in customer databases, but market survey data depict-
ing a richer view of the customer are only available for a small sample of potentially
anonymous customers.

Collecting all this information for the whole customer database in a single source
survey would certainly be valuable, but prohibitively costly, if not impossible be-
cause of privacy constraints. The common alternative within business to consumer
marketing is to buy syndicated socio-demographic data that have been aggregated
at a geographical level. All customers living in a particular geographic location, for
instance in the same zip code area, are associated with the same characteristics. This
is also limited, given that in reality customers from the same area may behave differ-
ently. Furthermore, regional identifiers such as zip codes may be absent in company
specific surveys because of privacy concerns.

The zip code based data enrichment procedure can be seen as a very crude exam-
ple of data fusion: the combination of information from different sources. However
more general and powerful fusion procedures are required that cater to any number
and kind of ‘linking’ variables, without requiring a perfect match. Data mining al-
gorithms can help to carry out such generalized fusions and create rich data sets for
further data mining for marketing and other applications.

In this chapter we position data fusion as both an enabling technology and an
interesting research topic for data mining and database marketing. A fair amount
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of work has been done on data fusion over the past 30 years, but primarily outside
the knowledge discovery and database marketing communities, as its application
was primarily limited to media and socio-economic research. The wide majority
of published cases we are aware of focus on fusing survey samples. However, our
application domain of interest is database marketing, not market research. We are
not so much interested in fusing surveys, but in enriching customer databases with
market surveys to enable behavioral targeting for one to one marketing. To our
knowledge we were the first to report on the added value of fusion for predictive
analytics, by comparing models on data sets with and without fusion data (van der
Putten 2000a), (van der Putten 2000b), (van der Putten, Kok & Gupta 2002a), (van der
Putten, Kok & Gupta 2002b), (van der Putten, Ramaekers, den Uyl & Kok 2002). We
are aware of only one recent study that discusses enriching customer databases with
survey data for direct marketing purposes, which also refers to our publications this
chapter was based on (van Hattum & Hoijtink 2008), (van Hattum & Hoijtink 2009).

Note that data fusion can act as an important enabler for data mining, but in
return the data fusion problem can be seen as a data mining, intelligent systems or
soft computing problem. In almost all published cases statistical matching is used
which can be seen as a special case of k-nearest neighbor or fuzzy matching, but in
principle any data mining technique could be applied. To conclude, data fusion is
a fertile, new research area for data mining research, because it removes barriers for
large scale data mining applications, and data mining techniques can be used for
carrying out the fusion itself.

We would like to share and summarize the main approaches taken so far from a
data mining perspective (section 2). A case study from database marketing serves as
a clarifying example and a proof of principle result (section 3). We then generalize
from the case results by giving a high level overview of a process model for carrying
out data fusion projects for the purpose of mining customer databases (section 4). In
section 5 we provide a summary and conclusions.

3.2 Data Fusion

Valuable work has been done on data fusion in areas other than data mining. From
the end of the sixties until now, the subject has been both popular and controversial
in economics and market research. Data fusion first emerged as a tool for economic
policy research primarily in the U.S. and Germany, see for instance Budd (1971),
Ruggles & Ruggles (1974), Barr & Turner (1978), Rodgers (1984), Little & Rubin (1986),
Paass (1986), Rubin (1986), Kum & Masterson (2008); Radner et al. (1980) provides an
overview. Later data fusion became quite a popular tool in media research to study
the relationship between product usage and mass media consumption, with a focus
on Europe and Australia. See for example O’Brien (1991), Roberts (1994), Jephcott
& Bock (1998), Soong & de Montigny (2003), Soong & de Montigny (2004); Baker,
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Harris & O’Brien (1989) provides an overview. See also Raessler (2002), D’Orazio,
Zio & Scanu (2006) for statistically oriented textbooks.

Data fusion has yet to be discovered by the traditional knowledge discovery and
machine learning communities as a standard topic for research, though a relatively
new area is developing around mining uncertain data – note fused data can be seen
as a special case of uncertain data (Pei, Getoor & de Keijzer 2009). Data fusion is also
known as micro data set merging, statistical record linkage, multi-source imputation
and ascription. Data fusion is sometimes used as a data mining related term in multi-
sensor information fusion, however in that context it refers to a different concept:
combining information from different sources about a single entity, where as in our
case we enrich data about instance a (a customer for example) with information from
other instances b, c, . . . (other customers).

Until today, in marketing data fusion is often used to reduce the required number
of respondents or questions in a survey. For instance, for the Belgian National
Readership survey questions regarding media and questions regarding products are
collected in 2 separate groups of 10,000 respondents each, and then fused into a single
survey, thereby reducing costs and the required time for each respondent to complete
a survey. However, it is not commonly used yet to enrich customer databases.

3.2.1 Data Fusion Concepts

Let us introduce some key data fusion concepts. We assume that we start from two
data sets. These can be seen as two tables in a database that may refer to disjoint
data sets, i.e. it is actually not required that any of the instances in table 1 also occur
in table 2. The data set that is to be extended is called the recipient set A and the
data set from which this extra information has to come is called the donor set B. We
assume that the data sets share a number of variables. These variables are called the
common variables X. The data fusion procedure will add a number of variables to
the recipient set. These added variables are called the fusion variables Z. Unique
variables are variables that only occur in one of the two sets: Y for A and Z for B. See
figure 3.1 for a marketing example. In general, we will learn a model for the fusion
using the donor B with the common variables X as input and the fusion variables Z
as output and then apply it to the recipient A.

3.2.2 Core Data Fusion Algorithms

In nearly all studies, statistical matching is used as the core fusion algorithm. The
statistical matching approach can be compared to k-nearest neighbor prediction with
the donor as training set and the recipient as a test or deployment set. The procedure
consists of two steps. First, given some element from the recipient set, the set of k
best matching donor elements is selected. The matching distance is calculated over
the common variables, or a subset of these.
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Figure 3.1: Data fusion for database marketing: a customer database is enriched with market
survey information for further data mining

Standard distance measures such as Euclidian distance can be used, but often
more complex measures are designed to tune the fusion process. For instance, it
may be desirable that men are never matched with women, to prevent that ’female’
characteristics such as ’pregnant last year’ are predicted. In this case, the gender
variable will become a so-called cell or critical variable; the match between recipient
and donor must be 100% on the cell variable; otherwise these will not be matched
at all. Weighting can be used to reflect the relative importance of each of the donor
variables.

Another enhancement is called constrained matching. Experiments with statis-
tical matching have shown that some donors are used more than others, even if the
donor and recipient are large samples of the same population. This can result in a
fusion that is not representative, as the values for the fusion variables for these donors
have a larger influence on predictions. Especially for donors with an average profile
this can be the case; this is an artifact of the winner takes all character of nearest
neighbor combined with the fact that the signal can get lost in high dimensional,
noisy data (regression to the mean). By taking into account how many times an ele-
ment of the donor set has been used when calculating the distance, we can counter
this effect (Barr & Turner 1978), (Rodgers 1984), (Baker et al. 1989), (van Pelt 2001),
(Flores & Albacea 2007).

It is interesting to note that within data fusion research this is seen as a generally
accepted problem, whereas within standard k-nearest neighbor research it is not
identified as such. It may be that overusing donors is a problem, however it is not yet
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proven whether penalizing donors makes things better or worse, especially because
this can be hard to evaluate. This is an area that warrants more theoretical debate
in our opinion. For a detailed discussion of some methods for constrained matching
we developed and benchmarked see van Pelt (2001).

In the second step, the prediction for the fusion variables can be constructed using
the set of best matching nearest neighbors, e.g. by calculating averages (numerical),
modes (categorical) or distributions (categorical or numerical). In this step, the con-
tribution of a neighbor is sometimes weighted inversely proportional to its distance
from the recipient.

A number of constraints have to be satisfied by any fusion algorithm in order
to produce valid results. Firstly, the donor must be representative for the recipient,
or at least contain sub sets that are representative. This does not necessarily mean
that the donor and recipient set need to be samples of the same population, although
this would be preferable. For instance, in the case of statistical matching only the
set of donors used in the fusion process needs to be representative of the recipient
set. The recipients could be buyers of a specific product and the donor set could be
very large sample of the general population that includes instances representative for
these recipients. Methods that are not nearest neighbor based but that build a global,
abstract model on the entire data set using donor data only, such as regression, may
be more prone to errors in this example. This could be a possible explanation for
the popularity of nearest neighbor based techniques for data fusion. Assuming the
donor set is sufficiently large, the idea is that one can always find donors that are
representative of the recipient, and predictions are made from these local recipient
neighborhoods only (’product owners’). In contrast, a regression model to predict
fusion variables would be developed on the donor data set, i.e. discover the rela-
tionships between common and fusion variables in the donor set alone (’the general
population’), and the resulting global model would be applied to the recipient.

Secondly, the common variables must be good predictors for the fusion variables.
In addition, the Conditional Independence Assumption must be satisfied: the com-
mons X must explain all the relations that exist between unique variables Y and Z.
In other words, we assume that P(Y|X) is independent of P(Z|X). This could be mea-
sured by the partial correlation r(ZY,X), however if the recipient and donor data sets
are disjoint there is no joint data available on X, Y and Z to compute this. As an in-
tuitive explanation, consider there would be some other variable W that explains the
relationship between Y and Z above and beyond what the commons X can explain;
if it exists, finding out the exact relationship between Y and Z by predicting Z from X
will not be possible. In most of our fusion projects we start with a small-scale fusion
exercise to test the validity of the assumptions and to produce ballpark estimates of
fusion performance.

In the wide majority of cases the standard statistical matching is being used,
other approaches are quite rare. Below we will mention some of the key ones found,
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from classical and genetic optimization, traditional statistics and data mining & soft
computing.

In Barr & Turner (1978), constrained fusion is modeled as a large scale linear
programming transportation model. The main idea was to minimize the match
distance under the constraint that all donors should be used only once, given re-
cipients and donors of equal size. This was recently extended to an approach that
used genetic algorithms rather than classical optimization algorithms to solve the
transportation problem (Flores & Albacea 2007); an alternative genetic algorithm ap-
proach to statistical matching can be found in Cubo, Robles, Segovia & Ruiz (2005).
The (constrained) fusion problem can also be seen as a variant of the well-known
stable marriage problem (Gusfield & Irving 1989) for which classical optimization
solutions exist, some are briefly mentioned in (Baker et al. 1989).

In statistics extensive work has been done on dealing with missing data (Little &
Rubin 1986), including likelihood based regression methods. Some researchers have
proposed to impute values for the fusion variables using multiple models to reflect
the uncertainty in the correct values to impute (Rubin 1986). In Kamakura & Wedel
(1997) a statistical clustering approach to fusion is described based on mixture models
and the Expectation Maximization (EM) algorithm. In van Hattum & Hoijtink (2008)
and van Hattum & Hoijtink (2009) a comparison is made between logistic regression,
nearest neighbor style statistical matching, latent cluster analysis and Bayesian model
based clustering. See also Raessler (2002) and D’Orazio et al. (2006) for textbooks on
statistical approaches to data fusion.

Traditional machine learning and data mining techniques are not yet often used
for fusion. In Smith, Chuan & van der Putten (2001) also a clustering approach is
taken, comparing k-means clustering with Self-Organizing Maps. Other data mining
and soft computing techniques include the use of CART decision trees (Contrino,
McGuckin & Banks 2000) and fuzzy logic (Noll 2009), (Noll & Alpar 2007). These
examples of non nearest neighbor approaches are exceptions to the rule, and in most
of the cases above only a single technique is being used. To address this gap we have
executed fusion experiments comparing nearest neighbor based approaches with
common data mining techniques such as naive Bayes, logistic regression, decision
stumps, decision trees and feedforward neural networks (Maat 2006).

3.2.3 Data Fusion Evaluation and Deployment

An important issue in data fusion is to how to measure the quality of the fusion; this
is not a trivial problem (Jephcott & Bock 1998). In our framework we distinguish
between internal evaluation and external evaluation. This refers to the different steps
in the data mining process. If one considers data fusion to be part of the data step
and evaluates the quality of the fused data set only within this stage then this is an
internal evaluation. However, if the quality is measured using the results within the
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Figure 3.2: Internal and external evaluation of data fusion quality within the overall data
mining process

other steps in the data mining process, then we call this an external evaluation (see
figure 3.2).

Assume for instance that one wants to improve the response on mailings for a
certain set of products, and this is the reason why the fusion variables would be
added in the first place. In this case, one way to evaluate the external quality is to
check whether an improved mail response prediction model can be built when fused
data is included in the input.

Ideally, the fusion algorithm is tuned towards the kinds of analysis that is expected
to be performed on the enriched data set. In practice the external evaluation will
provide the bottom line evaluation, but an enriched data set could be used for
multiple purposes unknown at the time of the fusion, and the internal evaluation
will provide smoke test results about the fusion quality. In other words, a fusion
that passes internal evaluation can still deliver bad external evaluation results, but
a fusion with bad internal fusion results will likely not deliver good external test
results.

3.3 Case Study: Cross Selling Credit Cards

As a case example of using data fusion for predictive data mining, assume the
following example. A bank wants to learn more about its credit card customers and
expand the market for this product. Unfortunately, there is no survey data available
that includes credit card ownership; this variable is only known for customers in the
customer base. Data fusion is used to enrich a customer database with survey data.
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The resulting data set serves as a starting point for further data mining. The goal is to
find out whether the enriched data has added value for the task at hand, i.e. predict
who has a high probability to take up a credit card, and profile prospects in terms of
survey variables, both of which can’t be achieved using single source data only.

To simulate the bank case we do not use a separate donor; instead we draw a
sample from an existing proprietary real world market survey (the Dutch SUMMO
national readership survey) and split the sample into a disjoint donor set and recipient
set, i.e. no donor instance can act as recipient and vice versa. The original survey
contains over a 1000 variables and over 5000 possible variable values and covers a
wide variety of consumer products and media. Whilst this is a simulation, it can be
seen as representative for situations when the data sets to be fused are sufficiently
large random samples from the same underlying population, which is a common use
case especially in marketing.

Exceptions would be situations when samples differ by design or are poor sam-
ples of a population. An example of a difference by design is a customer database
for a young and trendy mobile telecom provider versus survey on calling behavior
for the general population in a given country. Note that some of the fusion meth-
ods presented in the previous section do not apply if samples are not meant to be
representative, such as constrained matching. Another example of poor represen-
tativeness could be various small data sets on cancer patients for hospitals with
different overall life expectancy rates.

The recipient set representing a small sample from the customer database, con-
tains 2000 records with a cell variable for gender, common variables for age, marital
status, region, number of persons in the household and income. Furthermore, the
recipient set contains a unique variable for credit card ownership. One of the goals is
to predict this variable for future customers. The donor set representing the survey
contains the remaining 4880 records, with 36 variables for which we expect that there
may be a relationship to the credit card ownership: general household demographics,
holiday and leisure activities, financial product usage and personal attitudes. These
36 variables are either numerical or Boolean.

First we discuss the specific kind of matching between the databases and then the
way the matching is transformed into values of the fusion variables. The matching
is done on all common variables. Given an element of the recipient set we search
for elements in the donor set that are similar. Elements of the donor set need to
agree on the cell variable gender. All the common variables are transformed to
numerical values and simple Euclidean distance on the commons is used as the
distance measure. We select the k best matching elements from the donor. For the
values of the fusion variables, we take the average of the corresponding values of
the k best matching elements from the donor set. This statistical matching approach
can be seen as k-nearest neighbor classification using the donor set as the search set,
applied to the recipient set.
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3.3.1 Internal evaluation

As a baseline analysis we first compared averages for all common variables between
the donor and the recipient. As could be expected from the donor and recipient
sizes and the fact that the split was done randomly, there were not many significant
differences between donor set and recipient set for the common variables. Within the
recipient ‘not married’ was over represented (30.0% instead of 26.6%), ‘married and
living together’ was under represented (56.1% versus 60.0%) and the countryside and
larger families were slightly over represented. This provides a baseline expectation
of magnitude of differences that could be caused by sampling error only (or lack of
representativeness by design if that would apply).

Then we compared the average values between the values of the fusion variables
and the corresponding average values in the donor. Only the averages of ‘Way Of
Spending The Night during Summer Holiday’ and ‘Number Of Savings Accounts’
differed significantly, respectively by 2.6% and 1.5%. Compared to the differences
between the common variables, which were entirely due to sampling errors, this was
a good result.

Next, we evaluated the preservation of relations between variables, for which we
used the following measures. For each common variable, we listed the correlation
with all fusion variables, both for the fused data set and for the donor. The mean
difference between common-fusion correlations in the donor versus the fused data
set was 0.12 ± 0.028. In other words, these correlations were well preserved. A
similar procedure was carried out for correlations between the fusion variables with
a similar result.

3.3.2 External evaluation

The external evaluation concerns the value of data fusion for further analysis. Typ-
ically only the enriched recipient database is available for this purpose. We first
performed some descriptive data mining to discover relations between the target
variable, credit card ownership, and the fusion variables using straightforward uni-
variate techniques. We selected the top 10 fusion variables with the highest absolute
correlations with the target (see table 3.1).

