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1. STRESS, ALLOSTASIS AND ALLOSTATIC LOAD

The word ‘stress’ is commonly used to describe the straining force which the living organ-

ism experiences when it is required to respond to a certain challenge of homeostasis 

(1). These challenges are called ‘stressors’ and can be the result of threatening situations, 

ranging from being chased by a predator (2) to defending a scientific thesis. 

The behavioural and physiological adaptations that the organism displays in response 

to a stressor are often referred to as ‘allostasis’, ‘the allostatic response’ or ‘the stress re-

sponse’ (3). Allostasis literally means ‘maintaining homeostasis through adaptive changes’ 

and helps the organism to cope with the stressor by enhancing energy mobilization, 

immunity, attention and information storage and by repressing temporarily unnecessary 

processes such as reproductive physiology and digestion (4). However, if the stressor 

is not appropriately dealt with and, as a consequence, the stress response is not shut 

off properly, these initially beneficial effects of allostasis can become damaging for the 

organism, thereby turning into ‘allostatic load’ (5). Allostatic load thus refers to the nega-

tive effects of a malfunctioning stress response. Since allostasis is able to affect many 

different physiological processes, allostatic load can be associated with a wide variety 

of pathological conditions, among which cardiovascular disease, metabolic disease and 

affective disorders are prominent (6,7). 

Two major players in the stress response are 1) the hippocampus, a brain structure 

involved in learning and memory formation, and 2) glucocorticoid hormones secreted by 

the adrenal glands in response to a stressor. The interaction between the glucocorticoid 

hormones and the hippocampus is involved in the fine tuning of the stress response. 

The studies described in the current thesis are focused on the molecular mechanism via 

which glucocorticoids acutely affect the function of neurons in the hippocampus. 

2. MEDIATORS OF THE STRESS RESPONSE 

Sympatho-adrenal-medullary system and the hypothalamic-pituitary-adrenal axis

The perception of a stressor is the key trigger that initiates the stress response. There 

are different kinds of stressors that can activate different brain circuits (8). In general, 

stressors can be divided into physical and psychological stressors. Physical stressors, 

such as infections and pain, activate aminergic cells in the brainstem (9,10). Psychologi-

cal stressors are processed by limbic brain areas, including the amygdala, hippocampus 

and prefrontal cortex (8). These limbic brain areas mediate the cognitive and emotional 

processing of psychological stressors, thereby appraising the challenge and assessing 

its stressfulness (11,12). Both the brainstem and the limbic brain areas communicate to 

a deep brain structure called the hypothalamus which integrates the stressor-specific 
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information. Subsequently, the hypothalamus organizes the behavioural response and 

communicates to the peripheral organs by 1) activating the sympathetic nervous system 

and 2) activating a neuroendocrine signaling cascade that is called the hypothalamic-

pituitary-adrenal (HPA) axis (Figure 1) (13,14). 

Activation of the sympathetic nervous system, together with the behavioural and 

cognitive responses, constitutes the so-called first wave of the stress response (15). The 

sympathetic nervous system stimulates the release of adrenalin from the adrenal medulla 

into the bloodstream and the physiological effects of the sympathetic nervous system 

and adrenalin develop almost immediately, increasing heart rate and cardiac output, 

Figure 1 

Limbic brain regions 

Hypothalamus 
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Glucocorticoids 

Pituitary 
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brain
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Figure 1. Simplified scheme of the sympatho-adrenal-medullary system and the hypothalamic-pituitary-adrenal (HPA) axis as described in the 

text. The rapid responding sympatho-adrenal-medullary system is displayed on the left whereas the slower responding HPA axis is displayed 

on the right. In the latter system, the hypothalamus activates the pituitary via secretion of corticotropin releasing hormone (CRH) which in turn 

secretes adrenocorticotrophic hormone (ACTH) into the bloodstream. ACTH stimulates the adrenal cortex to release glucocorticoids into the 

bloodstream.
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1diverting blood to the skeletal muscles, elevating blood glucose levels and suppressing 

the reproductive and digestive systems. 

A second, delayed, wave of the stress response is responsible for modulating and fine 

tuning the physiological changes that were initiated in the first wave (15). Glucocorticoid 

hormones are the key players during this second wave and are released by the adrenal 

cortex in response to the activation of the HPA-axis. They constitute a class of structurally re-

lated hormones such as cortisol and corticosterone, which are the main naturally occurring 

glucocorticoids in humans and rodents respectively. Under basal, non-stressed, conditions 

HPA-axis activity is limited, resulting in the release of low amounts of glucocorticoid hor-

mones in a circadian manner. In response to a stressor, this circadian control is overridden 

and glucocorticoid concentrations can rise in the course of minutes, leading to modulatory 

effects on the target tissues within the hour. Glucocorticoids also target the HPA-axis itself, 

exerting a negative feedback loop via the pituitary and hypothalamus. Additionally, the in-

teraction between glucocorticoids and limbic brain structures regulates the activity of the 

HPA-axis as well, but indirectly by modulating the processing of stressful information (13). 

Based on the modulation of the initial stress response the effects of glucocorticoids on 

their target tissues can be grouped into 1) permissive effects, in which basal concentra-

tions of glucocorticoids affect the way the initial stress response is executed, 2) stimula-

tory effects, in which stressor-induced increased glucocorticoid concentrations enhance 

the effects of the initial stress response, 3) inhibitory effects, in which stressor-induced 

increased glucocorticoid concentrations inhibit the initial stress response and 4) prepara-

tive effects in which the response to a following stressor is modulated (15). 

Receptors for glucocorticoids

In general, the effects of glucocorticoids on target tissues are mediated by the glucocor-

ticoid receptor (GR) which is expressed throughout the body (16). However, in the brain 

as well as in certain other peripheral tissues, such as the kidney, an additional receptor, 

the mineralocorticoid receptor (MR) is also involved in relaying the glucocorticoid signal 

(13). The distribution throughout the brain differs for MR and GR and particular in limbic 

brain areas, such as the hippocampus, the MR is highly expressed (17). Compared to 

the GR this receptor has a 10-fold higher affinity for natural glucocorticoids, resulting in 

predominant MR-occupation under basal glucocorticoid concentrations and additional 

GR-occupation when glucocorticoid concentrations increase. 

The two receptors play a role in the regulation of HPA-axis activity; the MR maintains 

basal activity of the axis under low concentrations of glucocorticoids whereas the GR 

facilitates the negative feedback under increasing glucocorticoid concentrations after 

the HPA axis has been activated by a stressor. 

Both the MR and GR belong to the family of ligand-inducible transcription factors and 

are able to influence gene transcription (18). Many of the effects that these receptors 
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exert therefore seem to be the result of changes in gene expression and subsequent 

changes in protein levels of the target tissues and cells. The specifi c mode of action as 

well as the sets of genes these receptors target will be discussed in the section concern-

ing the molecular mechanisms.

The hippocampus

The hippocampus, together with other limbic brain areas, plays an important role during 

the stress response since it is involved in the animals’ reactivity to novelty (13) and medi-

ates the formation and retrieval of declarative memories (19,20).

Anatomically, the hippocampus can be divided into two major regions that are inter-

locked with each other; the dentate gyrus, which contains granule cells and the cornu 

ammonis, which contains pyramidal cells (21) (Figure 2). The cornu ammonis can be 

further subdivided into four regions that are designated as CA1, CA2, CA3 and CA4. The 

diff erent hippocampal subregions are interconnected with each other via the trisynaptic 

circuit. This circuit starts with the dentate gyrus receiving aff erent projections from the 

entorhinal cortex and projecting mossy fi bers to the CA4 and CA3 regions. These regions 

project Schaff er collaterals to the CA1 region. The CA1 region projects eff erents out of 

the hippocampal region via the alveus. Additionally, also other internal and external af-

ferents and eff erents have been reported in the hippocampus. The pyramidal and granule 

cells use glutamate as their major neurotransmitter whereas the interneurons use GABA. 

Other neurotransmitters are present in the hippocampus as well since the neuropil is 

enriched with noradrenergic, serotonergic and cholinergic axon terminals. 

alveus

Entorhinal
cortex

CA1

CA2

CA3

DG
mfSch

Figure 2. The hippocampus. The upper panel displays an autoradiogram of a whole brain section from rat. The lower panel displays a schematic 

enlargement of the right hippocampus in which the trisynaptic circuit, as described in the text, is shown. Mf; mossy fi bers, Sch; Schaff er 

collaterals
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The MR is expressed in the entire cornu ammonis (CA1-4) and dentate gyrus whereas GR 

is predominantly expressed in CA1, CA2 and dentate gyrus (22). In CA3 GR is expressed to 

a much lower extent (23) leading to a higher ratio of MR versus GR in this region. Addition-

ally, there are large differences in the general transcriptomes between the different hip-

pocampal subregions (24) and therefore the availability of coactivators and corepressors 

(25), transrepression partners and downstream pathways may be different. Due to these 

differences in MR / GR ratios and subregion-specific transcriptomes, glucocorticoids can 

display region-specific effects on hippocampal neuronal functioning (26,27,28). 

3. GLUCOCORTICOIDS AND THE HIPPOCAMPUS

Glucocorticoids are able to modulate hippocampal neuronal properties, thereby influ-

encing hippocampal behavioural and neuroendocrine output (13). The effects glucocor-

ticoids exert on hippocampal neuronal function can be acute or chronic, depending on 

the exposure time. Acute exposure to glucocorticoids affects hippocampal neuroexcit-

ability, synaptic plasticity and metabolism, whereas chronic exposure to glucocorticoids 

drives plasticity towards neurodegeneration and suppressed neurogenesis (13). The 

studies described in the current thesis focus on the molecular mechanisms that underlie 

the acute effects of glucocorticoids on hippocampal neuronal function and in the follow-

ing sections these effects are discussed.  

Neuroexcitability

The effects of glucocorticoids on hippocampal neuroexcitability have been well studied 

in explant hippocampal slices. These slices are directly produced from freshly dissected 

hippocampi and can be kept alive in artificial cerebrospinal fluid for up to 12 hours (29). In 

the slice preparation neuronal currents can be measured in all the different hippocampal 

subregions. The interaction between glucocorticoids and neuroexcitability has especially 

been studied in the CA1 region. This region projects to the subiculum, enthorinal cortex 

and several subcortical areas (21,30). 

In general, neuroexcitability is determined by 1) voltage-gated ion conductances and 2) 

the neuron’s ability to respond to neurotransmitters like serotonin, glutamate, acetylcholine 

and noradrenalin. Briefly, neurons fire action potentials when the membrane is depolarized 

and neuroexcitability can be defined as the number of action potentials the neuron is able 

to generate in a certain time window. The ability to generate action potentials, and thus 

neuroexcitability, can decrease when, for instance, the cells become hyperpolarized. 

Particularly (L-type) voltage-gated calcium currents are under the control of gluco-

corticoids. Under basal levels of glucocorticoids, predominantly occupying MRs, these 
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calcium current amplitudes are small after the neurons are activated by depolarization 

of the membrane (31). When additionally GRs are activated by a brief, high concentra-

tion, corticosterone pulse the size of the amplitudes increases. This GR-mediated effect 

develops over a time period of 1-4 hours after initial GR-activation and is correlated with 

an increase in the transcription rate of calcium channel subunits (Y. Qin, unpublished 

observation). On the other hand, depleting all endogenous glucocorticoids by removing 

the adrenals (adrenalectomy) results in increased calcium current amplitudes as well. 

Hence, the effect of glucocorticoids on voltage-gated calcium current amplitude displays 

a U-shaped dose dependent response in which MR and GR play different roles (32). The 

regulation of these calcium currents affects the activation of slow calcium dependent 

potassium currents (33,34). These potassium currents hyperpolarize neurons after depo-

larization and this afterhyperpolarization results in decreased neuroexcitability. In line 

with the glucocorticoid effects on calcium currents, afterhyperpolarization is small under 

MR-occupation, resulting in high neuroexcitability, and large when GR is occupied or 

when glucocorticoids are removed, resulting in low neuroexcitability. Thus the effects of 

glucocorticoids on neuroexcitability follow a reverse U-shaped dose dependent response 

(Figure 3) and seem to be dependent on transcriptional changes (35). 

Other voltage-gated ion channel currents are far less affected by glucocorticoids with 

only the inward rectifying potassium Q-current showing a clear U-shaped dose depen-

dent response (36). This current also contributes to the overall reverse U shaped dose 

dependent response of neuroexcitability. 

Beside the effects on ion currents, glucocorticoids also affect the cells’ responses to 

neurotransmitters, especially the G-protein coupled serotonin 1A receptor which hyper-

Figure 3 

no receptor 
occupation 

MR
occupation

MR  and GR 
occupation 

neuroexcitability

Low

High

GC levels

Figure 3. The effects of glucocorticoids (GCs) on hippocampal neuroexcitability. Neuroexcitability is low when glucocorticoids are absent and 

no MRs and GRs are occupied. Under basal concentrations of glucocorticoids in which MRs are occupied neuroexcitability is high whereas under 

high concentrations of glucocorticoids in which both MRs and GRs are occupied neuroexcitability decreases. The resulting reverse U-shaped dose 

dependent response is displayed.
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or when GRs are activated by a brief high concentration corticosterone pulse, serotonin 

receptor 1A mediated hyperpolarization is high whereas under basal levels of glucocor-

ticoids (MR occupation) hyperpolarization is low. Modulation of the serotonin receptor 

1A induced hyperpolarization contributes to the overall glucocorticoid dependent, 

reverse U-shaped, neuroexcitability pattern. The mechanisms underlying the effects of 

glucocorticoids on serotonergic transmission are currently unknown although the MR-

induced reduction of the serotonin-response is dependent on de novo protein synthesis 

(39) whereas the GR-mediated induction develops in a delayed manner (13,32), both of 

which suggest a genomic mode of action.

Synaptic plasticity

The capacity of synaptic transmission to be modified is generally referred to as synaptic 

plasticity. Synaptic plasticity can be the result of the pattern of synaptic activity which 

either enhances or attenuates synaptic transmission. Long-lasting forms of synaptic plas-

ticity are believed to underlie learning and memory formation. Two forms of long-lasting 

synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) have 

been thoroughly studied in the hippocampus, especially in the synaptic connections 

between the Schaffer collaterals and the cells of the CA1 (40). Normally, low frequency 

stimulation of the Schaffer collaterals results in moderate excitatory postsynaptic poten-

tials (EPSPs) in the CA1 cells. However, when the Schaffer collaterals are stimulated with 

high frequencies of stimuli, the amplitudes of these EPSPs increase and remain increased 

upon subsequent stimulation, resulting in a state of LTP. On the other hand, the EPSP am-

plitudes decrease when the Schaffer collaterals are stimulated with a low frequency for a 

long period, resulting in a state of LTD. The mediators of LTP and LTD include glutamate 

(NMDA) receptors, calcium ions, calcium-dependent kinases and calcium-dependent 

phosphatases. Furthermore, changes in the morphology of the dendritic spines, where 

the synapses are formed, have been associated with changes in the induction of LTP, pos-

sibly due to the fact that these spines play a role in the compartmentalization of calcium 

and other LTP-involved molecules (41). 

Glucocorticoid-activated GRs can reduce the induction of LTP and enhance the induc-

tion of LTD in the CA1 region of the hippocampus (42). There has been much debate 

about whether these effects of glucocorticoids are mediated via hippocampal receptors 

or via receptors which are located in brain structures that project to the hippocampus, 

such as the amygdala (43,44). The influence of these projections was removed in a study 

in which the explant hippocampal slice preparation was used (45). This study showed 

that mild, primed burst stimulation induced LTP is hampered 1-4 hours after a brief high 

concentration corticosterone pulse (occupying GRs). Additionally it was shown that in 

the same experimental setting also a more robust (10 Hz) stimulation induced LTP is re-
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duced by corticosterone (46). Therefore, the effects of glucocorticoids on certain types of 

hippocampal LTP are directly mediated via hippocampal GRs. More specifically, this study 

revealed that modulation of hippocampal NMDA-receptor activity underlies the GR-me-

diated reduction in LTP induced by both primed burst and 10 Hz stimulation protocols. 

Since the GR-mediated effects develop in a delayed manner, changes in transcription may 

underlie these effects. However, there is evidence that NMDA-receptor mRNA expression 

is not changed 1-3 hours after GR-activation (46). This could indicate that other, chan-

nel function modifying proteins may be regulated. In addition, there have been strong 

indications that AMPA receptor subunit trafficking is affected by activated GRs and this 

may occur for NMDA receptors as well (O. Wiegert, unpublished observation). 

Metabolism

Glucocorticoids got their name from their profound effects on glucose metabolism. 

Initially, after the organism has experienced a stressor, blood glucose concentrations 

rapidly rise to facilitate glucose transport to and utilization in the brain. This is mediated 

by the sympathetic nervous system which antagonizes the effects of insulin on muscle 

and adipose cells, thereby reducing the translocation of GLUT4 glucose transporters 

(responsible for glucose uptake) to the cell membrane (47). Additionally, glutaminergic 

innervation of astrocytes at the blood-brain-barrier stimulates GLUT1-mediated glucose 

uptake in the brain (47). 

Delayed secretion of glucocorticoids further increases blood glucose concentrations 

by inhibiting glucose uptake and utilization in peripheral organs. Also in the brain glu-

cocorticoids display inhibitory effects on glucose utilization (15). This may constitute a 

negative feedback system to adjust the effects of the initial stress response on neuronal 

glucose utilization. The effect of glucocorticoids on neuronal glucose utilization can be 

the result of either reduced glucose metabolism in the cells or reduced glucose transport 

into the cells (48). The latter is supported by two studies in which it was shown that gluco-

corticoids inhibit glucose transport in ex vivo cultured hippocampal neurons and glia cells 

in a delayed (> 4 hours) manner (49,50). Two glucose transporters that have been studied 

in this context are GLUT3 and GLUT8. Both are expressed in the pyramidal neurons and 

granule neurons of the hippocampus. In vivo application of acute restraint stress does 

not affect the mRNA levels of both transporters but does increase endoplasmic reticulum 

GLUT8-accumulation (51,52). The functional consequence of this increased GLUT8-accu-

mulation on neuronal glucose metabolism however has not been clarified yet. There are 

indications that this stress-mediated effect on GLUT8-accumulation in vivo is dependent 

on insulin. However, the mechanism that underlies the glucocorticoid-induced effects in 

ex vivo preparations as well as whether these specific glucose transporters are involved 

is currently unknown. 
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4. MOLECULAR MECHANISMS

Transactivation and transrepression

Basal transcription of genes, which is mediated by general transcription factors at the 

gene promoters, can be modulated by sequence-specific transcription factors such as 

AP1, NFκB, CREB and nuclear receptors. These sequence-specific transcription factors 

bind to specific sequences on the DNA upstream of the gene promoters and enhance 

or inhibit basal transcription via direct or indirect (coregulator dependent) interactions 

with the general transcription factors (18). 

MR and GR belong to the superfamily of nuclear receptors and show a similar structural 

organization: 1) an amino-terminal region containing a ligand-independent activation 

function (AF-1), 2) a DNA binding / dimerization region that is highly homologuous be-

tween the two receptors, 3) a linker region and 4) a ligand binding region which contains 

a second, ligand-dependent, activation function (AF-2). Both activation functions interact 

with coregulator proteins and mediate the effects of the receptors on transcription (16). 

MR and GR are localized in the cell cytoplasm in the absence of ligand and translocate 

to the cell nucleus upon binding of ligand. Nuclear accumulation studies in primary 

neurons and hippocampal slices have indicated maximal nuclear uptake to take place 

in between 30 and 60 minutes after ligand activation (53,54). Nuclear localized MRs and 

GRs are able to modulate gene transcription in two ways (Figure 4). Firstly, the recep-

Figure 4 
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Figure 4. Molecular mechanisms underlying glucocorticoid actions. In transactivation, ligand-activated GRs or MRs bind to GREs and enhance 

or inhibit gene transcription. In transrepression, ligand-activated GRs or MRs bind to other activated transcription factors (TFs), thereby blocking 

TF-mediated transcription.
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tors can dimerize to form homodimers and bind to glucocorticoid responsive elements 

(GREs) on the DNA in the proximity of gene promoters. Subsequently, the receptors 

interact directly or indirectly, via recruitment of coactivators or corepressors, with the 

basal transcription machinery, enhancing or inhibiting gene expression by increasing or 

decreasing the frequency of transcription (55,56). This mode of action is generally called 

transactivation and also includes transcriptional repression via binding of receptors to 

negative GREs (nGREs). Secondly, monomeric receptors can bind to sequence-specific 

transcription factors such as NFκB, AP1 or CREB which have been activated by other 

signaling cascades, thereby inhibiting their transcriptional activity (57,58,59,60). It is 

generally believed that this mode of action, which is called transrepression, accounts for 

many of the inhibitory effects glucocorticoids exert on stress-induced activation of the 

immune system (61). Additionally, there are indications that MR and GR can form GRE-

binding heterodimers which may enhance the diversity of glucocorticoid action on gene 

transcription (62,63,64). 

Receptor and tissue specific actions

Ligand-activated hippocampal MRs and GRs regulate the transcription of distinct, yet 

overlapping sets of genes. This was shown in a large-scale gene expression profiling study 

performed by Datson et al. (65) in which the majority of glucocorticoid-responsive genes 

was regulated either by MR or GR alone or displayed a different direction in transcrip-

tional response. Since MRs and GRs recognize the same GREs (66,67), these differential 

transcriptional effects most likely can be explained by binding of different coactivators 

or corepressors to the receptors and / or differences in transrepressive capacity between 

the receptors (68). 

Furthermore, the same receptor can also exert different effects in different tissues. For 

instance, the expression of the CRH gene is inhibited by GR in the hypothalamic cells 

whereas it is enhanced by GR in other cells (69) which may be explained by the availabil-

ity of different coactivators / corepressors. Additionally, in a number of genes, the GREs 

are organized into glucocorticoid responsive units (GRUs) in which the GREs are flanked 

by other accessory transcription factor binding sites (16). For genes containing these 

GRUs the transcriptional response is dependent on binding of glucocorticoid receptor 

dimers and accessory transcription factors. Since expression of accessory transcription 

factors can be cell- or tissue-specific, GRUs can restrict the transcriptional response to 

certain tissues and cells. In this respect it is interesting to note that for a subset of hepatic 

genes involved in gluconeogenesis it has been shown that within their GRUs they share 

a number of binding sites for liver-enriched transcription factors C/EBP and FoxA (16,70). 

In addition, the repertoire of available transrepression partners for the MRs and GRs may 

also differ between different cells and tissues, resulting in transrepression of different 

sets of genes. Thus, the cellular context can be an important factor in determining the 
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context determines the genomic response is currently unknown. 

Glucocorticoid target genes

Glucocorticoids display differential effects on different tissues, thereby exerting a pleio-

tropic mode of action. This is also reflected in the different genes known to be regulated 

by glucocorticoids throughout different tissues. In the liver, glucocorticoids induce the 

expression of genes involved in gluconeogenesis (phosphoenolpyruvate carboxykinase), 

the urea cycle (carbamoylphosphate synthetase) and amino acid degradation (tyrosine 

aminotransferase) by binding to GRE sites. 

In the adrenal medulla the phenylethanolamine N-methyltransferase (PNMT) gene, 

which is involved in the synthesis of adrenalin, is also induced by glucocorticoids binding 

to a GRE site. 

Another well-known target is the immune system; glucocorticoids exert anti-inflamma-

tory and anti-proliferative effects by inhibiting the expression of cytokines and adhesion 

molecules which most likely is mediated via transrepression of the transcription factor 

NFκB (71).

In the pituitary, glucocorticoids inhibit the synthesis of ACTH by inhibiting the expres-

sion of its precursor molecule proopiomelanocortin (POMC) via binding to an nGRE site 

upstream of the POMC promoter.  

Finally, in the hippocampal large-scale gene expression profiling study performed by 

Datson et al. (65) genes involved in signal transduction, protein synthesis, protein traffick-

ing, protein turnover and cellular metabolism were found to be responsive to glucocorti-

coids, illustrating the pleiotropic effects of glucocorticoids on gene expression. However, 

with respect to the effects of glucocorticoids on hippocampal cell function, currently no 

direct link has been established with the glucocorticoid-responsive genes and therefore 

the exact molecular mechanisms underlying these effects remain to be clarified.

Primary and downstream transcriptional effects 

As previously discussed, glucocorticoid receptors directly modulate gene expression 

via transactivation and transrepression, exerting primary transcriptional effects. Sub-

sequently, primary regulated genes may regulate gene transcription as well, causing 

secondary transcriptional effects which may lead to tertiary and further downstream 

genomic effects. Hence the primary glucocorticoid-responsive genes serve as master 

switches that determine the downstream transcriptional responses further in time (Fig-

ure 5). Although primary glucocorticoid-responsive genes have been characterized such 

as several of the genes mentioned in the previous section, information on the dynamics 

of glucocorticoid receptor mediated primary and downstream genomic responses in 

neuronal tissue remains sparse. 
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5. GENOMICS APPROACH 

Functional and comparative genomics

Powerful large-scale gene expression profiling technologies have become available in 

recent years, allowing entire transcriptomes to be rapidly characterized in a quantitative 

manner, collectively known as ‘genomics’. Genomics approaches have created new pos-

sibilities to understand the effects of glucocorticoids on neuronal functioning.

With respect to the molecular mechanisms that underlie the effects of ligand-activated 

glucocorticoid receptors on neuronal function, the functional genomics approach (Figure 

6) constitutes a highly valuable methodology. In this approach the expression levels of 

several thousands of genes are measured using large-scale gene expression profiling 

techniques. In contrast to the candidate gene approach, which is a hypothesis-driven 

research strategy, the functional genomics approach is driven by the question which 

genes are regulated. Subsequently, the generated gene expression profiles are scanned 

for responsive gene patterns that are examined for their role in glucocorticoid-induced 

phenotypic changes. 

The effects of glucocorticoids on the transcriptome are dependent on both the cell 

type and the activation status of the cells, i.e. the cellular context. The question to which 

extent the cellular context determines the glucocorticoid-induced genomic response 

can be dealt with by applying the comparative genomics approach. Using this approach, 

glucocorticoid-modulated gene expression profiles in different cell types or in similar 

cells which are activated by different environmental factors are compared with each 

other, thereby elucidating the degree of overlap of responsive genes. Subsequently, the 

number of genes with overlapping expression patterns between these different condi-

tions can be used as an estimate of the context-specificity of the genomic response. 

In addition, large-scale gene expression profiling provides a powerful tool to gain 

more insight into the dynamics of the genomic responses with respect to primary and 

downstream glucocorticoid-responsive genes. Time-dependent expression profiles of 
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protein 1. This protein functions as a transcription factor (TF) at a TF-site upstream of the promoter of gene 2, inducing its expression. Hence, 

gene 2 is a downstream GR-responsive gene.
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primary-responsive genes can be generated in the presence of protein synthesis inhibi-

tors which block the downstream actions of primary-responsive genes. In order to dis-

criminate between primary and downstream-responsive genes throughout time, these 

profiles of primary-responsive genes can be compared with time-dependent expression 

profiles generated in the absence of protein synthesis blockers in which both primary 

and downstream-responsive genes are present. In this way, very specific information on 

the temporal patterns of primary and downstream-responsive genes can be obtained.

Model systems 

Different model systems to study the effects of glucocorticoids on neuronal gene expres-

sion are available, ranging from in vivo animal models to ex vivo brain preparations and in 

vitro clonal cell lines with neuronal properties.

Regarding the in vivo animal models, pharmacological manipulation of glucocorticoid 

concentrations aimed at specifically activating MR and / or GR constitutes a very power-

ful approach to assess MR and GR-responsive genes. For example, more than 200 MR 

and GR-responsive genes were elucidated in the rat hippocampus by combining adre-
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nalectomy (no receptor occupation) with the implantation of corticosterone pellets or 

corticosterone injections for differential occupation of MR and GR (65). In this respect, 

administration of agonists and antagonists for specific activation and blockade of MR or 

GR could be of major interest to further discriminate between the transcriptional actions 

mediated by the two receptors. This approach allows examining the effects of different 

ratios of MR and GR activity on the neuronal transcriptome, taking into account their 

specific pharmacokinetic and dynamic properties. Another interesting in vivo possibil-

ity to elucidate the effects of GR on the hippocampal transcriptome is the use of the 

transgenic GR-dimerization defective mouse line (72). In this mouse line, the GR contains 

a point mutation which impairs GR homodimerization and DNA-binding, leaving trans-

repression unaffected. In electrophysiological studies using these mice it was found that 

the glucocorticoid-mediated effects on calcium currents and serotonin-responses are 

dependent on GR homodimerization and DNA-binding (37). 

Since many of the glucocorticoid-mediated effects have been observed in the ex vivo 

explant hippocampal slice preparation, these slices provide an ideal model system for 

profiling glucocorticoid-responsive genes. By using slices, the changes in gene expres-

sion can be correlated with altered hippocampal cell function. However, in spite of the 

progress in understanding cellular actions exerted by the steroids, the precise molecular 

mechanism underlying the electrophysiological effects still remains largely unknown. 

For instance, the GR-dependent increase in 5HT1A-receptor mediated hyperpolarization 

does not appear to be linked to an increase in expression of 5HT1A-receptor mRNAs. 

This could be due to the fact that the changes in mRNA levels precede the effects on cell 

function. Hence, assessing gene expression changes throughout a functionally relevant 

time interval in hippocampal slices would be of major interest. 

Primary cultures of neurons and clonal cell lines with neuronal properties constitute 

very interesting in vitro model systems with respect to the assessment of 1) context-

specificity of glucocorticoid-mediated changes in gene expression and 2) primary and 

downstream transcriptional responses. They provide an easy substrate for direct pharma-

cological manipulation and subsequent transcriptome analyses. However, since primary 

cultures besides neurons also contain glia and endothelial cells, they are very heteroge-

neous as compared to clonal cell lines. In addition, the preparation and maintenance of 

primary cultures is a very laborious task which is in sharp contrast with the use of clonal 

cell lines. 

Several different neuronal cell lines are available which express glucocorticoid recep-

tors (GRs). Mineralocorticoid receptor (MR) expressing cell lines however are less avail-

able and hence transfections of neuronal cell lines with MR-expression plasmids could 

present an alternative. 

If neuronal cell lines are used for transcriptome analyses, it should be taken into ac-

count that they are derived from tumors and that tumor cells in general are genomically 
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very suitable for large-scale gene expression profiling since among neuronal cell lines 

they are unique in displaying a highly stable karyotype. PC12 cells are diploid and con-

tain 40 chromosomes (38 autosomes plus an X and Y chromosome) whereas, for example, 

NIE-115 neuroblastoma cells contain 192 chromosomes, illustrating the relatively stable 

genomic constitution of PC12 cells. PC12 cells express the GR endogenously and can be 

differentiated into catecholaminergic neuron-like cells using nerve growth factor (NGF) 

(73,74). They reach a very high degree of differentiation with the generation of long neu-

rites, the appearance of electrical excitability and expression of sodium, potassium and 

calcium channels as well as membrane receptors, including G-protein coupled receptors 

(75,76). Hence, since neuronal PC12 cells 1) are genomically very stable, 2) are pheno-

typically very different from hippocampal neurons and 3) express endogenous GRs, they 

provide a very suitable substrate for the comparison of context-specific GR-mediated 

transcriptional responses. They can also be used for assessing the dynamics of primary 

and down-stream responsive genes in a comparative genomics approach. 

Techniques

Profiling gene expression on a large scale can be performed in multiple ways. Two of the 

most commonly used techniques are Serial Analysis of Gene Expression (77) (SAGE) and 

DNA microarrays. In SAGE, transcript levels are quantified by sequencing and counting 10 

nucleotide long SAGE tags derived from the 3’ untranslated regions of the transcripts. In 

principle these SAGE tags are long enough to uniquely identify the transcripts of origin. 

Subsequently, the tags are ligated into concatamers which can be cloned into plasmids. 

By sequencing these plasmids and counting the SAGE tags a gene expression profile is 

generated for each experimental sample.

DNA microarrays on the other hand are microscopic glass slides or chips onto which 

a large number of probes are printed or synthesized in situ in a high density, with each 

probe corresponding to a part of a certain transcript (78). Fluorescently labeled RNA, 

obtained from the experimental samples, is hybridized to the microarray, resulting in 

hybridization signals for each transcript. Gene expression levels for each experimental 

sample are measured by quantifying these hybridization signals. Currently, several kinds 

of DNA microarray systems are available and they can differ in multiple ways. Firstly, 

the probes that are printed on the array can differ in length. Originally, DNA microar-

rays were spotted with long cDNA probes. However, currently many microarray systems 

use shorter, more specific oligonucleotide probes which range in length from 25 to 60 

nucleotides that are synthesized in situ on the array. Secondly, microarray systems can 

differ in the way hybridization of target RNA to the array is performed. In single-target 

hybridizations, experimental samples are hybridized to separate arrays. In dual-target 
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hybridizations, two experimental samples (i.e. treatment and control) which are labeled 

with two different fluorescent dyes are hybridized to the same array. 