Note that this analysis was not possible without the fusion, because the credit card
ownership variable was only available in the recipient. If other new variables become
available for the recipient customer base, e.g. product ownership of some new
product, their estimated relationships with the donor survey variables can directly
be calculated, without the need to carry out a new survey.

We then investigated whether different predictive modeling methods would be
able to exploit the added information in the fusion variables (the method for fusion,
statistical matching, was not under investigation). The specific goal of the models was
to predict a response score for credit card ownership for each recipient, so that these
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Variable

Welfare class
Income household above average
Is a manager
Manages which number of people
Time per day of watching television
Eating out (privately): money per person
Frequency usage credit card
Frequency usage regular customer card
Statement current income
Spend more money on investments

Table 3.1: Top ten fusion variables in recipient most strongly correlated with credit card
ownership

could be ranked from top prospects to suspects. We compared models trained only
on values of common variables to models trained on values of common variables plus
either all or a selection of correlated fusion variables. We used feed forward neural
networks, linear regression, k nearest neighbor search and naive Bayes classification.

The feed forward neural networks had a fixed architecture of one hidden layer
with 20 hidden nodes using a tanh activation function and an output layer with linear
activation functions. The weights were initialized by Nguyen-Widrow initialization
to enforce that the active regions of the layer’s neurons were distributed roughly
evenly over the input space (Nguyen & Widrow 1990). The inputs were linearly
scaled between -1 and 1. The networks were trained using scaled conjugate gradient
learning as provided within Matlab (Moller 1993). The training was stopped after
the error on the validation set increased during five consecutive iterations. For the
regression models we used standard least squares linear regression modeling. For
the k nearest neighbor algorithm, we used the same simple approach as in the fusion
procedure, so without normalization and variable weighting, with k=75. We used
our own implementation of the standard Naive Bayes algorithm. The core fusion
algorithm was implemented in C++ using an object oriented library we originally
developed for codebook based algorithms (codebooks, Self Organizing Maps (SOM),
LVQ etc. (van der Putten 1996)); the algorithms to build the prediction models were
developed using MATLAB (de Ruiter 1999).

Error criteria such as the root mean squared error or accuracy do not always
suffice to evaluate a ranking task. Take for instance a situation where there are few
positive cases, say people that own a credit card. A model that predicts that no one
is interested in credit cards has a low rmse, but is useless for the ranking and the
selection of prospects. In fact, one has to take the costs and gains per mail piece into
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Score list Corresponding c-index

(0.1, 0.2, 0.3, 0.4, 0.5) 1
6 ∗ ((3 1

2 + 4 1
2 ) − 2) = 1

(0.1, 0.2, 0.4, 0.3, 0.5) 1
6 ∗ ((2 1

2 + 4 1
2 ) − 2) = 5

6

(0.1, 0.2, 0.4, 0.4, 0.5) 1
6 ∗ ((3 + 4 1

2 ) − 2) = 11
12

Table 3.2: C-index calculation examples for the target list (0,0,0,1,1)

account. If we do not have this information, we can consider rank based tests that
measure the concordance between the ordered lists of real and predicted cardholders.

We use a measure we call the c-index, which is a test related to Kendall’s Tau
(de Ruiter 1999). The c-index is a rank based test statistic that can be used to measure
how concordant two series of values are, assuming that one series is real valued and
the other series is binary valued.

We use the following procedure to calculate the c-index. Assume that all records
are sorted ascending on rank scores. Records can be positive or negative (for example,
if these are credit card holders or not). We assign points to all positive records: in
fact we give k − 0.5 points to the k-th ranked positive record and records with equal
scores share their points. These points are summed and scaled to obtain the c-index,
so that an optimal predictor results in a c-index of 1 and a random predictor results
in a c-index of 0.5. Under these assumptions, the c-index is equivalent (but not equal)
to Kendalls Tau.

The scaling works as follows. Assume that l is the total number of points that we
have assigned, and that we have a total of n records with s positive records. If the
s positives all have a score higher than the other n − s records, then the ranking is
perfect and l = s ∗ (n − s/2). If the s positives all have a score that is lower than the
n − s others, then we have used a worst case model and l = s2/2. The c-index is thus
calculated by:

c − index =
l − s2

2

s(n − s
2 ) − s2

2

=
l − s2

2

s(n − s)
(3.1)

See table 3.2 for some examples. Note that by definition c = 0.5 corresponds to
random prediction and c = 1 corresponds to perfect prediction.

We report results over ten runs with train and test sets of equal size. The results
of our experiments can be found in table 3.3. We provide the average c-value and
standard deviation over all runs. We also measure the statistical significance of im-
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provements by fusion through a one tailed two sample T test. The p-value intuitively
relates to the probability that the improvement gained by using fusion is coincidental.

The results show that for the data set under consideration most models that are
allowed to take the fusion variables into account outperform the models without
the fusion variables. Assuming variable selection, three results are significant at the
0.01 level, one at the 0.05 level and one is not significant (p=0.2). Without variable
selection three results are significant at the 0.01 level, one is not significant (p=0.38)
and one result is not better. So without significance testing, nine out of ten results
are better, seven out of ten are better at the 0.05 significance level, and six out of ten
results are better at the 0.01 level.

From an algorithm perspective, the best results are achieved with logistic regres-
sion using commons and correlated fusion variables. A possible explanation for this
is that regression is a high bias method that can only model linear relationships.
Fusion in this case may have added additional variables to the model that make the
problem more linear (van der Putten & van Someren 2004). The results are significant
with p < 0.01 for logistic regression, naive Bayes Gaussian and k-nearest neighbor.
The neural network results are significant as well at the 0.05 level, provided variable
selection has taken place, otherwise the results are not significant. This could be due
to the fact that the number of degrees of freedom in a neural network, the network
weights, is severely impacted by an increase in the number of inputs, so variable
selection is even more important. The results for naive Bayes multinomial are actu-
ally worse if no variable selection has taken place, and with variable selection the
improvement is not significant. This may be due to the fact that variables added
are violating the naive Bayes assumption of independency, coupled with the issue of
the multinomial over the Gaussian approach of having potentially too many unique
values in the fusion variables to allow for proper estimation of model parameters.

For four out of five algorithms, using variable selection on the enriched data set
improves the performance. Fusion variables are derived information, not measured
and even if the fusion process were perfect, specific fusion variables may not be
relevant for the prediction task at hand. Variable selection can successfully be used
to counter this effect. Assuming variable selection, linear regression seems to benefit
most from enrichment through fusion: a difference of 0.032 versus 0.019 (naive Bayes
Gaussian), 0.013 (naive Bayes Multinomial) and 0.011 (neural networks).

In figure 3.3, cumulative response curves are shown for the linear regression
models, for commons only and commons plus fusion variables. A response curve
displays the probability of positive, in this case percentage of card holders (y-axis)
for model selections of increasing size, ordered from top to bottom model score (x-
axis). Response curves are often used in database marketing, for instance to compare
model quality at a specific volume cut off of customers to be contacted (see also
section 2.1.5). Curves for all the runs are displayed and logistic trend lines are fitted
to the series for commons only and enriched data.
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Only common
variables

Common and
correlated fu-
sion variables

Common and
all fusion vari-
ables

SCG neural net-
work

c=0.692 ± 0.012 c=0.703 ± 0.015
p=0.041

c=0.694 ± 0.019
p=0.38

Linear regres-
sion

c=0.692 ± 0.014 c=0.724 ± 0.012
p=0.000

c=0.713 ± 0.013
p=0.002

Naive Bayes
Gaussian

c=0.701 ± 0.015 c=0.720 ± 0.012
p=0.003

c=0.719 ± 0.012
p=0.005

Naive Bayes
multinomial

c=0.707 ± 0.015 c=0.720 ± 0.011
p=0.200

c=0.704± 0.009 p
not relevant

k-nearest neigh-
bor

c=0.702 ± 0.012 c=0.716 ± 0.013
p=0.0093

c=0.720 ± 0.012
p=0.0023

Table 3.3: External evaluation results: using enriched data generally leads to improved per-
formance.
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Figure 3.3: Cumulative response curves linear regression models for predicting credit card
ownership (seven random runs) with and without fusion variables. The x-axis corresponds to
the cumulative volume of top scoring instances selected by the model, the y-axis corresponds
to the cumulative percentage of positives (cardholders) in the selection.
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As can be seen from the graph at the 100% cut off, the overall percentage of credit
card holders is 32.5%. In general credit card ownership can be predicted quite well:
the top 10% of cardholder prospects according to the model contains around 50-65%
cardholders, the top 20% contains 50-60% card holders still. The spread of results for
smaller volumes is larger, this is common and due to a smaller sample size and hence
a less robust estimation of the true percentage of cardholders in smaller selections.
The added logarithmic trend lines clearly indicate that the models that include fusion
variables are better in selecting the top prospects. At 10% the difference between
trend lines is 6.0% (from 57.0% to 63.0% card owners), at 20% it is 4.1% (50.7% versus
54.8%), which is quite substantial and can translate to high impact on campaign ROI.
For model selections over 40% the differences become a lot smaller. Again this is a
common pattern; if the selection volume gets larger, the pool of cardholders to ‘fish’
from becomes substantially smaller, the overall percentage of cardholders drops, and
the prediction task to select medium prospects is substantially noisier, so the various
models will converge. From a business and customer centricity perspective these
customers are less rewarding segments to contact in outbound campaigns, and in an
inbound scenario medium or low propensity propositions will likely not ’win’ over
other propositions, so this section of the curve is generally of less interest.

3.3.3 Case Discussion

Data fusion can be a valuable tool for data mining practitioners. For descriptive
data mining tasks, the additional fusion variables and the derived patterns may
be more understandable and easier to interpret. This is not restricted to relations
between commons and fusion variables, also relationships between variables that
only appear in the recipient and donor can be studied, which can’t be achieved
without fusion if donor and recipient are disjoint data sets. An example would be
profiling the users of a particular new product as indicated by the customer database
in terms of answers to an older survey, without requiring that information about the
product was actually part of the survey.

For predictive data mining, enriching a data set using fusion may make sense,
notwithstanding the fact that the fusion variables are derived from information al-
ready contained in the donor variables. Fusion may make it easier for high bias
algorithms such as linear regression to discover complex non-linear relations be-
tween commons and target variables by exploiting the information in the fusion
variables. Of course, it is recommended to use appropriate variable selection tech-
niques to remove the noise that is added by ’irrelevant’ fusion variables and counter
the ’curse of dimensionality’, as demonstrated by the experiments (van der Putten &
van Someren 2004).

There is also a practical dimension to this. Even if certain relationships could be
studied by looking at single source data only for subsets of customers one would
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need to have access and knowledge of these data sets, or knowledge how to combine
the results of mining exercises on separate data sets into a single result. In many
cases it can be more practical to let a core expert team fuse a variety of data sources
into a single set on a periodical basis, and make this available to a wider community
of customer insight analysts. This is valid not just for database marketing, but for
instance also in the case of providing public integrated multi source data sets for
scientific research, for instance in the medical domain (Maat 2006). In media research
this is already common practice, as many national readership surveys are based
on fused surveys. A central organization provides fused product usage and media
consumption data, which is then used by media planning agencies, advertizers and
publishers for media planning and target group profiling.

The fusion algorithms itself provide an interesting opportunity for further data
mining research. There is no fundamental reason why the fusion algorithm should
be based on k-nearest neighbor prediction instead of clustering methods, decision
trees, regression, the expectation-maximization (EM) algorithm or other data mining
algorithms, whereas examples are still rare. In addition, it is to be expected that
future applications will require massive scalability. For instance, in the past the focus
on fusion for marketing was on fusing surveys with surveys, each containing up to
tens of thousands of respondents and hundreds of questions or more. In contrast,
customer databases typically contain millions of customers. This requires scalable
fusion algorithms, as well as scalable algorithms to mine the fused data, which also
need to be able to deal with the uncertainty in this data.

It goes without saying that evaluating the quality of data fusion is also crucial.
We hope to have demonstrated that this is not straightforward and that it ultimately
depends on the type of data mining that will be performed on the enriched data
set. As discussed, recently a new research area is developing around algorithms that
are specifically adapted to mine uncertain data (Pei et al. 2009). Fused data sets can
be seen as a special case of such data and the fusion process can actually generate
metadata that provide an indication of the degree of uncertainty in the fused data.
Explorative research has been carried out to see whether data mining algorithms that
take data quality matrices into account can exploit this metadata (Sun 2005).

3.4 A Process Model for a Fusion Factory

In the previous sections we provided an example in which an enriched customer base
provides an improved source for data mining, in this case better input to predict the
propensity for a credit card. This provides proof of concept evidence for the feasibility
of using data fusion for database marketing. However to take the step towards wide
scale real world applications more is needed. This research project was carried out
in the context of setting up a commercial data fusion service, a factory to carry out
fusions on an ongoing, repeatable basis. So as a next step after proving the idea in
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Figure 3.4: Fusion Factory Process Model
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principle, the decision was made to develop a more detailed model of the end to end
fusion process, for which we will provide summary highlights here.

There is no guarantee that fusion will always deliver added value. Data fusion
projects are complex, with many steps and pitfalls. Instead of a single data set, several
heterogeneous data sources are involved in the procedure that need to be mapped
onto each other. Source data sets with hundreds to thousands of variables in a wide
range of logical and physical formats are not uncommon. The fusion process itself
consists of many intertwined phases and steps, and a lot of choices have to be made.
What the right choices are is predominantly determined by factors outside the core
fusion procedure, namely the business and data mining goals for which the enriched
data set will be used.

Despite these challenges, we envision a streamlined fusion procedure where the
core steps can be carried out in less than a working week instead of weeks or months
(the current best practice in media research), using a predictable, reproducible pro-
cess. To standardize and structure fusion projects we decided to develop a data fusion
process model, borrowing some key concepts from data mining process models such
as CRISP-DM (Chapman et al. 1999). The end goal of the fusion process model is to
rationalize the process and automate it where possible, ultimately to the extent that
end users of the fusion service could parameterize, control and execute large parts
of it themselves. The development of the process model took place in parallel with
three major data fusion projects carried out by a commercial data mining research
company, Sentient Machine Research, for a financial services company, a charity and
a marketing data provider. Further input was provided by previous experimentation
on a variety of data sets and some 25 data fusion cases from research literature.

The high-level structure of the process model can be found in figure 3.4 and is
described in detail in van der Putten, Ramaekers, den Uyl & Kok (2002). Four main
phases have been identified, each of which will terminate in a go/no go decision. The
first phase covers the scoping and definition of the project, including the data mining
tasks for which the enriched data set will be used and a description of the donor
and recipient data. Then an audit step takes place, in this phase the available data
sets are analyzed separately and data quality and ‘fusability’ is assessed, through
a variety of methods. On a go decision the actual fusion takes place including all
internal evaluation activities. In the final phase, the enriched data set is being as an
input to the regular data mining process to assess external quality. Ideally this then
leads to further iterations of the overall process.

The process model could be used by an analyst to follow a structured approach
towards carrying out fusion projects. It applies to database marketing but is generic
enough to be extended to other domains. Alternatively, it can be used as a blueprint
of the overall process to analyze where bottlenecks arise and to provide end to end
process automation, or identify sub problems to be covered by data mining research.
The model can easily be generalized to application areas other than marketing.
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3.5 Conclusion

In this chapter we started by discussing how the information explosion provides
barriers to the application of data mining and positioned data fusion as a possible
solution to the data availability problem. We presented an overview of the main
approaches adopted by researchers from outside the data mining and database mar-
keting communities and described a database marketing case, for which a data set
that was enriched by data fusion was used to predict propensity for credit card own-
ership. Our work is to our knowledge the first published case that discusses the
value added by data fusion for predictive data mining, and also the first example to
discuss data fusion in a database marketing context rather than market research or
the fusion of surveys.

We hope to have shown that, despite its difficulties and pitfalls, the application
of data fusion increases the value of data mining, because there is more integrated
data to mine. Data mining algorithms can also be used to perform fusions, but
publications on methods other than the standard statistical matching approach are
relatively rare. Therefore we think that data fusion is an interesting research topic
for knowledge discovery and data mining research.

From a database marketing and managerial point of view it will allow marketeers
to bring information together from all kinds of sources in the organization, no matter
how small the sample for which the information was gathered. This resulting data can
be used for one to one marketing at individual customer level, rather than aggregate
market research analysis, as if one could have extensive interviews with each of its
millions of customers, at a fraction of the cost of real surveys. That said, there is no
such thing as a free lunch, further research will be required to avoid overestimating
the validity of the fused data and develop mining algorithms that appropriately deal
with uncertain data.
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Chapter 4

Bias-Variance Analysis of Real
World Learning

Data mining research benchmark data sets are not always representative for real
world problems. Similarly, studying the performance of modeling algorithms over
data sets in ‘laboratory conditions’ may not suffice to explain differences in real
world data mining results. In this chapter we present an analysis of the results of
a large scale data mining competition we organized. It can be seen as a real world
experiment to study data mining in the wild, based on noisy data, very limited time
to deliver results, high competitive pressure and pragmatic incentives at stake rather
than the usual requirement for following a proper scientific methodology.

There is a very large spread in the results for the prediction task in the competition
and we use bias variance analysis as a framework to study the results and provide
potential explanations for these differences. Bias variance analysis is usually only
applied for characterizing modeling algorithms, but in this chapter we use it as
a framework to evaluate the data mining process end to end (van der Putten &
van Someren 1999), (van der Putten & van Someren 2000), (van der Putten & van
Someren 2004).

4.1 Introduction

Data mining competitions have become increasingly popular. Competitions are or-
ganized for various reasons, such as unifying the research community and promoting
the field to the outside world. In addition, competitions provide information on how
data mining problems are solved in practice, when the goal is to solve the problem
rather than to analyze the performance of a new method.

103
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In one of these, the CoIL Challenge 2000, a prediction problem was used with
properties that appear often in real world problems: noisy, skewed, correlated and
high dimensional data with a weak relation between input and target. Extensive
published results are available for the CoIL Challenge 2000. On request, 29 out of
43 participants provided a public report on how they solved the problem (van der
Putten & van Someren 2000). We have also provided the results of 2 groups of in
total 43 students (van der Putten & van Someren 2004). Reports for 6 entries for an
earlier edition of this competition can be found in van der Putten & van Someren
(1999). With the notable exception of the PKDD Discovery Challenge (Berka 1999),
most competitions such as the KDD Cup only provide detailed reports on the top
entries. The focus on best results only actually limits the study of data mining in the
wild, especially for explaining practices that actually lead to worse results.

The objective of the competition was to predict who will be interested in a particu-
lar insurance product, a caravan policy, and to provide an explanation of why people
would be interested. In this chapter we focus on the prediction task. Prediction
models were used to select potential policy owners from a test set. The performance
of the submitted solutions varied over a wide range, from one to two and a half times
the number of policy owners that would have been found by a random selection and
up to half of the maximum number of policy owners possible.

The main question we address here is what caused this wide range of performance.
To explain the results we will evaluate the various approaches using bias-variance
decomposition (Geman et al. 1992, Friedman 1997, Kohavi & Wolpert 1996, Breiman
1996, James 2003). This separates the error component resulting from the inability
of a learner to represent or find the appropriate model for the behavior from the
error component resulting from variance in predictions due to differences in models
caused by sampling. Usually, bias-variance analysis is limited to the core modeling
step, but we also apply it to other steps in the knowledge discovery process, such as
attribute construction and selection.

This chapter is structured as follows. First the CoIL Challenge competition,
problem tasks and data set are introduced (section 4.2). Then we present a general
overview of the results for the prediction task (section 4.3). Section 4.4 provides more
details on the method we used for analyzing the challenge problem and solutions,
including bias-variance decomposition. Sections 4.5 and 4.6 focus on steps in the data
mining process, data preparation and model development. Section 4.7 summarizes
the expert evaluation of the description task of the competition. Finally we discuss
the lessons learned (section 4.8).

4.2 Competition, Problem and Data Description

The CoIL Challenge 2000 was organized by the Computational Intelligence and
Learning (CoIL) cluster, a cooperation between four EU funded research networks.
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The goals of the challenge were to promote the application of computational intelli-
gence and learning technology to real world problems, to clarify the relation between
different approaches and to stimulate the search for solutions that combine different
methods. The competition ran from March 17 to May 8, 2000 and was organized by
the author and Maarten van Someren. Only just after the challenge deadline it was
decided to publish the submitted solutions (van der Putten & van Someren 2000).

The objective of the competition was to predict who would be interested in buying
a caravan insurance policy, and to give an explanation why people would buy. The
problem was selected because it is representative of an important class of real world
learning problems: domains with noisy, correlated, redundant and high dimensional
data with a weak relation between input and target. Back then this kind of problem
was not very well represented in benchmark collections such as the UCI Machine
Learning Archive. The UCI data sets tended to be more cleaned up and geared
towards illustrating the strengths of particular machine learning algorithms rather
then being motivated by real world problems. The challenge data is now part of the
KDD section of the UCI Archive (Blake & Merz 1998). The problem was split into a
prediction and a description task.

4.2.1 Prediction Task

From a business perspective the goal of the prediction task is to rank current cus-
tomers of the insurance company according to the probability that they will buy a
caravan policy, so that the highest ranking customers can be contacted through a
direct marketing campaign, for instance a mailing.

Only data about policy ownership is available, so it is assumed that owning
this policy from the company is a reasonable approximation to buying the policy in
response to a mailing. Given that only 6% actually owns the policy, regular zero-one
loss or classification accuracy is not an appropriate evaluation metric. A model that
predicts that no one will buy has a high classification accuracy of 94% but is useless
for ranking and selecting customers. This illustrates that some default methods that
are standard in machine learning research are not always directly applicable to real
world prediction problems (see also section 2.1.5).

From a modeling perspective, the objective of the prediction task is to construct
a model that assigns each customer of the insurance company a probability (or at
least a probability rank score) that he will buy a caravan policy. If the costs of a
mail piece and the profit of a mailing response are known the marketing analyst can
then determine the optimal volume of customers to be mailed. However, in practice
costs and benefits are not always known and in addition the behavior that is being
modeled (ownership) differs from the actual behavior of interest (mail response).
So we simplified the business case to the situation where there is a predetermined
budget for a mail selection of 20%. The participants had to find the 800 clients in a
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test set of 4000 instances who were most likely to have a caravan policy. The test set
was given to the participants (without the target variable, caravan ownership). The
performance metric was the number of correctly identified caravan policy holders
among the 800 selected cases (or 20% of the total number of customers). The test set
contained 238 policy holders.

Learning methods that construct models that only predict a class but not the
probability may not be optimal for this problem, even if other loss functions than
zero one loss are used. A classification model may classify less than 800 cases as
a caravan policy owner. Adding random cases to fill up the selection will not give
an optimal solution. Furthermore, if a model selects more than 800 cases, without a
score or a probability there is no way to prioritize these cases to extract the best 800.

We could have opted for imposing an evaluation metric based on a given pre-
defined loss matrix, or could have chosen an evaluation metric that evaluates the
quality over the entire range of volume cut-offs, such as area under the ROC (AUC).
However, the evaluation metric above was both simple to execute for participants
and more representative for real world business metrics. We left it as an exercise
to the participants to translate this business objective into the proper data mining
approach and model evaluation metrics, to raise the bar and make the simulation
more realistic.

4.2.2 Description Task

The purpose of the description task is to provide insight into why customers have
a caravan insurance policy. This not necessarily the same as explaining the model
underlying the predictions. Participants can use different approaches and algorithms
for the description and prediction task. Descriptions can be based on prediction mod-
els but also on simple tables or parts of models. Given that the value of a description is
inherently subjective, a domain expert from insurance marketing evaluated the sub-
mitted descriptions. The descriptions and accompanying interpretation were scored
on comprehensibility, usefulness and actionability, for a marketing professional with
no prior knowledge of machine learning.

4.2.3 Data Characterization

The effect of how steps in the analysis process are performed depends on properties
of the data. As pointed out by Wolpert & MacReady (1995), heuristic methods or
algorithms can only be optimal on a subset of all problems. In this section we provide
a characterization of the problem and data.

The data that was available for both tasks consists of 5822 training instances and
4000 test instances1. The data contain 83 numeric and 2 symbolic input attributes

1The CoIL Challenge 2000 problem is also referred to as The Insurance Company (TIC) benchmark.
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and the target, caravan policy yes/no, was only made available to the participants for
the train set. The relation between input and target is very weak. The key attributes
to explain policy ownership are not present in the data and measurement of input is
noisy for reasons explained later in this section. The input can be divided in socio-
demographics (43 attributes) and product ownership data (42 attributes). There are
no missing values and all continuous attributes have been discretized into at most
twelve ranges.

The socio-demographic information is linked to the postal code of the customer
rather than to the individual customer. For instance a value of 5 for the attribute
‘Home Owner’ means that presumably 50-62% of people living in the same postal
code area as this client own a house. The sociodemographics include information
on marital status, household composition, education levels, employment types, so-
cial class and religion. Given that these attributes are linked to a single hidden
variable, geography, these attributes may be highly correlated among each other.
Measurement noise is also high. The marketing information provider collects the so-
cio demographics by fusing information from various, possibly conflicting sources.
Furthermore, it is certainly possible that customers living in the same area or in simi-
lar areas differ with respect to policy ownership. In spite of these obvious limitations,
this kind of data is still very common for business to consumer marketing applica-
tions, especially if the responsible department can only access some very general
internal information about its customers.

The product ownership data provide an overview of the product portfolio of the
customer with the insurance company. For 21 policy products, the number of poli-
cies owned and amount of revenue is given. It is also very skewed: for 36 out of 42
attributes over 90% of the instances falls into the majority interval; only 6% actually
owns a caravan policy. Typically, if the purpose is to predict customer behavior, this
kind of behavioral data is a lot more predictive than traditional marketing segmen-
tation variables based on internal company data such as age, gender etc., and even
more predictive than external zip code demographics.

The TIC data differ from typical data sets in UCI ML archive. Table 4.1 shows that
the TIC data set is relatively high dimensional. Furthermore we measured predictive
power of input attributes by measuring information gain with respect to the class.
The average predictive power of all attributes is low compared to UCI sets. The
rightmost column of table 4.1 gives the average information gain of the five most
predictive attributes. This shows that the average predictive power for the top five
attributes is also low compared to UCI sets. The ratio between average predictive
power for the top five attributes versus all attributes is relatively large, so only a small
proportion of the attributes seem to matter. These differences will have consequences
for the performance of different methods.

Data sets, problem descriptions, background info and reports can be found on the benchmark homepage
at http://www.liacs.nl/ ∼putten/library/cc2000
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instances input avg. avg. top 5 ratio top 5
attributes info gain info gain vs avg

TIC 5822 85 0.002 0.017 6.91
German credit 1000 20 0.017 0.045 2.62
hypothyroid 3772 29 0.024 0.132 5.45
breast cancer 286 9 0.034 0.056 1.66
pima 768 8 0.064 0.088 1.37
anneal 898 38 0.097 0.373 3.85
mushroom 8124 22 0.195 0.481 2.47
glass 214 9 0.369 0.511 1.39
soybean 683 35 0.455 0.974 2.14

Table 4.1: Some general features of the CoIL Challenge data (unbalanced train set) and selected
UCI data sets

4.3 Overview of the Prediction Results

In this section we give an overview of the results for the prediction task. In total 147
participants registered, 43 sent in a solution to both tasks and 29 supplied a public
report or permission to publish the supplied solutions. The sample of published
reports is skewed: only 3 out of the top 50% best performing entries did not supply
a report compared to 12 in the bottom half. Still this collection of reports provides a
more accurate representation of successes and failures than regular research papers or
most other competitions, for which generally only the best results are published. We
encouraged participants to report on the entire solution path, including approaches
that didn’t seem to work. Entries came from both industry (31%) and academia (59%;
remainder unknown) and included participants at various skill levels.

A wide variety of methods were used including instance selection, attribute selec-
tion, -construction and -transformation, hold out testing, cross validation, bootstrap-
ping and ensemble learning, and cost sensitive classification; core prediction algo-
rithms used included logistic regression, discriminant analysis, Naive Bayes, neural
networks, support vector machines, evolutionary algorithms, genetic programming,
fuzzy classifiers, RBF networks, self-organizing maps, decision trees, decision tables,
rule based systems, ILP based methods and others.

The frequency distribution of scores for the prediction task is displayed in fig-
ure 4.1. To repeat, the participants had to select the 800 most probable caravan policy
owners from a test set of 4000 instances (see section 4.2.1). The maximum number
of policy owners that can be found is 238 (all owners in the test set), the winning
model selected 121 policy owners. Random selection results in 48 policy owners (6%
of 800).

The performance of the submissions varies over a wide range, from one (i.e.
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Figure 4.1: Histogram of prediction task performance for CoIL Challenge participants and
two reference groups of students (bucket size is 5)

not better than random) to two and a half times the number of policy owners that
would have been found by random selection and up to half of the maximum number
of policy owners possible. These results may seem surprising, given the relatively
small differences or improvements that are usually reported on UCI data for instance.

Figure 4.1 also displays the performance of two reference groups of students who
worked on this problem after the competition as an assignment for a data mining
course. The first group of students did not receive the test set targets nor were they
informed of the CoiL Challenge or any of the results. In contrast, the second group
of students read a paper written by the winner of the prediction task (Elkan 2001).
Both groups compete very well with the CoIL participants on this problem. This
an interesting result, given that these students were new to data mining. We will
suggest some explanation for this in the discussion.

4.4 Meta Analysis Approach

The purpose of this study is to explain the results of the different solutions of the CoIL
Competition to better understand the factors that determine the success of real world
data mining projects. We organize the analysis by the main steps in the data mining
process. According to the CRISP process model the top-level knowledge discovery
process consists of business understanding, data understanding, data preparation,
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modeling, evaluation and deployment (Chapman et al. 1999). Neither the business
and data understanding step nor the evaluation and deployment steps were major
parts of the prediction task of the competition. Therefore we focus on the data
preparation (attribute construction and selection) and modeling steps.

For each solution to the competition task we collected the following data: pre-
diction accuracy (number of caravan policy owners in test selection), if attribute
construction was used (and if so, which method was used), attribute selection (and
method), learning method and representation of the result, performance on the de-
scription task (comprehensibility, usefulness and actionability).

One characteristic property of this problem is the large noise component in the
data. This means that overfitting is likely to be an important source of prediction
errors. To analyze this effect we use the concept of bias-variance decomposition.
When a model is constructed by a learning method from a sample taken from a given
domain, and the model is used to make predictions then some predictions are false.
Bias-variance decomposition distinguishes between (1) the bias error, a systematic
component in the error associated with the learning method and the domain, (2) the
variance error, a component associated with differences in models between samples
and (3) an intrinsic error component associated with the inherent uncertainty in the
domain. The intrinsic error is the variance within each point in the instance space,
the error for the Bayes optimal classifier. High variance error indicates varying,
unstable predictions and is associated with overfitting: if a method overfits the data
the predictions for a single instance will vary between samples.

The concept of bias-variance decomposition was introduced to machine learning
for mean squared error (Geman et al. 1992) and later versions for ‘zero-one-loss’
(predictions are correct or false) were given by Friedman (1997), Kohavi & Wolpert
(1996), Breiman (1996) and Domingos (2000) and James (2003). Here we use the def-
inition of Kohavi & Wolpert (1996). The expected misclassification rate (or expected
classification cost where an error has cost 1 and a correct prediction cost 0) E(C) is
defined as:

E(C) =
∑

x

P(x)(σ2
x + bias2

x + variancex) (4.1)

with

bias2
x ≡

1

2

∑

y∈Y

[P(YF = y|x) − P(YH = y|x)]2 (4.2)

variancex ≡
1

2
(1 −

∑

y∈Y

P(YH = y|x)2) (4.3)

σ2
x ≡

1

2
(1 −

∑

y∈Y

P(YF = y|x)2) (4.4)
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where X is the instance space with elements x and Y the predicted variable, with
elements y ∈ {0, 1}, the actual target function f a conditional probability distribution
P(YF = yF|x), the hypothesis or model h generated by the learner a similar distribution
P(YH = yH |x). In this model the bias error quantifies the difference between predicted
and observed values over all predictions for a given x.

The intrinsic error and bias error can’t be estimated separately. Here we mostly
compare the bias and variance of different methods and in that case the intrinsic error
contributes as a constant factor. The combined bias / intrinsic error effect and the
variance error are estimated using the implementation in the WEKA toolkit (Witten
& Frank 2000) following (Kohavi & Wolpert 1996). The data are split into two parts.
From one part samples are drawn, learning is applied and the prediction error on
the other half is calculated. We used 50 samples of size 200. The average error is the
estimate for the bias-inherent error component and the variance between predictions
estimates the variance component in the error.

To analyze the differences between methods we reconstructed a number of solu-
tions to estimate the bias-variance decompositions. For these experiments we used
data sets with balanced distributions because random sampling leaves a too few
buyers instances and does not allow reliable estimates of the error components.

In general there is a trade-off between the strength of learning bias and overfitting.
Methods with a strong learning bias are less likely to overfit, because their results
depend less on the data samples used. However, if the learning bias of a method is
not correct for a domain than this bias will be a source of prediction errors. Unlike
the prediction errors caused by overfitting, errors caused by incorrect learning bias
will not decrease with more data. In contrast, low bias learners are more flexible in
terms of the ability of fitting complex patterns, but this comes at a risk of fitting noise,
not signal and less evidence may be available to estimate parameters, both resulting
in higher variance, which will only worsen if the amount of data available decreases.
We can now characterize learning methods and also operations as attribute selection
and attribute construction by the effect that they have on the bias and variance
components in the error.