A very well known and widely used commercial microarray system is the Affymetrix 

GeneChip system (Figure 7). This system operates with single-sample hybridizations and 

uses probe sets that represent the transcripts. Per transcript the probe set consists of 11 

to 20 probe pairs, each of which contains one 25 nucleotides long perfect match (PM) 

and one 25 nucleotides long mismatch (MM) oligo. The latter is designed to measure 

non-specific binding and cross-hybridization by changing the middle base of the PM-

oligo. Subsequently, transcript abundancy is quantified by subtracting the MM-signal 

from the PM signal. Additionally, a statistical test (Wilcoxon Signed Ranks Test) is used 

to calculate whether the PM-signal is significantly higher than the MM-signal, thereby 

supplying a measure for the reliability of transcript detection. 

In order to select the proper gene expression profiling technique some considerations 

can be made. Firstly, in terms of sensitivity, SAGE and microarrays seem to perform 

equally well in brain tissue since there is a strong correlation between the detectability 

of transcripts in both methods (79). Secondly, SAGE is a laborious time-consuming pro-

cedure whereas microarray procedures in general are easier and performed much faster. 

Finally, since only the expression levels of the genes that are present on the microarray 

are measured, using microarrays has been described as following a ‘closed’ gene expres-

sion profiling strategy. Using SAGE on the other hand has been described as following an 

‘open’ gene expression profiling strategy since no selection of genes is made on forehand. 

Therefore, when using SAGE, new unexpected transcripts may be profiled. 

Inherent to using large-scale gene expression profiling techniques for transcriptomes 

analyses is the generation of false positive and false negative results. Currently, different 

statistical tools are available for microarray analyses that estimate and control the num-

ber of false positives generated and minimize the number of false negatives, such as Sig-

nificance Analysis of Microarrays (SAM) (80) and the BRB Array Tools package. Therefore, 

subsequent validation of the results obtained by application of these methodologies is 

needed and for this purpose a number of techniques are available. In this thesis two 

methods are used, i.e. real-time quantitative PCR and mRNA in situ hybridization, each 

of which has its own advantages. Real-time quantitative PCR is very rapidly performed 

and very useful for measuring gene expression in neuronal cell lines and explant hip-

pocampal slice preparations. On the other hand, the use of mRNA in situ hybridization 

allows gene expression differences in different subregions of entire brain sections to be 

assessed. Both techniques therefore complement each other.

Functional follow-up studies

After gene expression profiling has been performed, candidate genes can be selected 

based on their putative roles in the effects of glucocorticoids on neuronal function (Fig-
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Figure 7 
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Figure 7. Affymetrix GeneChip technology. Total RNA is isolated from two experimental samples: corticosterone and vehicle treated hippocampal 

slices. For each sample the mRNA portion is amplified and labeled with biotin. Each labeled amplified RNA (aRNA) sample is fragmented and 

subsequently hybridized to an individual GeneChip that contains probe sets for several thousand transcripts. After hybridization, the GeneChips 

are scanned, resulting in expression signals for every probe set. Subsequent normalization and statistical testing is performed (as described in the 

text) to obtain a list of differentially expressed genes. 
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ure 6). Transgenic or knock-out animals which overexpress or lack the gene of interest 

respectively are very useful model systems in this respect. However, generating these 

animals is a very time consuming and laborious task. Lately, application of siRNA technol-

ogy in vivo has emerged as an alternative tool to very locally inhibit the transcription of 

a target gene. However, targeting the right population of cells and establishing suffi-

cient downregulation of the target gene still is a time consuming and laborious task and 

therefore integrating this approach in the laboratory remains difficult. As an alternative, 

clonal cell lines can be used to study the functional effects of transcriptional regulation 

of candidate genes. For instance, genes can easily be overexpressed by transfecting ex-

pression plasmids or inhibited by applying siRNA technology. Many different neuronal 

cell lines are available and the choice which cell line to use will predominantly depend 

on the endogenous expression of the genes of interest and the presence of (a) markers 

of the cellular processes under investigation. 

6. SCOPE OF THE THESIS

Objectives

The central theme of this thesis was to determine which transcriptional changes underlie 

the glucocorticoid effects mediated by GRs on hippocampal neuronal function. The first 

objective therefore was to use a functional genomics approach to assess the time course 

of the GR-mediated transcriptional responses in the hippocampus and to identify candi-

date genes that could be linked to the changes observed in hippocampal cell function. 

The second objective was to investigate to which extent the genomic response to acute-

ly activated GRs is context-specific by using a comparative genomics approach in which 

the overlap in GR-mediated gene expression between different neuronal substrates, i.e. 

hippocampal slices and neuronal PC12 cells, was assessed. Additionally, the PC12 cells 

were used to gain more insight into the dynamics of the GR-mediated genomic response 

with regard to primary and downstream GR-responsive genes throughout time. 

The third objective was to select a candidate gene from the obtained hippocampal 

gene expression profile and to test the functional consequences of its regulation by 

activated GRs. 

Experimental approach

In order to study the GR-mediated changes in the hippocampal gene expression the ex 

vivo hippocampal slice preparation was used and GR-induced transcriptional changes 

were profiled throughout a defined time window, using Affymetrix GeneChips. Chapter 

2 describes the exact experimental setup and obtained results. Furthermore, to demon-

strate the reliability of the data set obtained in the slice model, a subset of genes was 



Chapter 1

29

C
h

ap
te

r 
1selected from the hippocampal slice expression profile and validated in an in vivo setting, 

using mRNA in situ hybridizations to pinpoint the hippocampal subregions in which gene 

expression changes took place (chapter 3). 

The extent to which the genomic response to acutely activated GRs overlaps between 

different neuronal substrates was elucidated in chapter 4 by generating a time curve 

of GR-responsive genes in neuronal catecholaminergic PC12 cells, using Affymetrix 

GeneChips, and by comparing this expression profile with the hippocampal slice expres-

sion profile. Additionally, to gain more insight into the nature of the GR-mediated tran-

scriptional response, primary and downstream responsive genes were assessed in these 

PC12 cells by blocking translation with the protein synthesis inhibitor cycloheximide. 

The aim of chapter 5 was to provide a systematic review of the current findings con-

cerning the large-scale glucocorticoid-mediated genomic response in neural tissue.

Furthermore, LIM kinase 1 was selected from the hippocampal expression profile as a 

candidate gene that may underlie (part of ) the effects of glucocorticoids on long-term 

potentiation (LTP) in the hippocampus via regulation of cytoskeletal configurations. 

Hence, a functional study was performed in chapter 6 to correlate its expression levels to 

actin cytoskeletal configurational changes in an in vitro model system, i.e. neural NG108-

15 cells. 

Finally, in chapter 7 all the currently generated experimental data are discussed in a 

broader context. 
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ABSTRACT

Several aspects of hippocampal cell function are influenced by adrenal-secreted gluco-

corticoids in a delayed, genomic fashion. Previously, we used Serial Analysis of Gene Ex-

pression to identify glucocorticoid receptor (GR)-induced transcriptional changes in the 

hippocampus at a fixed time point. However, since changes in mRNA levels are transient 

and most likely precede the effects on hippocampal cell function, the aim of the current 

study was to assess the transcriptional changes in a broader time window by generating 

a time curve of GR-mediated gene expression changes. 

Therefore, we used rat hippocampal slices obtained from adrenalectomized rats, 

substituted in vivo with low corticosterone pellets, predominantly occupying the hip-

pocampal mineralocorticoid receptors. To activate GR, slices were treated in vitro with a 

high (100 nM) dose of corticosterone and gene expression was profiled 1, 3 and 5 hours 

after GR-activation. Using Affymetrix GeneChips, a striking pattern with different waves 

of gene expression was observed, shifting from exclusively downregulated genes 1 hour 

after GR-activation to both up and down regulated genes 3 hours after GR-activation. 

After 5 hours, the response was almost back to baseline. Additionally, real-time qPCR was 

used for validation of a selection of responsive genes including genes involved in neu-

rotransmission and synaptic plasticity such as the CRH receptor 1, monoamine oxidase 

A, LIM Kinase 1 and calmodulin 2. This allowed confirmation of GR-responsiveness of 15 

out of 18 selected genes. 

In conclusion, direct activation of GR in hippocampal slices results in transient changes 

in gene expression. The pattern in which gene expression was modulated suggests that 

the fast genomic effects of glucocorticoids may be realized via transrepression, preced-

ing a later wave of transactivation. Furthermore, we identified a number of interesting 

candidate genes which may underlie the glucocorticoid-mediated effects on hippocam-

pal cell function. 
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INTRODUCTION

Glucocorticoids, which are secreted by the adrenals in response to stress, control hippo-

campal cellular function (1). Acute activation of the hippocampal glucocorticoid receptor 

(GR) affects neuronal excitability and energy metabolism within hours, whereas chronic 

activation results in atrophy of dendrites of pyramidal neurons (2-4). The delayed onset 

of these changes and the fact that the GR belongs to the superfamily of ligand regulated 

nuclear receptors (5,6) suggests a genomic mode of action for these glucocorticoid-de-

pendent effects. 

We previously used Serial Analysis of Gene Expression to assess the GR-induced tran-

scriptional changes in the hippocampus against an occupied mineralocorticoid receptor 

background and identified over 100 GR-responsive genes 3 hours after a single corticos-

terone injection in rats (7). However, with respect to neuronal excitability, the precise 

mechanisms underlying the GR-induced changes still remain unknown, most likely due 

to the fact that changes in mRNA levels do not necessarily have to coincide with the 

effects on cell function (8,9). For instance, the GR-dependent increase in 5HT1A-receptor 

mediated hyperpolarization has so far not been directly linked to an increase in 5HT1A-

receptor mRNAs. This could suggest that 1) transient changes in receptor mRNA levels 

precede the effects on neuroexcitability and/or 2) other, receptor function modifying 

proteins, which are transcriptionally regulated by GRs, are responsible for these effects. 

Therefore, the aim of the current study was to elucidate GR-regulated genes throughout a 

defined time interval by large scale gene expression profiling, thereby identifying candi-

date genes possibly involved in the GR-mediated effects on hippocampal cell function.

The hippocampal slice preparation is an ideal model system for monitoring the tran-

scriptional responses since the hippocampus has a laminated structure and therefore the 

architecture of the hippocampal network is largely maintained after slicing. As a result, 

the histology strongly resembles that of in situ preparations (10). Furthermore, the influ-

ence of projections from other brain areas to the hippocampus is removed and the GRs 

can be directly activated without the interference of peripheral effects. Additionally, the 

slice preparation can be maintained for up to 12 hours (11) and neuronal activity can be 

measured throughout this time period. In these slices the effects of GR-activation on cel-

lular electrophysiology have been well described, allowing changes in gene expression 

to be directly correlated with the changes observed in the electrophysiological record-

ings. 

Activation of GR by a 20 minute exposure to a high concentration of corticosterone 

results in increased calcium currents and serotonin mediated hyperpolarization with a 

delay of 1 to 4 hours, through a mechanism requiring DNA-binding of GR-homodimers 

(12,13). Additionally, nuclear accumulation studies (14,15) in primary neurons and hippo-

campal slices indicate maximal nuclear uptake 30 to 60 minutes after ligand activation. 
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Moreover, studies assessing glucocorticoid-responsive genes in vivo (16-18) have shown 

that hippocampal transcriptome modulation takes place between 1 and 6 hours after 

the initial GR-activation. Therefore, a time window of 1 to 5 hours was chosen to profile 

GR-mediated changes in gene expression.

We used hippocampal slices obtained from adrenalectomized animals replaced with 

low corticosterone pellets, occupying the high affinity mineralocorticoid receptors. In 

order to activate the GRs, slices were treated with a brief in vitro corticosterone pulse and 

gene expression was profiled 1, 3 and 5 hours afterwards. 

MATERIALS & METHODS

Animals

All experiments were carried out with the approval of the Animal Care Committee of the 

Faculty of Medicine, Leiden, The Netherlands (DEC nr. 02095).

Young male Wistar rats (<200 g) obtained from Charles Rivers Laboratories Inc. (Ger-

many) were used for the experiments and housed under a 12 h light : 12 h dark cycle 

(lights on at 7:00h.) with food and drinking water (and after adrenalectomy also a 0.9% 

NaCl drinking solution) available ad libitum.

In order to obtain constant basal plasma levels of corticosterone, 15 rats (5 per time 

point) were adrenalectomized under isoflurane anesthesia and substituted with a sub-

cutaneous pellet releasing a low concentration of corticosterone (20 mg corticosterone / 

80 mg cholesterol). After 3 days, the rats were decapitated and from each rat both hip-

pocampi were immediately isolated and subjected to slicing.

Hippocampal slice preparation and treatment

Identical conditions were used as for previously performed electrophysiological record-

ings in order to facilitate comparison. Per time point, 5 rats (e.g.10 hippocampi) were 

used. Briefly, after isolation the hippocampi were sliced with the McIlwain Tissue Chop-

perTM, generating approximately twenty 400 μm slices for each hippocampus. Per hip-

pocampus, slices were collected in separate containers containing carbogenated (95% 

O
2
, 5% CO

2
) artificial cerebrospinal fluid (ACSF: 124 mM NaCl, 3.5 mM KCl, 2.0 mM CaCl

2
, 

1.5 mM MgSO
4
, 25 mM NaHCO

3
, 1.25 mM NaH

2
PO

4
 and 10 mM glucose). 

Throughout the experiment all slices originating from the same hippocampus were 

always kept separately from the others. After an equilibration period of 1 hour in ACSF 

at room temperature all the slices obtained from the left or right hippocampus of each 

animal (n=5 per time point) were used either for GR-activation or as controls, resulting 

in a paired setup allowing within-animal comparisons between treatment and control 

groups. 
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GRs were activated by in vitro treatment with a high concentration (100 nM) 20 minute 

pulse of corticosterone applied to ACSF which was pre-heated to 32°C. The control slices 

were treated with a 20 minute 0.009% ethanol (vehicle) pulse in pre-heated ACSF.

Twenty minutes after corticosterone or vehicle treatment, slices were placed back into 

normal ACSF at room temperature. One, three or five hours after the initial addition of 

corticosterone, all the slices originating from the same hippocampus were pooled again 

and total RNA was isolated using TRIzol® reagent (Invitrogen Life Technologies, Carlsbad, 

CA, USA) according to the manufacturer’s instructions. 

RNA preparation and Affymetrix array hybridization

After isolation, total RNA was purified using the QIAGEN RNEasy® Mini Kit RNA Cleanup 

procedure (QIAGEN Inc., Valencia, CA, USA). RNA quality was assessed with the LabChip® 

RNA 6000 Nano Assay on the 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). 

Per RNA sample, 10 μg was used as input into the Affymetrix procedure as recommended 

by Affymetrix (www.affymetrix.com). Briefly, total RNA was converted to double-stranded 

cDNA after which the mRNA portion was amplified and biotin-labeled using the ENZO 

BioArray HighYield RNA Transcript Labeling Kit (Affymetrix, Santa Clara, CA, USA). The 

amplified RNA was purified with the QIAGEN RNEasy® Mini Kit RNA Cleanup procedure 

and the quality was checked with the LabChip® RNA 6000 Nano Assay on the 2100 Bio-

analyzer (Agilent Technologies). The RNA samples were hybridized to Rat Genome U34A 

GeneChips (Affymetrix) at the Leiden Genome Technology Center (LGTC®), Leiden Uni-

versity, The Netherlands. 

Per time point, 10 Affymetrix arrays were used, 5 for the corticosterone-treated slices 

and 5 for the control slices. Each array included ~8000 probe sets, representing ~7000 

full-length or annotated sequences and ~1000 EST clusters.

Affymetrix data analysis

Microarray Analysis Suite 5.0 (MAS5.0; Affymetrix) was used to estimate signal intensities plus 

signal reliabilities and to normalize the array signals by total intensity normalization (19). 

Transcripts that generated present and/or marginal calls throughout all 10 arrays per 

time point were selected for further analysis, removing all transcripts that generated one 

or more absent calls. 

Significance Analysis of Microarrays (SAM) (20) was used to identify responsive genes. 

Briefly, when using microarrays, a large number of hypotheses is tested in a single experi-

ment (8000 genes), resulting in many false positives (multiple testing problem). SAM is 

a non-parametric test which allows the user to control the False Discovery Rate (FDR), 

i.e. the relative number of false positives generated. For all three time points SAM was 

applied to the paired data sets derived from left and right hippocampi and the lowest 

FDR was chosen to assess the most significant responsive genes.
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Gene Ontology Biological Process classifications were obtained using the NetAffx 

Analysis Center (21) (www.affymetrix.com), allowing genes involved in similar biological 

processes to be grouped together.

Furthermore, the obtained data set was compared with our previously generated 

SAGE data set. To allow cross-platform comparisons, the Expression Analysis Systematic 

Explorer (22) was used to couple Affymetrix probes to UniGene clusters. The NCBI SAGE-

map ftp-site was used to couple these UniGene clusters to SAGE tags (Figure 2). Both the 

Expression Analysis Systematic Explorer (EASE) and the NCBI SAGEmap used UniGene 

build 139. 

Corticosterone

In order to measure corticosterone levels, trunk blood was immediately collected in 

EDTA-coated tubes after decapitation. Blood samples were centrifuged at 3000 rpm for 

10 minutes at 4°C after which the plasma was collected and stored at -20°C. Corticoste-

rone levels were measured with the murine Corticosterone RIA Kit (ICN BiomedicalsTM, 

Costa Mesa, CA, USA).

Real-time quantitative PCR

A selection of responsive genes was validated in the same experimental RNA samples 

that were used for GeneChip analysis, using real-time qPCR on a DNA Engine Opticon® 

2 Real-Time PCR Detection System (MJ Research, Inc., Waltham, Massachusetts, USA). 

Prior to cDNA-synthesis, all RNA samples were DNase-treated with DNase I (Invitrogen 

Life Technologies), according to the manufacturer’s protocol. Synthesis of cDNA was 

performed in a total volume of 20 μl, using SuperScript II Reverse Transcriptase (Invitro-

gen Life Technologies). Per experimental sample, 50 ng of RNA was put into the cDNA-

synthesis reaction (23). Standard curves were generated by performing cDNA-synthesis 

reactions on 5, 50, 100 and 500 ng of input RNA. As a control for genomic contamination, 

RT- samples were used. The PCR was performed in a total volume of 25 μl, consisting of 

12.5 μl 2×PCR MasterMix with SYBR® Green I (qPCRTM Core Kit for SYBR® Green I, EURO-

GENTEC, Seraing, Belgium), 0.5 μl 10 μM forward primer, 0.5 μl 10 μM reverse primer (= 5 

pmol), 6.5 μl water and per primer pair either 5 μl cDNA-sample, RT- sample or water (no 

template control). 

The following heating protocol was used: 10 minutes at 95°C and 40 cycles of 15 

seconds at 95°C + 1 minute at 60°C (for both annealing and extension). Afterwards, the 

temperature was gradually increased to 95°C in order to make dissociation curves.

Dissociation curves were examined for each primer pair and controlled for specific-

ity of the reaction and genomic contamination by checking the RT- and no template 

control samples. Then, for each primer pair the standard curve was plotted and the PCR 

efficiency was estimated. All used primer pairs displayed reaction efficiencies between 
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80 and 100%. Target gene Ct-values ranged from 18 to 32 whereas RT- and no template 

control samples showed no products after 40 cycli.

Since the PCR efficiencies of the target and normalization genes were not equal, the 

standard curve method was used to quantify the expression differences (24). Expression 

levels of the target genes were normalized with the expression levels of beta-actin since 

1) this gene is widely used as an internal control for real-time qPCR, 2) this gene was not 

found to be responsive to corticosterone in the current study and the previously per-

formed SAGE study and 3) so far, no reports have been available in published literature 

indicating that beta-actin is a corticosterone-responsive gene. 

In general, PCR-primers were designed in the regions where the probe sets used on the 

Affymetrix GeneChips were derived from.

The non-parametric Wilcoxon Signed Ranks Test was used to assess significant differ-

ential expression of GR-responsive genes.

Primer sequences:

The following primers were designed for validation of observed corticosterone-respon-

sive genes:

Gene Title Probe set ID Forward primer (5’ - 3’) Reverse primer (5’ - 3’)
ampli-
con (bp)

Mineralocorticoid 
receptor M36074_at CCCGCGTGGGAAGTGTT TGGAAGCGGGAAGAAGCA 64

Shaw-related 
potassium channel 2 

X62839mRNA_
s_at AGCTTCAAGAAATGCCCACAA CTCTGTAATTTGCAGCAAAACCA 73

Atypical PKC-specific 
binding protein AB005549_at GGCCGGTCTATCCAGTCCTT TTTCCTTGTCCCACTCTGTGC 75

Casein kinase II, alpha 
1 polypeptide L15618_at GGACGTCCACCCTCTCCTTAA GGTTCAGACACGGTGCTTCTG 78

Cytoplasmatic dynein 
intermediate chain X66845_at AGCCAGATATGATTGGGTGCA AAACACCACATCTCAAGTCTTTGG 75

Metallothionein 
M11794cds#2_
f_at ATGTGCCCAGGGCTGTGT CGTCACTTCAGGCACAGCA 64

CRH receptor 1
U53486mRNA_
s_at GCCCTGCAGCCTCAATTTC GCTTGTGGCCCAGAAGGTC 73

EST196031 Rn.4183 rc_AA892228_at CAGGACATTAAGCAGCCTACTTACAG GCATGCAGAGGCCACCTTAC 77

LIMK-1 D31873_at GAGAGAGGTCCAGTCCCATGTG GGCTTTGATCAGGAAATGAGATG 77

Calcineurin subunit 
A alpha D90035_s_at TGACCACTTCCTGTTCACTTTTTTT GCAAGAACATCCAACTGCTGAG 80

Calmodulin 2    M17069_at TTTAGGAACCGTCGGCATGT GTACACGCTGTCGACTGTCCA 74

Apolipoprotein E X04979_at GCTGGGTGCAGACGCTTT GTACCGTCAGTTCCTGTGTGACTT 74

Monoamine oxidase A D00688_s_at CGTCCAAGGTGTACAGAGGAAAAT AAGGGTAGTGTGTATCACATGGAGC 95
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Gene Title Probe set ID Forward primer (5’ - 3’) Reverse primer (5’ - 3’)
ampli-
con (bp)

EST190379 Rn.24136
rc_AA800882_
g_at ACAAACAGCTTGACACTTGAC AACCTCAGAGGGCCCAAGA 69

Beta-chain clathrin 
associated protein M77246_at GTGTGGGAGGCAGGTGGTAT CCAGGAATCGGCACCG 70

Enolase 2, gamma 
X07729exon#5_
s_at TTGCCTGAACACCGGAACA CTATGGCGGGTCGGGAC 77

Sodium channel, 
voltage-gated, type 2 M22254_at TGGTGTCACTGGGTCCCTTAG ATACAGCGGCATCAGCAAGA 69

BARS50 AF067795_at TTGGCATGAACCCCTTGTTC GCACTGCAGACACACCTCAGA 66

Beta-actine V01217_at TGACCGAGCGTGGCTACA CAGCTTCTCTTTAATGTCACGCA 70

RESULTS

Hormone concentrations and RNA quality

Measurement of corticosterone concentrations demonstrated that all animals had basal levels 

of corticosterone (3-7 μg/dl), predominantly occupying the hippocampal MRs and partially 

occupying the hippocampal GRs, presumably leaving room for extensive GR-activation.

Since the effects of the slicing procedure and ACSF-storage on slice mRNA quality were 

unknown, we used the LabChip® RNA 6000 Nano Assay (Agilent Technologies) to assess 

integrity and amount of RNA. No evidence of RNA degradation was observed since the 

ratios of ribosomal 28S/18S intensities exceeded 1.5 for every sample.

GR-responsive genes: dynamic pattern 

To ensure the reliability of the data set, all transcripts that generated one or more absent 

calls were removed from the data set, resulting in reliable detection of 3335 genes 1 hour 

after GR-activation, 3289 genes 3 hours after GR-activation and 3184 genes 5 hours after 

GR-activation. Using these stringent selection criteria, the resulting detection efficiencies 

were 37% for both the 1 and 3 hours time point and 36% for the 5 hours time point, 

resulting in a detection overlap of 2867 genes in every time point.

Significance Analysis of Microarrays (SAM) revealed moderate responses 1 and 3 hours 

after GR-activation with FDRs of 43% and 37% respectively, and a weak response 5 hours 

after GR-activation (FDR=53%). The magnitude of gene expression responses varied be-

tween 10 and 60%.

Strikingly, a clear pattern in gene regulation was observed, with waves of gene ex-

pression occurring at different time points, shifting from exclusive downregulation of 81 

genes 1 hour after GR-activation to 161 both up or downregulated genes 3 hours after 

GR-activation (Figure 1, Table 1 and Table S1). After 5 hours the response was almost 
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back to baseline, with only 15 genes being upregulated. Furthermore, there was very 

little overlap between the time points (Table 2). Except for four genes at the 3 hours time 

point, all the other responsive genes at each time point generated reliable signals on the 

Affymetrix GeneChips at the other time points, thereby eliminating the possibility that 

these genes were not picked up as responsive genes in the other time points due to lack 

of signal on the Affymetrix GeneChips. 

In order to determine whether changing the user-defined FDR would influence the 

observed pattern, the FDRs were increased to the highest possible values. This did not 

alter the observed pattern of 1) exclusive downregulation of genes 1 hour after GR-acti-

vation, 2) both up- and downregulated genes 3 hours after GR-activation and 3) the small 

overlap between the time points. However, increasing the FDR for the 5 hours time point 

resulted in the addition of downregulated genes to the list of responsive genes. 

GR-responsive genes: functional classification

In order to assign functions to the responsive transcripts, Gene Ontology classifications 

were obtained using the NetAffx Analysis Center. Genes were grouped together into a 

large variety of functional classes. Activation of GR clearly affected the expression of 

genes involved in different types of cellular metabolism, transcription, translation, dif-

ferent aspects of signal transduction, protein/vesicle trafficking, ion transport, cell adhe-

sion, the cytoskeleton and synaptic transmission. Hence, in general, the different waves 

of gene expression at different time points contained similar functional gene groups. 

Figure 1 

GR-activation by 
a brief 

corticosterone 
pulse

0 genes ↑
81 genes ↓

61 genes ↑
100 genes ↓

15 genes ↑
0 genes ↓

1 hour 3 hours 5 hours 

2

4

2

FDR 43 % FDR 37 % FDR 53 % 

overlap overlap

Figure 1. Different waves of gene expression after glucocorticoid receptor (GR)-activation according to a pattern of 81 exclusively downregulated 

genes 1 hour after GR-activation, 161 both up or downregulated genes 3 hours after GR-activation and 15 up regulated genes 5 hours after 

GR-activation. The arrows indicate overlap between the time points. The user-defined False Discovery Rate (FDR) from Significance Analysis of 

Microarrays (SAM) analysis is indicated.
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Some of the interesting responsive genes were classified as signal transduction compo-

nents and included corticotropin releasing hormone (CRH) receptor 1, mitogen activated 

protein kinase kinase 2, LIMK1 and calmodulin 2. Additionally, genes from other func-

tional groups such as ania-6 (RNA processing), monoamine oxidase A (neurotransmitter 

catabolism), two potassium ion channels and prepronociceptin (synaptic transmission) 

were also identified as hippocampal GR-responsive genes.

Overlap with the SAGE data set 

We previously used adrenalectomy in combination with low corticosterone pellets 

(MR-occupation) and high corticosterone injections in vivo (GR occupation) to assess 

corticosteroid-regulated gene expression in rat hippocampus 3 hours after a high cor-

ticosterone injection, using Serial Analysis of Gene Expression (7). Briefly, in SAGE, gene 

expression profiles are established by sequencing and counting 10 base pairs long SAGE 

tags which are derived from a defined position within the 3’ untranslated regions of the 

transcripts (25). In order to compare the current data set with the SAGE data set, we used 

both the Expression Analysis Systematic Explorer (EASE) and the NCBI SAGEmap ftp-site 

as described in the materials and methods section (Figure 2). Since 1) not every SAGE tag 

and Affymetrix probe set could be annotated with a UniGene cluster and 2) not every 

annotated SAGE tag was present on the Affymetrix GeneChip, only seventy of the 203 

responsive SAGE tags could be annotated as Affymetrix probe sets. However, still 4 (6%) 

of the responsive genes found with SAGE were also regulated 1 hour after GR-activation 

in this study, whereas 7 genes (10%) were regulated 3 hours after GR-activation (Table 

3). The majority of these genes showed the same direction of regulation (8 genes out of 

11) providing good positive controls for the current data set. Two of these genes (malate 

dehydrogenase and F1-ATPase alpha subunit) play a role in cellular metabolism whereas 

another, apolipoprotein E, functions as a lipid transporter and is involved in synaptic 

Table 2. Overlapping genes between the three time points. FC = fold change

Probe set ID Gene title
FC
1 hour

FC
3 hours

FC
5 hours

AF023087_s_at nerve growth factor induced factor A 0.85455 1.18488

X62671cds#1_s_at hybrid protein (ubiquitin-like protein/rps30) 0.88530 1.16128

U95001UTR#1_s_at developmentally-regulated cardiac factor (DRCF-5) 0.73694 0.79797

rc_AA892851_g_at EST196654 Rn.3616 0.74547 0.74772

D00688_s_at monoamine oxidase A 0.91274 0.85613

M77246_at beta-chain clathrin associated protein complex AP-2 0.88904 0.81598 1.18781

rc_AA800882_at EST190379 Rn.24136 0.62222 1.36565

Genes that overlap between the three time points. From left to right are listed the GeneChip Probe Set IDs, the gene titles and the fold changes in 

the 1, 3 and 5 hours time point.
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Figure 2 

70 responsive SAGE tags 
annotated as Affymetrix probe sets

SAGE
tags

Affymetrix
probe sets

UniGene
clusters

EASENCBI SAGEmap 

Figure 2. Cross-platform comparison between Serial Analysis of Gene Expression (SAGE) tags and Affymetrix probe sets. Affymetrix probe sets 

were annotated with UniGene clusters using Expression Analysis Systematic Explorer (EASE) whereas SAGE tags were annotated using the NCBI 

SAGEmap. Both annotation tools provide information on the UniGene builds used in the annotation process and therefore allow comparison of 

data sets via the same builds (build 139).

Table 3. Overlap with SAGE. FC = fold change

SAGE tag Unigenes Probe set ID Gene title
FC
1 hour

SAGE 
change

GAACATATTT Rn.11273 X66845_at dynein, cytoplasmic, intermediate chain 1 0.79120 GR down

TGGTGGAATG Rn.4231 L15618_at casein kinase II, alpha 1 polypeptide 0.78114 MR down

TATAATCTGT Rn.29774 M63485_at matrin 3 0.80711 GR up

ACTTAGTTGT Rn.5790 X54510_at ATP synthase coupling factor 6 0.87307 MR up

SAGE tag Unigenes Probe set ID Gene title
FC
3 hours

SAGE 
change

TTTGTGACTG Rn.3946 AF067795_at BFA-dependent ADP-ribosylation substrate 
BARS50 

1.27671 MR up

ACGTAAAAAA Rn.13492 AF093773_s_at cytosolic malate dehydrogenase (Mdh) 1.08950 MR up

GAGAGCTAAC Rn.5785 U08290_at neuronatin alpha 1.22286 MR up

ACCAGCCAGG Rn.32351 X04979_at apolipoprotein E 1.09126 GR up

GTGGGTGTGT Rn.3391 rc_AA892895_r_at EST196698 Rn.3391 1.25344 GR down

AATAAAAGTT Rn.40255 X56133_at F1-ATPase alpha subunit 0.87735 GR down

TTGCTGTTGA Rn.5968 M17069_at calmodulin 2 0.88985 MR down

Genes that overlap between the current and the Serial Analysis of Gene Expression (SAGE) study. The upper panel displays the genes that overlap 

between the 1 hour time point and the SAGE study; the lower panel displays the genes that overlap between the 3 hours time point and the 

SAGE study. In the SAGE change column genes are responsive to the mineralocorticoid receptor or glucocorticoid receptor and the direction of 

regulation is designated as up or down. 
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transmission. Furthermore, calmodulin 2, which was downregulated in both data sets, 

plays a role in calcium channel functioning. Interestingly, 6 of the GR-regulated genes in 

the current data set were MR-regulated in the SAGE data set. 

Validation of a subset of responsive genes 

Since SAM revealed moderate gene expression responses with relatively high FDRs 

throughout the three time points, the GR-dependent change in expression of a subset of 

functionally interesting genes was validated with real-time qPCR. 

Beta-actin, which is commonly used as normalization control and which was not re-

sponsive in the current and the SAGE data set, was used to normalize target gene expres-

sion values. In Table 4, the genes selected for validation and their validation results are 

listed. Furthermore, for some of the validated genes the expression pattern is illustrated 

in Figure 3. 

Table 4. Real time qPCR validation results. FC = fold change. 