4.5 Lessons Learned: Data Preparation

The data step is a key step in the data mining process, and not only because typically
a lot of time is spent in this step. We will see later in this section that it is also a
key factor in the final quality of models. It is not uncommon that the impact of
data preparation is larger than the impact of the choice of classifier used. Let us
start with illustrating the role of bias and variance with some intuitive examples
using the competition data. In figure 4.2(a) we have plotted the relationship between
contribution (revenue) for fire policies versus caravan policy ownership. For sake
of the argument let us assume that this is a correct estimate of the true relationship,
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Figure 4.2: Illustration of bias and variance issues using CoIL Challenge data: (a) non-
monotone, non linear relationship between fire policy contribution and proportion of caravan
policy owners (b) varying proportions of caravan policy owner estimates for different samples.

for instance it is based on very many representative instances. As can be seen the
relationship is non linear and non monotone, so a classifier with a linear learning
bias such as logistic regression is at a disadvantage. Another example can be seen
in figure 4.2(b). Let us assume that we would have a simple model that for a given
instance simply outputs the proportion of caravan policy owners associated with the
home ownership bin the customer belongs to. You can see that in this example the
estimate of policy ownership is unstable over different samples, i.e. this is a model
with high variance – a problem that will only worsen if we introduce more bins.

Data preparation can alleviate these issues, or if applied improperly, make things
worse. In the remainder of this section we will review methods for attribute construc-
tion, transformation and selection in more detail and attempt to explain the influence
of these steps for the CoIL problem using the concepts of bias and variance.

4.5.1 Attribute Construction and Transformation

Attribute construction can reduce bias error by relaxing representational or search
bias of a method. A risk of adding constructed attributes is that the variance com-
ponent in the error can increase. However, attribute construction can also reduce the
variance error, even without changing the representation bias. Below, we will illus-
trate the effect of attribute construction and discuss the effect on challenge solutions.
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Figure 4.3: Bias and variance for winning model with and without constructed attribute

An example of attribute construction for avoiding representation bias is described
in the winning entry by Charles Elkan (Elkan 2001). The algorithm he uses, naive
Bayes, is limited in the sense that it can’t model interactions between several input
attributes. To compensate for this limitation he constructed a new attribute for each
of the two most important products, car and fire policies, by taking the Cartesian
product of the number of policies and the turnover amount. The new combinations
replace the original attributes. Elkan claims that this was a vital contribution to his
model. We repeated these experiments by comparing the bias and the variance of
a Naive Bayes model for the original data and for the data with the constructed
attributes. There is a clear reduction of bias, but balanced to a large extent by an
increase in variance. So the reduction in total error is small.

Using the product of two attributes causes ‘data fragmentation’: it reduces the
number of instances that are used for estimating the conditional probabilities in each
cell, especially for values that already have low marginal frequencies. For a detailed
discussion of conditions for the appropriateness of construction of Cartesian products
for Naive Bayes and conditions for applicability of the bias of naive Bayes in general,
see Domingos & Pazzani (1997).

Attribute construction can also reduce the variance component of the error. For
instance, Jorgensen and Linneberg2 first computed aggregate attributes such as the

2All public challenge submissions can be found in a tech report by van der Putten & van Someren
(2000)



114 CHAPTER 4. B.V. ANALYSIS OF REAL WORLD LEARNING

total number of policies and the total contribution. These were entered as attributes
in Linear Discriminant Analysis and they were included in the discriminant function
after pruning. This approach was found to have lower variance error than the
standard method. In this case attribute construction does not relax representational
bias but it lowers the variance error of the method, in particular the pruning step.
Pruning decisions made about individual attributes are more sensitive to sampling
variance than decisions about composite attributes, for example when one attribute
represents the sum of several others. In this way, attribute construction will reduce the
variance error. Less frequently used procedures for combined attribute construction
and selection in the entries include principal component analysis and radial basis
functions (see for instance the entry of Vesanto and Sinkkonen).

If we broaden the definition of attribute construction to include transformations
on a single attribute the entry of White & Liu is also an interesting example. They
cross-tabulated all predictors against the caravan policy ownership. All predictors
showing ‘substantial evidence of a quadratic relationship (or higher order polyno-
mial) were recoded into constructed variables having a monotone relationship with
the class’ (van der Putten & van Someren 2000). This does not relax the representa-
tion bias of the learning method that they used, decision tree learning, but it does
improve the search bias. This form of linearization reduces the number of intervals
that must be constructed, making interval construction and pruning less sensitive
to sampling and thereby this method reduces variance error. Various participants
also use discretization to minimize the number of intervals. Apart from changing
the attribute type from numeric to categorical, which may be needed because of
practical limitations of the learner, these methods also aim at reducing the variance
by decreasing the degrees of freedom.

We compared the five solutions with highest accuracy (over 110) with the five with
the lowest accuracy (below 97). Of these only the best solution, by Elkan, constructed
new attributes and used this to replace the original attributes. This suggests that for
the TIC data, attribute construction is not critical. In our analysis of the winning
entry, a reduction in bias is countered by an increase in variance (and vice versa).
This risk should be taken into account when constructing or transforming attributes.

4.5.2 Attribute Selection

In theory, attribute selection can have various effects. Removing attributes that are
irrelevant for the learner will not change the bias error. In other words, it will not
change the loss in accuracy due to bias mismatch. As far as the learner is concerned,
irrelevant attributes are noise. Attributes are irrelevant for a learner either because
there is no real relation with the target, or the learning bias prevents capturing this
relation. In the latter case intrinsic error may increase because information is lost.
Attribute selection is generally aimed at variance reduction: fewer parameters need
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Figure 4.4: Distribution of predictive power for predictors, measured in information gain in
proportion to the best predictor, for TIC (unbalanced training set) and a selection of UCI sets.

to be estimated, whereas the amount of relevant information that is removed is
minimized. Removing relevant attributes may lead to an increase of intrinsic, bias
and variance error.

The question is whether attribute selection plays a major role in the challenge
prediction task. In section 4.2.3 and table 4.1 we have already shown that the TIC data
set has very many attributes and that the predictive power of individual attributes
is low measured in information gain (it is actually zero for more than half of the
attributes). So the risk of overfitting the relation between individual attributes and
the target is high and eliminating irrelevant attributes is likely to reduce the variance
error.

Another indication is the predictive power of attributes relative to the best pre-
dictor. Figure 4.4 shows the information gain of attributes ordered from high to low,
with the information gain scaled as percentage of the information gain of the most
predictive attribute. For the TIC set, only a small proportion of the attributes has
relatively high predictive power.

The effect of attribute selection on the final result will depend on the learning
method that is used. If the learner itself selects attributes, a separate attribute selection
step will have less effect. If we compare the submissions with highest and lowest
accuracy, we see that four of the five highest scoring solutions used attribute selection
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Figure 4.5: Bias-variance decomposition (bar graph) for eight learners with and without
attribute selection.

and the fifth used a learner that eliminates irrelevant attributes. Of the five solutions
with lowest performance only one includes separate attribute selection and two use
a learning method that eliminates attributes.

To evaluate the relative importance of attribute selection, we performed bias-
variance analysis on eight different learners, given the full set and a data set that was
reduced to seven variables using the best first version of the CFS attribute subset
selection algorithm (Hall 1999, Witten & Frank 2000). This algorithm takes both
the predictive power of a predictor and its correlation to attributes that are already
selected into account. To see the effects of extreme attribute selection, we included
decision stumps (decision trees of depth 1, (Holte 1993)), which were not used by any
participant. Note it generally produces a very limited range of scores which limits
its practical use.

As can be seen from figure 4.5, attribute selection improves classification results
for seven out of eight learners. When all 16 models are compared, six out of the
top eight results are achieved using attribute selection. So for TIC using attribute
selection or not seems to be more important than the choice of learning algorithm.
Attribute selection reduces variance error for all eight learners.

The attribute selection methods used by the participants can be divided into three
main categories (see Guyon & Elissee (2003) for an overview of the state of the art
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in attribute selection). The first category consists of approaches for which candidate
attributes are evaluated independently of other attributes. Simple evaluation mea-
sures such as correlation with the target attribute are used, and attribute selection is
sometimes confirmed or guided by prior domain knowledge as well. For instance
the author of the winning entry simply writes: ‘As is common in commercial data
mining, only data about the wealth and personal behavior of individuals is useful
here’. He discarded all socio demographic attributes but one and the other five se-
lected attributes were related to product ownership. The winner of the small scale
Benelearn competition (van der Putten & van Someren 2000).that preceded the CoIL
Challenge just used some simple cross tabulation to select the best attributes. The
average performance of entries that were restricted to this kind of attribute selection
(as far as known) was 99 caravan policies selected from the test set.

The second category contains methods that select subsets of attributes rather than
just evaluating attributes individually and independently. There may be several
reasons to look at subsets instead of single attributes (Kohavi & John 1997). An
attribute with high individual predictive power but also high correlation to variables
that are already selected does not add much information to the model, so it should
not be included. An attribute with low individual predictive power may have some
complex joint relationship with a selected variable that is highly predictive, in which
case it may be advisable to include it. Several specialized subset attribute selec-
tion algorithms exist (e.g. Hall (1999)), however most participants in this category
use a regular learner such as decision trees, decision tables or Naive Bayes to select
attributes. We constrain this category to methods that use a different learner for at-
tribute selection than for model development, so these are all so-called filter methods.
The average performance in this category was 110 policy owners.

The third category are the so-called wrapper methods (see also Kohavi & John
(1997)). These methods select subsets of variables using the same learner both for
attribute selection and for model development. We use a broad definition for this
category and include some participants that experimented extensively with man-
ually selecting and deselecting attributes and retraining the learner. The average
performance in this category was also 110 policy owners.

In conclusion, the majority of the participants use some form of attribute selec-
tion. The median number of attributes selected is 10 out of 85. Our experiments
suggest that attribute selection is of key importance and that is likely to be a greater
factor in determining the success than the choice of the learning method. The reason
is that attribute selection is a powerful tool for variance reduction. Although the
number of observations is small, attribute subset selection methods seem to outper-
form methods that evaluate candidate attributes individually, but for this problem
we see no significant difference between subset filter and wrapper methods. This has
been confirmed for other domains by a study on wrappers and filters (Tsamardinos
& Aliferis 2003).
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4.6 Lessons Learned: Learning Methods

The selection of a method for constructing the model of the data is generally con-
sidered an important decision in the data mining process, in addition to attribute
selection and attribute construction. An important property of methods is the model
representation. As discussed briefly in section 4.4 an inadequate learning bias of a
method can cause bias error. An important characteristic of a method is therefore the
strength and the content of the representation (or language) bias. Strong bias will in
general reduce the error variance because it forces the learner into a small class of
models. If the learning bias is incorrect then this will cause bias error.

The advantage of methods with stronger bias is typically lower variance. A way in
which the representation affects the error variance is by its exploitation of redundancy.
Models that involve (weighted) addition of attributes or of constructed predictors can
exploit the fact that the noise in these predictors will average out and therefore the
total prediction error will be smaller than that of the individual predictions. Also the
proportion of training instances that is actually used to estimate model parameters
is a factor: the more instances are used to estimate a parameter, the more stable
an estimate will be. For instance nearest neighbor models and decision trees base
a prediction on a small region in attribute space, in contrast to for instance logistic
regression.

What is the effect of differences in learning bias between methods? The precise
underlying pattern of the TIC domain is not known. The most predictive attributes
are ‘level of car insurance’, ‘number of car insurance policies’, ‘purchasing power
class’, ‘level of fire insurance’. These attributes are correlated and their relation with
the target class is approximately monotonic, although not completely, see section
4.5.1. This means that naive Bayes, rule-based, additive feature combinations and
ensembles are all adequate representations. Because of the uncertainty in the relation,
additive models are most attractive. Non-linear relations make naive Bayes and rule-
based representations competitive. Because of the correlation between attributes,
subsets of two or three of these (possibly discretized) variables give comparable
optimal models within most model representations.

Table 4.2 shows the mean and maximum accuracies of the solutions of methods
that are based on different model representations. Although we must interpret these
data with care because of the small numbers, this suggests that differences in accuracy
between model representations are relatively small. It is interesting to note that
naive Bayes performs quite well although it has a relatively strong representational
learning bias compared with the other methods. The best solution using naive Bayes
included attribute construction and attribute selection and this may have corrected
the representational learning bias.

Many authors mentioned that they experimented with a number of learning tools,
and parameters of tools, but that the first results obtained sometimes turned out to
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Bias Additive Bias Mean Max n
strength correctness

Naive Bayes strong yes good 118 121 2
Rule-based weak no good 100,5 112 13
Additive linear strong yes medium 111 111 2
Non-linear weak good good 106 115 8
Ensembles medium yes medium 112 115 1

Table 4.2: Representation bias and accuracy of CoIL solution methods

be the best. Experimentation can cause ‘procedural bias’ (Quinlan & Cameron-
Jones 1995), (Domingos 1997): a new method is tried, or a variation of an earlier
method and if the accuracy increases then it is assumed that the new method is
better.

This may not be true because the new method may have a weaker bias or more
degrees of freedom, allowing a closer fit to the data but with weaker support for the
learned model. For example, consider first learning ‘decision stumps’, trees of depth
one, and then decision trees of depth two. If we would simply compare the accuracies
of these two methods, we would probably prefer the trees of depth two because these
achieve higher accuracy but the support for the predictions of trees of depth two,
for the path from root to leaf, is weaker for the deeper trees and the variance error
and risk of overfitting will increase. Therefore only comparing the accuracies is not
enough. Using cross validation can resolve this problem but only when the test set
is very large. Cross validation itself relies on a sample and is therefore subject to
error. As an aside we note that Domingos (1997) claim that overfitting is caused
by testing too many hypotheses on a single data set is not the main problem. For
example, trying out more candidate decision stumps will only improve the quality
of the decision stump that is found. The problem is in the comparison of hypotheses
(or classes of hypotheses) with different complexities or degrees of freedom. Usually
a learning process that involves more hypothesis testing involves more comparisons
between hypotheses with different degrees of complexity (or degrees of freedom)
and therefore the risk of incorrect decisions is increased.

Also if more and more experiments are run with additional configurations, learn-
ers or parameter settings, but only the ‘best’ result is kept, the risk increases that we
have found a spurious result. Just consider the informal definition of a significance
level: the probability that a certain better result has happened purely by chance; in
other words if we increase the number of configurations tested this is more likely to
occur. Similarly, repeating runs with the same configuration over different samples
contains this risk.

Because we do not have enough data about the number and nature of these
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Accuracy Method
121 Naive Bayes
115 Ensemble of 20 pruned naive Bayes

112 GA with numerical and Boolean operators
111 SVM regression
111 SVM regression
96 subgroup discovery
96 decision tree
80 fuzzy rules
74 CART
72 neural nets

Table 4.3: Accuracy and method selection

experiments, we focus on the methods that were used. Table 4.3 compares the five
methods used by the participants with the highest scores with the five with the
lowest scores (for which the method is known with enough detail). These results
show that methods with weak learning bias tend to have low accuracies. A possibility
is that participants have been seduced by the high accuracies that can be obtained
by learners with weak learning bias and did not realize that the models found in
this way can’t be directly compared with models found by methods with stronger
learning bias.

We explore the effect of model representation shape by reconstructing some of
the solutions. Specifically, we can look at estimates of bias error and variance error in
the CoIL solutions. The results of the bias-variance decomposition can be seen in bar
chart and scatter plot format in respectively figure 4.5 and figure 4.6. The average
bias is 0.25 ± 0.018 and 0.27 ± 0.023 without and with attribute selection, whereas
the average variance is 0.16 ± 0.039 and 0.10 ± 0.036 without and with attribute
selection. The bias component is relatively large because its estimate here includes
the (constant) intrinsic error and it increases slightly through attribute selection. The
variance component is smaller, but varies a lot more, and also decreases a lot more
through attribute selection. The rule-based methods have a variance component in
the error of around 0.20. The most stable results are produced by naive Bayes which
has a variance error of only 0.09.

Concluding, the results show that for the TIC domain the bias error is more
stable between methods than the variance error. This suggests that selection or even
improvements of methods should be found in reducing the variance component,
rather than the bias component.
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Figure 4.6: Bias-variance decomposition for eight learners (scatter plot) with (S) and without
attribute selection (A).

4.7 Lessons Learned: Description Task

The goal in the description task was to explain why people own a caravan policy,
given the data, modeling methods and subjective, domain-based interpretation. The
descriptions and accompanying interpretation had to be comprehensible, useful and
actionable for a marketing professional with no prior knowledge of computational
learning technology.

Submitted descriptions were evaluated by a marketing expert (Stephan van Heus-
den from MSP Associates in Amsterdam). The expert commented: “Almost all entries
lack a good description in words: participants seem to forget that most marketeers
find it difficult to read statistics (and understand it)”. The expert stressed the im-
portance of actionability. “A good entry combines a description of the results with a
tool to use the results.” Participants from industry had a better score than academic
participants (4.3 versus 3.5 out of a maximum of 6), although these differences were
not significant given the standard deviations (1.6 resp. 2.1). Similar to the prediction
solutions, a wide variety of approaches was chosen, although there was a tendency
to use simple statistics, cross tabulations and rule based solutions.

The winners, Kim and Street, used a variety of techniques for the description task,
including proprietary evolutionary algorithms, chi square tests and association rules.
The marketing expert remarked: “This participant clearly explained which steps
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preceded his conclusions. He may have discovered all conclusions the others also
found, but additionally he really tries to interpret them.” The expert also appreciated
the association rule results, the discussion of the complex nonlinear relation between
purchasing power and policy ownership and the explanations why people were not
interested in a caravan policy. Their prediction model scored 107 policy owners (65th
percentile).

The success of the winning entry demonstrates that to explain behavior the pre-
diction models used do not necessarily need to be of top quality. This was confirmed
by analyzing the correlation between prediction and description scores for all entries.
Rather than giving a complete overview of a single model, good results are achieved
by applying multiple methods and choosing the most comprehensible, useful and
actionable patterns from these models.

4.8 Discussion and Conclusion

The CoIL competition resulted in analyses of a real-world problem by a number of
experts. We used the bias-variance decomposition of errors to identify causes of
success and failure in solving the competition problems. The TIC problem is charac-
terized by a relatively large number of intercorrelated attributes, a lot of uncertainty
and skewed distributions of inputs and target. This is common for many real world
problems. In this case variance error was a larger problem than bias error.

Attempts to discover complex models using methods with weak learning bias and
weak methods to avoid overfitting lead to complex models that were unstable and
that overfit. The best approach is to simplify the data set through data preparation
first and then use simple, robust, strong bias methods for modeling. This suggests a
potential reason why the CoIL experts didn’t outperform the students. Apparently a
simple model and experimental setup suffice to solve this noisy prediction problem.

4.8.1 Lessons

To summarize we would like to single out the following lessons learned for problems
similar to the challenge:

1. In the case of noisy prediction problems choices in the analysis process should
be aimed at reducing the variance component rather than at finding an appro-
priate bias.

2. The potential impact of data preparation (e.g. selecting the right attributes) on
variance and overall error reduction is larger than the choice of classifier for
these high variance problems.
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3. Attempting to improve the fit between the bias of the problem and method
by using complex learners is only useful when parameters can be estimated
reliably. For problems such as the one of the CoIL Challenge 2000, simple
models with few degrees of freedom are most robust so these should be tried
first.

4. All steps of the data mining process risk increasing variance error. This suggests
that model stability should be tested: if a method, applied to different samples,
produces different models with different predictions, this suggests that variance
error may be a problem. The method may be overfitting the data or may be
otherwise unstable.

5. Measures against overfitting all have their weaknesses. Cross validation, being
an empirical method, is not guaranteed to result in the best model, especially
if it is used to limit the complexity of a model such as a decision tree. If
intrinsic error is high and the amount of data is low, estimates of validation
set performance are uncertain. Extensive experimentation while only keeping
the ‘best’ models is also risky. Quite a few participants reported that they
were seduced to spoil their original models (cf. Seewald; Abonyi and Roubos;
Sathiya Keerthi and Jin Ong; Kaymak and Setnes). They increased the fit on
the data by additional heuristics or fine-tuning, ending up with a model that is
worse rather than better than the original.

4.8.2 Further research

We identify a number of directions for further research:

1. Bias-variance decomposition is an elegant framework for the analysis of learn-
ing problems because it provides a diagnosis of error into various components.
Each component requires a different strategy of error reduction, so the data
miner has more insight into what action to take to improve the model. To
become a standard tool, a more universally accepted definition of bias and
variance is needed, both for zero one loss and for other evaluation metrics,
such as asymmetric cost functions and the area under the ROC curve.

2. This study confirms the importance of steps before and after the core modeling
step such as attribute construction, attribute selection and model evaluation.
Bias-variance decomposition could be used more to analyze and improve meth-
ods used in these steps. Evaluation of bias and variance components should
be integrated more tightly in methodology, methods and systems for Machine
Learning. In addition to using the concepts of bias and variance for analysis,
methods could be developed that explicitly minimize bias and variance error.
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Chapter 5

Profiling Novel Algorithms

The introduction of new technologies generally follows a typical adoption (and hype)
cycle, and novel data mining algorithms are no exception to this rule. Neural net-
works are a good example. Algorithms inspired by neural processing have been
around since the forties (for instance McCulloch & Pitts (1943)) but really gained
traction in the eighties of the last century after publication of the PDP Handbooks
(Rumelhart & McClelland 1986). The amount of neural network research exploded
and neural networks were pitched as a superior set of algorithms for classification,
clustering and optimization, in some cases with no more justification than its biolog-
ical origins.

After this period of excitement but also over-inflated claims a more realistic ap-
proach was taken. Some researchers went the direction of using neural networks
strictly for the purpose of neurological modeling, but for non-biological modeling
applications the data mining and machine learning community started rightfully to
ignore the biological roots and evaluate and benchmark neural algorithms against
other approaches using generally applicable measures such as accuracy. Whilst this
may have resulted in the loss of some of the initial appeal, research interest and
promise, it actually led to the incorporation of neural networks into the standard
toolkit of a much wider community.

So for the maturity and wider acceptance of a novel algorithm it is key that it
is benchmarked against and compared with existing approaches, preferably by re-
searchers who have not been involved in the development and evangelization of
the particular novel algorithm. However, it should be noted that basic accuracy
benchmarking only provides worst case reassurance that the algorithm provides
reasonably valid results and should not be used to make general claims about supe-
riority of the novel method over others. The No Free Lunch theorem loosely states
that there is no algorithm that will consistently outperform all other algorithms on all

125
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problem domains (Wolpert & MacReady 1995). So it is important to take the analysis
further than basic accuracy benchmarking, and for instance investigate on what kind
of problems and data it works well, or to explore to what other algorithms it is simi-
lar in its behavior. This will help the data miner to decide when best to apply these
methods. We refer to this as algorithm profiling rather than basic benchmarking.
Existing methods such as learning curve analysis and bias variance analysis can be
used, but there is also a lot of opportunity to develop new methods (see figure 5.1).

In this chapter we provide an example approach for such an analysis. As the can-
didate novel algorithm we have chosen for AIRS, a so called Artificial Immune System
or Immunocomputing algorithm, a prediction method inspired by the learning ca-
pabilities of the immune system (Watkins, Timmis & Boggess 2004). The analogy
with neural networks is not a coincidence; we wanted to pick a field that is likely
to be in a similar position as neural networks previously. Whilst our approach goes
further than basic benchmarking, we have chosen to keep it fairly straightforward
and simple, so that the same approach can easily be used to benchmark, profile and
characterize other novel algorithms for classification, and it will hopefully inspire
researchers to develop new model profiling methods (van der Putten & Meng 2005),
(Meng et al. 2005), (van der Putten et al. 2008).

5.1 Introduction

There has been a rapid growth in the interest in Artificial Immune Systems for appli-
cations in data mining and computational intelligence recently. The immune system
is sometimes called the second brain for its abilities to recognize new intruders and
remember past occurrences, and artificial immune systems lend concepts and mech-
anisms from natural immune systems for a variety of data mining and optimization
applications (Castro & Timmis 2002), (Watkins et al. 2004).

Simulating the immune system or translating immune system mechanisms into
machine learning is an interesting topic on its own. However, as discussed in the
context of neural networks, to be accepted as a candidate algorithm for data min-
ing applications rather than biological modeling, the source of inspiration for these
algorithms is not really a topic of interest. Instead empirical evidence is needed
that these algorithms produce high quality, reliable results over a wide variety of
problems compared to a range of other approaches. Also any expert fine-tuning
should be avoided. When benchmarking a novel algorithm there is a risk that the
algorithm developer (even unintentionally) performs more and better tuning on the
novel classifier as compared to the benchmark classifiers, as he has more experience
with his own algorithm. Also, the purpose of a benchmark should be to compare
results under normal, i.e. non expert, user conditions.

Given that we are interested in applicability of artificial immune systems for
real world data mining, and that classification is one of the most important mining
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Figure 5.1: Basic algorithm benchmarking versus algorithm profiling

tasks, we focus on the Artificial Immune Recognition System (AIRS) algorithm.
AIRS was introduced in 2001 as one of the first immune systems approaches to
classification (Watkins 2001) and seemed to perform reasonably well on various
classification problems. Until then, several papers have been published dealing
with AIRS benchmarking (Goodman, Boggess & Watkins 2002), (Goodman, Boggess
& Watkins 2003), (Marwah & Boggess 2002), (Watkins et al. 2004). However, in our
opinion these approaches were relatively limited, given that comparisons were made
on a small number of data sets and algorithms, and that the benchmark results were
sourced from literature rather than produced under exactly the same conditions as
for the AIRS algorithm.

In contrast to the previous work mentioned, all our experiments have been run
from scratch, to guarantee consistent experimental conditions. This includes apply-
ing AIRS on a wide range of representative real-world data sets with large differences
in number of instances, attributes and classes, and comparing its performance to a
wide range of commonly accepted algorithms. This will provide an answer to the
question whether AIRS is already mature enough to be considered as a generally ap-
plicable data mining algorithm – or whether indeed the performance of AIRS is even
superior to other algorithms – as the existing AIRS research literature claimed at the
time of publication of our basic benchmarking results (van der Putten & Meng 2005),
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(Meng et al. 2005).

The accuracy benchmark can be seen as a ’smoke test’ to check minimal conditions
for suitability. For example, does the algorithm provide reasonably valid and robust
results, so no critical outliers? As already argued, for the novel algorithm to be
accepted as a valuable addition to the data miners toolbox, answering this question
will not be sufficient. It should also be made clear in what situations the algorithm
will likely be most applicable: for instance by identifying on what kind of data it will
work well, or to what other algorithm it is similar, not just in theory but particularly
in term of its behavior on real data (see figure 5.1).

We refer to this as algorithm profiling rather than basic benchmarking. In our
opinion algorithm profiling is a useful umbrella term for a family of analyses that
should be applied when new algorithms are introduced. Existing methods such as
learning curves and bias variance analysis can be used, but there is also a lot of
opportunity to develop new methods.

In the AIRS case, first we investigate the relationship between data set properties
and algorithm performance, to get a better picture when AIRS may perform better or
worse than others. We focus on the size of the data set, this can easily extended further
to include other data set properties. We then investigate what other algorithms have
a similar empirical behavior as the AIRS algorithm. As discussed, the aim of both
these analyses is to provide a deeper understanding in what cases AIRS may be a
valid algorithm to use.

The remainder of this chapter is organized as follows. Section 5.2 provides an
overview of natural and artificial immune systems, and section 5.3 outlines the AIRS
algorithm. The basic benchmarking, data set properties and algorithm similarity
experiment results are described in sections 5.4, 5.5 and 5.6 respectively. We conclude
the chapter with section 5.7.

5.2 Immune Systems

The recognition and learning capabilities of the natural immune system have been an
inspiration for researchers developing algorithms for a wide range of applications.
This section introduces some basic immune system concepts and provides the history
and background behind the AIRS algorithm for classification.

5.2.1 Natural Immune Systems

The natural immune system offers two lines of defense, the innate and adaptive
immune system. The innate immune system consists of cells that can neutralize a
predefined set of attackers, or antigens, without requiring previous exposure. The
antigen can be an intruder or part of cells or molecules of the organism itself. In
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Figure 5.2: Primary immune response example (B-Cells). When a B cell encounters its trig-
gering antigen, it gives rise to many large cells known as plasma cells, which essentially are
factories for producing antibodies. Source Wikipedia ”Adaptive Immune Systems”, March 27
2008; NIH Publication No. 035423, September 2003 (modifications: September 4, 2006)
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addition, higher animals such as vertebrates possess an adaptive immune system
that can learn to recognize, eliminate and remember specific new antigens.

An important role is played by lymphocytes, cells that recognize and destroy
antigens. There are different types of lymphocytes, cells that recognize antigens
directly (B-cells) or cells that recognize antigens that are bound to so called presenter
cells (T-cells). Each lymphocyte codes for a specific antigen, but there may be more
possible types of antigens than there are specific lymphocytes.

This is solved by a form of natural selection. The bone marrow and thymus
continuously produce lymphocytes and each of these cells can counteract a specific
type of antigen. Now if for example a B-cell lymphocyte encounters an antigen
it codes for, it will produce antibody molecules that neutralize the antigen and in
addition a large number of cloned B-cells are produced that code for the same antigen
(clonal expansion or clonal selection; see figure 5.2).

The immediate reaction of the innate and adaptive immune system cells is called
the primary immune response. The immune system also keeps a record of past
intrusions. A selection of the activated lymphocytes is turned into sleeper memory
cells that can be activated again if a new intrusion occurs of the same antigen,
resulting in a quicker response. This is called the secondary immune response
(Castro & Timmis 2002).

5.2.2 Artificial Immune Systems and AIRS

Natural immune systems have inspired researchers to develop algorithms that exhibit
adaptivity, associative memory, self - non self discrimination and other aspects of
immune systems. These artificial immune system algorithms have been applied to a
wide range of problems such as biological modeling, computer network security &
virus detection, robot navigation, job shop scheduling, clustering and classification
(Castro & Timmis 2002).

The Artificial Immune System algorithm (AIRS) can be applied to classification
problems, which is a very common real world data mining task. Most other artificial
immune system research concerns unsupervised learning and clustering. The only
other attempt to use immune systems for supervised learning is the work of Carter
(Carter 2000). The AIRS design refers to many natural immune system metaphors
including resource competition, clonal selection, affinity maturation, memory cell
retention, and so on. AIRS builds on the concept of resource limited clustering as
introduced by Castro & von Zuben (2000) and Timmis & Neal (2001).

According to the introductory paper, AIRS seems to perform well on various
classification and machine learning problems (Watkins 2001). Watkins claimed the
performance of AIRS is comparable, and in some cases superior, to the performance
of other highly-regarded supervised learning techniques for these benchmarks.

Later on, Goodman, Boggess, and Watkins investigated the ‘source of power
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Figure 5.3: An overview of the AIRS algorithm

for AIRS’ and its performance on multiple-class problems. The authors compared
the results of AIRS on several data sets including iris, ionosphere, diabetes, sonar,
and Cleveland heart with the results from a large number of other classifiers taken
from literature. Based on this comparison, the authors claim “AIRS is competitive
with the top five to eight classifiers out of 10-30 best classifiers on those problems”,
“it was surprisingly successful as a general purpose classifier” and it “performed
consistently strong across large scope of classification problems” (Goodman et al.
2002), (Goodman et al. 2003). In Marwah & Boggess (2002), the authors investigated
several technical problems for AIRS and found that on the e-coli data set AIRS
produced a higher average accuracy than any other published result. In Watkins
et al. (2004), the authors investigated the modifications in the mechanisms of memory
cell evolution and somatic hypermutation and concluded that these improved both
the performance and simplicity in comparison to results from other algorithms in
literature.

5.3 AIRS: the Algorithm

From a pure data mining point of view, AIRS is a cluster-based approach to classifica-
tion. It first learns the structure of the input space by mapping a codebook of cluster
centers to it and then performs a k-nearest neighbor search on the cluster centers for
classification, just like k-means clustering for classification or Self Organizing Maps
(SOMs, (Kohonen 1982)). The attractive point of AIRS is its supervised procedure
for discovering both the optimal number and position of the cluster centers, which
it shares with some more rarely applied approaches for competitive learning such as
NeuralGaz (Martinetz 1993), (Martinetz & Schulten 1994) and Fritzke’s Growing Self
Organizing Neural Networks (Fritzke 1994), (Fritzke 1995).
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In AIRS, there are two different populations, the Artificial Recognition Balls (ARBs
– lymphocytes) and the memory cells, see figure 5.3. When a training antigen is
presented, ARBs matching the antigen are activated and awarded more resources.
ARBs with too few resources will be removed and new ARBs are created through
mutation. This corresponds to the primary immune response in natural immune
systems. On convergence a candidate memory cell is selected which is inserted to
the memory cell pool if it contributes enough information. This corresponds to the
secondary immune response. This process is repeated for all training instances –
each training item can be seen as a separate ‘attack’. Classification takes place by
performing a nearest neighbor search on the memory cell population (Watkins 2001),
(Watkins et al. 2004). Below we will describe AIRS in more technical detail.

5.3.1 Initialization

Let us assume we have a training data set X containing n labeled instances agi = {xi, ti}
with xi an input with d attributes and ti a one dimensional target class (i=1,2,. . . ,n).
First all the data items will be normalized so that the affinity of every two training
instances agi and ag j is in the range [0,1]. Second the average affinity between all
training instances is calculated. The average affinity is called the affinity threshold:

affinity threshold =

∑n
i=1

∑n
j=i+1 affinity(xi, x j)

n(n−1)
2

(5.1)

with xi and x j the attribute vectors of the ith and jth training antigens, and affinity(x, y)
returns the Euclidean distance between the two antigens attribute vectors.

We assume the set MC to be the memory cell pool containing m memory cells:
MC = {mc1,mc2. . . ,mcm}, and set AB as the ARB-population containing r ARBs: AB =
{ab1, ab2, . . . , abr}, with mc j = {xmc

j
, tmc

j
}, j = (1, 2, . . . ,m); abk = {xab

k
, tab

k
}, k = (1, 2, . . . , r).

On initialization, the memory cells pool MC and the ARB population AB are seeded
by randomly adding training instances.