Gene title Experiment
FC
affymetrix

FC
qPCR Wilcoxon Validation

Mineralocorticoid receptor slice 1 hour 0.9 0.5 P<0.05 true positive

Shaw-related potassium channel 2 slice 1 hour 0.8 0.8 P<0.05 true positive

Atypical PKC-specific binding protein slice 1 hour 0.8 0.8 P<0.05 true positive

Casein kinase II, alpha 1 polypeptide slice 1 hour/SAGE 0.8 0.7 P<0.05 true positive

Cytoplasmatic dynein intermediate chain slice 1 hour/SAGE 0.8 0.9 P<0.05 true positive

Metallothionein slice 3 hours 1.3 1.4 P<0.05 true positive

CRH receptor 1 slice 3 hours 1.4 1.5 P<0.05 true positive

EST196031 Rn.4183 slice 3 hours 0.7 0.7 P<0.05 true positive

LIMK-1 slice 3 hours 1.3 1.4 P<0.05 true positive

Calcineurin subunit A alpha slice 3 hours 0.8 0.7 P<0.05 true positive

Calmodulin-2 slice 3 hours/SAGE 0.9 0.7 P<0.05 true positive

Apolipoprotein E slice 3 hours/SAGE 1.1 1.1 P<0.05 true positive

Monoamine oxidase A slice 1/3 hours 0.9/0.9 0.9/0.9 P<0.05 true positive

EST190379 Rn.24136 slice 3/5 hours 0.6/1.4 0.9/1.4 P<0.05 true positive

Beta-chain associated protein complex AP-2 slice 1/3/5 hours 0.9/0.8/1.2 0.7/0.7/1.5 P<0.05 true positive

Enolase 2, gamma slice 1 hour 0.7 X X false positive

Sodium channel, voltage-gated, type 2 slice 1 hour 0.8 X X false positive

BARS50 slice 3 hours/SAGE 1.3 X X false positive

Validation of 18 genes. The fold changes obtained with Affymetrix GeneChip analysis and real-time qPCR are displayed as well as the result 

of statistical testing (Wilcoxon Signed Ranks Test). Genes were classified as true positives if the expression changes observed with Affymetrix 

GeneChips could be replicated with real-time qPCR. 
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Genes that were selected for validation belonged to interesting functional classes 

regulated throughout the time points. Additionally, a few genes that showed expression 

responses in multiple time points and some genes which overlapped with the SAGE data 

set were included for validation. In total 18 genes were selected and the GR-induced ex-

pression response of 15 genes could be confirmed (P<0.05, Wilcoxon Signed Ranks Test)

The fold-changes obtained by real-time qPCR were in good concordance with the 

fold-changes obtained by GeneChip analysis. Interestingly, despite the relatively high 

FDRs that were obtained by analyzing the GeneChip data with SAM, we could confirm 

GR-responsiveness of 15 out of 18 genes by real-time qPCR.

DISCUSSION 

The aim of this study was to elucidate potential molecular mechanisms underlying the 

action of corticosterone on the hippocampus by generating a time curve of predomi-

nantly GR-responsive genes. We identified over 200 likely GR-responsive genes and found 

a clear pattern of moderate changes in gene expression in all three time points. 

Figure 3 
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Figure 3. Real-time quantitative PCR results illustrated for four genes. Normalized gene expression levels obtained from corticosterone treated 

and vehicle treated hippocampal slices are plotted and for each separate animal connected with a line (paired setup). 
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Validation of a subset of genes by real-time qPCR resulted in a remarkable consis-

tency of fold-changes since the changes observed in qPCR validation nicely followed 

the changes observed in GeneChip analysis. Furthermore, 83% of the selected genes 

could be confirmed as GR-responsive, indicating an overall FDR of 17%. Since the overall 

GeneChip FDR estimated by SAM was considerably higher, less false positives were found 

in the selected subset than expected. Although the subset was not selected randomly, 

these results could indicate that SAM to a certain extent overestimated the FDR, suggest-

ing a higher number of false negatives. 

In order to assess how specific the profiled genes are for neurons, we checked all the 

genes that were validated by real-time qPCR and found that all 12 genes with a known 

localisation in brain are expressed in principal neurons of the hippocampus, indicating 

that the majority of the profiled genes are specific for neurons (The Allan Brain Atlas; 

www.brainatlas.com).

The moderate changes in gene expression that were found in the current study are 

in agreement with previous reports on corticosteroid-responsive genes in the hip-

pocampus, showing fold changes of less than 2 for the majority of genes in different 

hippocampal subregions by in situ hybridization (7,18,26,27). Although the observed 

differences in expression are remarkably consistent with what is reported in literature, it 

can be expected that by using whole hippocampus the expression differences are most 

likely diluted by hippocampal subregions and non-neuronal cell types which are not or 

less responsive to activated GRs (28,29). However, by using a paired study design we 

were able to enhance the detection of these subtle expression differences, increasing 

statistical power by observing very consistent changes of gene expression within the 

individual animals.

The current data set contained a number of genes that were already known to be re-

sponsive to corticosteroids in the hippocampus, such as metallothionein 1A (30), gluta-

thione peroxidase (31,32) and the mineralocorticoid receptor (33). Therefore, these genes 

constitute good positive controls. Furthermore, we performed cross-platform compari-

sons with the previously generated SAGE data set and found 8 overlapping genes which 

showed similar changes in direction of expression. These 8 genes constituted approxi-

mately 10% of the responsive SAGE tags that could be detected on the GeneChips used 

in the current study. The current experiment differed from the SAGE experiment in the 

fact that in the current experiment prior to corticosterone treatment the hippocampus 

was excised from its surroundings. This resulted in loss of input from extra-hippocampal 

regions. Since these inputs may also be steroid responsive, the current data set does 

not reflect the total GR influence on hippocampal gene expression. Furthermore, since 

the corticosterone treatment was restricted to a 20 minute 100nM pulse whereas in the 

SAGE experiment GRs were activated with an (1 mg/kg bodyweight) in vivo injection, 

this most likely will lead to differences in hippocampal corticosterone exposure as well 
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as additional peripheral effects of the injections. Finally, by comparing different gene 

expression platforms, a lot of genes are omitted from the actual comparison due to an-

notation differences. We believe that these experimental differences and the restrictions 

of cross-platform comparison can explain the relatively small overlap of 8 genes as well 

as the change in direction of expression regulation of 3 genes.

In conclusion, the reliability of the current data set was demonstrated by the validation 

results, the observed fold-changes, the presence of positive controls and the overlap 

with the SAGE study. 

By generating a time curve of GR-responsive genes a striking dynamical pattern was 

revealed. We observed different waves of gene expression throughout the time frame, 

with only downregulated genes 1 hour after GR-activation. Since no protein synthesis 

inhibitors were used in the current study, the question whether these identified genes 

are primary GR-responsive genes or responsive to downstream GR-induced changes 

cannot be answered. Activated GRs can modulate gene expression either via transre-

pression, by interacting as a monomer with other transcription factors thereby inhibit-

ing transcription, or via transactivation, by binding as a homodimer to glucocorticoid 

responsive elements (GREs) on the DNA, thereby inhibiting or stimulating transcription. 

The finding that all the genes which were responsive 1 hour after GR-activation were 

downregulated may indicate that at this time point these genes are primary GR-respon-

sive genes and regulated via transrepression. Hence, this would mean that in general 

transrepression precedes and/or is faster than transactivation. In agreement with this, 

Almon and co-workers (34) found a similar dynamical pattern of transcription regulation 

by corticosteroids in liver, in which the majority of rapidly modulated genes (45 out of 50) 

were downregulated after injection of corticosteroids, whereas a robust, delayed wave 

of upregulated genes followed 2 hours later. Interestingly, some of the responsive genes 

which were regulated in more than one time point changed their direction of expression 

throughout the time points. A similar observation was found by Fujikawa and co-work-

ers, showing a biphasic regulation of hippocampal mRNAs coding for growth hormone 

receptor, GR and MR throughout time during acute stress (35). This biphasic regulation 

could be the effect of downstream regulatory mechanisms, indicating that these genes 

change from primary responsive genes to downstream responsive genes throughout 

time. Therefore, the 3 and 5 hours time points would each contain at least 2 downstream 

responsive genes since both time points contain two genes which have changed their 

direction of expression in comparison with the previous time point (Figure 1). Addition-

ally, one gene, metallothionein, for which the presence of a GRE has been reported (36) 

was also found to be regulated after 3 hours, indicating that at this time point most likely 

both primary and downstream responsive genes are present.

The different waves of gene expression at the different time points contained simi-

lar functional groups. Responsive genes were grouped into functional classes such as 
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signal transduction, regulation of transcription, regulation of translation, metabolism, 

cell adhesion and synaptic transmission. Classification of GR-responsive genes into these 

functional groups is in agreement with previous studies showing similar functional cat-

egories in hippocampus and other tissues (7,34,37). 

In terms of hippocampal neuronal excitability, both calcium channels and 5HT1A 

receptors comprise interesting genes. Glucocorticoid hormones have a clear effect on 

excitability of neurons in the CA1 area of the hippocampus, especially on voltage-gated 

calcium currents and 5HT1A receptor-mediated hyperpolarization (8). However, in the 

current study, the 5HT1A receptor was undetectable on the GeneChips used, which is 

consistent with several of our previous GeneChip studies in hippocampus (38-40). This 

is most likely due to expression levels below the detection limit of GeneChips. Therefore 

expression of the 5HT1A receptor could not be assessed using GeneChips. Furthermore, 

no GR-mediated transcriptional effects on calcium channels were found. Since stress-in-

duced increases in calcium currents in vivo have been shown to be preceded by transient 

increases in calcium channel subunit mRNAs in the hippocampal CA1 region (41), the 

absence of calcium channels in the current study may indicate that 1) putative GR-medi-

ated effects on calcium channel transcription in the CA1 subregions are undetectable 

due to the dilution of the response by other hippocampal subregions and non-neuronal 

cell types, or 2) calcium channel subunit expression is regulated at a different time point 

than currently profiled. Furthermore, it should be noted that by using GeneChips or mi-

croarrays in general, the possibility exists that false negative data is generated due to 

the large amount of hypotheses tested in a single experiment. This example underpins 

that a link between the corticosterone-induced changes in hippocampal neuronal excit-

ability in the CA1 subregion and changes in gene expression using expression profiling 

is complex, even when the experimental protocols are matched as closely as possible 

within the current technical constraints. The same line of reasoning may hold true for 

other genes that are known to be responsive to corticosteroids such as brain-derived 

neurotrophic factor (BDNF) which was detectable on the GeneChips but not found to be 

regulated in the SAM analysis. BDNF is known to be downregulated in vivo 3 hours after 

a single corticosterone injection in both dentate gyrus and CA1 regions and in this case 

the differences between in vivo treatment and in vitro hippocampal slice treatment as 

previously described with respect to the comparison with the SAGE study should also be 

taken into account.

Our current expression profile corresponds with the well-documented effects of glu-

cocorticoids on brain metabolism. For instance, it has been reported that corticosterone 

inhibits glucose utilization by neurons and astrocytes (42). In the current data set, lactate 

dehydrogenase B, which is involved in glucose utilization, is downregulated, possibly 

underlying (part of ) this effect. Other downregulated genes playing a role in energy 

metabolism included the F1-ATPase alpha subunit and ATP synthase coupling factor 6 
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which are both involved in ATP synthesis. Since it is known that corticosterone acceler-

ates ATP-loss after a metabolic insult (43) these two genes constitute interesting putative 

candidate genes for the glucocorticoid effects on ATP-synthesis. Beside the effects on en-

ergy metabolism, glucocorticoids also play a role in oxidative stress metabolism (44) and 

in the present study we observe a number of regulated genes which may be involved. 

Strikingly, a number of genes playing a role in hippocampal neurotransmission and 

synaptic plasticity were found to be responsive to corticosterone. The functional implica-

tion of regulation of four of these genes is described in more detail below.

Firstly, monoamine oxidase A, which is involved in the catabolism of serotonin, dopa-

mine and noradrenaline (45), was found to be downregulated at two time points, i.e. 1 

and 3 hours after GR-activation. All three neurotransmitters have been associated with 

certain aspects of hippocampal functioning. The hippocampus is known to play a role in 

learning and memory formation and dopamine and noradrenaline have been associated 

with mnemonic processing and memory retrieval respectively (46,47). The hippocampus 

also plays an important role in anxiety and the dorsal hippocampal serotonergic system 

has been associated with anxiogenic responses (48). Hence, downregulation of mono-

amine oxidase A could modify these aspects of hippocampal function by increasing the 

availability of these neurotransmitters. To our knowledge, such a direct effect of cortico-

steroids on hippocampal neurotransmitter availability has not been observed before. 

Secondly, CRH receptor 1 was found to be upregulated by corticosterone 3 hours after 

GR-activation. CRH is a neuropeptide that is released after stress by the hypothalamus 

and modulates many neuroendocrine and behavioral responses (49-51). In the hippo-

campus, the majority of the pyrimidal cells in CA1 and CA3 express the CRH receptor 

1 (52). Since the GR is predominantly expressed in CA1, CA2 and DG, it may be that 

the effect of activated GRs on CRH receptor1 takes place in the CA1 area. Interestingly, 

administration of exogenous CRH into the hippocampus affects long-term potentiation 

(LTP) (53). Additionally, CRH-producing neurons have been found in interneurons in the 

pyramidal layers of the hippocampus (54) and there is evidence that stress-induced CRH 

of hippocampal origin activates hippocampal pyramidal cells via the CRH receptor 1 (55). 

Therefore, transient upregulation of the hippocampal CRH receptor 1 by stress-released 

corticosterone constitutes a very interesting phenomenon which could lead to an en-

hancement of the CRH-induced effects on hippocampal functioning. 

Thirdly, calmodulin 2 was found to be downregulated both in the current study and 

the SAGE study. The calmodulins constitute a unique gene family in which all three differ-

ent members (calmodulin 1, 2 and 3) code for exactly the same protein (56). Calmodulin 

has been hypothesized to function as a central regulator of synaptic plasticity (57) and, 

similar to CRH, to play a role in LTP, implying that corticosterone may influence this phe-

nomenon via the regulation of expression of multiple genes. 
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Finally, LIMK1 was found to be upregulated 3 hours after GR-activation. In vitro it has 

been shown that this gene, via phosphorylation of ADF/cofilin, can enhance polymer-

ization of actin filaments (58,59). Furthermore, studies with LIMK1 knock-out mice have 

shown that this gene is involved in actin cytoskeleton-dependent regulation of dendritic 

spine morphology and synaptic function (60). Hence, the transient upregulation of this 

gene by corticosterone could be a means to temporarily modify synaptic function. In 

this respect it is interesting to note that calcineurin A was downregulated 3 hours after 

GR-activation. This gene is known to be enriched in the dendritic spines of hippocampal 

neurons and to be involved in destabilizing both actin filaments and dendritic spine 

structure (61,62). Furthermore, Tojima and co-workers (59) demonstrated that calcineurin 

can inhibit protein expression of LIMK1 in neuronal NG108-15 cells, which would suggest 

that the corticosterone-induced downregulation of this gene could increase LIMK1-pro-

tein expression. 

In conclusion, by profiling gene expression after GR-activation in hippocampal slices 

throughout a time window of 1 to 5 hours, we have found a very interesting dynamic 

pattern of gene regulation, with several subsequent waves of gene expression and 

only downregulated genes 1 hour after GR-activation. Furthermore, we have identified 

interesting candidate genes that may underlie the glucocorticoid-mediated effects on 

hippocampal cell function. However, due to 1) the resolution of the time frame profiled, 

2) the technical difficulties with the detection of low abundant genes such as the 5HT1A 

receptor, 3) the use of whole hippocampi and 4) the transient changes observed in gene 

expression, establishing a correlation between changes in mRNA levels and changes in 

hippocampal function still remains complex. On the other hand, in the current study new 

unexpected genes such as LIMK1, calmodulin 2, monoamine oxidase A and CRH receptor 

1 were found to be GR-responsive, thereby raising the question what the functional con-

sequences are of GR-regulation of these genes in the hippocampus. Hence, the current 

study can be used to formulate new hypotheses about the effects of corticosterone on 

hippocampal cell function. Therefore, future studies need to be focused on the functional 

consequences of GR-regulation of presently identified interesting hippocampal genes.
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SUPPLEMENTARY MATERIAL

Table S1. From left to right are listed the GeneChip Probe Set IDs, the fold changes in the 1, 3 and 5 hours time point, the gene titles and the 

Gene Ontology Biological Process descriptions. Fold changes below 1 indicate downregulated genes; fold changes above 1 indicate upregulated 

genes. 

Probe Set ID
FC
1 hour

FC
3 hours

FC
5 hours Gene Title

GO Biological 
Process Description

AB016489_s_at 0.88106 jumping translocation breakpoint ---

AF034582_g_at 0.87415 SEC31-like 1 (S. cerevisiae) ---

C06598_at 0.92833 similar to binding protein ---

L26292_g_at 0.70512 Kruppel-like factor 4 (gut) ---

M31322_g_at 0.86328 sperm membrane protein (YWK-II) ---

M63485_at 0.80711 matrin 3 ---

M81639_at 0.78973 stannin ---

rc_AA799726_at 0.82732 Similar to mKIAA1737 protein ---

rc_AA800549_at 0.80255 Transcribed locus ---

rc_AA800693_at 0.81134 Transcribed locus, moderately similar to XP_488563.1 ---

rc_AA800693_g_at 0.85774 Transcribed locus, moderately similar to XP_488563.1 ---

rc_AA874928_g_at 0.86164 sorting nexin 4 (predicted) ---

rc_AA891314_at 0.89191 poly(rC) binding protein 4 (predicted) ---

rc_AA946313_s_at 0.80394 secreted acidic cysteine rich glycoprotein ---

rc_AA964320_at 0.95849
NADH dehydrogenase (ubiquinone) 1 beta 
subcomplex 8 ---

rc_AI009132_at 0.82736
similar to chromosome 13 open reading frame 12 
(predicted) ---

rc_AI010371_at 0.84454 Transcribed locus ---

rc_AI112237_at 0.77218
NADH dehydrogenase (ubiquinone) 1 beta 
subcomplex, 2 ---

rc_AI232012_at 0.87777
NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 8 ---

rc_H33149_at 0.84493 similar to RIKEN cDNA 1810047C23 ---

X52733cds_s_at 0.88393 ribosomal protein L27a (predicted) ---

X66845_at 0.79120 dynein, cytoplasmic, intermediate chain 1 ---

X76985_at 0.85592 latexin ---

rc_AA892851_g_at 0.74547 0.74772 EST196654 Rn.3616 ---

AF069525_at 0.84834 ankyrin 3, epithelial isoform g ---

AF095741_g_at 1.12291 Mg87 protein ---

D13966_at 1.31674 insulin receptor-related receptor ---
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Probe Set ID
FC
1 hour

FC
3 hours

FC
5 hours Gene Title

GO Biological 
Process Description

L40364_f_at 1.44847 MHC class I RT1.O type 149 processed pseudogene ---

M13100cds#6_f_at 0.75022
similar to ORF2 consensus sequence encoding 
endonuclease ---

rc_AA799369_at 0.83915 similar to RIKEN cDNA 1190002L16 (predicted) ---

rc_AA799473_at 0.71189 Similar to R31449_3 ---

rc_AA799550_at 0.81196 T-cell activation protein ---

rc_AA799570_at 0.80322 Similar to mmDj4 ---

rc_AA799607_at 0.69066 Transcribed locus ---

rc_AA799824_at 0.87664
Similar to Vacuolar ATP synthase subunit C (V-ATPase 
C subunit) ---

rc_AA800029_at 0.79104 pam, highwire, rpm 1 (predicted) ---

rc_AA800296_at 0.79944 Similar to poly(A) polymerase V ---

rc_AA800456_at 0.71941 Transcribed locus ---

rc_AA800513_at 0.79192
Similar to transformation/transcription domain-
associated protein ---

rc_AA800753_at 0.71393 Similar to importin 7 ---

rc_AA800882_g_at 0.66441 EST190379 Rn.24136 ---

rc_AA858600_at 0.88112
leucine-zipper-like transcriptional regulator, 1 
(predicted) ---

rc_AA866291_at 0.78168 similar to cornichon-like protein (predicted) ---

rc_AA866432_at 0.84821 LOC363015 ---

rc_AA866459_at 0.84950 Cyclin D binding myb-like transcription factor 1 ---

rc_AA874832_at 0.80373 anaphase-promoting complex subunit 5 (predicted) ---

rc_AA874848_s_at 0.86137 Thymus cell antigen 1, theta ---

rc_AA875084_at 0.70353
transducin-like enhancer of split 1, homolog of 
Drosophila E(spl) ---

rc_AA875171_at 0.75744
N-acetylglucosamine-1-phosphotransferase, gamma 
subunit ---

rc_AA891069_at 0.74698
serine/arginine-rich protein specific kinase 2 
(predicted) ---

rc_AA891161_at 0.66544 Transcribed locus ---

rc_AA891476_at 0.87216 Transcribed locus ---

rc_AA891824_at 0.88196
serine/arginine-rich protein specific kinase 2 
(predicted) ---

rc_AA891864_at 0.68641 ATP/GTP binding protein 1 (predicted) ---

rc_AA892014_s_at 0.79215 HLA-B-associated transcript 1A ---

rc_AA892228_at 0.74292 EST196031 Rn.4183 ---
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Probe Set ID
FC
1 hour

FC
3 hours

FC
5 hours Gene Title

GO Biological 
Process Description

rc_AA892270_g_at 1.10753 similar to DNA polymerase epsilon p17 subunit ---

rc_AA892376_at 0.82120 protein associated with PRK1 ---

rc_AA892394_at 0.67246
Similar to CUG triplet repeat RNA-binding protein 1 
(CUG-BP1) ---

rc_AA892394_g_at 0.76976
Similar to CUG triplet repeat RNA-binding protein 1 
(CUG-BP1) ---

rc_AA892422_at 0.77592 mitochondrial ribosomal protein L11 ---

rc_AA892465_at 1.18084 helicase with zinc finger domain (predicted) ---

rc_AA892500_at 0.66947 Similar to mKIAA0623 protein ---

rc_AA892506_at 0.76250 coronin, actin binding protein 1A ---

rc_AA892548_at 0.69869 Transcribed locus ---

rc_AA892666_at 1.22762 galactose mutarotase (aldose 1-epimerase) ---

rc_AA892831_s_at 0.82520
proteasome (prosome, macropain) 26S subunit, 
non-ATPase, 11 ---

rc_AA892842_at 0.72104 similar to capping protein alpha 2 subunit ---

rc_AA893173_at 0.81139 vacuolar protein sorting 29 (S. pombe) (predicted) ---

rc_AA893515_at 0.72324 translocation protein 1 (predicted) ---

rc_H31887_at 1.28709 similar to RIKEN cDNA 1700037H04 (predicted) ---

rc_H33656_at 0.92096 Transcribed locus ---

U25264_at 0.93048 selenoprotein W, muscle 1 ---

U48288_at 0.69457 A kinase (PRKA) anchor protein 11 ---

X53581cds#5_f_at 0.75750 similar to RIKEN cDNA 9330196J05 (predicted) ---

X83231_at 1.22802 inter-alpha trypsin inhibitor, heavy chain 3 ---

rc_AA800882_at 0.62222 1.36565 EST190379 Rn.24136 ---

rc_AA891842_at 1.34095 Similar to death receptor 6 ---

rc_AI639381_at 0.81049 --- ---

X02412_at 0.88790 --- ---

X51536cds_at 0.90839 --- ---

U75404UTR#1_s_at 1.18993 --- ---

X14210cds_at 1.07495 --- ---

S46798cds#1_s_at 1.14169 --- ---

U11071_f_at 1.14464 --- ---

rc_AA965147_at 0.76936 --- ---

rc_AI639002_i_at 1.36076 --- ---

rc_AI639102_g_at 0.77318 --- ---
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Probe Set ID
FC
1 hour

FC
3 hours

FC
5 hours Gene Title

GO Biological 
Process Description

rc_AI639427_at 0.80273 --- ---

rc_H31610_at 0.82677 --- ---

rc_AA892860_at 0.90096 --- ---

rc_AA892864_at 0.75562 --- ---

rc_AA875630_at 0.71008 --- ---

rc_AA891054_at 0.66438 --- ---

M61177_s_at 1.10081 --- ---
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ABSTRACT

We previously assessed corticosterone mediated gene expression in acute explant hip-

pocampal slices and found over 200 responsive genes 1, 3 and 5 hours after glucocor-

ticoid receptor (GR) activation by a brief corticosterone pulse. Interestingly, 1 hour after 

GR activation all genes were downregulated, many of which are involved in hippocampal 

neurotransmission and plasticity. 

The aim of the current experiment was 1) to measure the expression of several of these 

neurotransmission-related genes that were corticosterone-responsive 1 hour after GR-

activation in an in vivo setting, 2) to elucidate in which hippocampal subregion these 

expression changes take place and 3) to assess the specificity of regulation by activated 

GRs. For this purpose, rats were subcutaneously injected with vehicle, corticosterone or 

corticosterone pretreated with GR-antagonist RU38486. One hour after the corticoste-

rone injections, mRNA expression levels of 5 selected genes were measured using in situ 

hybridization. 

The mineralocorticoid receptor (MR), MAO-A, casein kinase 2 and voltage depen-

dendent potassium mRNA’s, but not dynein mRNA, were rapidly downregulated in vivo 

after corticosterone administration in hippocampal subregions. Furthermore, RU38486 

pretreatment reversed in all cases these effects, illustrating the GR-specificity of tran-

scriptional regulation by corticosterone. The results are important for understanding the 

role of GR in pleiotropic control of hippocampal neurotransmission and plasticity, which 

is characterized by recovery of function transiently raised by excitatory input.
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INTRODUCTION

Hippocampal neurotransmission is influenced by glucocorticoids (1,2,3). For example, 

high concentrations of glucocorticoids secreted during stress increase the neuron’s re-

sponses to serotonin, reduce β-adrenergic receptor mediated effects, enhance calcium 

influx and impair long-term potentiation (LTP) ((4). These effects on hippocampal plastic-

ity exerted by the glucocorticoids likely involves transcriptional changes, since they have 

a slow onset and persist for at least 4 hours (2,3,5). Such genomic effects of glucocorticoids 

in high concentrations are mediated by the glucocorticoid receptor (GR), which upon 

ligand binding can modulate gene transcription via transactivation or transrepression. 

Glucocorticoids are secreted in an ultradian rhythm with pulses lasting for about 20 

minutes which are sufficient to substantially activate the GR (6,7). In neurophysiologi-

cal studies over the past two decades using the hippocampal slice this corticosterone 

pulse was mimicked and as a result a pattern of GR-mediated effects occurred aimed 

to suppress excitability that was transiently raised by excitatory stimuli (4,8). With the 

acute explant hippocampal slice, we previously assessed using Affymetrix GeneChips 

the transcriptional response to a 20 minute corticosterone pulse and found more than 

200 corticosterone-responsive genes 1, 3 and 5 hours post-injection (9). One hour after 

GR-activation all responsive genes were downregulated, suggesting that under this con-

dition in the hippocampus transrepression may be the prevailing pathway mediating 

the transcriptional response to corticosterone. Naturally gene expression regulation via 

negative GREs could also be involved. 

This study was designed to examine if these responsive genes identified in vitro also 

were altered in vivo one hour after administration of a high dose of corticosterone ac-

tivating the GR. This is an important validation since the data from hippocampal slices 

were obtained from whole hippocampi and therefore the exact hippocampal subregions 

in which gene regulation took place could not be pinpointed. Different hippocampal 

subregions display different levels of GR-expression; GR is predominantly expressed in 

CA1, CA2 and dentate gyrus whereas in CA3 GR is expressed to a much lower extent 

(10,11). Furthermore, the different hippocampal subregions have entirely different tran-

scriptomes (12) and hence the availability of transrepression partners and downstream 

pathways may differ from one subregion to another, giving rise to subregion-dependent 

differences in corticosterone-mediated gene regulation. Also, since in hippocampal 

slices the input from extra-hippocampal regions (which could also be steroid-responsive) 

as well as the peripheral effects of increasing concentrations of corticosterone are lost, 

this in vitro generated data set may not reflect the full extent of GR-mediated effects on 

hippocampal gene expression in the living brain. 

In the current study genes were selected for further study that were representative 

for the rapid transcriptional effects of glucocorticoids on neurotransmission and plastic-
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ity. This included first of all the mineralocorticoid receptor (MR), which is an established 

target for GR. The GR and its high affinity congener the mineralocorticoid receptor (MR) 

are postulated to mediate in a coordinate and balanced manner the effects of gluco-

corticoids. Hence, their mutual interaction is of crucial importance to test the role of 

the MR/GR balance in neuro-excitability (2). The second responsive gene included was 

monoamine oxidase A (MAO-A) because of its role in neurotransmitter catabolism. Since 

MAO is a target for antidepressants its regulation by glucocorticoids is of obvious im-

portance. Third, voltage-gated potassium channel Kv3.2 since this gene directly affects 

action potential propagation (13). Fourth, casein kinase 2 plays a role as a downstream 

mediator of NMDA-dependent LTP (14). Finally, cytoplasmic dynein because it possibly 

plays a role in (GR) receptor translocation (15).

To assess GR specificity of the corticosterone effects the rats were pretreated with the 

GR-antagonist RU38486. One hour after corticosterone injection, the rats were decapi-

tated and the expression levels of the selected genes were assessed by using mRNA in 

situ hybridization. The data support the concept that the expression patterns in vitro 

hippocampal slice system are an appropriate model system for generating hypotheses 

that are testable under in vivo conditions, even though these genomic effects are often 

limited to hippocampal subregions. 

MATERIALS & METHODS

Animals

All experiments were carried out with the approval of the Animal Experiment Committee 

of the University of Amsterdam (protocol number DED108).

Young male Wistar rats of approximately 200 g were used for the experiments and 

were housed individually on a 12 h light/dark cycle (lights on at 8.00 a.m.) with food and 

drinking water ad libitum. On the day of the experiment, at 9.30 a.m., the animals were 

subcutaneously injected with 800 µl (arachide) oil (vehicle group; n = 8) or corticosterone 

(Sigma, the Netherlands; 10 mg / animal) dissolved in oil (cort group; n = 8). An additional 

group of animals received a subcutaneous injection with 800 µl GR-antagonist RU38486 

(Sigma, The Netherlands; 25 mg / kg body weight) at 8:30 a.m., followed one hour later 

by an injection with corticosterone (RU + cort group; n=8). One hour after the injections 

(at 10:30 a.m.), the animals were decapitated. Brains were immediately isolated, frozen 

on dry ice, and stored at -80°C. 

Corticosterone

In order to measure plasma corticosterone concentrations, trunk blood was collected 

in EDTA-coated tubes immediately after decapitation. Blood samples were centrifuged 



75

Chapter 3

C
h

ap
te

r 
3

at 3000 r.p.m. for 10 minutes at 4°C, after which the plasma was collected and stored at 

-20°C. Corticosterone concentrations were measured with the murine corticosterone RIA 

kit (ICN Biomedicals™, Costa Mesa, CA, USA). 

Oligonucleotides

Where possible, 45-mer oligonucleotide probes were designed in the 3’ untranslated 

regions where the probe sets used on the Affymetrix GeneChips (9) were derived from. 

The mismatch oligos were identical to the perfect match oligos except for six point muta-

tions (transversions), evenly spaced at approximately seven nucleotides distance. Perfect 

match and mismatch probes are listed in Table 1.

Table 1. Oligonucleotide probes for mRNA in situ hybridization.

Gene title Probe set ID Perfect match oligo (5’-3’) Mismatch oligo (5’-3’)

casein kinase 2 L15618_at
cac-gac-agt-gta-gaa-gta-agg-gtg-
ctc-cat-ggc-ctc-tct-tgc-agt

cac-Tac-agG-gta-gaa-Tta-agg-Ttg-
ctc-caG-ggc-ctc-Gct-tgc-aTt

dynein, cytoplasmic, 
intermediate chain 1 X66845_at 

tag-gac-tac-gcc-aga-agt-aca-tgt-
aag-cac-aaa-ttc-aac-cag-agg

tCg-gac-taA-gcc-aga-Cgt-aca-Ggt-
aag-caA-aaa-ttc-Cac-cag-aTg

mineralocorticoid 
receptor (MR) M36074_at

ttc-gga-ata-gca-ccg-gaa-acg-cag-
ctg-acg-t

Gtc-gga-Cta-gca-Acg-gaa-Ccg-
cag-Atg-acg-G

monoamine oxidase A D00688_s_at
aac-cat-ctt-gaa-gac-aca-ggt-aga-
ctt-aga-gat-cta-atc-ctc-tga

aCc-cat-Att-gaa-gac-Cca-ggt-aTa-
ctt-agC-gat-cta-Ctc-ctc-tTa

potassium voltage gated 
channel (Kv3.2) X62839mRNA_s_at

tac-aca-gtt-tca-act-aca-gca-gtg-
atg-aag-aca-aac-aca-cgc-ttc

Gac-aca-gGt-tca-acG-aca-gca-
gGg-atg-aaT-aca-aaA-aca-cgc-Gtc

From left to right are listed the gene titles, probe sets on the Affymetrix Rat Genome U34A GeneChips, sequences of the perfect match oligos and 

sequences of the mismatch oligos. The point mutations (transversions) in the mismatch oligos are displayed in capital letters. 

mRNA in situ hybridization

Using a CM1900 cryostat (Leica Microsystems, Wetzlar, Germany) twenty micrometer cor-

onal brain sections were prepared from the isolated brains, thaw mounted on poly-L-ly-

sine-coated slides and stored at -80°C. In situ hybridizations were performed as described 

previously (16), using specific 45-mer oligonucleotide probes. These probes were labeled 

with α-33P-dATP (Perkin Elmer Life Sciences) at the 3’-terminals, using terminal transferase 

(Amersham), which resulted in 50 – 75% incorporation efficiency (10 -15 A-residues per 

oligonucleotide). Per gene 4 sections were hybridized with the perfect match oligo for 

each animal. Additionally, per gene 4 sections were hybridized with the mismatch oligo. 