5.3.2 Memory Cell Identification and ARB Generation

From now on, antigens (training instances) will be presented to the algorithm one by
one. If an antigen agi ={xi,ti} is presented to the system, the algorithm will identify a
memory cell mcmatch = {xmc

match
, tmc

match
} which has the same class label (tmc

match
= ti) and is

most stimulated by the specific agi. The stimulation function is simply calculated as:

S(agi,mc j) = 1 − affinity(x j, x
mc
j ) (5.2)

with affinity is defined as Euclidean distance.
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If there is no mcmatch available at this moment, just let agi act as the mcmatch. This
mcmatch will then be cloned to produce new mc clones. First the attributes of mcmatch

will be mutated with a certain probability (default 0.1). If any mutations occurred for
this particular clone, the class label will be mutated as well with the same probability

5.3.3 Resource Constrained ARB Evolution

At this moment, there are a set of ARBs including mcmatch, mutations from mcmatch, and
others from previous training. AIRS mutates these memory cell clones to generate
new ARBs. The number of ARBs allowed to produce is calculated by the product of
the hyper clonal rate, clonal rate (both default 10), and the stimulation level S. The
newly generated ARBs will be combined with the existing ARBs.

AIRS then employs a mechanism of survival of the fittest individuals within the
ARB population. First, each ARB will be examined with respect to its stimulation
level when presented to the antigen. In AIRS, cells with high stimulation responses
that are of the same class as the antigen and cells with low stimulation response that
are not of the same class as the antigen are rewarded most and allocated with more
resources. The losers in competing for resources will be removed from the system.
Then the ARB population consists of only those ARBs that are most stimulated and
are capable in competing for resources.

Then the stop criterion is evaluated. The stop criterion is reached if the average
stimulation value of every class subset of AB is not less than the stimulation threshold
(default 0.8). Then the candidate memory cell mccandidate is chosen which is the most
stimulated ARB of the same class as the training antigen agi. Regardless whether the
stop criterion was met the algorithm proceeds by allowing the ARBs the opportunity
to proliferate with more mutated offspring. This mutation process is similar to the
mutation of phase 2, with a small exception: the amount of offspring than to be
produced is calculated by the product of stimulation level and the clonal rate only. If
the evaluation criterion was not met in the last test, the process will start again with
the stimulation activation and resource allocation step. Otherwise the algorithm will
stop.

5.3.4 Memory Cell Pool Update

Now if mccandidate is more stimulated by the antigen than mcmatch, it will be added
into the memory cell pool. In addition, if the affinity value between mccandidate and
mcmatch is also less than the product of the affinity threshold (average affinity between
all training items) and the affinity threshold scalar (a parameter used to provide a
cut-off value, default 0.8), which means mccandidate is very similar to mcmatch, mccandidate

will replace mcmatch in the set of memory cells. Training is completed now for this
training instance agi. and the process is repeated for the next instance.
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5.3.5 Classification

With the training completed, the evolved memory cell population MC = {mc1, . . . ,mcm}
(m ≤ n) will be used for classification using k-nearest neighbor. The classification
for a test instance will be determined by the majority vote of the k most stimulated
memory cells.

5.4 Basic Accuracy Benchmarking

The goal of the benchmark experiments is to evaluate the predictive performance
of AIRS in a real world application setting. We assume that our users are non
data mining experts, e.g., business users, who may lack knowledge or time to fine-
tune models, so we used default parameters wherever possible to create a level
playing field. For this reason we also decided to use simple accuracy rather than
more advanced measures such as area under the ROC. To ensure consistency, the
experiments for all classifiers were carried under exactly the same conditions, in
contrast to some earlier published work on AIRS (see section 5.2.2).

5.4.1 Approach

We selected data sets with varying number of attributes, instances and classes, from
simple toy data sets to difficult real world learning problems, from the UCI Machine
Learning and KDD repositories (Blake & Merz 1998). ’Breast cancer’ refers to the
Wisconsin Breast Cancer variant of the UCI breast cancer data set. The TIC data
sets are derived from the standard TIC training set by downsampling the negative
outcomes to get an even distribution of the target. In addition, TIC5050S only
contains the most relevant attributes according to a subset attribute selection method
(van der Putten & van Someren 2000), (van der Putten & van Someren 2004), (Hall &
Holmes 2003), (Hall 1999).

In the experiments, we selected some representative, well known classifiers as
challengers. These classifiers include naive Bayes, logistic regression, decision ta-
bles, decision trees (C45/J48), conjunctive rules, bagged decision trees, multi layer
perceptrons (MLP), 1-nearest neighbor (1-NN) and 7-nearest neighbor (7-NN). This
set of algorithms was chosen because they cover most of the algorithms used in busi-
ness data mining and correspond to a variety of classifier types and representations –
instance based learning, clustering, regression type learning, trees and rules, and so
on. Furthermore we added classifiers that provide lower bound benchmark figures:
majority class simply predicts the majority class and decision stumps are decision
trees with one split only. For AIRS we chose the 1 and 7 nearest neighbor versions
of the algorithm. We used the Java version of AIRS by Janna Hamaker (Hamaker
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& Watkins 2003) and the WEKA toolbox for the benchmark algorithms (Witten &
Frank 2000).

All experiments are carried out using 10-fold stratified cross validation. The data
is divided randomly into ten parts, in each of which the target class is represented in
approximately the same proportions as in the full data set. Each part is held out in
turn and the classifier is trained on the remaining nine-tenths; then the classification
accuracy rate is calculated on the holdout validation set. Finally, the ten classification
accuracy rates on the validation sets are averaged to yield an overall accuracy with
standard deviation. To test the robustness of classifiers under real world conditions,
all classifiers were run with default settings, without any manual fine-tuning.

5.4.2 Results

The results of the experiments can be found in table 5.1. With respect to the worst case
classifiers we highlight some interesting patterns. Almost all classifiers outperform
majority vote. The comparison with decision stumps (single split decision trees) as
a worst case benchmark is more striking. For example, for all data sets with the
exception of the waveform data set the conjunctive rules classifier does not perform
better than decision stumps. Other examples are the TIC data sets: none of the
classifiers other than C45 and Decision Tables on TIC5050S perform better than
decision stumps. This demonstrates the power of a very simple decision rule in a
real world black box modeling environment (see also Holte (1993)).

To get a better picture of the relative performance of AIRS we compare it to the
average classifier performance (excluding decision stump and majority vote). AIRS-1
performs better than average on 3 of these 9 datasets. AIRS-7 performs better than
average on 6 of these 9 datasets. This conflicts with the claims made in earlier studies
that were cited in section 5.2.2 on superior performance of AIRS.

We also made some comparisons to the IB-k algorithms, because these may be
closest to a trained AIRS classifier. AIRS-1 improves on IB-1 more often than the
other way around; this is probably due to the fact that AIRS-1 provides some useful
generalization. However IB-7 performs better than AIRS-7 on all of the data sets.
AIRS-7 performs better than AIRS-1 on 7 out of 9 data sets. Using more clusters may
give better results but not to the extent that IB-7 can be beaten (basically as many
cluster centers as data points).

That said, with the exception of AIRS-1 on German credit data, the AIRS algo-
rithms produce at least around average results. Given this benchmark, the previous
claims about supposedly exceptional performance of AIRS seem to be, perhaps not
surprising, somewhat overinflated. However our results do suggest that AIRS is a
mature classifier that delivers reasonable, robust performance and that it can safely
be used for real world classifications tasks, which is to our opinion a very positive, if
not the most positive result that could be expected for a novel algorithm.
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Sonar Wisc. Wave Iris Iono- Pima Ger- TIC TIC
Breast form sphere dia- man 5050 5050s
Cancer betes credit

Maj. 53.4 65.5 33.8 33.3 64.1 65.1 70.0 49.7 49.7
Class ± 1.7 ± 0.5 ± 0.1 ± 0.0 ± 1.4 ± 0.4 ± 0.0 ± 0.4 ± 0.4
1NN 86.6 95.3 73.6 95.3 86.3 70.2 72.0 55.9 59.9

±7.0 ±3.4 ± 1.3 ± 5.5 ± 4.6 ± 4.7 ± 3.1 ± 7.8 ± 5.1
7NN 80.8 96.6 80.1 96.7 85.2 74.7 74.0 61.1 65.4

± 7.8 ± 2.2 ± 1.1 ± 3.5 ± 4.3 ± 5.0 ± 4.1 ± 3.2 ± 8.4
Dec. 73.1 92.4 56.8 66.7 82.6 71.9 70.0 68.5 68.5

Stump ± 8.3 ± 4.4 ± 1.5 ± 0.0 ± 4.8 ± 5.1 ± 0.0 ± 4.7 ± 4.7
C45 71.2 94.6 75.1 96.0 91.5 73.8 70.5 68.1 69.1

(J48) ± 7.1 ± 3.6 ± 1.3 ± 5.6 ± 3.3 ± 5.7 ± 3.6 ± 5.5 ± 4.4
Naive 67.9 96.0 80.0 96.0 82.6 76.3 75.4 62.8 68.0
Bayes ± 9.3 ± 1.6 ± 2.0 ± 4.7 ± 5.5 ± 5.5 ± 4.3 ± 6.4 ± 3.3
Conj. 65.9 91.7 57.3 66.7 81.5 68.8 70.0 67.4 68.3
Rules ± 8.7 ± 4.5 ± 1.3 ± 0 ± 5.4 ± 8.67 ± 0 ± 3.7 ± 4.5

Bag- 77.4 95.6 81.8 94.0 90.9 74.6 74.4 59.9 68.4
ging ± 0.1 ± 3.1 ± 1.4 ± 5.8 ± 4.4 ± 3.6 ± 4.9 ± 5.8 ± 4.1
Log. 73.1 96.6 86.6 96.0 88.9 77.2 75.2 62.7 66.5

Regr. ± 13.4 ± 2.2 ± 2.3 ± 5.6 ± 4.9 ± 4.6 ± 3.4 ± 4.6 ± 3.4
MLP 82.3 95.3 83.6 97.3 91.2 75.4 71.6 60.7 65.4

± 10.7 ± 2.6 ± 1.7 ± 3.4 ± 2.8 ± 4.7 ± 3.0 ± 4.3 ± 4.7
Dec. 74.5 95.4 73.8 92.7 89.5 73.3 72.2 61.9 69.1

Table ± 8.2 ± 2.7 ± 1.6 ± 5.8 ± 4.5 ± 3.6 ± 4.1 ± 4.5 ± 5.7
AIRS1 84.1 96.1 75.2 96.0 86.9 67.4 68.0 56.8 55.0

± 7.4 ± 1.8 ± 1.7 ± 5.6 ± 3.1 ± 4.6 ± 5.1 ± 4.4 ± 6.5
AIRS7 76.5 96.2 79.6 95.3 88.6 73.6 71.4 57.8 59.1

± 8.4 ± 1.9 ± 2 .2 ± 5.5 ± 5.0 ± 3.5 ± 3.1 ± 5.5 ± 6.1

Table 5.1: Average accuracy and standard deviation on accuracy (tenfold) for AIRS and a
range of benchmark algorithms. Best results in boldface, worst results in italics.
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Figure 5.4: Accuracy learning curves for AIRS-1 and AIRS-7 and MLP

5.5 Profiling: Influence of Data Set Properties

As mentioned the No Free Lunch theorem states that there is no classifier that outper-
forms all other classifiers across all problem domains (Wolpert & MacReady 1995).
So it is interesting to investigate on what kind of data AIRS performs relatively well
and on what kind of data it won’t, for example by relating data set properties to the
performance of AIRS relative to other algorithms. We focus on a key property, the
size of the data set.

5.5.1 Approach

We carried out a so called learning curve analysis on the diabetes data set. We created
models using the same set of classifiers as in the previous section, for simplicity using
a fixed 25% hold out test set. These experiments were carried out on training samples
of varying size, starting with 10% and with 10% increments. Note that the results
on the full training set can be different from the overall benchmark results given
the differences in train and test set size and the simple hold out testing approach
rather than full cross validation; for this test we are primarily interested in high level
learning curve patterns. The learning curves were not all smooth monotonically
increasing, to be able to spot trends we fitted logarithmic trend lines to the result
series for each of the classifiers.
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Figure 5.5: Accuracy learning curves for AIRS-1 and AIRS-7 and 1-NN
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Figure 5.6: Accuracy learning curves for AIRS-1 and AIRS-7 and remaining classifiers
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5.5.2 Results

Roughly three patterns of result series emerge. In figure 5.4 you can see the trend
lines of AIRS-1 and AIRS-7 compared to MLP. The trend of AIRS-1 and AIRS-7 is
quite similar: in this case AIRS-1 outperforms AIRS-7. Ignoring trend lines, only by
looking at the data point for the full data set AIRS-7 actually performs better than
AIRS-1, which is consistent with with the benchmark findings reported earlier. The
trend of the MLP curve is a lot flatter, i.e. it outperforms AIRS at lower data set size
but AIRS starts to perform better at larger data set sizes. The opposite is true for
1-NN. The slope of the 1-NN learning curve is steeper than the AIRS learning curves,
see figure 5.5. For the remaining classifiers, including 7-NN, the learning curve has
a similar curve as the AIRS classifiers (figure 5.6).

5.6 Profiling: Computing Algorithm Similarity

The experiments above provide an overview what the performance of the AIRS
algorithm is and how AIRS performance may relate to data set size. Another typical
question for a novel algorithm is how similar it is in its behavior compared to other
algorithms. This is useful to know, as it will give a data miner an idea when to apply
this technique.

Some insight can be derived by studying the theoretical properties of the algo-
rithm. For instance, the AIRS learning process can be seen as a relatively advanced
(but also complex) way to produce a simple codebook of labeled cluster centers, so
in theory its behavior could be similar to nearest neighbor and k-means clustering
style of classifiers.

The key question though is whether this behavior can be confirmed through
experiments, and whether other classifiers of very different origins may behave
similarly as well, for reasons yet to be determined.

5.6.1 Approach

In our experiments we have used three different ways to measure algorithm similarity.
We focused on the accuracy of the algorithm, given that it is generally the key behavior
of interest.

The benchmark provided the raw data for the analysis. To get a basic picture
we simply calculated the correlation between classifiers on series of accuracies over
the various data sets. A problem though with this approach is that to a large extent
correlation can already be expected; on difficult problems accuracy will be low and
vice versa.

So in our second method we decided to focus on performance relative to other
classifiers. For each classifier – data set combination we evaluated whether perfor-



140 CHAPTER 5. PROFILING NOVEL ALGORITHMS

Classifier Correlation
AIRS-1

1-NN 0.99
7-NN 0.98
MLP 0.97
AIRS-7 0.97
Bagging 0.94
Decision Table 0.92
Logistic 0.89
J48 0.87
Naive Bayes 0.83
Decision Stump 0.47
Conjunctive Rules 0.46
Majority Vote -0.07

Table 5.2: Correlation with AIRS-1 accu-
racy series

Classifier Correlation
AIRS-7

MLP 0.99
7-NN 0.99
Bagging 0.98
Logistic 0.97
AIRS-1 0.97
Decision Table 0.96
1-NN 0.95
Naive Bayes 0.93
J48 0.92
Conjunctive Rules 0.48
Decision Stump 0.45
Majority Vote -0.04

Table 5.3: Correlation with AIRS-7 accu-
racy series

mance was better or worse than the average of all classifiers on that particular data
set. We then counted how often classifiers agreed in terms of over or under perfor-
mance with the AIRS algorithms. We have excluded the majority vote and decision
stump classifiers from the calculation of the average given that these acted as worst
case performance classifiers.

A drawback of this particular approach is that we lose how much better or
worse a classifier was than average, in relative terms. So in our third approach we
calculated the number of standard deviations a classifier under or over performed.
To calculate similarity we then computed the correlations between these series of
standard deviations.

5.6.2 Results

The correlation between the AIRS-1 accuracy series and the other algorithms can be
seen in table 5.2. As mentioned in section 5.3.5 the AIRS algorithm can be seen as a
codebook learning procedure that automatically determines the optimal number of
codes. Classification is done by simple nearest neighbor search on the codebook. As
expected the nearest neighbor classifiers indeed have a high correlation, along with
the AIRS-7 algorithm, and the 1-NN algorithm indeed behaves more similar than
the 7-NN algorithm. A somewhat unexpected result is the high score for MLP. The
AIRS-7 results (table 5.3) show a consistent yet slightly more mixed picture with the
1-NN and AIRS-1 algorithms scoring lower and MLP ranking as the first algorithm.
This could have been due to the lower variance of AIRS-7 (bagging scores high,
AIRS-1 scores higher than 1-NN).