These sections were subsequently exposed to a Kodak X-OMAT MR film (Rochester, NY, 

USA) for 4 - 9 days, depending on signal intensity. The signals were in the linear range of 

gray values according to the [14C] RPA 504 microscales (Amserham, Aylesbury, UK). Per 

gene, the radioactive labeled slides from the different treatment groups were distributed 

onto the same film. The optical density was quantified using an Olympus image analysis 
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system (Paes, The Netherlands) equipped with a Cue CCD camera. In order to obtain a 

specific expression signal for each gene the mismatch signal was used as a measure for 

background intensity and subtracted from the perfect match signal. The expression lev-

els were measured in the CA1, CA2, CA3 and dentate gyrus (DG) regions. The scoring of 

the gene expression measurements was performed blindly, after which the experimental 

conditions were re-assigned to the differently coded groups. One-way ANOVA and post-

hoc LSD tests were performed to assess statistically significant gene expression changes 

(P < 0.05). 

RESULTS

Corticosterone values

As expected, plasma corticosterone concentrations were significantly elevated (P < 0.05) in 

corticosterone injected animals (66 +/- 12 µg / dl) and corticosterone + RU38486 injected 

animals (96 +/- 44 µg / dl) compared to the vehicle injected animals (2.0 +/- 1 µg / dl). 

In situ hybridizations

Sections hybridized with the perfect match probes yielded strong specific hybridization 

signals whereas sections hybridized with the mismatch probes displayed no specific hy-

Figure 1 

mineralocorticoid receptor (MR) monoamine oxidase A (MAO-A) potassium channel Kv 3.2 

casein kinase 2 cytoplasmic dynein 

Figure 1 
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mineralocorticoid receptor (MR) monoamine oxidase A (MAO-A) potassium channel Kv 3.2 

casein kinase 2 cytoplasmic dynein 

Figure 1. Representative mRNA in situ hybridization autoradiographs of frontal hippocampal sections hybridized with different oligonucleotide 

probes. 
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bridization signal, illustrating the binding-specificity of the oligonucleotide probes. The 

expression of each gene displayed a characteristic distribution pattern throughout the 

brain and throughout the different hippocampal subregions (Figure 1) with for instance 

monoamine oxidase A (MAO-A) showing a lower expression level in the CA1 subregion 

compared to the other subregions and a strong signal in the habenula. Potassium chan-

nel Kv 3.2, conversely, showed lowest expression in the dentate gyrus and very high ex-

pression levels in the thalamus region. Additionally, expression could be observed in and 

just above the pyramidal cell layer. Furthermore, for MAO-A and the mineralocorticoid 

receptor (MR) the CA2 region was clearly distinguishable from the surrounding regions 

and therefore the expression levels in this region were also measured. 

Strikingly, four out of five genes displayed a significant downregulation (P < 0.05) 1 

hour after corticosterone administration in at least 1 hippocampal subregion (Figure 2). 

Additionally, for each corticosterone-responsive gene the pretreatment with the GR-

antagonist RU486 significantly (P< 0.05) reversed the corticosterone-mediated effect in 

nearly all cases. 

More specifically, for the MR mRNA, a significant decrease occurred in the CA3 region 

after corticosterone; RU486 pretreatment significantly increased expression in all hip-

pocampal subregions compared to the animals treated only with corticosterone. Mono-

amine oxidase A expression decreased in CA1, CA3 and DG subregions after corticoste-

rone treatment. This decrease was fully reversed in animals receiving corticosterone + 

RU486 treatment in the CA1 subregion. Potassium voltage-gated channel Kv3.2 displayed 

significant reductions in gene expression in the CA1 and DG after corticosterone, which 

both were blocked by RU486 administration. Finally, casein kinase showed significant 

transcriptional downregulation in the CA1, CA3 and DG subregions after corticosterone 

treatment, which in all three areas was reversed by RU486 pretreatment. Interestingly, 

with all of these 4 genes the pattern of transcriptional regulation in the corticosterone and 

corticosterone + RU486 treatment groups was very similar for the different subregions.

Cytoplasmic dynein did not show a significant downregulation in any hippocampal 

subregion after corticosterone administration. Also the combined corticosterone and 

RU486 treatment did not have any effect on the expression level of this gene.

DISCUSSION

The present study showed that 4 out of 5 selected genes, previously identified as corti-

costerone-responsive 1 hour after corticosterone administration to explant hippocampal 

slices, also were reduced in expression at 1 hour after administration of high amounts of 

corticosterone to intact animals. All effects appeared to be GR-mediated. Importantly, 

our data are not a mere validation of the earlier microarray observations (9) with in situ 
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hybridization, as the earlier study used in vitro application of corticosterone to a reduced 

hippocampal preparation whereas here corticosterone was applied to the intact animal; 

the latter comes close to physiologically relevant situations (e.g. after stress), allowing 

peripheral effects of corticosterone as well as effects in hippocampal ánd non-hippo-

campal brain regions. Given the highly comparable outcome for 4 out of 5 genes in the 

two studies, we conclude that the influence of projections from peripheral organs and 

extra-hippocampal brain structures expressing GR (17) did not affect the in vivo GR-medi-

ated transcriptional response. This observation also further reinforces the notion that 

we studied primary responsive genes. The effects sizes displayed values as low as 10%, 

which is in line with hormone-induced gene expression changes observed in other stud-

ies (9,18-22). In fact, small reliable changes in gene expression in the order of 10 – 30% 

are commonly observed in the effects of glucocorticoids on hippocampal neuronal func-

tioning (23). 

Generally, the 4 responsive genes showed a significant downregulation of expression 

(or a trend towards downregulation) by corticosterone in every hippocampal subregion. 

Consequently, pooling hippocampal subregions -as was done in the earlier microarray 

study- is not expected to dilute transcriptional changes induced by corticosterone. 

Conversely, genes that do show regional differences in GR-dependent transcriptional 

regulation might not be picked up as significant in an approach using material pooled 

from all hippocampal subareas. The fact that 4 out of 5 genes tested in the present study 

displayed comparable GR-induced expression changes for all hippocampal regions, de-

spite profoundly different local profiles including for the genes under study themselves 

(12), is interesting. Again, this supports that these 4 genes form primary targets for cor-

ticosterone. 

A number of functional implications can be inferred from our findings. First, the hippo-

campal MR was downregulated in CA3, while blockade with the antagonist enhanced MR 

expression in all regions. This suggests that GR-mediated downregulation had occurred 

by corticosterone. Corticosterone binds with high affinity to the MR. The finding is, there-

fore, of interest since it points to heterologous rather than homologous downregulation 

of MR. Moreover, although corticosterone-induced MR downregulation is known, it has 

not been reported to occur already within the 1 hour time interval (24). Since many GR-

mediated effects are known to counteract those induced via MR, this rapid downregula-

tion of MR could constitute an important regulatory control in the balance of MR- and GR 

mediated effects thought to be important for neuroexcitability (2). 

Second, the synaptic input from mono-aminergic neurons may be modulated via down-

regulation of MAO-A, which is involved in the catabolism of aminergic neurotransmitters 

such as serotonin, dopamine and noradrenalin in synapses. Therefore downregulation 

may lead to higher pre-synaptic levels of these neurotransmitters, thereby specifically 

enhancing the efficiency of synaptic aminergic input. The rapid GR-mediated action of 
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corticosterone is of interest, since it provides an additional substrate for its pre-synaptic 

stimulatory actions on aminergic transmission in addition to the corticosterone enhanced 

amine biosynthesis. This GR-mediated effect on MAO-A expression occurs fast suggest-

ing it participates in the recovery process from stress promoted by the glucocorticoids. 

Third, increased activity of casein kinase 2 was shown to be correlated with the induc-

tion of NMDA-receptor mediated long-term potentiation (LTP) (14,25). Downregulation 

of casein kinase 2 by corticosterone in the hippocampus may therefore inhibit NMDA-

receptor mediated LTP in a delayed genomic fashion. This would fit with earlier observa-

tions that GR activation indeed suppresses the induction of NMDA-type LTP (26) and 

that this is most likely not caused by a downregulation of NMDA receptor subunits (9 

and Qin and Joëls, unpublished observation). Therefore, regulation of other, NMDA func-

tion modifying proteins –like casein kinase 2– may underlie the effect of corticosterone 

on LTP. 

Finally, voltage-gated potassium channel Kv3.2 functions as a delayed rectifier-type 

potassium channel that is activated by large membrane depolarizations. Downregulation 

by activated GR may therefore result in enhanced action potential propagation along the 

axons due to decreased hyperpolarization of the membrane potential.

One gene, dynein, did not display corticosterone-responsiveness in the current de-

sign which could indicate that the expression of this gene may be under the control 

of hippocampal afferents. Alternatively, since in the current experiment injections of 

corticosterone occurred in intact animals, the time frame of corticosterone action does 

not necessarily have to coincide with that in the hippocampal slice experiment due to 

differences in hormone kinetics and tissue condition. Hence, further study is required 

to examine the corticosterone-response of dynein, also given the role of the protein in 

GR-receptor translocation (15). 

With the 4 genes representative for distinct rapid genomic processes underlying hip-

pocampal neurotransmission and plasticity novel aspects of GR-mediated corticosterone 

physiology emerge. Some genes such as MAO-A are suppressed, which may give rise to an 

enhanced aminergic input. Depending on whether the amines involved exert excitatory 

or inhibitory effects –which is determined both by the ligand and the receptor subtype 

mediating its actions- reduced levels of MAO-A could thus increase or decrease the local 

excitability. Other genes such as MR and casein kinase are suppressed and if translated in 

reduced functional proteins would suppress excitability. Conversely, suppression of the 

voltage gated potassium channel would probably result in enhanced neuroexcitability 

(Figure 3). 

Hence, the presently studied glucocorticoid-dependent transcriptional responses 

potentially could change hippocampal neurotransmission. Most though not all effects 

would favor a suppression of the local excitability. However, some caution is required 

since the genes constitute only a small fraction of a transcriptional profile which contains 
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more than 200 GR-responsive genes. Therefore, the overall picture on how corticoste-

rone influences neuronal functioning in different hippocampal subregions is far more 

complex.

Figure 3 

−

−

+

+/- neurotransmitter catabolism
MAO-A

signal transduction
casein kinase 2 

intracellular receptor signaling
MR

action potential propagation
voltage-gated potassium
channel Kv3.2

hippocampal
neuron

Figure 3. Corticosterone-mediated downregulation of the currently in vivo profiled genes affects neurotransmission in hippocampal neurons. 

The different cellular levels via which corticosterone exerts effects on neurotransmission are signal transduction, intracellular receptor signaling, 

action potential propagation and neurotransmitter catabolism. The + and – symbols indicate the enhancing and inhibiting effects respectively of 

glucocorticoid-mediated gene expression regulation on neurotransmission. 
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ABSTRACT

The aim of the current study was 1) to examine the overlap in the pattern of GR-medi-

ated transcriptional responses between different neuronal substrates and 2) to assess 

the nature of these responses by differentiating between primary and downstream 

GR-responsive genes. For this purpose, NGF-differentiated catecholaminergic PC12 cells 

were used in which endogenous GRs were activated briefly with a high dose of corticos-

terone followed by gene expression profiling 1 and 3 hours afterwards using Affymetrix 

GeneChips. 

The results revealed a strikingly similar temporal pattern to what was reported previ-

ously in hippocampus, with only downregulated genes 1 hour after GR-activation and 

the majority of genes upregulated 3 hours after GR-activation. Real-time qPCR of tran-

scripts in cycloheximide treated cells showed that all 5 GR-responsive genes selected 

from the 1 hour time point were primary-responsive, whereas all 4 GR-responsive genes 

selected from the 3 hours time point were downstream-responsive. At the level of in-

dividual genes, the overlap with the previously generated hippocampal data sets was 

small, illustrating the cell-type specifity of GR-mediated genomic responses. Finally, we 

identified a number of interesting genes, such as SWI/SNF, SNAP-25 and certain Rab 

proteins which may play a role in the effects of glucocorticoids on catecholaminergic 

neuronal functioning.
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INTRODUCTION

Glucocorticoids modulate neuronal functional properties such as excitability and energy 

metabolism (1-3). Since glucocorticoid receptors (GRs) are ligand-inducible transcription 

factors, changes in gene expression may underlie these effects. Activated GRs can modify 

gene transcription via transactivation and transrepression (4,5). In transactivation, GRs 

bind to glucocorticoid responsive elements (GREs) on the DNA, thereby either enhancing 

or repressing (negative GREs) gene transcription. In transrepression, GRs bind via pro-

tein-protein interactions to other transcription factors such as AP-1 and NF-κB, thereby 

inhibiting their transcriptional activity. 

We have previously assessed time dependent GR-responsive genes in the explant 

hippocampal slice preparation after a single corticosterone pulse, using Affymetrix 

GeneChips. The design mimicked the one previously used in electrophysiological studies 

(6). At 1 hour after brief GR-activation we first found exclusively down regulated genes 

and then both up and downregulated genes 3 hours after GR-activation (7). Since so 

far only a limited number of genes repressed via negative GREs have been identified, 

these data suggest that in hippocampal tissue the mechanism of transrepression via pro-

tein-protein interactions may precede transactivation in time after acute activation of 

GRs. However, currently no additional data exist that permit generalization of this highly 

characteristic time-dependent, neuronal genomic response to corticosterone mediated 

by GR. Moreover, also the nature of these temporal transcriptional responses regarding 

primary and downstream responsive genes is unknown. 

The aim of the current study was 1) to assess to which extent the genomic response 

to acutely activated GRs overlaps between different neuronal substrates and 2) to gain 

more insight into the pattern of GR-mediated primary and downstream transcriptional 

responses by blocking protein synthesis with cycloheximide. We hypothesize that many 

primary responsive genes will be found at an early stage in time after GR-activation, 

which will influence gene expression of other genes later on. 

For this purpose, clonal cell lines with neuronal properties constitute interesting model 

systems since they can be easily manipulated by direct pharmacological treatment. PC12 

cells are unique among clonal cells in the fact that they contain a near-diploid chromo-

some number and display a highly stable karyotype, making them very suitable for large-

scale gene expression profiling. PC12 cells are derived from rat adrenal pheochromo-

cytoma cells and display a catecholaminergic phenotype. Upon stimulation with nerve 

growth factor (NGF) the cells develop long branching neurites and become electrically 

excitable, thereby obtaining a neuronal phenotype (8). In comparison to other neuronal 

cell lines, PC12 cells come closest to mimicking a specific population of differentiated 

neuronal cells, expressing sodium, potassium and calcium channels as well as membrane 

receptors, including G-protein coupled receptors (9). 
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We used neuronal PC12 cells to characterise gene expression profiles after GR-activa-

tion. Therefore, PC12 cells were differentiated to obtain a neuronal phenotype by exposure 

to NGF for 10 days (8). Similar to the previously performed hippocampal slice study, GRs 

were activated by treating the cells with a brief corticosterone pulse and gene expres-

sion was profiled 1 and 3 hours afterwards using Affymetrix GeneChips. Additionally, the 

experiment was repeated to distinguish primary responsive and downstream responsive 

genes by blocking protein translation with cycloheximide, after which the expression of 

a subset of selected genes was measured using real-time qPCR. Furthermore, in order to 

assess the generality and specificity of the GR-mediated transcriptional responses on the 

level of the individual genes, the currently obtained GR-responsive genes were compared 

to 1) GR-responsive genes found in the explant hippocampal slice preparation (7) and 2) 

hippocampal corticosterone-responsive genes obtained by using Serial Analysis of Gene 

Expression (SAGE) 3 hours after a single in vivo injection of corticosterone (10). 

MATERIALS & METHODS

Cell culture and treatment

PC12 cells were cultured in DMEM medium (4500mg/l glucose, Invitrogen Life Technolo-

gies, Carlsbad, CA, USA) substituted with 10% horse serum, 10% FBS, penicillin (20 U / ml) 

and streptomycin (20 µg / ml) on 150 mm × 25 mm plastic culture dishes (Corning Incor-

porated, NY 14831, USA) which were coated with 5 µg / cm2 rat tail collagen (Roche). 

For the large-scale gene expression profiling experiment, PC12 cells were cultured 

until 10 (150 × 25 mm) culture dishes were obtained (passage 15). Per time point 5 dishes 

were used and from each culture dish the cells were divided over two new dishes at ap-

proximately 20% confluency, resulting in 5 pairs of dishes per time point which were kept 

paired throughout the entire experiment. All the cells were differentiated into a neuronal 

phenotype by maintaining them in serum deprived and NGF-β (50 ng / ml; Sigma®, MO, 

USA) substituted medium for 4 days, followed by 5 additional days in low serum (2% 

horse serum + 2% FBS) and NGF (50 ng / ml) substituted medium (8). On the last day of 

differentiation, per culture dish pair, one dish was used for GR-activation by treatment 

with a 100 nM 20 minute pulse of corticosterone, whereas the other dish was used as a 

vehicle (0.009% ethanol) treated control, resulting in a paired experimental setup (n=5 

per time point). The corticosterone pulse was produced by replacing the differentiation 

medium with differentiation medium containing 100 nM corticosterone. Twenty minutes 

later, the corticosterone containing medium was removed and the original differentia-

tion medium was reinstated onto the cells. One or three hours after the initial addition 

of corticosterone (or vehicle) total RNA was isolated from each culture dish using TRIzol® 

(Invitrogen Life Technologies) according to the manufacturer’s instructions. 
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For the cycloheximide experiment exactly the same culture protocol and paired ex-

perimental design were used (n=5 per time point). Twenty minutes prior to GR-activation 

or vehicle treatment, cycloheximide (10 µM) was applied to the NGF-containing culture 

medium and was kept there throughout the rest of the experiment. 

RNA preparation and Affymetrix array hybridization

After isolation, total RNA purification was performed with the QIAGEN RNeasy® Mini Kit 

RNA Cleanup procedure (QIAGEN Inc. Valencia, CA, USA). RNA quality was assessed us-

ing the LabChip® RNA 6000 Nano Assay on the 2100 Bioanalyzer (Agilent Technologies, 

Palo Alto, CA, USA) and the Degradometer Software (Auer et al 2003). Per RNA sample, 

10µg was used for cDNA synthesis and in vitro transcription, according to the procedure 

described by Affymetrix (www.affymetrix.com). Briefly, total RNA was used to generate 

double-stranded cDNA after which the mRNA portion was amplified and biotin-labeled 

using the ENZO BioArray HighYield RNA Transcript Labeling Kit (Affymetrix, Santa Clara, 

CA, USA). The QIAGEN RNEasy® Mini Kit RNA Cleanup procedure was used to purify the 

amplified RNA. Quality of the RNA was checked with the LabChip® RNA 6000 Nano Assay 

on the 2100 Bioanalyzer (Agilent Technologies). The amplified RNA samples were then 

hybridized to Rat Expression Array 230A GeneChips (Affymetrix) at the Leiden Genome 

Technology Center (LGTC®), Leiden University, The Netherlands. 

Per time point, 6 Affymetrix arrays were used, 3 for the corticosterone-treated culture 

dishes and 3 for the control culture dishes. Each array included ~15000 probe sets, repre-

senting ~5000 full-length or annotated sequences and ~10000 EST clusters.

Affymetrix data analysis

GeneChip® Operating Software 1.2 (GCOS; Affymetrix) was used to normalize the array 

signals by total intensity normalization (11) and to calculate signal intensities plus signal 

reliabilities. Only transcripts which generated present and/or marginal calls throughout 

all 6 arrays per time point were included for further analysis, removing the transcripts 

that generated one or more absent calls. In order to identify responsive genes, Signifi-

cance Analysis of Microarrays (SAM version 2.21) (12) was used. When analyzing microar-

rays, many false positives can be expected due to the multiple testing problem. SAM is a 

permutation based test that allows the user to control the False Discovery Rate (FDR), i.e. 

the relative number of false positives generated. For both time points SAM was applied 

to the paired data sets derived from corticosterone treated and vehicle treated culture 

dishes and the lowest FDR was chosen to assess the most significant responsive genes. 

In order to verify the results obtained by SAM, the class comparison analysis from the 

BRB ArrayTools package (version 3.3.0, developed by Dr. Richard Simon and Amy Peng 

Lam) was used. Additionally, genes involved in similar biological processes were grouped 
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together using Gene Ontology Biological Process classifications that were obtained from 

the NetAffx Analysis Center (13).

Furthermore, the obtained data set was compared with our previously generated hip-

pocampal SAGE and slice data sets. In the hippocampal SAGE experiment, adrenalec-

tomized rats were substituted with low corticosterone pellets to assess MR-responsive 

genes and injected with a high corticosterone injection to assess GR-responsive genes 

3 hours afterwards. Subsequently, gene expression profiles were established using the 

SAGE procedure in which 10 base pairs long SAGE tags derived from a defined position 

within the 3’ untranslated regions of the transcripts were sequenced and counted. In 

the hippocampal slice experiment, we used explant hippocampal slices obtained from 

adrenalectomized, low corticosterone pellet substituted rats (MR occupation). These 

slices were treated with a brief in vitro corticosterone pulse to activate GRs and gene 

expression was profiled 1, 3 and 5 hours afterwards using Affymetrix GeneChips. To allow 

cross-platform comparisons between SAGE tags and GeneChip probe sets, the Expres-

sion Analysis Systematic Explorer (EASE) (14) was used to couple Affymetrix probes to 

UniGene clusters whereas the NCBI SAGEmap ftp-site was used to couple these UniGene 

clusters to SAGE tags. Both EASE and the NCBI SAGEmap used UniGene build 139. The 

NetAffx Analysis Center was used to link the probe sets from the Rat Expression 230A 

GeneChips (PC12 cell experiment) with the Rat Genome U34A GeneChips (hippocampal 

slice experiment).

Real-time quantitative PCR

A selected subset of responsive genes was validated in all the obtained experimental 

samples (n=5 per time point), including the RNA samples that were used for the GeneChip 

analysis (n=3 per time point). Additionally, the same genes were also validated in the 

cycloheximide treated samples (n=5 per time point). 

Validation was performed by real-time qPCR on a DNA Engine Opticon® 2 Real-Time 

PCR Detection System (MJ Research, Inc., Waltham, Massachusetts, USA). All RNA samples 

were subjected to DNAse treatment with DNAseI (Invitrogen Life Technologies) accord-

ing to the manufacturer’s protocol. Subsequently, cDNA was synthesized using M-MuLV 

Reverse Transcriptase RNaseH- (Finnzymes Oy, Espoo, Finland) and random primers (150 

ng; Invitrogen Life Technologies) in a total volume of 20µl. Per experimental sample, 

100 ng of RNA was used for the cDNA-synthesis reaction using 150 ng random primers 

whereas standard curves were made with 5, 50, 100, 500 and 1000 ng RNA. In order to 

control for genomic contamination, RT- samples were generated. The PCR was performed 

in a total volume of 25 μl, consisting of 12.5 μl 2×PCR MasterMix with SYBR® Green I 

(qPCRTM Core Kit for SYBR® Green I, EUROGENTEC, Seraing, Belgium), 0.5 μl 10 μM forward 

primer, 0.5 μl 10 μM reverse primer, 6.5 μl water and per primer pair either 5 μl cDNA-

sample, RT- sample or water (no template control). The PCR conditions were as follows: 
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10 minutes at 95°C and 40 cycles of 15 seconds at 95°C + 1 minute at 60°C (for both 

annealing and extension). Afterwards, the temperature was gradually increased to 95°C 

in order to make dissociation curves. 

Dissociation curves were used to control for the specificity of the reaction and genomic 

contamination whereas the standard curves were used to quantify the expression differ-

ences. Expression levels of the target genes were normalized to the expression levels of 

18S ribosomal RNA since this transcript displays very high and stable expression levels. 

The non-parametric Wilcoxon Signed Ranks Test was used to assess significant differen-

tial expression of GR-responsive genes.

In general, PCR primers were designed in the regions where the probe sets used on the 

Affymetrix GeneChips were derived from (Table 1). 

Corticosterone

In order to measure corticosterone levels in low serum NGF-containing culture me-

dium and corticosterone-treated culture medium, the murine Corticosterone RIA Kit 

(ICN BiomedicalsTM, Costa Mesa, CA, USA) was used according to the manufacturer’s 

instructions.

Table 1. Primers for validation of corticosterone-responsive genes

Gene Title
Probe Set 
ID Forward Primer (5’-3’) Reverse Primer (5’-3’) 

Amplicon 
(bp)

SWI/SNF related 1373565_at CCTGTCTGTTGGCCCTGGT GTCGGCCCTGTCCAGTAAGATA 171

beta-actine 1398835_at TGACCGAGCGTGGCTACA CAGCTTCTCTTTAATGTCACGCA 70

lactate dehydrogenase A 1367586_at CACACTGCCAACTGCATGC TGGTGAGGGTGCGTAGCA 163

ribosomal protein S6 1367573_at ACCAAAGCGCCCAAGATTC AGCAATACGTCGGCGTTTGT 68

actin related protein 2/3 
complex, subunit 1B 1386925_at GGCTAAGGGCTGCTTTGCT CTTCCTCTTCCCCTCTTTGGA 86

synaptosomal-associated 
protein 25 (snap 25) 1387073_at GGGTTTGTCGAATGCTTTTGA

CAACAAGAGCCAGACTTAGA
AGATCTT 86

RAB7, member RAS 
oncogene family 1387797_at

AGTCCTTCACAGACCAAGA
ACACAC

TCACGTTCTGGTCTGTTTAGA
GGAG 73

tubulin, beta 5 1370290_at GCCTCACACACTCCCCAGAG GGAATGACCAAGCCAAGGAA 72

calpactin 1386890_at CCCTGAACTCCTCCCTGTGA TGACGACAGAGCTGCCGACCCA 67

translation elongation 
factor 1-delta subunit 1388134_at CCCACAGACCCAACATGTCTC CTGCTGGTGTGGCTCCTTTC 70

18S rRNA
accession nr. 
M11120 CCCTGCCCTTTGTACACACC CGATCCGAGGGCCTCACTA 66
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Western Blotting for the detection of the glucocorticoid receptor (GR)

In order to verify expression of the glucocorticoid receptor in differentiated PC12 cells, 

Western Blotting was performed. For this purpose, two separate culture dishes with PC12 

cells were differentiated into the neuronal phenotype as previously described. Addition-

ally, in order to generate a positive control sample for GR-detection, COS-1 cells were 

transfected with 2 µg rat GR plasmid (6RGR) (15) and 3 µg pSP64 carrier plasmid (Pro-

mega Corporation, Madison, WI, USA) using SuperFect® Transfection Reagent (QIAGEN 

Inc.) according to the manufacturer’s instructions. Non-transfected COS-1 cells and rat 

MR-transfected COS-1 cells (2 µg rat MR plasmid (16) and 3 µg pSP64 carrier plasmid) 

were used as negative controls. 

Cells were lysed in ice-cold ½ RIPA lysis buffer (20 mM Triethanolamine, 0.14 M NaCl, 

0.05% deoxycetant, 0.05% SDS, 0.05% Triton X-100) substituted with protease inhibitors 

(cØmplete Protease Inhibitor Cocktail Tablets; Roche Applied Science, Penzberg, Ger-

many). Subsequently, the cell lysates were centrifuged for 30 minutes at 13000 rpm at 

4°C after which the supernatants were collected. Protein content was quantified using 

the BCATM Protein Assay (Pierce Biotechnology, Rockford, IL, USA) and from each sample 

25 µg was loaded onto a 10% SDS-PAGE gel. After electrophoresis, the samples were blot-

ted overnight onto an Immobilon P membrane (Millipore Corporation, MA, USA). GR was 

detected using 4 µg mouse monoclonal anti-GR (MA1-510; Affinity BioReagents Inc., IL, 

USA) as a primary antibody and 0.4 µg goat-anti-mouse IgA conjugated with horse radish 

peroxidase (Santa Cruz Biotechnology Inc., CA, USA) as a secondary antibody. Luminol 

sodium salt (Sigma®) substituted with p-Coumaric acid (Sigma®) was used as substrate 

for the peroxidase reaction.

Immunocytochemistry for the detection of GR-translocation

In order to assess translocation of the GR into the nucleus after an increase in corticos-

terone concentrations from 12 nM (background) to 100 nM (corticosterone pulse) an 

additional experiment was performed. Differentiated PC12 cells were stimulated with a 

20 minute 100 nM corticosterone or vehicle pulse similarly to the original experiment, on 

top of a 10 nM corticosterone background (mimicking the 12 nM background concentra-

tion in the original experiment) and 30 minutes, 1 and 3 hours afterwards the cells were 

processed for immunocytochemistry. The control groups consisted of cells cultured in 

corticosterone-free (stripped) medium and stimulated with a vehicle pulse. PC12 cells 

were fixed with 4% paraformaldehyde in 0.1 M phosphate buffered saline (PBS), pH 7.4 

for 15 min. To block non-specific staining, cells were treated with 5% NGS in PBS includ-

ing 0.3% TX-100 for 30 minutes at room temperature. Rabbit polyclonal anti-GR (M-20 

1:500, Santa Cruz Biotechnology) was diluted in PBS containing 1% BSA and 0.1% TX-100 

for 60 min at room temperature. Control sections were incubated with equal amounts of 

normal rabbit IgG, which were used as substitute for the primary antibody. After washing, 
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cells were incubated with AlexaFluor-488 labeled goat-anti-rabbit IgG (1:750, Molecular 

Probes, USA) in PBS containing 0.1% TX-100 and 1% BSA for 45 min at room temperature. 

Finally, cells were washed and nuclei were visualized with Hoechst 33258 (1:1000, Mo-

lecular Probes, USA) in PBS for 10 min. Before slides were mounted with Aqua Polymount 

(Polysciences, Inc), cells were washed again. The following day, samples were analyzed 

and images were taken at a 630x magnification using a Leica DM 6000B fluorescence 

microscope (Leica Microsystems). All images were taken using identical microscope and 

filter settings. Image analysis was performed using ImageJ 1.32j software (NIH, USA). To 

assess differences in GR translocation, changes in optical density of nuclear GR immu-

noreactivity were measured in a semi-quantitative manner. Hoechst staining was used 

to identify the nuclear surface of individual cells and a circular mask was applied with 

the analysis software. These “masks” served as a template and were pasted onto the cor-

responding GR images to measure the optical density within the nucleus. Non-specific 

binding (normal rabbit IgG) was also measured and subtracted from the total signal to 

obtain the specific signal. Per experimental group, nuclear GR-immunoreactivity of ap-

proximately 30 randomly selected cells was measured and statistical significance was 

calculated using analysis of variance (ANOVA) and post-hoc Fisher’s LSD testing. 

Putative transcriptional elements in the DNA of primary responsive genes

In order to scan the genomic sequence of the primary responsive genes for the pres-

ence of transcription factor binding sites, rat, mouse and human sequences, starting at 

2500 bp upstream of the first exon, were downloaded from the Ensembl website (www.

ensembl.org). The TRANSFAC® 7.0 database matrices were used to define the consensus 

binding sequences for AP1 (NNTGASTNMNN), NFκB (GGGRMTYYCC) and CREB (NNTGAC-

GTNNNN) whereas the consensus site for the nGRE was obtained from Schoneveld et al. 

(17) (ATYACNNTNTGATCN). Both the promoter region (starting at 2500 bp upstream of 

the first exon) and the intronic regions of the rat genes were scanned for the presence of 

these consensus sequences. In order to assess whether the obtained binding sites were 

conserved between species, they were compared with the mouse and human sequences 

for location and nucleotide similarity.

RESULTS

Endogenous GR expression in NGF-differentiated PC12 cells

The presence of endogenous GR in NGF-differentiated PC12 cells was demonstrated in 

two independent samples using Western Blotting. COS-1 cells transfected with plasmid 

containing rat GR were used as positive controls whereas empty COS-1 cells were used 

as a negative controls. Both the NGF-differentiated PC12 cells and the GR-transfected 
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COS-1 cells showed the expected 97 kDa band that corresponded to GR (Figure 1). The 

non-transfected and rat MR-transfected COS-1 cells lacked this band, demonstrating 

the specificity of the GR-signal in the PC12 cells. The additional bands that are observed 

in the PC12 cell samples most likely reflect a-specific binding of the antibody to other 

proteins.

Corticosterone concentrations and RNA quality

Measurement of corticosterone concentrations revealed a concentration of 12 nM in 

low serum NGF-containing culture medium, partially occupying the endogenous GRs 

though leaving room for additional GR-activation. The corticosterone-treated medium 

showed a concentration of 110 nM, most likely resulting in nearly complete occupation 

of the endogenous GRs.

Total RNA quality was assessed using the LabChip® RNA 6000 Nano Assay (Agilent 

Technologies) in combination with the Degradometer Software (18), showing no indica-

tions of RNA breakdown since the ratios of ribosomal 28S/18S intensities exceeded 1.5 

for every sample and the Degradometer analyses did not generate any quality alerts.

GR-translocation into the cell nucleus 30 minutes, 1 and 3 hours after GR-activation

In order to verify whether there is an increase in GR-activation by application of the 100 

nM corticosterone pulse over the tonic level of activation resulting from the 12 nM corti-

costerone in the culture medium, GR-translocation from the cytosol into the nucleus was 

assessed 30 minutes, 1 and 3 hours after the beginning of the 20 minute corticosterone or 

vehicle pulse, using semi-quantitative immunocytochemistry analysis. For this purpose 

10 nM corticosterone was used as background concentration to mimic the 12 nM back-

ground concentration and the 100 nM corticosterone pulse was produced similarly to 

Figure 1 

97 kDa 

1 2 3 4 5

Figure 1. Western Blotting analysis for the detection of the glucocorticoid receptor (GR) in neuronal PC12 cells. Lanes 1 and 2: two 

independently differentiated PC12 samples, both showing a 97 kDa band corresponding to the GR. Lane 3: non-transfected COS-1 cells showing 

no band (negative control). Lane 4: COS-1 cells transfected with rat GR-plasmid showing a band corresponding to the GR (positive control). Lane 

5: COS-1 cells transfected with rat MR, showing no band (negative control). The additional bands below the 97 kDa band most likely reflect 

aspecific binding of the antibody to other proteins.
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the first experiment. As illustrated in Figure 2, under basal tonic levels (10 nM) of corticos-

terone, GR-immunoreactivity was evenly distributed over the nucleus and cytoplasmic 

compartment after vehicle administration at all three time points. This distribution under 

basal tonic levels was highly similar to that of the control groups exposed to a vehicle. 

Application of the 100 nM corticosterone pulse on top of the tonic corticosterone back-

ground level markedly increased nuclear localization of GR 30 minutes, 1 and 3 hours 

afterwards when compared to the vehicle-stimulated groups. At all three time points 

the corticosterone pulse showed a significantly higher GR-immunoreactivity in the cell 

nucleus compared to their corresponding vehicle-treated groups and the control groups. 

Clearly, nuclear GR-immunoreactivity was highest 60 minutes after the corticosterone 

pulse whereas 3 hours afterwards GR-immunoreactivity was returning to baseline. There 

were no significant differences between the vehicle-treated groups. 
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Figure 2. Nuclear distribution of GR in differentiated PC12 cells at 30, 60 and 180 min after administration of a 100 nM corticosterone or vehicle 

pulse on top of a 10 nM corticosterone background. A) Representative fluorescence images of GR immunoreactivity (ir) at 30, 60 and 180 minutes 

after corticosterone or vehicle pulse on top of a 10 nM cort background. The GR-ir distribution after the vehicle pulse mimics the distribution in 

the control groups (vehicle pulse on top of 0 nM background, pictures not shown). B) Semi-quantitative analysis of nuclear optical density. The 

white bars correspond to the control groups, the grey bars to the vehicle treated cells and the black bars to the 100 nM corticosterone treated 

cells. Bars represent GR-ir expressed as mean relative optical density (ROD) ± SEM. (* P < 0.05, ** P < 0.01, *** P < 0.001; ANOVA and post hoc 

Fisher’s LSD testing).
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GeneChip detection efficiency

After the RNA samples, obtained 1 and 3 hours after the beginning of the corticoste-

rone pulse, were hybridized to the GeneChips, GCOS software (Affymetrix) was used to 

measure the transcript signals and to estimate the reliability of the transcript signals. In 

order to obtain a reliable data set, stringent selection criteria were used in which all the 

transcripts that generated one or more absent calls were removed from the data set. 

For both time points, this selection resulted in the detection of 51% of the transcripts 

that were present on the GeneChips. Detection of low abundant transcripts such as 

neurotransmitter receptors, neurotrophic / growth factors and ion channels was poor 

and similar to the detection level of the previously performed GeneChip experiment on 

hippocampal tissue (7). For example, fibroblast growth factor receptor 1 and fibroblast 

growth factor 2 are known to be expressed in PC12 cells (19,20) but were not detectable 

on the GeneChips used. On the other hand, transcripts involved in catecholaminergic 

metabolism such as tyrosine hydroxylase, dopa decarboxylase and catechol-O-methyl-

transferase as well as one dopamine receptor (D3) and three cholinergic receptors (nico-

tinic alpha 3, alpha 5 and muscarinic 4) were reliably detected. These catecholaminergic 

metabolic genes and nicotinic alpha 3 receptor were undetectable on the GeneChips 

used for the hippocampal slices, indicating cell type-specific expression of these genes 

in neuronal PC12 cells. 

GR-responsive genes 1 and 3 hours after GR-activation: temporal pattern and functional classification

After selection of the transcripts that generated reliable signals, Significance Analysis 

of Microarrays (SAM, version 2.21) was used to assess the responsive genes. In order to 

Figure 3 

GR-activation by 
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0 genes ↑
87 genes ↓

71 genes ↑
2 genes ↓
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10

overlap
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Figure 3. Dynamic pattern of gene expression changes 1 and 3 hours after corticosterone induced GR-activation. Strikingly, one hour after 

GR-activation, only 87 downregulated genes were found whereas 3 hours after GR-activation the majority of genes was upregulated. The arrow 

indicates the 10 genes that overlap between the two time points. The SAM estimated FDRs are indicated.
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obtain the most significant responsive genes, the FDR was set at 31% for the 1 hour and 

32% for the 3 hours time point since these are the lowest possible FDRs that were reliably 

estimated. This resulted in 87 exclusively downregulated genes 1 hour after GR-activa-

tion and 71 upregulated and 2 downregulated genes 3 hours after GR-activation (Figure 

3, Table 2, Supplementary Table). Ten genes overlapped between the two time points, 

showing downregulation at the 1 hour time point and upregulation at the 3 hours time 

point (Figure 2). 

In order to examine the effects of different FDRs on the dynamic pattern of expression 

regulation, the FDRs were increased in both time points. At the 1 hour time point upregu-

lated genes appeared after increasing the FDR to 38%, resulting in 137 downregulated 

and 10 upregulated genes. Further increasing the FDR to 67% resulted in 1091 genes 

called significant of which 786 were downregulated, thereby indicating that 1 hour after 

GR-activation the most significant genes were downregulated. Increasing the FDR in the 

3 hours time point to 68% resulted in 464 upregulated and 18 downregulated genes, 

illustrating that 3 hours after GR-activation the most significant genes were upregulated. 

In order to verify these results obtained by SAM, the class comparison analysis from the 

BRB ArrayTools package was used. This yielded similar results, with predominantly down-

regulated genes 1 hour after GR-activation and the majority of genes being upregulated 

3 hours after GR-activation.

Additionally, the NetAffx Analysis Center was used to annotate the responsive genes (FDR 

of 31% 1 hour and 32% 3 hours after GR-activation) with Gene Ontology Biological Process 

classifications. In general, both time points contained similar functional groups such as sig-

nal transduction components, transcription and translation regulators, energy metabolism 

components, cytoskeleton related transcripts and synaptic transmission components. 

Validation of a subset of responsive genes 

A subset of 10 functionally interesting genes obtained from the GeneChip experiment, 

including SWI/SNF, beta actin, SNAP25 and RAB7, was selected for validation by real-

time qPCR. Of this subset, 8 genes were changed in expression 1 hr after corticosterone 

administration and 4 after 3 hrs, 2 being altered both at 1 and 3 hrs after treatment. 

The same subset of genes was tested in the samples obtained from the independent 

cycloheximide experiment. Normalization was performed using expression levels of 18S 

ribosomal RNA, which in general is highly and stably expressed. The non-parametric Wil-

coxon Signed Ranks Test was used to assess the significance of the observed expression 

changes. The results are displayed in Table 3 (left panel). 

Out of the 10 selected genes, the change in expression of 7 genes was confirmed 

by real-time qPCR (P < 0.05) and could therefore be designated as true positives. The 

observed fold-changes obtained by real-time qPCR nicely followed the observed fold-

changes obtained by the GeneChip experiment. 
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Primary and downstream responsive genes

In order to distinguish primary responsive genes from downstream responsive genes 

an independent experiment was performed, using the same conditions but in the pres-

ence of the protein synthesis inhibitor cycloheximide. The results are displayed in Table 

3 (right panel). 

Strikingly, 5 out of 5 downregulated genes 1 hour after GR-activation also showed 

downregulation in the presence of cycloheximide at this time point (P < 0.05), indicating 

that these genes are primary GR-responsive genes that do not require protein synthesis 

Table 3. Real time qPCR validation results. FC = fold change. 

Gene title

Original experiment (no cycloheximide added) Cycloheximide experiment

Experiment
FC
affymetrix

FC
qPCR Wilcoxon Validation

FC
qPCR Wilcoxon 

Response 
type

SWI/SNF related
PC12 1 
hour 0.8 0.7 P<0.05

true 
positive 0.8 P<0.05 primary

actin, beta
PC12 1 
hour 0.9 0.6 P<0.05

true 
positive 0.7 P<0.05 primary

lactate dehydrogenase 
A

PC12 1 
hour 0.9 0.8 P<0.05

true 
positive 0.5 P<0.05 primary

ribosomal protein S6
PC12 1/3 
hours 0.9/1.1 0.7/1.4 P<0.05

true 
positive

0.5/no 
response P<0.05

primary/
downstream

actin related protein 
2/3 complex, subunit 
1B

PC12 1/3 
hours 0.9/1.1 0.7/1.3 P<0.05

true 
positive

0.6/no 
response P<0.05

primary/
downstream

synaptosomal-
associated protein 
(snap-25)

PC12 3 
hours/SAGE 1.1 1.7 P<0.05

true 
positive

no 
response X downstream

RAB7, member RAS 
oncogene family

PC12 3 
hours 1.1 1.2 P<0.05

true 
positive

no 
response X downstream

tubulin, beta 5
PC12 1 
hour 0.8 X X

false 
positive

calpactin I
PC12 1 
hour 0.8 X X

false 
positive

translation elongation 
factor 1-delta subunit

PC12 1 
hour 0.9 X X

false 
positive

Validation of 10 GR-responsive genes. On the left side the results of the validation in the original experiment are displayed with from left to 

right the fold changes observed with Affymetrix GeneChip analysis, fold changes observed with real-time qPCR, the result of statistical testing 

and the validation result depicted. Genes were classified as true positives if the expression changes could be replicated by real-time qPCR. On 

the right side, the results of the cycloheximide experiment are displayed with from left to right the fold change obtained by real-time qPCR, the 

result of statistical testing and the response type depicted. Genes were classified as being primary responsive if in the presence of cycloheximide 

they showed a similar transcriptional regulation as observed in the original experiment. Genes were classified as being downstream responsive 

if the observed transcriptional change in the original experiment could not be replicated in the cycloheximide experiment. X indicates that the 

observed changes in gene expression on the GeneChips could not be reproduced by real-time qPCR.
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for their regulation. In contrast, 4 out of 4 genes that were validated for the 3 hours time 

point in the original experiment could not be validated in the cycloheximide experiment, 

strongly suggesting that these genes are downstream GR-responsive genes. Addition-

ally, two genes overlapped between the 1 and 3 hours time points, showing a primary 

response 1 hour after GR-activation and a downstream response 3 hours after GR-activa-

tion in the cycloheximide experiment. 

Putative transcriptional elements in the DNA of primary responsive genes 

Five out of five genes that were responsive 1 hour after GR-activation displayed a primary 

transcriptional response which could be the result of binding of activated GRs either to 

negative glucocorticoid responsive elements (nGREs) or other transcription factors like 

AP1, NFκB- and CREB, inhibiting their actions. Therefore, a search was performed on the 

presence of AP1-, NFκB- and CREB-binding sites, as well as on the presence of nGREs in 

the promotor regions and intronic regions of these 5 rat genes, focusing on sites that were 

conserved in mouse and human. This resulted in many hits, of which only a few were con-

served. These conserved sites are displayed in Table 4. Two genes, lactate dehydrogenase 

A and beta actin, contained conserved AP1-sites. For beta actin this AP1-site was located 

103 nucleotides upstream of the first exon and highly conserved between rat, mouse 

and human, all displaying the same sequence (GGTGAGTGAGC). Lactate dehydrogenase 

contained an AP1-site 265 nucleotides upstream of ATG-containing exon 2 which was 

highly conserved between rat (GATGAGTAAGA) and mouse (GATGAGTAAGT). Addition-

ally, lactate dehydrogenase A also contained a CREB-site 43 nucleotides upstream of the 

first exon that was also highly conserved (identical sequence) between rat and mouse 

(TCTGACGTCAGC). For the other 3 genes no conserved AP1- and / or CREB-sites nor any 

of the other selected binding sites were found. 

Table 4. Putative transcriptional elements in the DNA of 5 primary responsive genes. 

primary GR-response 
gene AP1 site CREB site

NFkappaB 
site

nGRE 
site

lactate dehydrogenase A 265 nt upstream ATG containing exon 2 43 nt upstream exon 1 x x

beta actin 103 nt upstream exon 1 x x x

SWI/SNF component x x x x

ribosomal protein S6 x x x x

actin related protein x x x x

Conserved transcriptional elements. Both lactate dehydrogenase A and beta actin contain an AP1-site with sequences GATGAGTAAGA and 

GGTGAGTGAGC respectively. Lactate dehydrogenase A contains a CREB-site with sequence TCTGACGTCAGC. X indicates that no binding site is 

present.
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Overlap between GR-responsive genes in PC12 cells and hippocampal tissue

Previously, we profiled GR-responsive genes in hippocampal tissue using both Serial 

Analysis of Gene Expression (SAGE) and Affymetrix GeneChips (7,10)in two different ex-

perimental setups that are described in the materials and methods section. The overlap 

between GR-responsive genes in the current PC12 data set and the previous hippocam-

pal data sets was assessed using the NetAffx Analysis Center, the Expression Analysis 

Systematic Explorer (EASE) and the NCBI SAGEmap.

The results of this meta-analysis are displayed in Figure 4 and Table 5, clearly showing 

that the overlap between hippocampal slice and hippocampal SAGE experiments was 

significantly higher than the overlap between the PC12 experiment and the hippocam-

pal experiments. 

Very little overlap was found between the PC12 cell data set and the hippocampal 

data sets. Firstly, out of 203 responsive SAGE tags, 160 could be annotated as detectable 

probe sets on the Affymetrix GeneChips. Out of these 160 transcripts only 7 were found 

responsive in both data sets of which 6 showed a similar expression change direction. 

Secondly, out of 160 responsive genes found in the PC12 data set 153 could be detected 

on the hippocampal slice GeneChips whereas out of 242 responsive genes found in the 

hippocampal data set 211 could be detected on the PC12 GeneChips. Five genes were 

found to be responsive in both data sets of which only 3 showed a similar expression 

change direction. Hence, the overlap between both hippocampal and PC12 data sets 

ranged between 2 and 4%. 

Figure 4 

Hippocampal
slice study 

242 responsive 
genes

3300 genes 
detected

Neuronal
PC12 study 

160 responsive 
genes

8200 genes 
detected

Hippocampal
SAGE study 

203 responsive tags

5 out of 211 / 153 
(3 similar expression 

change direction)  

11 out of 70 
(8 similar expression 

change direction) 

7 out of 160 
(6 similar expression 

change direction) 

Figure 4. Overlapping gene sets between the current neuronal PC12 study and the previously performed hippocampal slice and SAGE studies. 

The arrows indicate the amount of overlap between the three studies. The thick arrow indicates a significantly higher overlap between the 

hippocampal slice study and the hippocampal SAGE study than between the neuronal PC12 study and the hippocampal studies (P < 0.05 Chi 

Square Test). The numbers are explained in the text.
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The overlap between both hippocampal data sets was considerably larger since out of 

70 SAGE tags, 11 overlapped and 8 showed similar expression change directions, result-

ing in a 16% overlap.

When compared to the overlap between the hippocampal slice study and the hip-

pocampal SAGE study, the overlap between the PC12 data set and both hippocampal 

data sets was significantly smaller (P < 0.05 Chi Square Test). The overlap between the 

PC12 study and hippocampal slice study was not significantly different from the overlap 

between the PC12 study and the hippocampal SAGE study.

DISCUSSION

The present study revealed a dynamic temporal pattern of genomic responses to acutely 

activated GRs in neuronal PC12 cells that were constantly stimulated with NGF. At one 

hour after a brief exposure to corticosterone the genes that were most significantly 

changed all appeared downregulated, whereas after 3 hours the majority was upregu-

lated. This pattern is very similar to the results we previously obtained in the hippocam-

pus slice preparation, showing that downregulation preceded the upregulation of genes 

observed two to four hours later, if exposed to a corticosterone pulse (7). This striking 

temporal pattern actually may be due to the mode of action of corticosterone involving 

primary and downstream GR-responsive genes.

Activated GRs can modulate gene transcription in two ways. Firstly, in transrepression 

monomeric GRs can bind to other transcription factors, thereby inhibiting their transcrip-

tional activity. Secondly, in transactivation GRs dimerize and bind to so called glucocorti-

coid responsive elements (GREs) on the DNA in the proximity of gene promoters, thereby 

either enhancing or repressing (via negative GREs) gene transcription (4,5). The terms 

transactivation and transrepression have been derived from the effects glucocorticoids 

exert on the physiological stress-response. Glucocorticoids are known to restrain the 

stress response from overshooting via inhibition of stress-induced transcription factors 

(1) and therefore the term transrepression is used to designate this process. Binding of GRs 

to GREs often is implicated in the restorative functions glucocorticoids exert following a 

stress-response for instance on energy metabolism. Since many of the genes involved are 

upregulated by glucocorticoids the term transactivation is used to describe the process 

of GR binding to GREs, not withstanding the fact that some prominent genes (e.g. POMC) 

are regulated by negative GREs. Hence, the dynamic pattern of gene regulation observed 

in the present study may indicate that transrepression precedes transactivation in time, 

resulting in downregulated genes at early time points. Some caution, though, is required 

with the interpretation of these data. The current technique is not very suitable to study 

low-abundant gene products, such as some of the ion channel subunits. Earlier physi-
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ological studies in hippocampal cells have shown that GR-dependent changes in calcium 

channel conductance, seen as early as 1 hr after steroid administration, depend on trans-

activation (6). In accordance, calcium channel subunit expression in rats was found to 

be upregulated in the same timeframe (Y.Qin, unpublished observation). This indicates 

that upregulation after short intervals is possible, although it does not seem to be the 

prevailing pathway.

Very little is known about the rate at which the different steps involved in transactiva-

tion and transrepression proceed. However, it seems that since on average mRNA decay 

is not faster than mRNA elongation (21,22), blocking the actions of other transcription 

factors via protein-protein interactions may occur more rapidly than transactivation due 

to the fact that in the latter process cofactor recruitment and chromatin remodeling is 

required (17,23-25). Additionally, it should be noted that direct interactions between the 

GR and the general transcription machinery have been reported as well, influencing gene 

transcription without the need for cofactor recruitment and / or chromatin remodeling 

(26). This could constitute a mechanism that would facilitate rapid regulation of gene 

transcription prior to the currently profiled 1 hour time point. Since there have been 

examples in literature in which glucocorticoids rapidly upregulate gene expression (27), 

assessing gene expression changes at shorter time intervals (< 1 hour) in the current 

setting would be of major interest. 

Translocation of GR into the nucleus under the present experimental conditions was 

confirmed by immunocytochemistry, showing significant increases in nuclear localiza-

tion after application of the corticosterone pulse. These results therefore suggest the 

functional activation of GR by the 20 minute corticosterone pulse on top of the basal 

tonic levels of corticosterone and are in line with other reports in literature (28,29).

Activation of GR by a 20 minute corticosterone pulse is an established model to study 

the neurophysiology of corticosterone action. This pulse mimics the peak in the ultradian 

secretion pattern of corticosterone. Hence, the relationship between the kinetics of cor-

ticosterone application and dynamics of the GR-mediated transcriptional response can 

be informative with regard to the sensitivity of the transrepression and transactivation 

mechanisms. In this respect the finding of Jonat and coworkers (30) that transrepression 

occurs at lower concentrations than transactivation after 12 hours of dexamethasone in-

cubation is very interesting and may indicate that also in the current experimental setup 

transrepression is more sensitive for GR-ligand than transactivation. 

When compared to our previously performed GeneChip experiment (7) overall tran-

script detection was improved from 37% to 51% in the current data set. This increase 

can most likely be attributed to the fact that in the current study the Rat Expression 

Array 230A GeneChips were used in which the quality of the probe sets is improved and 

which also contains more genes. Additionally, a less complex biological substrate such 

as PC12 cells could result in enhanced detection of low abundant gene classes such as 
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neurotransmitter receptors and growth factors. However, in the current setting the de-

tection of these low-abundant transcripts was not improved. This most likely reflects a 

technical constraint constituted by the GeneChips which can be illustrated by the fact 

that both fibroblast growth factor receptor 1 and fibroblast growth factor 2 are known 

to be expressed in neuronal PC12 cells (19,20) but were not detectable on the currently 

used GeneChips. This result is in line with previous findings in laser microdissected hip-

pocampal subregions in which little detection improvement was gained for specific 

classes of low abundant gene transcripts (31). 

The GR-induced fold-changes in gene expression were very moderate. Using a paired 

experimental design, statistical power was greatly enhanced since very consistent 

changes in gene expression were observed within each pair. Additionally, 75% of the 

selected genes could be validated by real-time qPCR, demonstrating the reliability of 

the currently generated data set. The observed moderate changes are in contrast to 

the amplitude of glucocorticoid-mediated responses observed in PC12 cells in previous 

studies (32-35). However, major differences exist in glucocorticoid treatment of the cells 

between the current and previously published studies. In the current study, a short, 20 

minute 100 nM corticosterone pulse was administered, which is in sharp contrast to the 

longer (1 - 48 hours) continuous exposure to higher (1 µM) concentrations of the highly 

potent synthetic GR-agonist dexamethasone. Furthermore, the currently obtained mod-

erate changes in gene expression are in good concordance with the GR-mediated effects 

on gene expression reported in vivo (10,36-38). 

Strikingly, the cycloheximide experiment revealed that the 5 validated genes for the 1 

hour time point were all primary responsive, indicating that activated GRs either bound 

to negative GREs or to other transcription factors, inhibiting their transcriptional ac-

tions. Therefore, both the promoter region and the intronic regions of these genes were 

checked for the presence of consensus negative GRE (nGRE) sites (17). No nGRE sites were 

present, supporting the hypothesis that 1 hour after GR-activation gene transcription 

may be inhibited by protein-protein interactions between GRs and other transcription 

factors instead of GR-binding to the DNA. Since the cells were constantly stimulated with 

NGF, which supposedly leads to activation of CREB, AP1 and NFκB (39,40), the same re-

gions were also examined for the presence of binding sites for these transcription factors 

and for two genes (lactate dehydrogenase A and beta actin) clearly conserved AP1-sites 

and CREB-sites were found, pointing towards a transrepression mechanism mediated by 

activated GRs. However, for the 3 remaining primary responsive genes the mechanism 

of action still remains speculative and other, so far unknown interacting pathways could 

be involved.

Among these primary responsive, downregulated genes, SWI/SNF related, matrix as-

sociated, actin dependent regulator of chromatin (SNF2) constitutes a very interesting 

transcript. This gene is a component of the SWI/SNF complex which is involved in GR-
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mediated transactivation (4,41). In yeast, mutating the components of this complex re-

sults in loss of GR-induced transactivation. Hence, transient downregulation of the SNF2 

component which may already have taken place prior to the 1 hour time point could 

be part of the mechanism which temporarily hampers transactivation, resulting in the 

currently observed dynamic pattern. 

Four genes that were tested (ribosomal protein S6, actin related protein 2/3 complex, 

RAB7 and synaptosomal-associated protein 25) displayed a downstream response in the 

3 hours time point. These results could indicate that 3 hours after GR-activation only 

downstream responsive genes are present in the current experimental setup. It should 

be realized, though, that our sample size was limited, so that the results cannot be simply 

generalized. In agreement, in the previous hippocampal data set (Morsink 2006), metallo-

thionein was found to be upregulated 3 hours after GR-activation. Since there is clear 

evidence that this gene contains two functionally active GREs upstream of the promoter 

sequence (42), it most likely is a primary responsive gene, implying that the 3 hours time 

point would be constituted both by primary and downstream responsive genes. In this 

respect, profiling gene expression 2 hours after GR-activation and assessing primary and 

downstream-responsive genes at this time point would be of major interest.

In order to gain more insight into the mechanism that underlies the transcriptional re-

sponse 1 hour after GR-activation, expanding the currently performed limited search for 

transcription binding sites on the DNA by looking at other transcription factor binding 

sites and using a combination of a large-scale bioinformatics and chromatin immunopre-

cipitation approach would be of use. Identifying commonly shared transcription factor 

binding sites in the proximity of promoter regions and assessing the GR-transrepressive 

capability on these elements could provide a definitive answer to the question whether 

1 hour after GR-activation transrepression via protein-protein interactions underlies the 

transcriptional response. Since PC12 cells are relatively easily to manipulate, they would 

provide a good neuronal substrate for performing these follow up studies.

The overlap of GR-responsive genes between the neuronal PC12 data set and both 

previously generated hippocampal data sets was very small. Although a large number of 

hippocampal GR-responsive genes was detectable on the GeneChips used for the neuro-

nal PC12 cells only 12 genes in total overlapped between PC12 cells and hippocampus, 

of which 9 showed similar changes in expression direction. Since NGF-differentiated 

PC12 cells are known to display a catecholaminergic phenotype, the small overlap with 

hippocampal tissue clearly demonstrates a high degree of tissue / cell specificity of the 

GR-mediated gene expression response at the level of the individual genes. Addition-

ally, the overlapping 9 genes point towards a, albeit very limited, cell type independent 

transcriptional response and hence these genes constitute good positive controls, dem-

onstrating the reliability of the current data set.  
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The currently performed experiment therefore can be used as a model to study the cell 

type specific transcriptional actions of acutely activated GRs on dopaminergic / norad-

renergic neuronal functioning. Glucocorticoids are known to display profound effects on 

both dopaminergic and noradrenergic systems. For instance, in the nucleus accumbens, 

acute administration of corticosterone or dexamethasone increases dopamine release 

from these neurons 1 to 4 hours later (3,43). Glucocorticoids can also enhance norad-

renergic signaling in brain (44). In this respect it is interesting to note that in the current 

and previously performed SAGE experiment an upregulation of synaptosomal associated 

protein 25 (SNAP-25) was observed after corticosterone administration. This gene plays a 

role in calcium-dependent exocytosis and an increased expression could therefore lead 

to increased neurotransmitter release (45), resulting in enhanced neurotransmission. 

Furthermore, the current data set contained 3 genes involved in Rab-mediated endocy-

tosis, Rab 1 acceptor, Rab 15 and Rab 7. Rab proteins are small GTPases which coordinate 

vesicular membrane transport. Given the fact that glucocorticoids enhance exocyto-

sis-mediated dopamine and noradrenalin release, endocytosis-mediated recycling of 

membrane should also be enhanced to restore membrane balance. Therefore, these 

Rab proteins may provide an additional molecular mechanism by which glucocorticoids 

regulate the process of enhanced neurotransmitter release. 

Interestingly, beta actin appeared to be downregulated 1 hour after GR-activation. 

Beta actin is a constituent of the actin cytoskeleton, which plays a role in dendritic spine 

morphology and synaptic transmission (46). Furthermore, LIM/SH3 protein also was 

downregulated 1 hour after GR-activation and this protein is strongly concentrated at 

synaptic sites (47). LIM/SH3 protein can associate with actin and possibly recruits signal-

ing molecules to the actin cytoskeleton, thereby playing a role in cytoskeletal organi-

zation. Hence, downregulation of both beta actin and LIM/SH3 protein indicates that 

synaptic plasticity of catecholaminergic neurons may be modulated by corticosterone. 

In conclusion, by using neuronal PC12 cells for gene expression profiling after acute 

activation of GRs we have demonstrated that the temporal genomic response to acutely 

activated GRs overlaps between different neuronal substrates. Furthermore, the results 

obtained in the cycloheximide experiment suggests that the 1 hour time point consists 

of primary responsive genes which, as master switches, may regulate the transcriptional 

response of genes further in time. Additionally, by assessing the overlap between differ-

ent data sets we have illustrated the cell type specificity of the GR-mediated transcrip-

tional response. Finally, we have identified a number of functionally interesting genes 

that may increase the current understanding how glucocorticoids affect dopaminergic 

and noradrenergic neuronal functioning.
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Supplementary Table. Corticosterone-responsive genes 1 and 3 hours after GR-activation. FC = fold change

Probe Set 
ID FC 1 hour FC 3 hours Gene Title

GO Biological Process 
Description

1367744_at 0.636244709 melanoma antigen, family D, 2 ---

1367768_at 0.815700921 latexin ---

1369930_at 0.894899283 --- ---

1371390_at 0.83159745 tubulin, beta, 2 ---

1371487_at 0.773520241
SH3 domain binding glutamic acid-rich 
protein-like 3 (predicted) ---

1371542_at 0.852804258
similar to Tubulin alpha-4 chain (Alpha-
tubulin 4) ---

1371653_at 0.873037255 --- ---

1371782_at 0.818809859 NIPSNAP-related protein ---

1371783_at 0.904408339 heat shock protein ---

1372104_at 0.74527328 --- ---

1372169_at 0.696559784 similar to RIKEN cDNA 4121402D02 ---

1372293_at 0.757432555 Transcribed locus ---

1374758_at 0.712830556 Transcribed locus ---

1376052_at 0.87620947 similar to hypothetical protein FLJ20512 ---

1386852_
x_at 0.88111382 polyubiquitin ---

1386867_at 0.861815594 brain protein 44-like ---

1387770_at 0.950184704 putative ISG12(a) protein ---

1388134_at 0.920150897
eukaryotic translation elongation factor 
1 delta ---

1388297_at 0.884867241
eukaryotic translation elongation factor 
1 gamma ---

1388468_at 0.862872319 Similar to hypothetical protein ---

1388588_at 0.853421092
mammary tumor virus receptor 2 
(predicted) ---

1386891_at 0.893989405 1.088585138 phosphatidylethanolamine binding protein ---

1370193_at 1.08000597 protein tyrosine phosphatase 4a1 ---

1370803_at 1.086458818 ZW10 interactor ---

1371419_at 1.137432297 spectrin beta 2 ---

1371507_at 1.103355176
Similar to 4921517L17Rik protein 
(predicted) ---

1371883_at 1.092022171
monocyte to macrophage differentiation-
associated ---
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Probe Set 
ID FC 1 hour FC 3 hours Gene Title

GO Biological Process 
Description

1372003_at 1.193571359 Transcribed locus ---

1372394_at 1.083304633 similar to HECT domain containing 1 ---

1372568_at 1.115249893 Transcribed locus ---

1374898_at 0.701578764 similar to CG8841-PA (predicted) ---

1375049_at 1.124390516 --- ---

1375181_at 1.182918504 similar to 60S ribosomal protein L12 ---

1375631_at 1.058215641
pleckstrin homology domain containing, 
family B member 2 (predicted) ---

1377310_at 1.239280582 Transcribed locus ---

1382200_at 1.30736587 similar to Prr6 protein ---

1387016_
a_at 1.091065761 stromal cell derived factor receptor 1 ---

1388477_at 1.127486641 similar to RAN-binding protein 3 (RanBP3) ---

1389820_at 1.123294362 --- ---

1389840_at 1.153754562 splicing factor 3b, subunit 1 ---

1390048_at 1.159571262
serine/arginine repetitive matrix 2 
(predicted) ---

1390153_at 1.109047637
Similar to hypothetical protein BC019095 
(predicted) ---

1390234_at 0.835331391 splicing factor 3b, subunit 1 ---

1398326_at 1.119310264 similar to Nur77 downstream protein 2 ---

1399012_at 1.123475984
similar to RIKEN cDNA 1110001M20 
(predicted) ---

From left to right are listed the GeneChip Probe Set IDs, the fold changes in the 1 and 3 hours time point and the gene titles. These genes could 

not be annotated with Gene Ontology Biological Process descriptions. Downregulated genes are indicated by fold changes below 1, upregulated 

genes by fold changes above 1.
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ABSTRACT

Glucocorticoid hormones, which are released by HPA-axis activation in response to 

stress, may exert modulatory effects on neural function in a delayed genomic fashion. 

The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor 

(MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. 

Therefore, changes in gene expression most likely underlie glucocorticoid-mediated 

genomic effects on neuroexcitability, synaptic plasticity and energy metabolism. In the 

past 5 years large scale gene expression profiling has evolved as a powerful tool to assess 

glucocorticoid-mediated transcriptional changes within the brain, contributing to the 

generation of new hypotheses on the molecular mechanism underlying glucocorticoid-

mediated effects. The application of several gene expression profiling techniques in dif-

ferent biological model systems has led to interesting findings with regard to receptor 

specificity, dynamics and context-specificity of glucocorticoid-mediated transcriptional 

regulation. These findings have revealed the enormous diversity in glucocorticoid medi-

ated transcriptional responses assigned to various functional gene classes. At present, 

the focus is shifting towards experimental and technical refinement to overcome some 

of the limitations which are currently encountered in gene expression profiling of dis-

crete brain regions.

This review aims to provide an overview of the results that were obtained using dif-

ferent gene expression profiling techniques in various biological model systems for 

assessing glucocorticoid-mediated transcription in neuronal tissue. Additionally, future 

prospects concerning the experimental and technical refinement in particular in relation 

to expression profiling in brain are discussed.
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1. INTRODUCTION

Glucocorticoid hormones, which are released by the adrenals in response to stress, may 

exert modulatory effects on many different organs and tissues in a delayed genomic 

fashion. While actions of glucocorticoids in the liver and immune system have been 

studied to a much greater extent, here we focus on the neural transcriptional effects 

of glucocorticoids. So far, studies addressing the neural effects have been sparse and 

from the few large-scale gene expression profiling studies that were performed in brain 

the view has emerged that measuring glucocorticoid-induced transcriptional changes in 

neural tissue is complicated by several factors. These include the small glucocorticoid-

induced transcriptional effects, the cellular heterogeneity that exists in brain and the 

large transcriptomes which are present in neural cells. 