The results of our second method can be found in tables 5.4, 5.5 and 5.6. Note
that in this method we only look at whether a method scores better or worse then
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1-NN 7-NN J48 Decision Naive Conj.
Table Bayes Rules

sonar TRUE TRUE FALSE FALSE FALSE FALSE
breast cancer FALSE TRUE FALSE TRUE TRUE FALSE
waveform FALSE TRUE FALSE FALSE TRUE FALSE
iris TRUE TRUE TRUE FALSE TRUE FALSE
ionosphere FALSE FALSE TRUE TRUE FALSE FALSE
diabetes FALSE TRUE TRUE TRUE TRUE FALSE
German credit FALSE TRUE FALSE FALSE TRUE FALSE
TICTRAIN5050 FALSE FALSE TRUE TRUE TRUE TRUE
TICTRAIN5050s FALSE TRUE TRUE TRUE TRUE TRUE
Times
> average 2 7 5 5 7 2

Bagging Logistic MLP AIRS-1 AIRS-7

sonar TRUE FALSE TRUE TRUE TRUE
breast cancer TRUE TRUE FALSE TRUE TRUE
waveform TRUE TRUE TRUE FALSE TRUE
iris TRUE TRUE TRUE TRUE TRUE
ionosphere TRUE TRUE TRUE FALSE TRUE
diabetes TRUE TRUE TRUE FALSE TRUE
German credit TRUE TRUE FALSE FALSE FALSE
TICTRAIN5050 FALSE TRUE FALSE FALSE FALSE
TICTRAIN5050s TRUE TRUE TRUE FALSE FALSE
Times
> average 8 8 6 3 6

Table 5.4: Relative performance of each classifier by data set (better than average for all
classifiers; two tables above)

Agreement
AIRS-1

1-NN 8
AIRS-7 6
7-NN 5
Conjunctive Rules 4
Bagging 4
MLP 4
J48 3
Decision Table 3
Naive Bayes 3
Logistic 2

Table 5.5: Frequency of agreement (under
or over performance compared to average)
between AIRS-1 and other classifiers

Agreement
AIRS-7

Bagging 7
MLP 7
7-NN 6
AIRS-1 6
1-NN 5
Logistic 5
J48 4
Decision Table 4
Naive Bayes 4
Conjunctive Rules 0

Table 5.6: Frequency of agreement (under
or over performance compared to average)
between AIRS-7 and other classifiers
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average, and we count how often classifiers agree. For AIRS-1 we do see the expected
behavior with respect to the AIRS-7 and the nearest neighbor algorithms, MLP now
scores lower, perhaps because the magnitude of error is now lost. For AIRS-7 we
see a similar pattern, however nearest neighbor and AIRS are even less similar than
bagging and MLP.

The results for the third method can be found in tables 5.7 (number of standard
deviations difference from average accuracy) and 5.8 (respective correlations). For
this method the most consistent pattern as per the expectations emerge with high
scores for AIRS, nearest neighbor and MLP. This method also seems to gives the
widest range in similarity scores which makes it easier to discriminate across classi-
fiers (obviously assuming the score itself is valid).

In table 5.10 we provide an overview of the results for the various methods.
Overall it can be concluded that classifiers with theoretical similarities (AIRS-k, k-
NN) indeed also behave similar. In addition the MLP algorithm behaves similar, an
interesting result that was unexpected.

5.7 Conclusion

In this chapter we have presented an approach to benchmarking and profiling a
novel algorithm, in this case the AIRS artificial immune system algorithm. We are
interested in artificial immune systems because it is one of the newest directions in
biologically inspired machine learning, and as such subject to a keen interest from
the community but also at the risk of being overhyped. We focused on AIRS because
it can be used for classification, which is one of the most common data mining tasks.

This was the first basic benchmarking evaluation of AIRS that compared AIRS
across a wide variety of data sets and algorithms, using a completely consistent
experimental set up rather than referring to benchmark results from literature. In
contrast to earlier claims, we find no evidence that AIRS consistently outperforms
other algorithms. However, AIRS provides stable, around average results so it can
safely be added to the data miners toolbox.

In addition we have presented a methodology for further profiling of a novel
algorithm. We have performed some explorative learning curve experiments that
showed a more or less standard curve for AIRS, steeper than MLP but flatter than
nearest neighbor. We have explored a variety of methods for computing algorithm
similarity that confirmed it behaved indeed similar to nearest neighbor based meth-
ods, but also similar to MLP.

Whilst sometimes even proper basic benchmarking is lacking for novel algo-
rithms, as was also the case with AIRS, we propose that more attention is being paid
to the area of algorithm profiling. Each novel method should in principle be subjected
to both basic benchmarking as well as model profiling. Given its importance and the
fact that that there are not a lot of generally accepted standard methods for algorithm
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Majority 1-NN 7-NN J48 Decision Naive Decision
Vote Table Bayes Stump

sonar -3.45 1.53 0.66 -0.78 -0.28 -1.28 -0.5
breast cancer -21.86 -0.08 0.87 -0.6 0.03 0.44 -2.17
waveform -5.57 -0.43 0.41 -0.24 -0.41 0.39 -2.61
iris -6.77 0.28 0.43 0.35 -0.03 0.35 -2.98
ionosphere -6.92 -0.36 -0.7 1.16 0.57 -1.45 -1.45
diabetes -2.59 -0.97 0.49 0.2 0.03 0.99 -0.43
German credit -0.97 -0.11 0.76 -0.75 -0.02 1.36 -0.97
TICTRAIN5050 -2.98 -1.4 -0.08 1.73 0.15 0.37 1.84
TICTRAIN5050s -3.18 -1.05 0.1 0.88 0.87 0.64 0.76

Conj, Bagging Logistic MLP AIRS-1 AIRS-7
Rules

sonar -1.57 0.15 -0.5 0.89 1.17 0.02
breast cancer -2.7 0.13 0.87 -0.08 0.55 0.58
waveform -2.54 0.62 1.24 0.85 -0.23 0.34
iris -2.98 0.12 0.35 0.5 0.35 0.28
ionosphere -1.79 0.99 0.4 1.07 -0.19 0.31
diabetes -1.43 0.45 1.28 0.7 -1.85 0.11
German credit -0.97 0.93 1.27 -0.28 -1.83 -0.36
TICTRAIN5050 1.54 -0.37 0.33 -0.18 -1.18 -0.92
TICTRAIN5050s 0.7 0.73 0.34 0.1 -2.07 -1.23

Table 5.7: Number of standard deviations difference between classifier performance and
average, by data set (two tables above)

Classifier Correlation
with AIRS-1

1-NN 0.77
AIRS-7 0.66
MLP 0.43
7-NN 0.16
Bagging -0.34
J48 -0.35
Decision Table -0.48
Logistic -0.50
Majority Vote -0.52
Decision Stump -0.54
Conjunctive Rules -0.63
Naive Bayes -0.66

Table 5.8: Correlation for relative under
or over performance between AIRS-1 and
other classifiers

Classifier Correlation
with AIRS-7

AIRS-1 0.66
MLP 0.52
1-NN 0.48
7-NN 0.23
Logistic 0.22
Bagging 0.07
Naive Bayes -0.28
J48 -0.49
Decision Table -0.55
Majority Vote -0.56
DecisionStump -0.85
Conjunctive Rules -0.93

Table 5.9: Correlation for relative under
or over performance between AIRS-7 and
other classifiers
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Similar to AIRS-1 Similar to AIRS-7

Method 1 1-NN, 7-NN, MLP, AIRS-7 MLP, 7-NN, Bagging, Logistic
Method 2 1-NN, AIRS-7, 7-NN MLP, Bagging, 7-NN, AIRS-1
Method 3 1-NN, AIRS-7, MLP, 7-NN AIRS-1, MLP, 1-NN, 7-NN
Summary 1-NN, AIRS-7, 7-NN MLP, 7-NN, AIRS-1

Table 5.10: Algorithm similarity for the computation methods

profiling yet, we think that the development of such methods can be an interesting
independent area for research. The approaches offered in this chapter are just an
exemplary starting point, given that the main purpose was to use a case example to
demonstrate that model profiling can be an interesting, relevant and attractive area
for data mining research.



Chapter 6

Summary and Conclusion

In this final chapter we provide a summary of conclusions, lessons learned and a
vision for future research, given the overall theme of data mining in context. Below
we will outline and relate some of the main findings of the chapters, see the chapters
itself for more background and references.

The main purpose of the cases chapter (chapter 2) is to demonstrate that successful
data mining applications involve a lot more than just applying or improving a core
modeling algorithm. The first two cases were originally written for audiences with
no data mining or computer science background, marketeers and medical profes-
sionals respectively. In both fields there is a clear push towards a more data driven,
quantitative or even scientific approach, as illustrated by trends such as evidence
based medicine, personalized treatments, database marketing, one to one marketing
and real time decisioning. These cases provide an inside out, end to end view of
data mining and the data mining process, taking the application context rather than
the technology as a starting point. One of the findings of both studies was that there
were often no major differences between prediction algorithms on a problem, nor
were there clear winners across the overall range of problems.

The third case is an even stronger example of this. This case is a more research
oriented project dealing with the recognition of pathogen yeast cells in images. For
this case it is still an open question whether the underlying problem is truly easy to
solve (classifying yeasts) given that the data mining problem is trivial (classifying
pictures resulting from the experimental set up chosen). This is a good practical
example that the particular translation of the research or business problem into a
data mining problem has a major impact on the results, which is a topic that should
be covered by the first step in the data mining process, defining the objectives and
experimental approach.

The medical case on predicting head and neck cancer survival rate points out
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another specific issue. Whilst building a model on a single data set is relatively
straightforward and may lead to models with comparable accuracy, a variety of
other data sets from other sources is also available. These data sets may differ in
terms of attribute coverage, population definition and experimental set up. How can
these data sets be combined into a single source of data to mine in? This topic is
addressed in chapter 3 and concerns the second step in the data mining process, the
data step.

The fact that different classifiers produce similar results on the same data set is
also making the point for going beyond mere performance evaluation. Evaluation
methods should be used and developed that provide more of a diagnosis and char-
acterization approach to evaluation rather than just measuring quality, a topic that is
addressed in chapter 4 and 5. This fits the evaluation step in the data mining process,
traditionally the fourth step straight after the modeling step, but as per the above
the scope of this evaluation should not be constrained to the modeling only, a topic
that chapter 4 is specifically dealing with. In the second case we did carry out a
basic bias variance evaluation, but this was limited to comparing different modeling
algorithms only. Just as in chapter 4 variance was a more important component than
bias to explain differences across classifiers, and the experiments provided us with
data to take a somewhat speculative attempt at estimating the intrinsic error, the
error rate for the (theoretical) optimal classifier.

The final case introduces a real time automatic scene classifier for content-based
video retrieval. In our envisioned approach end users like television archive doc-
umentalists, not image processing experts, build classifiers interactively, by simply
indicating positive examples of a scene. To produce classifiers that are sufficiently
reliable we have developed a procedure for generating problem specific data prepro-
cessors. This approach has been successfully applied to various domains of video
content analysis, such as content based video retrieval in television archives, auto-
mated sewer inspection, and porn filtering. In our opinion, in most circumstances the
ultimate goal for data mining is to let end users create classifiers, primarily because
it will be more scalable; a lot more classifiers can be created in much shorter time by
a lot more users. In addition the resulting models can be of higher quality compared
to purely data driven approaches, no matter how advanced the algorithms would be,
because experts can inject domain knowledge by identifying relevant preprocessors.
In terms of the data mining process, this case is more concerned with changing the
agent executing the end to end process from data miner to domain expert.

In summary, given the apparent limited impact of modeling methods given a
prepared data set, these cases demonstrate the importance of developing generally
applicable methodology and tools to improve all steps in the process beyond model-
ing, starting with objective formulation, data collection and preparation to evaluation
and deployment, which also opens up opportunities for end to end process automa-
tion.
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In the data fusion chapter (chapter 3) we start by discussing how the information
explosion provides not just opportunities but also barriers to the application of data
mining, and position data fusion as a potential solution. The initial set of publications
this chapter is based on were the first papers introducing data fusion to the data
mining community. It was also the first reported case within which data fusion is
used for a standard task in data preparation for data mining, enriching data sets so
to build improved predictive models. This is illustrated with a case from database
marketing. So far research literature on data fusion only covered fusion of surveys,
not fusion of a customer database with a survey.

Despite its difficulties and pitfalls, the application of data fusion can increase the
value of data mining, because there is more integrated data to mine. Data mining
algorithms can also be used to perform fusions, but publications on methods other
than the standard statistical matching approach are rare. Therefore we think that data
fusion is an interesting topic for knowledge discovery and data mining research. This
can also include research on automating the fusion process itself, including quality
evaluation, and developing mining algorithms that automatically and appropriately
deal with uncertainty in the data that is the result of the fusion.

In chapter 4 we have presented an analysis of the results of a data mining compe-
tition, which can be seen as a large scale, real world experiment to study data mining
in the wild, rather than under laboratory conditions. The data used is noisy, partici-
pants worked under time and competitive pressure and rewards were offered for the
best solutions. Participants were free to define their own data mining approach, in-
cluding the translation of the business goal into mining objectives, data preparation,
the choice of models to be used and the extent of experimentation and evaluation.
This has resulted in a large spread in the performance for the prediction task in the
competition, in contrast to the limited differences that were observed in chapter 2
when comparing classifiers on a given data set with no further data preparation. This
provides further support for our claim that the other steps in the process (objective
and approach, data preparation, evaluation) are key in explaining real world data
mining results.

To analyze the causes for the spread in results in more detail we used bias variance
analysis. Bias variance is not just a simple quality measurement method, it provides
a diagnosis of what the most important sources of error are, bias or variance, and
the strategies to minimize bias typically have an opposite effect on variance. Bias
variance analysis is usually only applied for characterizing modeling algorithms, but
in this chapter we have used it as a framework to evaluate all steps in the data mining
process.

A lot of data mining research is concerned with developing algorithms that can
model increasingly complex non linear relationships, and separate classes with intri-
cate decision boundaries, in other words methods that reduce model representation
bias. However, as some of the participants discovered, simpler methods work better
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than complex ones and results may only get worse through extensive experimenta-
tion. It turns out that for this problem, as for many real world problems, variance
is a more important cause for differences in performance. Even more important
than the choice of classifier however is the preparation done in the data step. The
distribution of predictive power across predictors is very skewed for this problem
and many predictors are intercorrelated, so carrying out proper attribute selection is
a more important factor than the choice of classifier. Also extensive experimentation
and evaluation while keeping only the ’best’ results can be dangerous. All the steps
in the data mining process run the risk of increasing the variance error, all the way to
the methods of model evaluation. In general, if it can’t be ruled out that a problem
is high variance, first simplify the data through data preparation and build a small
number of simple (i.e. low variance, high bias) models first, as these are most robust.

A diagnosis method such as bias variance has proven to be very useful for in
depth meta analysis of real world learning. In terms of future research the bias vari-
ance method itself can be improved more, as there is no single universally accepted
measure yet for zero one loss, and for other selected loss functions and evaluation
metrics definitions are lacking. Procedures could be developed at any point in the
process that explicitly minimize either bias or variance rather than overall error. Also
alternative diagnosis methods could be developed in addition to bias variance. In
summary, model diagnosis is a very relevant research area, where there is still a lot
to be gained.

Chapter 5 discusses an approach to benchmarking and profiling a novel algo-
rithm, based on the example of the AIRS algorithm. AIRS is a so called artificial
immune system or immunocomputing algorithm, the class of mining algorithms in-
spired by the immune system. The natural immune system is sometimes called the
second brain given its capabilities to remember past intrusions and learn to recognize
new ones, even if these vary from what was encountered before. AIRS is one of only
two existing immunocomputing algorithms targeting the most common data mining
task, prediction. We picked AIRS because as a new biologically inspired algorithm
it may be at the risk of being an overhyped method, whereas one of our goals was to
show there is no such thing as a free lunch.

This was the first basic benchmarking study of AIRS that compared AIRS across a
wide variety of data sets and algorithms, using a consistent experimental set up rather
than referring to benchmark results from literature. In contrast to earlier claims, and
line what we expected, we find no evidence that AIRS consistently outperforms other
algorithms. However, AIRS provides stable, near average results so it can safely be
added to the data miners toolbox.

As discussed, the value of performance benchmarking is limited, because it
doesn’t provide a diagnosis of the sources of error (chapter 2 and 4) and is often
limited to the modeling step alone (in contrast to the approach in chapter 4). An-
other issue is that, given the no free lunch theorem, there will be no methods that
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significantly outperform all other methods across all problem domains. Basic bench-
marking will very likely not prove that the novel method will beat all others, it can
merely provide smoke test results that the novel algorithm does not perform sig-
nificantly worse, as a minimal test to pass. Given this it will be more interesting to
characterize the novel algorithm, for instance to determine on what kind of subsets of
problems does a method perform better than average, and to what other algorithms
does the novel algorithm compare in terms of patterns of performance over data sets.
We introduced the methodological concept of algorithm profiling for this, to be used
in addition to basic benchmarking, to evaluate the performance of novel algorithms.

To better identify the type of problems and data that fit AIRS we carried out
experiments to compare the learning curves of methods by measuring accuracy over
increasing data set sizes. The AIRS example results in a more or less standard curve
for AIRS, steeper than multi layer perceptrons but flatter than nearest neighbor. We
also explored a variety of methods for computing empirical algorithm similarity,
based on performance patterns over data sets. The similarity measurements experi-
ments confirm that AIRS behaves similar to nearest neighbor based methods, as can
be expected from theoretical comparison.