The current review aims to provide an overview of the results that were obtained as-

sessing acute glucocorticoid-mediated transcriptional responses in neural tissue using 

different large-scale gene expression profiling techniques and biological model systems. 

Furthermore, several new strategies are presented which can be applied to overcome 

the current problems and to further investigate glucocorticoid-mediated transcriptional 

effects in brain.

In section 2, a short overview of glucocorticoids, their effects and the underlying mo-

lecular mechanisms are given. In section 3, two of the more commonly used techniques 

for large-scale gene expression profiling in neuronal tissue, i.e. SAGE and DNA microar-

rays, are described. The currently obtained findings using this approach with regard to 

receptor specificity (section 4), dynamics (section 5) and context-specificity (section 

6) of glucocorticoid-mediated transcriptional regulation as well as the functional impli-

cations of glucocorticoid-mediated transcriptional regulation (section 7) is discussed. 

Issues concerning technical refinement are addressed in section 8 and finally, future 

prospects are presented in section 9. 

2. GLUCOCORTICOIDS 

The hypothalamic-pituitary-adrenal (HPA)-axis plays a key role in mediating stress re-

sponses in the organism and under normal conditions its activity is limited, resulting in 

the release of basal amounts of glucocorticoid hormones from the adrenals in an ultra-

dian and circadian fashion. When the organism experiences a stressor, the pulsatile se-

cretion increases in frequency and magnitude (1) and glucocorticoid concentrations will 

rise in a time course of several minutes, leading to glucocorticoid-induced transcriptional 

changes in target tissues within an hour. Additionally, glucocorticoids also exert negative 
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feedback on the HPA-axis itself via the pituitary, hypothalamus and hippocampus (2,3), 

shutting down the stress-induced HPA-axis response. 

Many different organs and tissues are affected by glucocorticoids and some of the 

effects glucocorticoids exert include increasing blood glucose concentrations (hence 

their name), stimulation of lung development and inhibition of the immune system. 

Furthermore, glucocorticoids are able to pass the blood brain barrier and affect various 

brain functions such as cognition, behaviour and mood (4). The hippocampus, a brain 

structure involved in learning, memory formation and HPA axis control, is one of the key 

brain structures affected by glucocorticoids. Several aspects of hippocampal function, 

such as neurotransmission and metabolism, are affected by glucocorticoids. For instance, 

in the hippocampus increased concentrations of glucocorticoids inhibit β-receptor me-

diated effects, impair long-term potentiation (LTP), enhance calcium influx and increase 

the neuron’s responses to serotonin (5).

Since glucocorticoids affect many different organs and tissues, chronic overexposure 

has been associated with a wide variety of pathological conditions. Correlations between 

chronically elevated levels of glucocorticoids and cardiovascular disease, metabolic dis-

ease and immunity-related disorders have been shown to exist (4,6,7). Moreover, high 

concentrations of glucocorticoids most likely exert pathological effects on brain function 

as well. For instance, there is a clear association between affective disorders and high 

concentrations of glucocorticoids, since 50% of the patients suffering from depression 

have hypercortisolism (3) and patients with Cushing’s disease, in which glucocorticoid 

levels are high due to pituitary or adrenal tumors, often display depression as well. 

Glucocorticoid receptors

Many of the glucocorticoid-induced effects on target tissues are mediated via the glu-

cocorticoid receptor (GR) which is expressed throughout the entire body (8). However, 

in brain there is a second receptor for glucocorticoids, the mineralocorticoid receptor 

(MR) with a much more restricted expression, which binds glucocorticoids with a 10-fold 

higher affinity than GR, resulting in predominant MR-occupation under basal glucocorti-

coid concentrations and additional GR-occupation when glucocorticoid concentrations 

rise (3). Both receptors belong to the family of ligand-inducible transcription factors and 

can modulate gene transcription in the cell nucleus (9). Therefore, many of the effects 

that glucocorticoids exert are the result of changes in gene expression.

MR has a much more restricted expression than GR. While GR is ubiquitously expressed 

throughout the body, MR expression is restricted to specific tissues including the kidney 

and limbic brain regions such as the hippocampus (10). Also within the hippocampus, 

different ratios of MR / GR exist in different hippocampal subregions (CA1, 2, 3, 4 and 

dentate gyrus) and since they are transcription factors it is quite possible that different 

sets of target genes are transcriptionally regulated in these subregions.
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Both receptors have a different function in the regulation of HPA-axis activity; MR main-

tains basal activity of the axis under basal concentrations of glucocorticoids whereas GR 

facilitates the negative feedback under rising glucocorticoid concentrations after HPA-

axis activation by a stressor (3).

Molecular mechanisms

Upon ligand-binding, both MR and GR translocate to the cell nucleus where they can 

modulate gene transcription via transactivation and transrepression (9). 

In transactivation, ligand-bound MRs and GRs form homodimers that bind to gluco-

corticoid-responsive elements (GREs) on the DNA in the proximity of gene promoters. 

Subsequently, cofactors (coactivators and / or corepressors) are recruited to the recep-

tors and via interactions with the general transcription machinery gene transcription 

can either be enhanced (positive GREs) or repressed (negative GREs). Examples of genes 

upregulated by glucocorticoids via positive GREs include the phenylethanolamine N-

methyltransferase (PNMT) gene in the adrenal and genes involved in gluconeogenesis 

and the urea cycle in the liver (8). In the pituitary, glucocorticoids are known to inhibit 

the expression of ACTH by inhibiting the transcription of its precursor molecule proopi-

omelanocortin (POMC) via binding to a negative GRE site. The 5HT1A-receptor is another 

well known gene that contains a negative GRE-site.  

In transrepression, monomeric receptors inhibit gene expression by binding to tran-

scription factors like NFκB, AP1 and CREB that were activated by other signaling cascades 

(11,12,13,14). It is known that this mode of action accounts for many of the inhibitory 

effects glucocorticoids exert on immune system functioning (15) and several immune-

related genes that are downregulated via transrepression include cytokines and adhe-

sion molecules (16). The availability of different transrepression partners is most likely 

determined by the cellular context in which glucocorticoids operate.

Finally, there are indications that MR and GR can form GRE-binding heterodimers which 

may enhance the diversity of glucocorticoid action on gene transcription (17,18,19).

3. LARGE-SCALE GENE EXPRESSION PROFILING TECHNOLOGY

Powerful large-scale gene expression profiling technology has become available in re-

cent years, allowing entire transcriptomes to be rapidly characterized in a quantitative 

manner, also known as genomics.

By profiling the expression levels of several thousands of genes glucocorticoid-

regulated genes can be identified, allowing new hypotheses to be generated as to how 

transcriptional regulation of selected candidate genes may underlie the glucocorticoid-

mediated effects on neural function. In addition, issues concerning receptor and context 
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specificity and dynamics of the genomic response to glucocorticoids can be addressed 

by generating and comparing expression profiles under different ratios of activated MR 

and GR, in different cell types, under diverse conditions and throughout time. 

Several techniques, such as Serial Analysis of Gene Expression (SAGE), DNA microarray 

technology, differential display and subtractive hybridization, are available for perform-

ing large-scale gene expression profiling. So far, SAGE (20) and DNA microarrays (21) 

have been most widely used techniques in the field of glucocorticoid interactions with 

the (neural) transcriptome. Both techniques are constituted by their own unique meth-

odological procedures and subsequently require highly specific data analysis tools. More 

detailed information on SAGE and DNA microarray procedures as well as their specific 

data analysis tools can be found in sections 3.1, 3.2 and Figures 1 and 2. Additionally, a 

methodological comparison between SAGE and DNA microarrays is provided in section 

3.3.

Serial Analysis of Gene Expression (SAGE) 

In brief, when using SAGE, mRNA transcript levels are measured by counting so-called 

SAGE tags. These 10 nucleotide long, transcript-specific SAGE tags are derived from the 

transcript’s 3’ untranslated regions and contain sufficient information to uniquely identify 

the corresponding transcripts. Subsequent sequencing and counting of the generated 

SAGE tags results in a gene expression profile for each experimental sample (Figure 1). 

SAGE procedure

In SAGE, mRNA is isolated from the experimental samples and double stranded cDNA 

is generated using biotinylated oligo-dT primers directed against the polyA-tails of the 

mRNA transcripts. Subsequently, SAGE tags are isolated from the cDNA via two endo-

nuclease reactions. 

In the first endonuclease reaction, a restriction endonuclease (anchoring enzyme) 

which recognizes a 4 bp sequence (e.g. NlaIII, CATG) is used to cleave the cDNA, after 

which the 3’ parts of the cleaved cDNAs are isolated by binding of the biotinylated oligo-

dT primers to streptavidin beads. Prior to the second endonuclease reaction, linkers 

which contain recognition sites for the second endonuclease are attached to the cleaved 

cDNAs via the anchoring restriction sites. 

In the second endonuclease reaction, a type II S restriction endonuclease (tagging en-

zyme), which typically cleaves DNA at a distance approximately 20 bp away from its rec-

ognition site on the linkers, is used to generate the short, 10 bp SAGE tags. Subsequently, 

the resulting SAGE tags are ligated into long multimers called concatemers, which are 

then cloned into plasmids and sequenced. Using these concatemers greatly enhances 

the efficiency of the sequencing step because they minimize the number of required 

sequencing reactions. 
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Figure 1 

Figure 2 onder 

sequence analysis: database 
comparison and quantitation 

cDNA synthesis and SAGE 
tag isolation 

AAAAA
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AAAAA

mRNA

ditag formation and
concatenation

Monte Carlo Analysis: 
significantly differentially expressed transcripts 

+ CORT - CORT 
AAAAA

AAAAA

AAAAA

AAAAA
AAAAA

AAAAA

Tag sequence Tag count + CORT Tag count - CORT P value Gene name

ATAACACATA 593 312 0 ATP synthase subunit 
AAATAAAACT 50 14 0 NADH dehydrogenase
TAACTTTAAG 30 9 0.00041 neuronal olfactomedin
CTCCAATAAT 10 0 0.001 ESTs (Rn.8002) Pkia
TCCAATAAAG 26 8 0.001 ESTs highly similar to 

Figure 1. Overview of the Serial Analysis of Gene Expression (SAGE) procedure. Details are described in the text (section 2.1). + CORT: 

glucocorticoid-treated sample, - CORT: control sample.
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After a sufficient number of tags have been sequenced, the obtained tag sequences 

are used to estimate tag abundancies which are representative for mRNA abundancies 

in the original pool. 

Subsequently, a special SAGE software package is used to assess significantly differ-

entially expressed genes. The SAGE software uses Monte Carlo Analysis to determine 

statistical significance by performing simulations on the data set and calculating the like-

lihood for each transcript to obtain a difference in expression equal or greater than the 

observed difference due to chance alone (22). A P-value cutoff is set (taking an accept-

able, low, false-positive rate into account) which results in a list of significantly expressed 

SAGE tags. Finally, the SAGE software matches the tags against the GenBank and / or 

UniGene databases in order to identify the corresponding transcript for each tag. 

In addition to the standard SAGE software, presently an alternative software package is avail-

able, called eSAGE (23), which further streamlines the analysis of SAGE data. Among the extra 

features included in the eSAGE package is the ability to follow SAGE sequencing efficiency. 

SAGE websites 

A clear advantage of SAGE is that absolute SAGE tag counts are used to represent tran-

script abundancies, which allows data comparison between different experiments per-

formed at different locations, under the condition that the total number of sequenced 

SAGE tags is taken into account. At the SAGEmap website (www.ncbi.nlm.nih.gov/SAGE/) 

(24), a public SAGE database has been constructed which contains over 300 SAGE librar-

ies obtained from human tissue and over 200 libraries obtained from mouse tissue. Fur-

thermore, it contains libraries obtained from several other organisms as well, such as for 

example rat and C. elegans. 

Another well known website in which tags derived from different organs and tissues 

from human and mouse are collected and can be compared is the SAGE Genie website 

which is available at ‘http://cgap.nci.nih.gov/SAGE’ (25). 

Modified SAGE procedures

Presently, several modifications of the general SAGE procedure exist, each improving dif-

ferent limitations of the general SAGE procedure. 

One of the limitations of the SAGE procedure is the relatively high input of RNA that is 

required. Therefore, several modifications to the procedure have been developed which 

require lower amounts of input RNA, including PCR-SAGE (26), SAGE-Lite (27), SAGE adap-

tation to downsized extracts (SADE; (28), miniSAGE (29) and microSAGE (30). MicroSAGE, 

for example, is more easily performed in comparison to SAGE due to the fact that several 

steps are performed in a single tube, thereby preventing the loss of material. In addition, 

several extra PCR cycles are performed before the concatemers are generated, resulting 

in the use of very limited amounts of starting material. 



129

Chapter 5

C
h

ap
te

r 
5

Another limitation of the SAGE procedure is the fact that the tags generated are often 

located several hundred bp upstream of the 3’ ends (internal tags), which makes it difficult 

to specify where the corresponding transcripts start and end on the genome. A modified 

SAGE procedure called longSAGE generates 5’ and 3’ tags derived from the first and last 

20 bp of the transcripts respectively, thereby allowing the mapping of the transcription 

initiation site and the polyadenylation site of each transcript on the genome and thus 

providing a more precise genomic localization of the transcripts (31).

DNA microarrays

DNA microarrays are microscopic glass slides or silica chips onto which a large number of 

probes are printed or synthesized in situ at a high density. RNA which has been obtained 

from the experimental samples is labeled and hybridized to the microarray. The resulting 

hybridization signals for each transcript are quantified, resulting in a gene expression 

profile for each experimental sample. 

DNA microarray systems

Several kinds of DNA microarray systems are currently available and they are different 

in multiple ways. First, different microarray systems use probe sequences of different 

lengths. For example, the first DNA microarrays were spotted with long (in general > 300 

bp), PCR-amplified cDNA probes whereas currently most microarray systems use shorter, 

more specific oligonucleotide probes which range in length from 25 to 60 nucleotides 

that are synthesized in situ on the array. Second, there are differences in the way hybrid-

ization of target RNA to the array is performed. In single-target hybridizations, separate 

arrays are used to hybridize separate experimental samples whereas in dual-target hy-

bridizations, one array is used to hybridize two experimental samples (i.e. treatment and 

control) which are labeled with two different fluorescent dyes (typically Cy3 and Cy5). 

When using the dual-target hybridization microarrays, the fact that two samples can 

be hybridized onto one microarray at once and expression levels can immediately be 

compared between the two samples constitute an advantage. However, compared to 

single-target hybridizations a clear disadvantage is the need for dye-swap experiments 

and more complicated normalization methods. 

A very well known and widely used commercial microarray system which operates 

with single-sample hybridizations and uses probe sets that represent the transcripts is 

the Affymetrix GeneChip system. Each probe set consists of 11 to 20 probe pairs and each 

probe pair contains one 25 nucleotides long perfect match (PM) and one 25 nucleotides 

long mismatch (MM) oligo. The MM-oligo contains a single point mutation in the middle 

compared to the PM-oligo and is used to measure non-specific binding and cross-hy-

bridization. 
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Affymetrix signal estimation and normalization

After the arrays have been hybridized with labeled mRNA obtained from the experimen-

tal samples, the analysis software normalizes the arrays to correct for technical variation 

and estimates the transcript signal intensities, which is followed by statistical testing 

(Figure 2). 

The Affymetrix software (GeneChip Operating Software; GCOS, formerly known as MAS) 

performs total intensity normalization (32) in which the total intensities of each array are 

scaled towards the same value. Subsequently, the expression levels of each transcript are 

calculated by subtracting the MM-signal from the PM-signal for each probe pair and by 

subsequently calculating a robust mean of the probe pairs in the probe set. Additionally, 

a statistical test is performed to assess whether the probe set PM-signals are significantly 

higher than the probe set MM-signals, allowing transcripts that are reliably detected to 

be selected for further analyses. 

In recent years, other Affymetrix GeneChip analysis tools have been developed, 

among which Robust Multi-chip Analysis (RMA) (33). Instead of normalizing each array 

separately, RMA fits a mathematical model through the entire set of arrays and takes 

into account both transcript abundancy and probe affinity (34). RMA analysis has been 

shown to reduce variance for the lower intensity signals in comparison to MAS (33,35), 

possibly resulting in improved detection of lower abundant signals. However, currently 

the RMA tool ignores the MM-signals, using only the PM-signals, and therefore no reli-

ability estimate is generated (34). 

Subsequent analysis using diagnostic plots is crucial in order to verify whether process-

ing and normalization of the arrays went properly. Two of the more commonly used plots 

are the scatterplot, in which the gene intensities of two (paired) arrays are plotted, and 

the box-and-whisker plot, in which median intensities and intensity quartiles of unpaired 

arrays are displayed. Erroneous normalization can be visualized in the scatterplot as any 

deviation of the data cloud from the line y = x, whereas in the box-and-whisker plot 

unequal medians and variances indicate improper normalization.

Microarray statistics

After array normalization, signal estimation and optional pre-filtering of the data, a mul-

titude of statistical tests developed for analyzing microarrays can be applied to assess 

differentially expressed (groups of ) genes. The most commonly used tests so far have 

been ‘gene level tests’ in which individual genes are tested separately. Well known gene 

level tests include Significance Analysis of Microarrays (SAM) (36), the class comparison 

tool in the BRB ArrayTools package (developed by Dr. Richard Simon and Amy Peng Lam; 

http://linus.nci.nih.gov/BRB-ArrayTools.htm) and ANOVA (37). 

However, recently a number of ‘global tests’ have been developed in which a priori 

defined sets of genes, which are for instance based on biological process classifications, 
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Figure 2. Overview of the DNA microarray procedure. Details are described in the text (section 2.2). + CORT: glucocorticoid-treated sample, 

- CORT: control sample.
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are tested. Several examples of global tests include Gene Set Enrichment Analysis (GSEA) 

(38) and Parametric Analysis of Gene Set Enrichment (PAGE) (39). In comparison to gene 

level tests, global tests are believed to be more suitable for detecting subtle gene expres-

sion changes due to the fact that the statistical significance of a group of coregulated 

genes will be greater than the separate statistical significances of each individual gene 

in that group (39). 

When using microarrays, a large number of genes and thus hypotheses are tested in a 

single experiment, resulting in many false positives due to the multiple testing problem. 

A generally accepted solution for this problem has been the application of so-called 

False Discovery Rates (FDRs) (40). Using this methodology, lists of differentially expressed 

genes are generated in association with an FDR estimate which expresses the percentage 

of genes present in the list due to chance alone. FDR estimates are generally provided 

in many statistical tests developed for microarray analysis, including all of the previously 

mentioned tests.

Beside statistical tools, clustering tools are also being applied to microarray data such 

as hierarchical and K-means clustering. These tools perform grouping of data based on 

calculated ‘distances’ between genes (41), but since no formal statistical model is applied 

these methods in general only provide a visual tool, facilitating graphical representation 

of the data.

SAGE versus DNA microarrays

Using either SAGE or DNA microarrays for gene expression profiling in the brain depends 

on several considerations that can be made. 

First, brain is a highly complex heterogeneous tissue containing numerous nuclei, sub-

nuclei, neuronal and non-neuronal cells in which many different genes are expressed. 

Therefore the detection of brain region-specific, low-abundant transcripts can be diffi-

cult due to dilution of these signals by cells in other brain regions (42). Both SAGE and 

Affymetrix GeneChips seem to perform equally well in brain tissue with respect to de-

tectability, since a strong correlation between the detection of transcripts was observed 

in the hippocampus (43). Both methods reliably measured gene expression of medium 

to high abundant transcripts, whereas low-abundant transcripts were poorly detected. 

These results indicate that at the transcript detection level there is no reason to prefer 

either SAGE or DNA microarrays 

Second, the use of microarrays in general has been described as following a closed 

gene expression profiling strategy since only the expression of genes that are present on 

the microarray is measured. In contrast, the use of SAGE has been designated as follow-

ing an open gene expression profiling strategy since no selection of genes is made on 

forehand, thereby allowing the discovery of novel transcripts. Therefore, if the detection 

of novel transcripts is desired, using SAGE is a necessity. Additionally, SAGE generates 
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digital expression profiles, allowing easy comparisons between different SAGE libraries 

generated in different laboratories. In order to provide some sort of a standard annotation 

for microarray experiments, the Minimum Information About a Microarray Experiment 

(MIAME) protocol was developed, which authors can use for unambiguous interpretation 

of microarray data and reproduction of the experiment (44). However, comparison of mi-

croarray data is still very much complicated by the many different microarray platforms 

that are used.

Third, DNA microarray procedures are relatively fast and easily performed in com-

parison to SAGE, which constitutes a more laborious and time-consuming procedure. 

Therefore, when using SAGE, the number of experimental groups usually can only be 

limited whereas the use of DNA microarrays practically allows more elaborate experi-

mental designs. However, developments in single molecule sequencing (45) are likely to 

contribute to faster and more cost-economic SAGE procedures in the future. 

In conclusion, at present the issue of choosing a suitable gene expression profiling 

technique therefore logically depends 1) on the fact whether gene discovery is desired 

and 2) on the number of experimental groups that are under investigation. 

4. MR AND GR-SPECIFICITY OF THE GENOMIC RESPONSE 

In brain, the hippocampus is one of the regions in which the highest expression of MR 

and GR is found (10) and its neuronal activity is profoundly modulated by naturally oc-

curring glucocorticoids cortisol and corticosterone (46). Therefore, the vast majority of 

studies which assess glucocorticoid-mediated changes in neural gene expression have 

focused on the hippocampus and in particular on GR-mediated expression. Under basal 

concentrations of glucocorticoids, predominantly occupying MRs, calcium currents and 

5HT1A (serotonin)-receptor mediated hyperpolarization are low in the hippocampal CA1 

subregion whereas under additional GR occupation due to increasing glucocorticoid 

concentrations, calcium currents and 5HT1A-receptor mediated hyperpolarization are 

high (46). The effects that are observed under high glucocorticoid concentrations are 

also observed under glucocorticoid depletion, for instance after adrenalectomy, in which 

no receptors are occupied. Therefore, the effects of glucocorticoids follow a U-shaped 

dose-dependency. There are strong indications that these glucocorticoid-mediated ef-

fects on calcium currents and 5HT1A-receptor mediated hyperpolarization are depen-

dent on changes in gene transcription since they develop in a delayed manner which is 

dependent on DNA-binding of the receptors and de novo protein synthesis (3,46, 47,48). 

One of the first studies to address the glucocorticoid-induced genomic changes in the 

hippocampus in response to MR and / or GR-activation at a large-scale was performed 

on pooled rat hippocampal lysates which were subjected to SAGE (49). Exposure of the 
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hippocampus to glucocorticoids was manipulated in vivo using adrenalectomy in com-

bination with implantation of low corticosterone pellets (MR occupation) and additional 

corticosterone injections (MR + GR occupation). SAGE-expression profiles, encompass-

ing over 20.000 SAGE tags per experimental group revealed that in the hippocampus 

more than 80% of the glucocorticoid-responsive genes were regulated by either MR or 

GR alone, whereas the remaining genes were regulated by both MR and GR. Thus, in the 

hippocampus under conditions of selective MR and / or GR-activation, both receptors 

appear to regulate specific, though partially overlapping sets of genes (Figure 3). These 

results therefore strongly indicated that the differential effects of glucocorticoids on hip-

pocampal neuronal properties are mediated by largely different signaling pathways.

Since MRs and GRs share a common DNA binding domain and recognize the same 

GRE-sequences on the DNA which they can bind to (50,51) the question is how to ex-

plain these differences in genomic action of the two receptors. Currently the idea is that 

the differential effects of MR and GR on gene expression are most likely mediated via 

binding of different coactivators / corepressors to the receptors and/or by differences in 

transrepressive capacity between the receptors (52,53). MR and GR share a relatively low 

level of homology within their N-terminal domains and therefore these domains are in-

teresting with regard to binding of MR and GR-specific coregulators and transrepression 

partners (53). Additionally, differential effects of coregulators have been demonstrated in 

an in vitro study in which the coactivator SRC-1e enhanced the transcriptional response 

mediated by the MR N-terminal domain (54) but not by the GR N-terminal domain. More 

strikingly, the coregulator ELL was found to exert a completely opposite effect on MR 

versus GR-mediated gene transcription in vitro by acting as a coactivator for MR and as a 

corepressor for GR (52). Furthermore, with regard to differences in transrepressive capac-

ity between MR and GR, Pearce and Yamamoto (55) demonstrated that activated GRs 

were able to transrepress AP1 stimulated transcription from a composite response ele-

ment whereas under the same conditions MRs were inactive. A specific sequence in the 

Figure 3 

98 +      33       + 72 MR-responsive
genes

GR-responsive
genes

MR and GR-responsive genes 

Figure 3. MR- and GR-specificity of the genomic response in hippocampus, assessed by using Serial Analysis of Gene Expression (SAGE). MR and 

GR transcriptionally regulate distinct, yet overlapping sets of genes (49). Details are described in the text (section 4).



135

Chapter 5

C
h

ap
te

r 
5

N-terminus of the GR was shown to be responsible for this transrepression. Additionally, 

several members of the protein inhibitor of activated STAT (PIAS) family were found to 

specifically interact with MRs but not with the GRs in a neuronal cell line, most likely via 

specific interactions with the N-terminal domain (56).

In conclusion, both MR and GR exert receptor-specific effects on hippocampal neuronal 

properties and these receptor-specific effects are also present at the transcriptional level. 

The transcriptional differences between the receptors are currently believed to occur via 

binding of different coregulators and transrepression partners to MR and GR.

5. DYNAMICS OF THE GENOMIC RESPONSE

The previously mentioned application of SAGE to assess hippocampal MR and GR-induced 

transcriptional changes resulted in the identification of over 200 MR and GR-responsive 

genes (49). However, with respect to the neuronal properties, the precise molecular 

mechanisms underlying the glucocorticoid-induced effects still have been difficult to 

elucidate. This is illustrated by the fact that the GR-mediated increase in serotonin-re-

sponse has so far not been directly linked to increases in serotonin receptor transcripts. 

Since in the SAGE study responsive genes were assessed at a fixed time point after recep-

tor activation (in the case of GR-responsive genes three hours after receptor activation 

by a corticosterone injection) transient changes in transcript levels that possibly precede 

the effects on neuronal properties could have been missed. 

Transcriptional responses to acute glucocorticoid administration have been measured 

in the hippocampus at different points throughout time. In one study, the transcriptional 

response of brain derived neurotrophic factor (BDNF) and the TrkB-receptor to glucocor-

ticoids was measured in vivo in the hippocampus after a corticosterone injection. This 

study revealed transient downregulation of BDNF in the dentate gyrus at 3 hours and 

upregulation in the CA1 subregion 12 hours afterwards (57). Other studies have exam-

ined the effects of acute stress on hippocampal gene expression levels in which rising 

glucocorticoid concentrations constitute only one of several factors contributing to the 

stress response. One such study examined hippocampal expression levels for MR, GR and 

growth hormone receptor (GHR) in a time frame of 0.5 – 12 hours after acute restraint 

stress in the water (RSW). A striking biphasic regulation of all 3 genes was observed in 

which an initial rapid (≤ 1 hour) transcriptional downregulation was succeeded by up-

regulation 2 hours afterwards in the dentate gyrus (58). 

In order to gain more insight into the hippocampal transcriptional response to acute ad-

ministration of glucocorticoids throughout time, a large-scale gene expression profiling 

study was conducted in ex vivo hippocampal slices. These slices were obtained from rats 

which were adrenalectomized and replaced with low corticosterone-secreting pellets, 
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occupying endogenous MRs (59). This preparation was chosen since many of the effects 

of activated GRs on neuroexcitability have been described in this preparation (48,60,61), 

allowing direct comparison between gene expression profiles and phenotypic effects. 

GRs were activated by a 20 minute corticosterone pulse and gene expression was pro-

filed 1, 3 and 5 hours afterwards, which is the time frame in which GR-induced changes 

take place ((48,61-63). Using Affymetrix GeneChips and subsequent Significance Analysis 

of Microarrays (SAM), an unexpected dynamic pattern of transcriptional responses was 

found throughout the profiled time window, which shifted from exclusively downregula-

tion of genes 1 hour after GR-activation towards both up and downregulation of genes 3 

hours afterwards. After 5 hours the response was almost back to baseline (Figure 4). Since 

so far only a limited number of genes have been identified which are repressed via nega-

tive GREs, this dynamic pattern suggested that in hippocampal tissue acute activation 

of GRs results in transrepression involving interactions with other transcription factors 

followed by a later wave involving transactivation. Hence, the obtained time-dependent 

profiles led to the question how general this highly characteristic dynamic response is for 

different neural subtypes. 

In order to answer this question, the effects of acutely activated GRs on neural tran-

scription were studied in a completely different neural substrate, i.e. clonal PC12 cells. 

These cells differentiate into catecholaminergic neuron-like cells when exposed to nerve 

Figure 4 
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Figure 4. Dynamics of the genomic response in the hippocampal slice preparation and neuronal PC12 cells, showing a shift from downregulated 

genes 1 hour after GR-activation towards upregulated genes 3 and 5 hours afterwards (59,77). Details are described in the text in section 5.



137

Chapter 5

C
h

ap
te

r 
5

growth factor (NGF), thereby generating long neurites, developing electrical excitability 

and expressing sodium, potassium and calcium channels as well as membrane receptors 

such as G-protein coupled receptors (64, 65, 66, 67). Furthermore, PC12 cells are known 

to express GR endogenously (68) and to display a highly stable karyotype (for which they 

are unique among clonal cell lines), making them very suitable for expression profiling 

of glucocorticoid-responsive genes. Hence, a similar experimental setup was chosen as 

in the hippocampal slice study and GRs were activated in differentiated PC12 cells by 

application of a 20 minute corticosterone pulse. 

Translocation of GR into the nucleus after application of the corticosterone pulse was 

confirmed by immunocytochemistry and Affymetrix GeneChips were subsequently 

used to measure gene expression. Strikingly, SAM-analysis revealed a highly similar dy-

namic pattern of exclusively downregulated genes at 1 hour and the majority of genes 

upregulated at 3 hours after GR-activation (Figure 4). These data suggested that also in 

neuronal PC12 cells transrepression may precede transactivation in time which results in 

downregulated genes at early time points. Hence, in both neural tissues tested, acutely 

activated GRs mediated a very similar time-dependent genomic response. 

The obtained transcriptional patterns were in line with the pattern observed in an-

other large-scale gene expression profiling study that was performed in the liver (69). 

Here, endogenous GRs were activated by acute administration of the synthetic gluco-

corticoid methylprednisolone, after which changes in gene expression were assessed in 

a time window of 15 minutes to 72 hours using Affymetrix GeneChips. Subsequently, 

three different clustering tools were used to define clusters of genes which displayed 

a similar dynamic pattern and these analyses revealed that the vast majority of early 

modulated genes were downregulated whereas a delayed wave of upregulated genes 

followed 2 hours later, mimicking the observed dynamic pattern in hippocampal slices 

and neuronal PC12 cells. 

Since all three large-scale gene expression profiling studies measured the transcrip-

tional response after acute activation of GR by application of a single glucocorticoid 

pulse (which mimics the peak in the ultradian secretion pattern), the observed dynamic 

pattern may be specific for this particular situation. 

However, a shortcoming of the current technology is that expression levels of low-

abundant transcripts are not reliably measured and therefore caution with the interpre-

tation of these data is required. Upregulation of genes by activated GRs after short time 

intervals is possible and has been demonstrated in hippocampal slices for calcium chan-

nel subunit expression (Y.Qin, unpublished observation). In addition, there are strong 

indications that the rapid upregulation of the phenylethanolamine-N-methyltransferase 

(PNMT) gene in the adrenals after acute stress is mediated via its upstream GRE (70). 

Hence, upregulation of gene transcription can occur after short time intervals, although 

the prevailing pathway seems to be downregulation. Currently, enhancement of the 
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detection of low-abundant transcripts is desired to obtain a complete picture of the 

transcriptional response.  

Information regarding the rate at which the different steps involved in transactivation 

and transrepression proceed is sparse. There are strong indications that overall mRNA 

decay is not faster than mRNA elongation (71,72). Therefore, it does not seem likely that 

an imbalance in decay versus elongation is responsible for the observed wave of down-

regulation. Hence, the rapid transcriptional downregulation of genes at early time points 

could be explained by the fact that blocking the ongoing effects of other transcription 

factors during transrepression may occur more rapidly than transactivation in which re-

cruitment of cofactors and chromatin remodeling needs to be initiated only at the time 

of nuclear receptor activation (8,53,73,74). Interestingly, GRs have been shown to directly 

interact with the general transcription machinery as well (75), possibly resulting in rapid 

upregulation of gene transcription. Hence, expanding the time window with shorter 

time intervals (< 1 hour) would be of major interest. 

Conducting experiments separating primary from downstream transcriptional respons-

es would greatly enhance our current understanding of the mechanisms that underlie 

the temporal pattern of glucocorticoid-mediated transcriptional responses and the role 

of activated GR as a component of the transcriptional regulatory complex. One of the first 

studies to assess genes which are directly under the transcriptional control of activated 

GRs at a large scale was performed in human lung carcinoma cells, using cycloheximide 

to block protein synthesis and subsequent downstream transcription (76). Using micro-

arrays, many transcriptionally responsive genes, both up and downregulated were found 

after constant treatment of the cells with dexamethasone for 6 hours. Subsequently, the 

promoter regions of a small subselection of 11 GR-responsive genes were screened using 

chromatin immunoprecipitation (ChIP; see section 9), resulting in the identification of 

GR-binding regions for 8 genes, including glucocorticoid-induced leucine zipper (GILZ; 

upregulated) and serum inducible kinase (SNK; downregulated). Hence, this study clearly 

demonstrated the strength of using both large-scale gene expression profiling against 

a cycloheximide background and application of ChIP to identify primary GR-responsive 

genes. 

The issue of primary GR-responsive genes was also briefly addressed in the PC12 study 

(77) and for a limited number of responsive genes the transcriptional response was pro-

filed in an additional experiment in which cycloheximide was used to block downstream 

transcriptional responses. It was found that the genes which were selected from the 1 

hour time point were primary responsive whereas the genes that were selected from the 

3 hours time point were downstream responsive. 

Additionally, a closer look at the genes found to be GR-responsive in hippocampal 

slices revealed that metallothionein was upregulated 3 hours after GR-activation. Since 

there are indications that this gene contains two functionally active GREs (78) it most 
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likely is a primary responsive gene. This would therefore indicate that in the time-de-

pendent profile the 1 hour time point is constituted by mainly primary responsive genes 

while at the 3 hours time point both primary and downstream responsive genes are pres-

ent. Therefore, in order to gain more conclusive data, the analysis should be expanded 

by increasing the number of time points after GR-activation and using large-scale gene 

expression profiling methods to maximize the number of genes measured. 

Finally, the question whether transrepression is the primary event 1 hour after GR-ac-

tivation could be approached by identifying commonly shared transcription factor bind-

ing sites in the proximity of promoter regions of transcriptionally regulated genes and 

subsequent testing of these putative binding sites for binding of GR and transrepression 

partners in a large-scale fashion. 

In conclusion, acute activation of neural GRs results in a highly characteristic time-

dependent expression profile. This profile suggests that transrepression may be the 

prevailing pathway by which GRs regulate neural gene transcription at early time points 

although currently more conclusive data are needed to support this idea. The nature of 

the genes that are regulated by GRs throughout time and the functional categories to 

which they belong are discussed in section 7.

6. CONTEXT-SPECIFICITY OF THE GENOMIC RESPONSE

The nature of the genomic response to glucocorticoids not only depends on which re-

ceptor (MR or GR) is activated but also on the cell type (cellular context) and activation 

status of the cells (environmental context). 

Cellular context

Activated GRs have been shown to exert different effects in different (neural) substrates. 

For example, GR-activation in the hypothalamic paraventricular nucleus (PVN) inhibits 

CRH neurons whereas extrahypothalamic CRH neurons are stimulated by activated GRs 

(2,79). Additionally, expression of the monoamine oxidase A (MAO-A) gene was found to 

be inhibited by activated GRs in the hippocampus (59) and enhanced in skeletal muscle 

cells (80). 

The extent to which this cellular context determines the glucocorticoid-mediated 

genomic response in neural tissue was addressed by comparing the expression profile 

obtained in neuronal PC12 cells with those obtained in the hippocampal SAGE study 

(49) and the hippocampal slice study (59). This meta-analysis revealed that the extent 

of overlap between glucocorticoid-responsive genes identified in PC12 study and both 

hippocampal studies was very small, between 2 to 4% of the responsive transcripts, in 

comparison to the overlap between both hippocampal data sets (16%) (77). Thus, at the 
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level of the individual genes, the genomic response to acute administration of glucocor-

ticoids appeared to be highly dependent on cellular context. 

Differences in cellular context may occur due to differences in the availability of cofac-

tors in different cell and tissue types or even between brain subregions. In this respect it 

is interesting to note that the genomic response to glucocorticoids is determined by the 

interaction between promoter composition and available cofactors. As a consequence, 

different genes with different kinds of promoters display different glucocorticoid-induced 

transcriptional responses depending on the availability of cofactors. This was illustrated 

by in vitro experiments in which different splice variants of steroid receptor cofactors 

(SRCs) were shown to be recruited to promoters containing different numbers of GREs 

(54,81). Thus, transcriptional modulation by activated GRs clearly depends on the GRE 

composition of the target gene’s promoter region and the availability of cofactors.

Furthermore, for several genes it has been shown that the GREs are organized into so-

called glucocorticoid responsive units (GRUs) in which GREs are flanked by other acces-

sory transcription factor binding sites (8). The transcriptional response of GRU-containing 

genes to glucocorticoids not only depends on activated and GRE-bound GRs, but also 

on binding of these accessory transcription factors. Since the expression of accessory 

transcription factors can be cell and tissue-specific, GRUs may differentially mediate the 

transcriptional response in different tissues and cells. An interesting example in which 

this principle may occur includes a subset of hepatic genes involved in gluconeogenesis 

which share a number of binding sites for liver-enriched transcription factors C/EBP and 

FoxA within their GRUs (8,82).

Figure 5 
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Figure 5. Cellular context-specificity of the genomic response to glucocorticoids in neural tissue. Meta-analysis showing a significant larger 

overlap between the hippocampal SAGE and the hippocampal slice data set than between the neuronal PC12 and hippocampal data sets (77).
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Additionally, the availability of transrepression partners may differ between different 

cell and tissue-types, resulting in transrepression of different sets of genes. Although so 

far no differential expression of NFκB, AP1 and CREB has been observed in for instance 

hippocampal subregions, other transcription factors which could potentially interact 

with glucocorticoid receptors (NF1, NGFI-B, HES-1 and the New England Deaconess tran-

scription factor) were found to be differentially expressed in the hippocampal CA3 and 

dentate gyrus subregions (42).

Environmental context

Beside the effect of differences in neural cell type on the glucocorticoid-mediated tran-

scriptional response, the activation status of the neural cells most likely also exerts an ef-

fect. For instance, there are several afferents (for instance the perforant path, alvear path 

or brain stem afferents) which affect the activation status of the hippocampus, thereby 

modulating the activity of intracellular pathways and thus affecting the availability of 

cofactors and transrepression partners for glucocorticoid receptors in hippocampal cells. 

Different experimental conditions (such as different stressors) will differentially activate 

these afferents, resulting in a condition-specific activation status of the hippocampal 

cells. This, in turn, will most likely determine the set of genes that is transcriptionally 

modulated by glucocorticoids. 

Thus, in contrast to the dynamics of the genomic response to glucocorticoids, the na-

ture of the response seems to be largely determined by the cellular and environmental 

context, resulting in a tissue and activation status specific pattern of glucocorticoid-re-

sponsive genes. Most likely, differences in availability of cofactors, accessory transcrip-

tion factors and transrepression partners underlie this context-specificity.

7. FUNCTIONAL IMPLICATIONS

In the previous three sections, the general characteristics of the glucocorticoid-medi-

ated transcriptional response have been discussed. The current section will deal with the 

functional implications of glucocorticoid-mediated transcriptional regulation. 

Functional gene classes affected by glucocorticoids

One aspect that has become evident from genomics studies into glucocorticoids is that 

they can modulate transcription of genes involved in a wide variety of different cellular 

processes. This has been shown in many different studies, demonstrating pleiotropic 

effects of glucocorticoids on several different transcriptomes. Functional categories of 

glucocorticoid-responsive genes overlap to a large extent between different tissues and 
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well known examples include (energy) metabolism, signal transduction, oxidative stress, 

regulation of transcription, regulation of translation and cell adhesion (49,59,69,83). 

With respect to neural tissue, several interesting observations have been made. First, in 

the hippocampus MR and GR were shown to regulate genes which can be grouped into 

similar functional categories (49). Second, also in hippocampal slices and neuronal PC12 

cells similar functional categories were affected by glucocorticoids throughout different 

time intervals after GR-activation (59,77). Hence, at the level of functional categories af-

fected by glucocorticoids in neural tissue, so far no clear receptor, context or time-speci-

ficity has been observed, although often these functional categories are represented by 

different individual transcripts. 

So far not many functional studies have been conducted with these different glucocor-

ticoid-responsive genes. Therefore, providing an answer to the question what it means 

for the neuron that glucocorticoids affect so many functional gene groups remains dif-

ficult. However, some speculation is possible when considering the sequence of events 

that occur throughout the general stress-response. After an organism has experienced 

a stressor, limbic brain areas, among which the hippocampus, are rapidly activated to 

mediate the cognitive and emotional processing of the stressor. Glucocorticoids are re-

leased by the HPA-axis in a delayed manner and are responsible for modulating and fine 
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Figure 6. Glucocorticoids exert direct transcriptional effects on different components of the hippocampal neurotransmission cascade. These 

components include 1) signal transduction, 2) neuronal structure, 3) vesicle dynamics, 4) neurotransmitter catabolism, 5) motor activity and 

6) cell adhesion. *; the gene was found to be glucocorticoid- responsive in the hippocampal slice study (59). #; the gene was found to be 

glucocorticoid-responsive in the hippocampal SAGE study (49): renewed annotation of hippocampal SAGE tags obtained in 2001 five years after 

the original publication allowed functional classification of several previously unknown corticosterone-responsive genes (unpublished data).



143

Chapter 5

C
h

ap
te

r 
5

tuning of the initial stress-response, facilitating learning and memory formation (84,85). 

This is reflected by the different functional gene groups that are affected by glucocor-

ticoids and that can be considered to be interconnected with each other. For instance, 

the neurotransmissive capacity of a neuron logically depends on the amounts of energy 

and protein available, whereas signal transduction between neurons depends on syn-

aptic strength and cell adhesion. Thus, transcriptional regulation by glucocorticoids of 

many different, though interconnected functional processes could therefore provide a 

mechanism by which the initial neural stress-response in limbic brain areas is optimally 

adjusted in an overall balanced, adaptive manner.  

Interestingly, when assessing different lists of glucocorticoid-responsive genes it be-

comes clear that several different gene ontology groups transcriptionally affected by 

glucocorticoids may be grouped into a larger functional group, i.e. hippocampal neu-

rotransmission. Very clearly, glucocorticoids exert direct transcriptional effects on many 

different components of the hippocampal neurotransmission cascade (Figure 6). These 

components include patterns of gene expression underlying 1) signal transduction, 2) 

neuronal structure, 3) vesicle recycling, 4) neurotransmitter catabolism and 5) motor ac-

tivity and 6) cell adhesion (49,59), all of which providing numerous interesting candidate 

genes for future follow-up studies. 

Candidate genes

Glucocorticoids & signal transduction

One of the main hippocampal properties that are affected by acute administration of 

glucocorticoids is long-term potentiation (LTP), a property which directly affects synap-

tic transmission. It has been shown that activated GRs inhibit LTP in the CA1 subregion 

(3,46,47,48) and since this effect occurs in a delayed manner, the underlying mechanism 

most likely includes changes in gene expression. The currently obtained gene expres-

sion profiles contain several putative candidate genes which may underlie this effect of 

glucocorticoids on LTP. 

In this respect, casein kinase 2 (CSNK2A1) is a very interesting gene as it was found to be 

downregulated in both hippocampal SAGE (49) and hippocampal slice (59) studies after 

acute administration of glucocorticoids. This gene is part of the downstream signal trans-

duction cascade of the NMDA-receptor (86) and enhanced casein kinase 2 activity was 

found to be correlated with the induction of NMDA-receptor mediated LTP (87). Since 

1) activated GRs inhibit NMDA-receptor mediated LTP and 2) there is no evidence for 

transcriptional regulation of NMDA-receptor mRNA (59 and Qin and Joëls unpublished 

observation), downregulation of casein kinase 2 after GR-activation could in part under-

lie this effect. Hence, casein kinase 2 constitutes a putative candidate gene involved in 

glucocorticoid-modulated long-term potentiation (Figure 6). 
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Glucocorticoids & neuronal structure

Renewed annotation of hippocampal SAGE tags obtained in 2001 (49) 5 years after the 

original publication (unpublished data) allowed functional classification of several previ-

ously unknown corticosterone-responsive genes. Combining the newly annotated SAGE 

tags with the other functionally annotated corticosterone-responsive genes pointed to a 

role of glucocorticoids in regulating neuronal structure. Both genes which are structural 

components of the cytoskeleton (beta-tubulin (TUBB2), neurofilament, light polypeptide 

(NEFL)) as well as genes that mediate neurite outgrowth (chimerin 1 (CHN1) (88), glyco-

protein M6A (GPM6A) (89)) or are associated to the microtubuli (microtubule associated 

protein 1B (MAP1B) (90)) were identified as being corticoisteroid-responsive. In Figure 

6, these genes are integrated in the overall picture of the effects of glucocorticoids on 

neurotransmission.

Strikingly, many genes specifically involved in the dynamics of the actin cytoskeleton 

were found in both hippocampal and PC12 gene expression profiles. Clearly, acute ad-

ministration of glucocorticoids affects this system by modulating mRNA levels of genes 

such as LIMK1, calcineurin subunit a (PPP3CA), profilin 1 (PFN1), beta-actin and LIM/SH3 

protein. The actin cytoskeleton is involved in the morphology of dendritic spines and 

changes in actin cytoskeletal configurations have been connected to LTP, affecting synap-

tic transmission (91, 92). LIMK1 has been shown to be necessary for proper accumulation 

and distribution of actin filaments in hippocampal dendritic spines and to be involved in 

the regulation of spine size (92,93) whereas calcineurin has been shown to inhibit LIMK1 

protein expression (94) and to be involved in destabilization of actin filaments and hip-

pocampal dendritic spines (95). Profilin is known to inhibit the polymerization of actin 

filaments and plays a role in (activity-dependent) remodeling of hippocampal synaptic 

structure (96-98). Furthermore, profilin was also found to be differentially expressed 

when comparing the hippocampal transcriptomes of two genetically selected mouse 

strains (i.e. short attack latency and long attack latency mice) that differ in aggressive be-

haviour, HPA-axis reactivity and morphology of mossy fiber terminal fields (99,100). Thus, 

glucocorticoid-mediated transcriptional upregulation of LIMK1 and downregulation of 

calcineurin and profilin in the hippocampus possibly affects dendritic spine morphology, 

most likely resulting in altered synaptic plasticity (Figure 6 and Figure 7). 

Additionally, in the gene expression profile generated in PC12 cells, both beta actin and 

LIM/SH3 protein were found to be downregulated after GR-activation, indicating that also 

in these (catecholaminergic-like) cells glucocorticoids affect actin cytoskeletal configura-

tion which possibly results in altered synaptic plasticity. 

Glucocorticoids & vesicle dynamics

From the obtained gene expression profiles it becomes clear that glucocorticoids exert 

an effect on both exocytosis and endocytosis by affecting vesicle recycling. For instance, 
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in the PC12 and hippocampal SAGE expression profiles, synaptosomal-associated protein 

25 (SNAP-25) was found to be upregulated after acute glucocorticoid administration. This 

gene affects calcium-dependent exocytosis and therefore an increase in mRNA expres-

sion could lead to increased neurotransmitter release (101) which would result in en-

hanced neurotransmission. Other exocytois-related genes included presynaptic cytoma-

trix protein (Piccolo; PCLO), which is involved in the assembly and function of pre-synaptic 

active zones (102) and synaptotagmin I (SYT1), which is important for vesicle trafficking 

to the active zones (103,104). Furthermore, several endocytosis-involved genes were also 

identifed as being corticosteroid-responsive among the (re-annotated) SAGE tags and in 

the hippocampal slice data set, including clathrin light chain (CLTB) (105), which is a com-

ponent of coated vesicles, and adaptor-related protein complex 2, beta 1 subunit (AP2B1), 

which serves to link clathrin to receptors in coated vesicles (106) (Figure 6).

Furthermore, in PC12 cells several genes involved in Rab-mediated endocytosis (Rab 1 

acceptor, Rab 15 and Rab 7) were found to be GR-responsive. Since enhanced exocytosis 

disrupts membrane balance, enhancement of endocytosis and thus membrane recycling 

by glucocorticoid-mediated transcriptional regulation of several Rab proteins may con-

stitute a mechanism to restore membrane balance in these cells. 

Figure 7 
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Figure 7. Regulators of hippocampal dendritic spine morphology which are transcriptionally affected by activated GRs. LIMK1 enhances the 

formation of filamentous (F-) actin from actin monomers (G-actin) whereas calcineurin and profilin destabilize F-actin. ↑; upregulated by 

activated GRs. ↓; downregulated by activated GRs. LTP; long-term potentiation.
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Glucocorticoids & neurotransmitter catabolism

Another property that affects hippocampal neurotransmission is the availability of 

neurotransmitters in the synaptic cleft. The availability of neurotransmitters serotonin, 

dopamine and noradrenalin is under the control of the catabolic enzyme monoamine 

oxidase A (MAO-A). Strikingly, this gene was found to be downregulated in the hippocam-

pus after acute activation of GR (59). Hence, this would suggest that glucocorticoids are 

able to increase the availability of neurotransmitters in the hippocampal synaptic clefts, 

thereby influencing hippocampal neurotransmission (Figure 6).

Glucocorticoids & cell adhesion

Among the hippocampal glucocorticoid-responsive genes, many neural cell adhe-

sion molecules were present, including opioid binding cell adhesion molecule (OBCAM), 

activated leukocyte cell adhesion molecule (ALCAM), limbic system associated membrane 

protein (LAMP), intracellular adhesion molecule 5 (ICAM 5), neurexin 3 (NRXN3), chemokine 

C-X3-C motif ligand 1 (CX3CL1) and syndecan 4 (SDC4). Interestingly, there is growing evi-

dence that cell-adhesion molecules not only play a role in the development of synaptic 

structures but also in regulating synaptic plasticity and learning and memory formation 

(107). Thus, regulation of cell adhesion gene expression may constitute an additional 

molecular mechanism by which glucocorticoids affect hippocampal synaptic plasticity 

(Figure 6). 

Glucocorticoids & autoregulatory loop of MR / GR signaling

Glucocorticoids clearly affect motor activity and axonal transport by regulating transcrip-

tion levels of dynein light chain LC8 type 1 (DNCLC1), dynein cytoplasmic 1 intermediate 

chain 1 accessory subunit polypeptide (DNCIC1) (108), lissencephaly 1 protein (LIS1) (109) 

and kinesin family member 5c (KIF5C) (110) (Figure 6). Since cytoplasmic dynein has been 

shown to be involved in GR-receptor trafficking (111), regulation of this motor protein 

may affect glucocorticoid receptor translocation itself, thereby affecting glucocorticoid 

receptor signaling. Interestingly, there are indications that glucocorticoid receptor sig-

naling may additionally be modulated by changes in gene expression which affect 1) 

receptor binding affinity and 2) receptor levels. First, glucocorticoid-mediated transcrip-

tional regulation of glucocorticoid receptor chaperone Hsp90 and co-chaperones FKBP1a 

and DNACJ5 was observed (49), which could affect the binding affinity of MR and / or 

GR for ligand (112-115). Second, glucocorticoid receptor levels may be under the influ-

ence of glucocorticoids since 1) MR itself was found to be transcriptionally responsive to 

activated GRs and 2) activated GRs regulate the expression of NGF-IA which is most likely 

involved in GR-expression (116,117). Therefore, these data suggest that GCs affect their 

own signaling at multiple levels via an autoregulatory loop, which may play an important 

role in their negative feedback.
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Chronic exposure to glucocorticoids

Beside the genes described above which were found in the gene expression profiles 

generated after acute administration of glucocorticoids, several interesting candidate 

genes were found in two other large-scale gene expression profiling studies in which 

the effects of chronic glucocorticoid exposure on the hippocampal transcriptome were 

analyzed. 

In the first study, tree shrews were subjected to chronic administration of cortisol in 

the drinking water for 28 days after which a gene expression profile was generated using 

subtractive hybridization (118). Several genes were found to be transcriptionally regulat-

ed and downregulation of four of those genes (NGF, membrane glycoprotein 6A, CLK-1 and 

G-protein alpha q) was confirmed in a chronic psychosocial stress experiment (119). Since 

the effect on transcription of all genes except NGF was prevented by treatment with the 

antidepressant clomipramine, these genes constitute highly interesting candidate genes 

that may play a role in the pathophysiology of stress-related depression.

In the second study, mice genetically selected for long-attack latency (LAL mice) were 

exposed to a sensory contact stressor for 25 days after which Affymetrix GeneChips were 

used to analyze the changes in hippocampal gene expression (120). Strikingly, a number 

of genes involved in the NFκB signaling cascade (CHUK/IKKα, several ras-family members 

and several NFκB-responsive genes) were found to be downregulated after chronic stress. 

Hence, it was proposed that transcriptional modulation of this cascade could be the 

underlying mechanism by which the vulnerability of hippocampal neurons is increased 

after chronic stress.

At present, the obtained candidate genes very clearly demonstrate the fact that the 

current challenge is to design functional studies to test the generated hypotheses. 

Furthermore, beside the large quantity of glucocorticoid-responsive genes which have 

presently been identified, the expression profiles of many low abundant genes are still 

unavailable due to the fact that large-scale gene expression profiling techniques have 

a limited detection capacity. For instance, both SAGE and DNA microarrays so far have 

been unable to reliably detect several ion channels, neurotransmitter receptors, growth 

factor receptors and transcription factors in hippocampal tissue (49,59,121). Therefore, 

technical refinement will be necessary to also include those genes in future large-scale 

gene expression profiling of glucocorticoid-responsive genes. 

8. TECHNICAL REFINEMENT 

Currently, there are two main complicating factors hampering large-scale expression 

profiling of glucocorticoid-responsive genes in neural tissue. First, both SAGE and DNA 

microarrays have been unable to detect low abundant genes. Second, glucocorticoids 
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induce very subtle changes in gene transcription (less than twofold), making them dif-

ficult to detect.

Concerning the detection limits of large-scale gene expression profiling techniques, 

several options for improving the detection of transcripts are available. Since brain tis-

sue in general consists of many different cell types, each expressing different repertoires 

of genes, cell-type specific transcripts may be masked due to the complexity of the 

heterogeneous tissue. Therefore, reducing the complexity of the tissue by isolating the 

subregion of interest, constituting a more homogenous neuronal population, most likely 

will result in the enhanced detection of cell-type specific transcripts. With regard to the 

hippocampus, a first subregion-specific expression profile was generated using a modi-

fied SAGE-procedure, called microSAGE, in combination with a punch which contained 

part of the hippocampal dentate gyrus subregion (30). Additionally, in order to be able to 

more specifically isolate brain regions, a second feasibility study was performed in which 

laser microdissection (LMD) was applied to isolate hippocampus subregions and DNA 

microarrays were used to generate subregion-specific expression profiles (42). In this 

study, hippocampal dentate gyrus and CA3 subregions were isolated and good quality 

total RNA was obtained from the fragments. Subsequently, the mRNA portions of the to-

tal RNA samples were amplified, labeled and hybridized to Affymetrix GeneChips (Figure 

8). Using standard Affymetrix GCOS software in combination with SAM, an extensive in-

ventory of genes differentially expressed between CA3 and dentate gyrus was obtained. 

Additionally, when compared to the expression profiles that were obtained in a study in 

which the hippocampus was crudely dissected into 3 pieces using a scalpel (122), the 

Figure 8 
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Figure 8. Laser-microdissection (LMD) procedure applied to the hippocampus. First, the hippocampal subregions of interest are excised after 

which total RNA is isolated. Then, the mRNA portion is amplified, labeled and subsequently hybridized to DNA microarrays (42).
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LMD-expression profile proved to be more specific for principal hippocampal neurons. 

Hence, this clearly demonstrated that the use of LMD in gene expression profiling results 

in more subregion-specific expression profiles. However, since still no neurotransmitter 

receptors were reliably detected in both CA3 and dentate gyrus, technical refinement 

should not only include reduction in tissue complexity and enhanced specificity of the 

selected subregions but also application of more sensitive microarray detection algo-

rithms and / or platforms. 

With regard to the first, an interesting option would be the implementation of Robust 

Multi-chip Analysis (RMA) methodology (33) for analyzing Affymetrix GeneChip transcript 

signals instead of using standard Affymetrix GCOS software. As described in section 2, 

RMA has been shown to reduce variance for the lower intensity signals in comparison to 

GCOS, most likely resulting in the detection of lower abundant transcripts. Additionally, 

since changes in gene expression which occur only in one or two subregions may not be 

detected due to dilution by other, non-responsive subregions, isolating separate brain 

subregions using LMD could also greatly enhance the detection of subtle glucocorticoid-

induced changes in gene expression. 

Besides the application of more sensitive microarray detection algorithms, enhancing 

the detection of transcripts could also be achieved by using chemiluminescence-based 

microarray platforms, such as for instance the Applied Biosystems Expression Array Sys-

tem (https://products.appliedbiosystems.com). These platforms are believed to display 

higher detection ranges in comparison to the fluorescence-based platforms due to the 

fact that chemiluminescence enables the detection of only a few molecules (123). 

At the level of statistical testing, enhancement of detection of glucocorticoid-respon-

sive genes using microarrays may be achieved as well. So far, only gene level statistical 

tests, such as SAM, have been used to assess glucocorticoid-induced transcriptional 

changes. However, recent research in the field of microarray statistics has resulted in 

the development of global tests such as Gene Set Enrichment Analysis (GSEA) (38) and 

Parametric Analysis of Gene Set Enrichment (PAGE) (39). As described in section 2, in 

global testing pre-defined sets of genes, based on functional classification or biological 

pathways, instead of individual genes are tested and therefore these tests are believed to 

enhance the detection of subtle transcriptional changes. 

Therefore, the reduction of neural tissue complexity by using LMD and application of 

more sophisticated microarray algorithms and / or platforms will most likely enhance the 

detection of low-abundant transcripts as well as the detection of subtle glucocorticoid-

induced changes in gene transcription. 
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9. FUTURE PROSPECTS

The currently obtained results using large-scale profiling of glucocorticoid-responsive 

genes in neural tissue have revealed some remarkable features of the genomic response 

concerning receptor and context-specificity as well as time-dependency. Elaborating on 

these features may enhance our understanding on how glucocorticoid-receptors interact 

with the transcriptional machinery. 

One of the main challenges is to establish a link between gene expression profiles 

and the corresponding DNA-binding sites to which glucocorticoid receptors bind after 

activation, thereby identifying primary target genes. These binding sites can be assessed 

by using chromatin immunoprecipitation (ChIP). Briefly, in ChIP, occupation of DNA se-

quences by certain proteins is quantified by first cross-linking proteins to the DNA and 

DNA sonication into small fragments which is followed by immunoprecipitation with the 

antibody against the protein of interest (for example GR or MR) and quantitative PCR 

with primers against the DNA sequence of interest (certain GREs for instance). 

Interestingly, a modification of ChIP, called re-ChIP (124), is available which can be used 

to identify the coregulators and transrepression partners that bind to activated MRs and 

GRs on the DNA. Therefore, by using re-ChIP, new converging pathways can be elucidated. 

In re-ChIP, two immunoprecipitation steps are performed with two different antibodies, 

after which the DNA binding site is identified. Using different antibodies, binding of dif-

ferent combinations of glucocorticoid receptors and cofactors / transrepression partners 

to the DNA can thus be assessed. 

Furthermore, large-scale identification of binding sites to which activated GRs bind 

throughout time would be of major interest in order to understand the observed dy-

namic pattern of the genomic response to glucocorticoids. In both the hippocampus and 

neuronal PC12 cells, one hour after GR-activation all the responsive genes were down-

regulated (59, 77), implying that transrepression is the prevailing pathway at this time 

point. Therefore, no direct binding of activated GRs to the DNA would be expected at 1 

hour after GR-activation. On the other hand, at 3 hours after GR-activation both up- and 

downregulated genes were found, indicating that transcription may be modulated via 

the process of transactivation. Thus, assessing the binding sites to which activated GRs 

bind at this time point would allow the identification of primary target genes affected by 

transactivation as well as new GREs and nGREs to which activated GRs can bind.

Currently, there are two modifications of the ChIP-procedure available that allow large-

scale identification of transcription factor binding sites. First, in ChIP-on-chip (125), the 

PCR step is omitted and instead the isolated DNA fragments are hybridized to a microar-

ray which contains sequences for known transcription binding sites. Second, in Serial 

Analysis of Chromatin Occupancy (SACO) (126), both ChIP and SAGE are combined. The 

SACO procedure starts with precipitation of the transcription factor of interest that is 
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attached to the DNA, which is followed by generation and sequencing of tags derived 

from the immunoprecipitated DNA. Thus, in contrast to ChIP-on-chip, SACO allows the 

identification of new transcription factor binding sites, thereby constituting an open 

approach. 

So far, many glucocorticoid-responsive genes have been profiled in neural tissue and 

therefore selecting potentially interesting candidate genes for functional follow-up stud-

ies is one of the major tasks to perform in order to understand the molecular mechanisms 

that underlie glucocorticoid effects on neuronal function. In this respect, application 

of siRNA-methodology to knock-down the transcription of candidate genes in specific 

model systems is of major interest. Furthermore, overexpression of candidate genes can 

be achieved by using viruses which allow transfection of differentiated, non-dividing 

neuronal cells. With respect to the hippocampus, using organotypic hippocampal slices 

would be of major interest to study the effects of inhibiting or enhancing the transcription 

of candidate genes. These slices can be cultured for several weeks and measurement of 

mRNA levels, protein levels and phenotypic analyses such as electrophysiology and mor-

phology are relatively easily performed. Furthermore, at present an exciting development 

is the application of siRNA molecules into specific brain regions of intact animals, allowing 

in vivo measurements to be linked to decreased mRNA expression of candidate genes. 

Figure 9 
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Figure 9. Elucidating glucocorticoid-responsive genes in neural tissue using microarrays can be optimized by 1) improvement of transcript 

detection using more sensitive detection algorithms or microarray platforms, 2) reduction of tissue complexity by more specifically isolating 

the brain subregion of interest using laser capture microdissection, 3) statistical refinement using more sensitive global tests and 4) applying 

experimental designs that take into account the environmental context, i.e. activation status of the brain region under investigation.
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Finally, as mentioned previously, glucocorticoids actions are time and context de-

pendent and therefore display an enormous diversity. This is a very important aspect to 

account for when assessing the role of a certain brain area, such as the hippocampus, 

in the stress response. Therefore, in future experiments concerning the elucidation of 

glucocorticoid-responsive genes, beside technical refinement as described in the previ-

ous section, refinement of the experimental design must be taken into account as well 

(Figure 9). This means that the currently used models in which neural gene expression 

is profiled after acute administration of glucocorticoids are replaced by models in which 

manipulation of glucocorticoid concentrations is combined with acute stressors that 

affect neural activation status. For instance, the hippocampus can be activated by ap-

plication of certain (stressful) learning tasks which can be combined with adrenalectomy 

and / or glucocorticoid injections or antagonist administration. Hence, by measuring the 

effects of glucocorticoids on neural gene transcription under a certain stress-induced 

activation status, a more refined view on how glucocorticoids modulate different types 

of stress-responses in the brain will be obtained. 
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ABSTRACT

Previously, using large-scale gene expression profiling performed in ex vivo hippocampal 

slices, LIMK1 was found to be upregulated 3 hours after GR-activation whereas calcineu-

rin and profilin were downregulated at this time point. All three proteins accumulate in 

hippocampal dendritic spines and play different roles in dendritic spine morphology by 

differentially affecting actin cytoskeletal dynamics.

The aim of the current study was to focus on one of these genes, i.e. LIMK1, and to 

develop an in vitro model system to test the hypothesis that activated GRs can influence 

actin cytoskeletal dynamics via upregulation of LIMK1 expression levels. 

For this purpose, NG108-15 cells were treated for 5 days with vehicle, GR-agonist dexa-

methasone, cAMP or a combination of cAMP and dexamethasone. Each day, neuritogen-

esis was measured as a marker for changes in actin cytoskeletal configuration and total 

RNA was isolated in order to measure the expression levels of LIMK1 mRNA. Exposure of 

these cells to vehicle or dexamethasone alone did not induce neuritogenesis whereas 

exposure to cAMP significantly increased neuritogenesis throughout time. The cAMP-

mediated increase in neuritogenesis was further enhanced by combined exposure to 

dexamethasone. However, the increase in cAMP and combined cAMP / dexamethasone 

mediated neuritogenesis was not associated with (preceding) increases in LIMK1 mRNA 

levels.

Hence, in the currently used experimental design the cAMP-induced changes in actin 

cytoskeletal configuration which are enhanced by dexamethasone did not correlate to 

an increase in LIMK1 mRNA expression. Therefore, other experimental designs and / or 

model systems have to be considered in order to further explore the hypothesis that 

a GR-mediated increase in LIMK1 mRNA expression is involved in modifying the actin 

cytoskeleton.
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INTRODUCTION

In a previously performed large-scale gene expression profiling experiment, several 

genes involved in actin cytoskeletal configuration were found to be regulated 3 hours 

after GR-activation in ex vivo hippocampal slices (1). These genes included LIMK1 (upreg-

ulated), calcineurin (downregulated) and profilin (downregulated). Hence, the question 

was raised what the possible consequences are of GR-mediated transcriptional regula-

tion of these genes for hippocampal neuronal function.