AIRS was not the main topic of chapter 5, it was just used as an example to
make the case for more research into algorithm profiling methods. Even proper
basic benchmarking is often lacking for novel methods, but profiling is required for a
deeper understanding of how the algorithm behaves and to what problems it should
be applied. This can also include model diagnosis methods such as bias variance that
will give the data miner more insight in the source of error, and thus the strategies
to understand and improve the models (see chapter 4). Additional model profiling
methods can be developed and applied to characterize a novel modeling algorithm
in the context of a problem domain and the existing toolkit of algorithms available.
In summary, diagnosis and profiling are interesting, original and attractive areas for
further research.

This thesis has discussed a broad range of issues from quite a few angles. How-
ever, we aim to have provided a small number of consistent key messages. First and
foremost we want to emphasize the importance and relevance to study data mining
as an end to end process, rather than limit research to developing new modeling
algorithms. The steps beyond the modeling step in the process are key, and method-
ologies and tools can be developed that apply not just to a single problem, but to
a problem domain or even in general. Data fusion, model diagnosis and profiling
are examples of these kind of tools. Taking an end to end view, and providing tools
for all phases, will enable key steps forward such as end to end process automation,
linking data mining to action to improve deployment and putting data mining in the
hands of the end user, the domain expert rather than the data mining expert. These
will be key factors in further scaling up to widespread application of data mining.
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Chapter 7

Samenvatting

Het zit in de menselijke natuur om patronen te ontdekken in data. Mensen en
dieren leren van de omgeving en bouwen zo kennis en intelligentie op. Methoden
om theorie uit data af te leiden vormen de basis van empirische wetenschappen,
en sinds de sterke opkomst hiervan zijn deze methoden zelf ook onderwerp van
onderzoek. Rond het moment van de geboorte van de computer circa 65 jaar geleden
werden de eerste papers al geschreven over hoe computers zouden kunnen leren aan
de hand van data. Later zijn hiervoor nieuwe termen geı̈ntroduceerd: data mining
of knowledge discovery in databases, het ontdekken van interessante, betekenisvolle
en nuttige patronen verborgen in data.

Toepassingen voor de gewone consument, burger of werknemer, voor dagelijks
gebruik, hebben echter lang op zich laten wachten. Zo’n tien jaar geleden waren data
mining toepassingen met name nog te vinden op universiteiten en onderzoeksinsti-
tuten, maar tegenwoordig wordt het op veel bredere schaal in de praktijk ingezet.
Voorbeelden zijn internet zoekmachines, fraude controle bij credit card betalingen,
medische diagnose en advies systemen voor doktoren en het slim en gepersonaliseerd
sturen van klant interacties.

De titel van deze dissertatie, ’On Data Mining in Context: Cases, Evaluation and
Fusion’, heeft een dubbele betekenis. Het onderzoek wordt gemotiveerd en gedreven
door de context van praktijktoepassingen, met name op bedrijfs- en biomedisch
gebied, met als doel een bijdrage te leveren aan het nog grootschaliger en beter
toepasbaar maken van data mining in de praktijk. Dit wil niet zeggen dat het
onderzoek beperkt is tot cases, we streven er naar om interessante gebieden voor
onderzoek te identificeren en illustratieve methoden en technieken te ontwikkelen
die toepasbaar zijn op meerdere problemen of probleemdomeinen.

Het woord context refereert ook aan de stappen in een data mining proces.
Standaard wordt dit proces ingedeeld in het vaststellen van een doelstelling en het
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doorvertalen naar een data mining aanpak, het verzamelen en voorbewerken van
benodigde data, het modelleren zelf waarbij met verschillende methoden patronen
en verbanden worden ontdekt, de evaluatie van de kwaliteit van deze modellen en
als laatste de toepassing ervan op nieuwe gevallen. Veel data mining research con-
centreert zich op de kern modelleer stap, dit onderzoek richt zich echter op een aantal
specifieke problemen in de context van stappen voor en na de model stap (data en
evaluatie) en het data mining proces als geheel, gegeven dat deze fasen met name
voor praktijktoepassingen van groot belang kunnen zijn. Dit is een ambitieuze en
brede doelstelling, in de aanpak kiezen we dan ook voor een variëteit van specifieke
deelonderzoeken die passen binnen dit overkoepelende thema.

Als achtergrond worden er in hoofdstuk 2 een aantal praktijk cases besproken
op het gebied van marketing, medische adviessystemen en beeldverwerking voor
biologisch onderzoek, inhoud gebaseerd zoeken in televisiearchieven en internet
content filtering. Een samenvatting van de cases kan gevonden worden in hoofdstuk
1 en aan het eind van hoofdstuk 2, maar een van de belangrijke lessen is dat de impact
van de modelleerstap alleen op het data mining eindresultaat beperkt is; data mining
in de praktijk behelst in ieder geval meer dan het toepassen van een algoritme op een
data set. Dit levert verdere motivatie op voor de relevantie van het onderzoeksthema.

Hoofdstuk 3 gaat over een probleem uit de data stap in het data mining proces, het
zogenaamde data fusie probleem. De meeste data mining algoritmen veronderstellen
dat een enkele data set gebruikt wordt, maar in de praktijk kan informatie verspreid
zijn over meerdere bronnen. Laten we het voorbeeld nemen van een klant. Een
typisch probleem is dat informatie over de klant vaak te vinden is in meerdere
tabellen in een onderliggende relationele database, terwijl de meeste standaard data
mining algoritmen een plat record per klant verwachten, een rij per klant in een
tabel met de meest belangrijke velden als kolommen. Informatie over de klant
wordt dan verzameld middels database operaties zoals joins op unieke identifiers en
aggegraties. Als matchende identifiers missen zijn er ook algoritmen om een meest
waarschijnlijke match te maken.

Een ander probleem is hoe informatie over verschillende entiteiten met elkaar
gecombineerd kan worden, in dit voorbeeld hoe voor een gegeven klant informatie
van andere klanten gebruikt kan worden om het klantrecord te verrijken. Dit wordt
ook wel data fusie genoemd en wordt hoofdzakelijk ingezet voor marketing, media
en beleidseconomische onderzoeken, waarbij voor subgroepen van de respondenten
verschillende vragen worden gesteld, en data fusie ingezet wordt voor het invullen
van de ontbrekende vragen. Het gefuseerde bestand wordt dan gebruikt voor verdere
data analyse, vaak vrij standaard statistisch van aard zoals kruistabellen e.d.

Dit hoofdstuk is gebaseerd op een aantal papers die de eerste publicaties zijn over
data fusie voor een mainstream data mining publiek. Data fusie is naar onze mening
een interessant nieuw onderwerp voor data miners omdat het barrières wegneemt
voor de toepassing van data mining, en data mining voorspelalgoritmen ook ingezet
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kunnen worden voor het uitvoeren van de fusie zelf. Om de relevantie voor data
miners te verhogen, hebben we onderzocht of het mogelijk is dat data fusie tot betere
resultaten kan leiden voor een klassieke data mining taak, namelijk voorspellen,
in plaats van standaard data analyse. Een bestand is verrijkt middels fusie, en de
modellen gebouwd op het verrijkte bestand zijn inderdaad beter dan de modellen
gebouwd op het niet verrijkte bestand. Betere prestatie is echter niet gegarandeerd,
en data fusie is een complex proces met beperkingen en valkuilen. We beschrijven
een aantal van deze aspecten, en geven een overzicht van een data fusie proces
model met stappen, vaak gebruikte methoden en technieken. Het ultieme doel van
het proces model is om te komen tot een gestandaardiseerde, fabrieksmatige en
geoptimaliseerde toepassing van data fusie, in een zogenaamde fusie fabriek.

Ten behoeve van het gebruikte marketing voorbeeld wordt een klantendatabase
verrijkt met onderzoeksdata, door voor elke klant de verwachte antwoorden op
het marktonderzoek te af te leiden, gegeven de onderzoeksrespondenten die het
meest lijken op een gegeven klant. Vervolgens wordt onderzocht of we beter de
kans op bezit van een credit card kunnen voorspellen met behulp van verrijkte data.
Vanuit marketing perspectief is dit een van de eerste onderzoeken waarbij fusie niet
wordt ingezet om marktonderzoeken te fuseren, maar om een klantendatabase te
verrijken met onderzoeksdata, en zo een brug te slaan tussen marktonderzoek en
direct marketing.

Zoals gezegd richten we ons op de stappen rondom de kernmodelleer stappen in
het data mining proces, dus hoofdstuk 4 gaat met name over evaluatie, niet alleen
van de modelleer stap, maar van het proces als geheel. Bij een aantal van de cases
in hoofdstuk 2 bleek dat het gebruik van verschillende modelleermethoden, ceteris
paribus, geen grote invloed heeft op de kwaliteit van het eindresultaat. Echter, in
praktijktoepassingen kunnen de resultaten nogal verschillen tussen verscheidene
start tot finish aanpakken van hetzelfde probleem. Experimenten onder gecon-
troleerde ‘laboratoriumomstandigheden’ kunnen tekort schieten bij het bestuderen
van dit fenomeen. Om dit te onderzoeken is er een veldexperiment uitgevoerd in
de vorm van een data mining wedstrijd, waarbij de deelnemers zo goed mogelijk
moeten proberen te voorspellen en beschrijven wie er mogelijk interesse heeft in een
caravanverzekering.

De omstandigheden lijken zoveel mogelijk op een data mining project in de
praktijk. Om goede resultaten te verkrijgen en triviale modellen te vermijden is het
belangrijk de data mining aanpak goed te laten aansluiten bij de business doelstelling
(scoring in plaats van classificatie, weinig positieve gevallen). De gebruikte data set
bevat een zeer klein aantal sterke voorspellers en een groot aantal variabelen met
weinig of geen verband met het te voorspellen gedrag. Om realistisch (fout) gedrag
aan het licht te kunnen laten komen worden er geen eisen gesteld aan het volgen van
een nette, wetenschappelijke methodologie, er is een substantiële prijs uitgeloofd
voor de winnaars en resultaten moeten verkregen worden onder aanzienlijke tijds-
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druk.

De resultaten van de inzenders variëren inderdaad aanzienlijk. Een aantal
inzendingen scoren niet veel beter dan random selectie, de beste inzenders iden-
tificeren bijna drie keer zoveel polisbezitters, iets meer dan de helft van de maximaal
haalbare score. De meeste inzenders hebben ook een rapport ingeleverd over de
gevolgde aanpak. Om de variëteit in resultaten in perspectief te plaatsen en dieper
in te kunnen gaan op eventuele oorzaken van verschillen, is gekozen voor het raam-
werk van bias variantie analyse.

De bias component van de fout hangt samen met de beperkingen van som-
mige methoden om bepaalde verbanden te kunnen representeren of vinden; een
lineair model kan bijvoorbeeld niet goed niet lineaire verbanden uitdrukken. De
variantiefout meet in welke mate methoden verschillende uitkomsten geven op
willekeurige steekproeven, een probleem dat typisch veroorzaakt wordt door het
feit dat er slecht beperkte data beschikbaar is.

Variantie blijkt een belangrijke component van de fout te zijn. Sommige deel-
nemers gebruiken strategieën in data preparatie, modellering en evaluatie om de
variantie fout te minimaliseren, zoals variabele selectie, het gebruiken van simpele
lage variantie methoden zoals naive Bayes en evaluatiemethoden zoals kruisvali-
datie. Het toevoegen van variabelen in combinatie met gebrekkige variabele selectie,
modelleren met complexe lage bias, hoge variantie methoden en uitvoerige expe-
rimentatie en finetuning met behoud van de ‘beste’ resultaten kunnen de variantie
fout juist verhogen.

Het volgende hoofdstuk, hoofdstuk 5, betreft ook de evaluatiestap in het data
mining proces. In dit hoofdstuk wordt een lans gebroken voor het ontwikkelen van
methoden voor het evalueren en profileren van nieuwe data mining algoritmen. De
introductie van nieuwe voorspelalgoritmen gaat soms gepaard met sterke claims over
de voorspellende kracht. Het zogenaamde No Free Lunch theorema daarentegen stelt
dat het niet mogelijk is dat een algoritme alle andere algoritmen verslaat voor alle
soorten problemen. Een algoritme kan natuurlijk wel consistent slechter zijn, of beter
op een bepaald subtype van problemen.

Een basis benchmark evaluatie bestaat vaak uit het vergelijken een nieuw algo-
ritme met een aantal andere algoritmen over een random selectie van data sets. Dit
is een nuttige, noodzakelijke test, maar uit het No Free Lunch theorema volgt dat
dit hoogstens bewijs kan opleveren dat een nieuwe methode niet consistent slechter
presteert, kortom dit is een minimale test. Om echt geaccepteerd te worden als
een nieuw standaard gereedschap voor data mining toepassingen stellen we dat het
belangrijk is om het gedrag van een methode te karakteriseren middels empirische
testen, en dit te toetsen aan theoretische verwachtingen.

Als case voorbeeld wordt AIRS onderzocht, een zogenaamd Artificial Immune
System of Immunocomputing algoritme. Dit algoritme is grofweg gebaseerd op
een aantal principes die verklaren hoe het natuurlijk immuun systeem van hogere
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organismen leert nieuwe indringers te herkennen, en ook een geheugen aanlegt van
eerdere aanvallen. Om deze reden wordt het immuunsysteem ook wel het ‘tweede
brein’ genoemd. We hebben voor deze klasse van methoden gekozen omdat bij
nieuwe biologisch geı̈nspireerde algoritmen de nadruk soms meer op de biologische
oorsprong ligt, dan op de kwaliteit van de modellen. Voor biologisch modelleren
is dit natuurlijk geen probleem, wel voor praktijktoepassingen waarbij uiteindelijk
alleen de prestatie telt in vergelijking met bestaande algoritmen.

In de papers die de in de eerste paar jaar over AIRS verschenen zijn, worden
sterke claims gemaakt over de superieure prestatie van AIRS, een degelijk uitgevoer-
de benchmark ontbreekt echter. Als eerste stap is AIRS dan ook vergeleken met een
reeks andere algoritmen over een aantal data sets. De uitkomst van deze experi-
menten is dat AIRS niet consistent beter is dan andere algoritmen zoals geclaimd,
maar ook niet significant slechter. Dit is geen negatief resultaat, juist positief. Het
geeft aan dat AIRS in principe robuust genoeg is om opgenomen te worden in het
standaardassortiment van voorspellingsalgoritmen. Hierbij kan wel de vraag gesteld
worden of de complexiteit van het algoritme in vergelijking met eenvoudigere nabu-
uralgoritmen gerechtvaardigd wordt door de resultaten.

Op de vraag wanneer AIRS een goed kandidaat algoritme is geeft de benchmark
test geen antwoord. Interessanter wordt het dus als er manieren gebruikt worden om
AIRS te karakteriseren en te profileren, en middels eenvoudige voorbeelden wordt
aangetoond dat het niet moeilijk is hier specifieke methoden voor in te zetten en te
ontwikkelen.

Een basis vraag is voor wat voor soort problemen AIRS een slechtere c.q. betere
performance levert. Als voorbeeld wordt er een zogenaamde learning curve analyse
uitgevoerd, waarin de hoeveelheid data die ter beschikking staat van een algoritme
in stappen toeneemt, voor een gegeven voorspellingsprobleem. AIRS blijkt een vrij
standaard curve te volgen, ietwat vlakker dan de gerelateerde zogenaamde nabuu-
ralgoritmen. Dit bevestigt verwachtingen uit de theoretische vergelijking, gegeven
dat AIRS abstraheert naar een kleiner aantal nabuur prototypen in plaats van alle
training items als naburen te gebruiken.

De tweede vraag die beantwoord wordt, is op welke algoritmen AIRS het meeste
en het minste lijkt in termen van het patroon van slechtere c.q. betere performance
over verschillende data sets. Drie vergelijkingsmethoden worden gepresenteerd die
allen een consistent beeld laten zien. Het gedrag van AIRS lijkt zoals theoretisch te
verwachten is op het gedrag van nabuurmethoden.

Zoals aangegeven, AIRS is in dit geval slechts gebruikt als voorbeeld. De be-
doeling is om modelprofilering als interessant en vrijwel braakliggend terrein van
onderzoek onder de aandacht te brengen.

Concluderend, in deze dissertatie zijn een substantieel aantal specifieke deelon-
derwerpen onderzocht, maar al deze onderwerpen sluiten aan bij een klein aantal
consistente kernboodschappen. Ten eerste wordt het belang benadrukt van het
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onderzoeken van het start tot finish data mining proces, in plaats van enkel te con-
centreren op het ontwikkelen van nieuwe modelleeralgoritmen. De andere stappen
in het proces zijn ook belangrijk, en het is mogelijk onderzoeksvragen te identifi-
ceren en methoden en technieken te ontwikkelen die een enkele praktijktoepassing
overstijgen. Data fusie, modeldiagnose en -profilering zijn voorbeelden van zulke
methoden. Een start tot finish visie, en het ontwikkelen van methoden voor alle fasen
in het data mining proces zal het mogelijk maken belangrijke stappen voorwaarts te
boeken, zoals data mining procesautomatisering, het aanbieden van data mining aan
eindgebruikers in plaats van data mining experts en het inbedden van data mining
in processen en systemen voor het nemen van automatische beslissingen. Dit zullen
belangrijke factoren zijn in het verder laten opschalen van de praktijktoepassingen
van data mining.
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