All three genes have been shown to accumulate at hippocampal dendritic spines, 

postsynaptic structures on which the majority of synapses are formed in the brain (2,3) 

(4,5,6,7). There have been strong indications that these genes play a role in dendritic spine 

morphology via regulation of actin cytoskeletal dynamics (3,4,8,9,10). Spine morphology 

is believed to be dependent on a stable pool of filamentous (F-) actin in the spine’s core 

and a more dynamic pool of F-actin in the spine’s periphery and is able to rapidly change 

in response to multiple physiological stimuli (9). Additionally, changes in hippocampal 

spine morphology have been associated with changes in synaptic transmission, i.e. long-

term potentiation (LTP) (10). 

First, in vitro studies have shown that LIMK1, which is activated by the Rac (RhoGTPase) 

pathway, phosphorylates cofilin, thereby inhibiting the depolymerization of F-actin into 

monomeric (G-) actin mediated by unphosphorylated cofilin (11,12,13). Furthermore, 

examination of LIMK1 knock-out mice revealed that LIMK1 is necessary for proper ac-

cumulation and distribution of F-actin in hippocampal dendritic spines, maintaining 

normal spine morphology and LTP (10). Second, profilin is known 1) to inhibit actin 

polymerization at the growing ends of the filaments and 2) to be involved in activity-de-

pendent remodeling of synaptic structure in hippocampal neurons (4). Third, calcineurin 

has been suggested to play a role in destabilizing F-actin and hippocampal dendritic 

spine structure (3,8,9). However, so far the targets for calcineurin in dendritic spines have 

not been elucidated. 

In the hippocampus, activated GRs have been shown to inhibit LTP in a delayed, ge-

nomic fashion. Hence, GR-mediated transcriptional regulation of LIMK1, calcineurin and 

profilin, possibly leading to changes in actin cytoskeletal dynamics and dendritic spine 

morphology, may be part of the underlying molecular mechanism. 

Therefore, the overall aim of the current study was to focus on LIMK1 and to address the 

hypothesis that activated GRs can mediate changes in the actin cytoskeleton via transcrip-

tional upregulation of LIMK1. In order to test this hypothesis, cholinergic NG108-15 cells 

(mouse neuroblastoma and rat glioma hybridoma cells) may constitute a very suitable 

model system. These cells originate from neural cells and have been shown to endog-

enously express LIMK1 protein (14). Furthermore, exposure to the GR-agonist dexametha-

sone results in the induction of neuritogenesis in these cells, resulting in the development 
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of long neurites (15). Since in general neuritogenesis is dependent on actin cytoskeletal 

dynamics, NG108-15 cells thus provide a convenient neural substrate to study the associa-

tion between GR-activation and the actin cytoskeleton. Additionally, an interesting ob-

servation in these cells has been the fact that cAMP also induces neuritogenesis which is 

associated with an increase in LIMK1 protein levels (14). Furthermore, the cAMP-induced 

protein synthesis of LIMK1 is inhibited by activated calcineurin (14). Finally, combined 

Figure 1 
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Figure 1. Schematic overview of the model on actin dynamics in NG108-15 cells postulated by Tojima et al 2003 combined with the hypothesis 

that activated GRs affect the actin cytoskeleton via transcriptional regulation of LIMK1 and calcineurin. This scheme has been adapted from 

(14). In this model, a rise in intracellular cAMP increases the protein synthesis of LIMK1 and VDCCs. Increased LIMK1 protein induces enhanced 

cofilin phosphorylation, resulting in a smaller amount of active cofilin. Subsequently, more F-actin accumulates in the cells, resulting in 

increased neuritogenesis. In contrast, enhanced expression of VDCCs allows the cells to accumulate more Ca2+ after membrane depolarization, 

leading to enhanced suppression of LIMK1 expression by calcineurin, resulting in the inhibition of neuritogenesis. The current hypothesis is that 

activated GRs may interfere with these mechanisms by transcriptionally upregulate LIMK1 and downregulate calcineurin, thereby enhancing 

the accumulation of F-actin and neuritogenesis. VDCC: voltage-dependent Ca2+ channel, P-cofilin: phosphorylated cofilin, F-actin: filamentous 

actin, G-actin: globular actin.
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treatment with cAMP and dexamethasone has been shown to enhance the cholinergic 

phenotype of these cells (16,17). Figure 1 summarizes these findings in a molecular model 

postulated by (14), in combination with the currently proposed hypothesis. 

Hence, the current goal was to first find an association between dexamethasone-in-

duced neuritogenesis and increased LIMK1 transcription in NG108-15 cells. Therefore, 

the cells were exposed to vehicle, dexamethasone, cAMP or a combination of cAMP and 

dexamethasone for 5 days. Subsequently, each day, neuritogenesis was measured and 

total RNA was isolated for measuring LIMK1 mRNA expression levels. 

MATERIALS AND METHODS

Cell culture and treatment

NG108-15 cells (passage 10) were cultured in DMEM medium (4500 mg / l glucose, In-

vitrogen Life Technologies, Carlsbad, CA, USA) substituted with 2% FBS (Invitrogen Life 

Technologies), 1 × hybridoma (HAT) mix (Invitrogen Life Technologies), penicillin (20 U 

/ ml) and streptomycin (20 µg / ml) on 100 mm × 20 mm plastic culture dishes (Corning 

Incorporated, NY 14831, USA). 

Prior to the experiment (on day 0), cells were transferred into 6-well plates (Corning 

Incorporated) in a density of 20.000 cells / well. For each experimental day twelve 6-

wells plates were used which were equally divided over 4 experimental groups: vehicle, 

dexamethasone, cAMP and cAMP + dexamethasone. Hence, per day, each experimental 

group consisted of three 6-wells plates, i.e. 18 wells. 

Three hours afterwards, the cells were exposed to medium containing vehicle (0.009% 

ethanol), dexamethasone (0.1 µM), cAMP (0.2 mM) or dexamethasone (0.1 µM) + cAMP 

(0.2 mM) and left to stand (37°C,5% CO
2
) until the day that they were assigned for making 

photographs and isolating total RNA. The concentrations of cAMP and dexamethasone 

in the treatment medium were identical to those used by (16). 

On day 1, the plates designated for this day were used for making photographs and 

isolating total RNA 24 hours after the treatment started. Per well, one picture was taken 

randomly in order to measure neuritogenesis and the average neuritogenesis value of 3 

consecutive wells was used as one biological replicate, resulting in 6 biological replicates 

per experimental group (18 wells). Afterwards, for each experimental group, cells of the 

same 3 consecutive wells were pooled for RNA isolation, resulting in 6 total RNA samples 

per experimental group. 

The same procedure was repeated on day 2, 3, 4 and 5, resulting in an n = 6 setup per 

experimental group per day. 

On days 2 and 4 the treatment medium for all experimental groups was renewed for 

the days to follow. 
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Measuring neuritogenesis

In order to assess neuritogenesis pictures were taken from the cells using an inverted 

phase-contrast microscope (Zeiss / P.A.L.M. Laser Dissection Microscope, Carl Zeiss AG, 

Germany). The Neuron J Image Software (18) was used to 1) count the number of neurites 

per cell and 2) measure the length of the neurites in pixels and 3) measure the fraction 

of cells displaying neurites. Neurites were measured only if their length exceeded that 

of the cell body’s diameter. Furthermore, for each branched neurite, only the longest 

branch was measured. For each experimental group approximately the same number of 

cells was counted per day. 

Additionally, analysis of variance (ANOVA) and post hoc LSD tests were used to assess 

statistical significance. 

Total RNA isolation and purification

On days 1, 3 and 5, total RNA was isolated 24 hours after the treatment medium was 

applied or renewed. On days 2 and 4, total RNA was isolated 3 hours after the treatment 

medium was applied or renewed in order to mimick the original setting in which LIMK1 

mRNA transcription was found to be GR-responsive (i.e. 3 hours after GR-activation).

Per well, cells were homogenized in 330 µl TRIzol® (Invitrogen Life Technologies). Sub-

sequently, cell homogenates were pooled for 3 consecutive wells and RNA isolation was 

performed according to the manufacturer’s instructions. 

Additionally, after isolation, total RNA purification was performed using the QIAGEN 

RNeasy® Mini Kit RNA Cleanup procedure (QIAGEN Inc. Valencia, CA, USA). 

Real-time quantitative PCR for LIMK1 expression

LIMK1 expression levels were measured by using real-time qPCR on a DNA Engine Op-

ticon® 2 Real-Time PCR Detection System (MJ Research, Inc., Waltham, Massachusetts, 

USA). All RNA samples were subjected to DNAse treatment with DNAseI (Invitrogen Life 

Technologies) according to the manufacturer’s protocol. Subsequently, cDNA was syn-

thesized using M-MuLV Reverse Transcriptase RNaseH- (Finnzymes Oy, Espoo, Finland) 

and random primers (150 ng; Invitrogen Life Technologies) in a total volume of 20µl. Per 

experimental sample, 100 ng of RNA was used for the cDNA-synthesis reaction using 150 

ng random primers whereas standard curves were made with 5, 50, 100, 500 and 1000 

ng RNA. In order to control for genomic contamination, RT- samples were generated. The 

PCR was performed in a total volume of 25 μl, consisting of 12.5 μl 2×PCR MasterMix with 

SYBR® Green I (qPCRTM Core Kit for SYBR® Green I, EUROGENTEC, Seraing, Belgium), 0.5 μl 

10 μM forward primer, 0.5 μl 10 μM reverse primer, 6.5 μl water and per primer pair either 

5 μl cDNA-sample, RT- sample or water (no template control). The PCR conditions were 

as follows: 10 minutes at 95°C and 40 cycles of 15 seconds at 95°C + 1 minute at 60°C (for 
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both annealing and extension). Afterwards, the temperature was gradually increased to 

95°C in order to make dissociation curves. 

Dissociation curves were used to control for the specificity of the reaction and genomic 

contamination whereas the standard curves were used to quantify the expression differ-

ences. Expression levels of the target genes were normalized to the expression levels of 

18S ribosomal RNA since this transcript displays very high and stable expression levels. 

Finally, analysis of variance (ANOVA) and post hoc LSD tests were used to assess statisti-

cal significance. 

The following primers were used for LIMK1 (forward GAGAGAGGTCCAGTCCCATGTG, re-

verse GGCTTTGATCAGGAAATGAGATG) and 18S ribosomal RNA (forward CCCTGCCCTTT-

GTACACACC, reverse CGATCCGAGGGCCTCACTA).

RESULTS

Neuritogenesis

In this study three different parameters were used to assess the level of neuritogenesis, 

i.e. 1) the average number of neurites per cell, 2) the average neurite length and 3) the 

fraction of cells with neurites. In Figure 2 an example of NG108-15 cells in different ex-

perimental groups at day 5 is displayed.

Unexpectedly, the number of neurites per cell did not increase throughout time in 

the dexamethasone-treated group compared to the control group (Figure 3). In contrast, 

the number of neurites per cell significantly increased in the cAMP-treated groups. Strik-

Figure 2 

control

dex

cAMP

cAMP + dex

Figure 2. Images of cells on day 5 exposed to vehicle (control), cAMP, dexamethasone or cAMP + dexamethasone.
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Figure 3. Quantification of 1) number of neurites per cell, 2) neurite length in pixels, 3) fraction of cells with neurites and 4) LIMK1 mRNA 

expression normalised to 18S rRNA. On days 1, 3 and 5 LIMK1 expression was measured 24 hours after treatment medium renewal on days 0, 2 

and 4 respectively. On days 2 and 4, LIMK1 was measured 3 hours after treatment medium renewal (* p < 0.05 compared to day 1 counterpart; 

# p < 0.05 compared to control; $ p < 0.05 compared to cAMP).
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ingly, the combined treatment of cAMP and dexamethasone even further increased the 

number of neurites per cell compared to the cAMP groups in an additive manner.

However, with respect to neurite length, a different pattern was observed (Figure 3). 

On day 1 the cAMP-group showed significantly higher neurite length compared to all the 

other groups whereas on day 2 this effect had disappeared. From day 3 till day 5 only the 

combined treatment group of cAMP and dexamethasone showed a significantly higher 

neurite length which seemed to decrease towards day 5. 

Finally, the fraction of cells containing neurites more or less mimicked the pattern 

observed in number of neurites per cell, showing no effect of dexamethasone-treatment 

alone and an increasing effect by cAMP which was significantly enhanced by combined 

treatment with dexamethasone (Figure 3).

Hence, dexamethasone alone did not have any effect on the number of neurites per 

cell, length of neurites and fraction of cells with neurites whereas cAMP clearly increased 

the number of neurites per cell and the fraction of cells with neurites. Combined treat-

ment of cAMP and dexamethasone enhanced these effects and markedly increased the 

length of the neurites as well, especially at day 3. 

LIMK1 mRNA expression

Unfortunately, no clear effect of dexamethasone, cAMP or cAMP + dexamethasone on 

LIMK1 mRNA expression was found throughout time (Figure 3). The different treatment 

groups did not show any significant differences within the days. Additionally, some sig-

nificant differences were obtained between the days for several groups although without 

any clear pattern. Furthermore, the standard errors of the mean were relatively large, 

indicating high levels of variation. 

DISCUSSION

Several aspects of the currently performed experiment are in contrast to what has been 

shown before. 

First, there seems to be a discrepancy with a report by Kim et al. (15) in which exposure 

to dexamethasone alone for 24 hours markedly increased both neurite length and num-

ber of neurites per cell. In this study, a much higher concentration of dexamethasone was 

used (2 µM) in comparison to the current study (0.1 µM). However, the different ligand 

concentrations probably do not underlie the different outcomes since a concentration of 

0.1 µM dexamethasone has been shown to already fully occupy GRs (19). On the other 

hand, differences in cell culture conditions or passage number of the cells, resulting in 

a high variability among NG108-15 cells throughout different laboratories, may be the 

causative factor. 
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Second, previously it was found that increased LIMK1 protein levels are associated 

with increased neuritogenesis (14). In the current study however, no such association 

was found with LIMK1 mRNA. If mRNA predicts protein levels a number of issues may ex-

plain the discrepancy. Differences in cAMP-concentrations between the studies (0.2 mM 

versus 1 mM) may underlie this discrepancy as well as different culture conditions or cell 

passage numbers. Additionally, the increase in LIMK1 protein expression was observed 

after 7 days of cAMP-exposure (14), indicating that the exposure time used in the cur-

rent study could have been too short to measure an increase in LIMK1 mRNA expression. 

Hence, the current data may suggest that the cAMP-mediated increase in neuritogenesis 

is independent of increased levels of LIMK1 mRNA during the first 5 days of treatment. 

LIMK1 mRNA expression was measured on days 1, 3 and 5 twenty-four hours after the 

treatment medium was applied or renewed. On days 2 and 4 the expression was mea-

sured three hours after refreshing the treatment medium, thereby mimicking the original 

experimental design in which LIMK1 was found to be GR-responsive three hours after 

application of a corticosterone pulse (1). However, dexamethasone alone or in combina-

tion with cAMP did not show any clear effect on LIMK1 mRNA transcription on any of the 

days, either 3 or 24 hours after treatment medium renewals. 

This result could indicate that either LIMK1 is not GR-responsive in NG108-15 cells or 

that the transcriptional response takes place at a different time point in NG108-15 cells 

compared to the hippocampal slice preparation. Additionally, since dexamethasone was 

constantly present in the treatment medium, chronic exposure to dexamethasone may 

affect downstream transcriptional mechanisms which counteract the initial GR-mediated 

increase in LIMK1 mRNA expression. Furthermore, the lack of a transcriptional response of 

LIMK1 after dexamethasone-treatment could be due to a ligand-specific transcriptional 

effect of corticosterone on LIMK1 mRNA transcription. Finally, the variability in LIMK1 

gene expression was high, resulting in relatively large standard errors of the mean (SEM). 

An explanation for this variability could be the fact that LIMK1 mRNA expression was 

measured in the total set of cells present in the wells. In these wells, a large proportion of 

cells did not show neuritogenesis at all, as can been seen in Figure 3 (the largest fraction 

of cells with neurites being slightly less than 25% on day 4 with cAMP and dexametha-

sone). Hence, these undifferentiated cells may constitute a very variable population with 

a highly variable expression pattern of LIMK1, thereby interfering with the current gene 

expression measurements. 

Interestingly, combined with dexamethasone, the effects of cAMP on the number 

of neurites per cell and the fraction of cells with neurites were enhanced. This is a very 

interesting observation since it is known that combined exposure to dexamethasone 

enhances the effects of cAMP on the cholinergic phenotype of NG108-15 cells as well 

(16,17). Therefore, also at the level of cellular morphology, dexamethasone and cAMP act 

in concert, enhancing the level of total cellular differentiation. 
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The effects of cAMP on neuritogenesis in NG108-15 cells are believed to occur via PKA-

mediated phosphorylation of cAMP response element binding protein, i.e. CREB (20). 

With regard to the interaction between GR and the cAMP pathway, it has been shown 

that activated GRs can exert an inhibitory effect on the actions of CREB (21). However, 

there have also been reports in which cAMP-dependent protein kinase (PKA) has been 

shown to phosphorylate GR and to enhance GR-dependent transcription (22,23). Hence, 

administration of cAMP may result in both the activation of the cAMP pathway and, in 

parallel, the phosphorylation of GR. This phosphorylation of GR may constitute an extra 

regulatory step that is necessary for GR to exert an effect on neuritogenesis, providing 

an explanation for the fact that a combination of cAMP and dexamethasone enhances 

neuritogenesis whereas administration of dexamethasone alone does not induce neu-

ritogenesis. In this respect, scanning the promoter sequences of genes involved in the 

configuration of the actin cytoskeleton for the presence of CREs and GREs would be of 

major interest to see whether the interaction between GRs and cAMP could be mediated 

via transcriptional regulation of these genes.

In the current experimental design,  NG108-15 cells exposed to cAMP and/or dexa-

methasone did not show an increase in LIMK1 mRNA expression levels. At this point 

several options are available to follow-up on the presently conducted study. NG108-15 

cells could be treated with corticosterone instead of dexamethasone and the analysis 

of LIMK1 mRNA expression could be extended over multiple time points. In addition, 

LIMK1 protein could be quantified. Furthermore, instead of continuous administration, 

GR-ligand could be applied in pulses, thereby mimicking the original experimental setup 

in hippocampal slices in which LIMK1 was found to be transcriptionally responsive to 

glucocorticoids. 

As mentioned before, the discrepancies between the current and several previously 

performed studies may be caused by differences in passage number of the cells between 

different laboratories. Therefore, switching to another biological model system that is 

less dependent on the age of the substrate may be considered. Since the original gene 

expression study in which LIMK1, calcineurin and profilin were found to be GR-responsive 

was conducted in ex vivo hippocampal slices, organotypic slice cultures may constitute 

a more suitable model system (24). Organotypic tissue slices can be cultured for several 

weeks after their isolation and are easily manipulated by way of pharmacological treat-

ments and / or siRNA transfections. Furthermore, exposure of hippocampal organotypic 

slices to a 30 nM corticosterone pulse has been shown to reduce the dendritic tree in the 

CA1 subregion in a delayed manner (Joëls, unpublished observation). This effect could 

be blocked by co-treatment with GR-antagonist RU486. Hence, with respect to actin dy-

namics, reduction of dendrites in these slices by acutely activated GRs is a very exciting 

observation which could be linked to GR-mediated transcriptional regulation of LIMK1, 

calcineurin and profilin. 
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In conclusion, unfortunately no association between dexamethasone-enhanced 

cAMP-induced neuritogenesis and LIMK1 mRNA expression was found in the current 

study performed in neural NG108-15 cells. However, interesting alternative experimental 

designs and biological model systems are available to further explore the hypothesis that 

increased mRNA expression of LIMK1 is involved in modifying the actin cytoskeleton.
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The objectives of the studies described in the current thesis were 1) to determine which 

transcriptional changes underlie the effects of activated GRs on hippocampal cellular 

function throughout time, 2) to assess the extent to which this response is dependent on 

the cellular context, and 3) to establish a model in which the functional consequences of 

GR-mediated transcriptional regulation of a candidate gene, i.e. LIMK1, can be studied. 

1. CHARACTERISTICS OF THE GENOMIC RESPONSE

Dynamics of the GR-mediated genomic response

In chapter 2, ex vivo hippocampal slices obtained from adrenalectomized rats that were 

replaced with low corticosterone pellets (occupying hippocampal MRs) were used to pro-

file GR-mediated transcriptional responses. Acute activation of GRs by ex vivo exposure 

to a brief high concentration corticosterone pulse revealed a highly characteristic time-

dependent genomic response that shifted from exclusively downregulated genes 1 hour 

after GR-activation towards upregulated genes 3 and 5 hours afterwards. This is a very 

interesting observation since so far only a limited number of genes have been identified 

which are repressed by binding of GRs to negative GREs. Therefore, the obtained tempo-

ral pattern may suggest that in hippocampal tissue transrepression via interactions with 

other transcription factors precedes transactivation at early time points. 

The in vivo validation experiment described in chapter 3 showed that 4 out of 5 se-

lected genes which were responsive 1 hour after GR-activation in hippocampal slices 

displayed a similar transcriptional response in intact rats 1 hour after a single corticoste-

rone injection. Hence, the influence from extra-hippocampal regions (which could also 

be steroid-responsive) and the peripheral effects of increasing concentrations of gluco-

corticoids, both of which are lacking in the hippocampal slice preparation, probably do 

not influence the GR-mediated transcriptional responses in the hippocampus to a great 

extent under non-stressed conditions. Therefore, the obtained transcriptional profile in 

chapter 2 most likely mimics the transcriptional response to acutely activated GRs in 

vivo. In this respect it is interesting to note that also at the level of electrophysiology, in 

vivo activation of GRs by exposure to acute novelty stress increases calcium currents in 

a similar fashion to what has been observed in hippocampal slices in which GRs were 

activated by ex vivo exposure to a corticosterone pulse (1). 

In order to determine how general the time-dependent genomic response to activated 

GRs is for neuronal tissue, an additional time curve of GR-mediated transcriptional re-

sponses was generated in a completely different neuronal substrate, i.e. NGF-differenti-

ated PC12 cells, in chapter 4. Differentiated neuronal PC12 cells were shown to express 

endogenous GRs that translocate to the nucleus upon activation by a brief high con-

centration corticosterone pulse on top of low, basal concentrations of corticosterone 
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through a time window of 0.5 to 3 hours. Maximal nuclear retention was observed 1 hour 

afterwards. Strikingly, the corresponding time-dependent transcriptional profile was 

highly similar to the one obtained in ex vivo hippocampal slices, shifting from exclusively 

downregulated genes 1 hour after GR-activation towards almost exclusively upregulated 

genes 3 hours afterwards. Therefore, these data strongly suggested that also in neuronal 

PC12 cells transrepression may precede transactivation throughout time. 

The large-scale transcriptional effects of acutely activated GRs throughout time have 

not been studied to a great extent yet. However, in liver, a similar time-dependent pat-

tern of transcriptional responses was found after acute in vivo activation of GRs by injec-

tion of the synthetic GR-agonist methylprednisolone (2). Large-scale gene expression 

profiling of a time window of 15 minutes to 72 hours after GR-activation revealed the 

majority of genes to be downregulated at early time points (45 out of 50) whereas a 

robust delayed wave of upregulated genes followed 2 hours later. Since neuronal PC12 

cells, hippocampal neurons and liver cells display completely different phenotypes, the 

observed similarity in the time-dependency of the GR-mediated transcriptional response 

may be indicative for a general mode of action of acutely activated GRs. 

However, some caution with the interpretation of these data is required. The currently 

applied large-scale gene expression profiling methods are not suitable for measuring low 

abundant transcripts and therefore the expression patterns of these transcripts through-

out time are unavailable. Additionally, GRs have been shown to very rapidly upregulate 

transcription of calcium channel subunits in ex vivo hippocampal slices (Y.Qin, unpub-

lished observation). Furthermore, the rapid upregulation of the phenylethanolamine-

N-methyltransferase (PNMT) gene after stress most likely is mediated via its upstream 

GRE (3) and therefore, upregulation at short time intervals after GR-activation is possible, 

although the prevailing pathway seems to be downregulation.  

With regard to the rate at which the different steps involved in transactivation and 

transrepression proceed little information is currently available. In general, it seems that 

mRNA decay is not faster than mRNA elongation (4,5). Therefore, it is not likely that an 

imbalance in decay versus elongation is responsible for the observed wave of down-

regulation. Hence, the rapid transcriptional downregulation of genes at early time points 

could be explained by the fact that blocking the effects of other transcription factors dur-

ing transrepression may occur more rapidly than transactivation in which recruitment of 

cofactors and chromatin remodeling is required (Figure 1) (6,7,8,9). However, there are 

indications that GRs can also directly interact with the general transcription machinery, 

modulating gene transcription without the need for cofactor recruitment and chromatin 

remodeling (6,10). Possibly, rapid upregulation of gene expression is mediated via this 

pathway (Figure 1). In this respect, expanding the currently profiled time window with 

shorter time intervals (< 1 hour) would therefore be of major interest. 
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Concerning the recruitment of steroid receptors to the DNA, an interesting observa-

tion has been the cyclic manner in which the estrogen receptor (ER) translocates to its 

response element after ligand-activation (11). Chromatin immunoprecipitation (ChIP) 

performed on an endogenously expressed ER-responsive gene in ERα-positive human 

breast cancer cells revealed that each cycle takes about 20 minutes and RNA polymerase 

is recruited to the DNA in the second cycle after the initial ligand activation, indicating 

that the first cycle is transcriptionally ‘silent’. Such cyclic behaviour of steroid receptors 

would be interesting in light of the currently obtained time-dependent pattern of tran-

scriptional regulation by activated GRs. However, one study, using ChIP, has shown that 

activated GRs remain loaded up to 2 hours after ligand activation on the MMTV-promoter 

Figure 1
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Figure 1. Hypothetical scheme of the molecular mode of action by which activated GRs modulate gene transcription throughout time. 1) Less 

than 1 hour after GR-activation by a short, 100 nM corticosterone pulse, rapid upregulation of genes takes place via direct interactions between 

GR and the general transcription machinery (GTM). Furthermore, genes that are downregulated via transrepression may also be present. 2) 

One hour after GR-activation, transrepression is the prevailing pathway via which GRs downregulate gene transcription by inhibiting other 

transcription factors (TFs). 3) Three hours afterwards, GRs modulate gene transcription by interacting with the GTM via recruitment of cofactors 

(coactivators and / or corepressors) resulting in up- (GRE) or downregulation (nGRE) of gene transcription. Additionally, at this time point 

secondary GR-responsive genes which are regulated by primary GR-responsive TFs or other transcription-modulating proteins are present in the 

expression profile. Furthermore, transrepression could also still take place at this time point. 
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(12) and therefore so far cyclic recruitment to the GRE has not been demonstrated yet for 

the GR. It should be taken into account however that in life cell imaging the receptors 

are very dynamic, showing rapid exchange between chromatin and the nucleoplasmic 

compartment on a time scale of seconds (‘hit and run’ model: 13,14).

Primary / downstream GR-responsive genes and transcription factor binding sites

Some of the genes that were regulated in two or more time points in chapters 2 and 4 

changed their direction of expression throughout the time points in both hippocampal 

slices and neuronal PC12 cells. Such a ‘biphasic’ effect on gene expression has been previ-

ously demonstrated by Fujikawa et al. (15) for growth hormone receptor, GR and MR in 

the hippocampus after exposure to an acute stressor. This biphasic regulation of gene 

expression could possibly be the result of a downstream transcriptional mechanism that 

follows the initial primary response to activated GRs. 

Therefore, in chapter 4, protein synthesis inhibitor cycloheximide was used to dif-

ferentiate between primary and downstream transcriptional responses in neuronal 

PC12 cells, showing that 5 out of 5 selected genes from the 1 hour time point displayed 

primary transcriptional responses. This indicated that for these 5 genes activated GRs ei-

ther inhibit transcription via binding to nGREs (transactivation) or via inhibition of other 

transcription factors (transrepression). Since no consensus nGRE-sites (6) were found 

upstream of the promoter regions, transrepression presumably is the mediating path-

way. This was strengthened by the observation that for two of these primary responsive 

genes clearly conserved AP1-sites and CREB-sites were found upstream of the promoters. 

However, for the remaining 3 primary responsive genes no conserved transcription fac-

tor binding sites were found, indicating that other, unknown interacting pathways could 

be involved. 

Furthermore, 4 out of 4 selected genes from the 3 hours time point displayed a 

downstream transcriptional response. This could indicate that at this time point only 

downstream-responsive genes are profiled. However, in the hippocampal slice data set 

metallothionein was found to be upregulated 3 hours after GR-activation and since this 

gene contains two functionally active GREs (16), implying that it is a primary responsive 

gene, this would mean that the 3 hours time point is constituted by both primary and 

downstream responsive genes (Figure 1). Hence, in this respect it would be interesting 

to also profile primary and downstream-responsive genes for instance 2 hours after GR-

activation. There has been one study in literature in which GRs that were transfected 

into human osteosarcoma cells were activated by 2 hours of continuous exposure to 

dexamethasone and cycloheximide, resulting in the identification of both upregulated 

and downregulated primary responsive genes (17). However, due to the differences in 

biological substrates and glucocorticoid-treatment exposures, i.e. brief pulse of corticos-

terone versus continuous dexamethasone exposure, the results obtained in this study 
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cannot be easily extrapolated to the time-dependent expression profiles which were 

obtained in chapters 2 and 4. 

Interestingly, two of the selected genes which were originally responsive in both 

time points revealed a primary transcriptional response 1 hour after GR-activation and 

a downstream transcriptional response 3 hours afterwards, supporting the view that 

the biphasic regulation of gene expression is the result of downstream transcriptional 

responses following primary transcriptional responses. 

However, due to the small selection of tested genes the obtained results concerning 

primary and downstream transcriptional responses cannot be simply generalized. An 

alternative explanation for GR-mediated biphasic transcriptional responses for instance 

could be a transition from early transrepression towards transactivation later in time, 

both of which are primary transcriptional events. Therefore, expanding the cyclohexi-

mide experiment performed in chapter 4 by enlarging the time window and using large-

scale gene expression profiling could provide more insight into the dynamics of primary 

and downstream-mediated transcriptional changes. 

Context-specificity of the GR-mediated genomic response

The nature of the genomic response to glucocorticoids not only depends on which re-

ceptor (MR or GR) is activated but also on the cell type and activation status of the cells, 

i.e. the cellular context and environmental context respectively. 

Previous experiments have shown that activated GRs mediate different transcriptional 

effects in different cell-types. A well known example is the expression of the CRH gene 

which is inhibited by activated GRs in hypothalamic cells and enhanced in other cell-

types (18). 

The extent to which activated GRs act in different contexts was assessed in chapter 

4 by comparing the expression profile obtained in hippocampal slices with the profile 

obtained in neuronal PC12 cells, showing very little overlap. In contrast, the overlap be-

tween the hippocampal SAGE experiment (19) and hippocampal slice experiment was 

considerably larger. Hence, this response seems to be highly dependent on the cellular 

context. 

Differences in cellular context may be the result of differences in the availability of 

cofactors in different cell and tissue types or even between brain subregions. In vitro 

experiments showed that different splice variants of SRCs were recruited to promoters 

containing different numbers of GREs (20,21). This illustrates the fact that the genomic 

response to glucocorticoids is dependent on the interaction between promoter compo-

sition, i.e. GRE composition, and available cofactors. As a consequence, different genes 

with different kinds of promoters display different glucocorticoid-induced transcriptional 

responses depending on the availability of cofactors.
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Additionally, different cell-types express different sets of genes (22) and therefore the 

repertoire of available transrepression partners may also be different, resulting in the 

transrepression of different sets of genes.

Finally, GREs can be flanked by other accessory transcription factor binding sites, 

thereby constituting glucocorticoid-responsive units (GRUs) (6) in which the glucocor-

ticoid-mediated transcriptional response is also dependent on the availability of these 

accessory transcription factors. These transcriptional responses can therefore remain 

limited to the cells / tissues which express the accessory transcription factors (6,23). 

Amplitude of GR-induced transcriptional changes

In both hippocampal slices and neuronal PC12 cells, the amplitudes of the transcriptional 

responses to activated GRs were very moderate, showing fold changes of less than two. 

With regard to the hippocampus, these moderate GR-induced transcriptional changes 

are in agreement with previous studies, performed both with large-scale expression 

profiling techniques (19) and single gene in situ hybridizations (24-26). Apparently, small 

changes in gene expression underlie the effects of glucocorticoids on hippocampal neu-

ronal functioning. This was nicely illustrated in a study in which the expression levels 

of several α1 calcium channel subunits were correlated to the stress-induced changes 

in calcium current amplitudes (1). Transcriptional changes in each α1 calcium channel 

subunit separately showed to be moderate, whereas there was a clear overall effect on 

calcium current amplitude.

In contrast, with regard to neuronal PC12 cells, there have been several studies in which 

glucocorticoid treatment induced larger gene expression fold changes (27,28,29,30). 

However, a direct comparison is complicated by the fact that in these studies much 

longer exposure times (1 – 48 hours) to higher concentrations (1 µM) of very potent 

synthetic glucocorticoids (dexamethasone) have been used. In contrast to these more 

robust treatment regimes, in the current design a relatively mild, physiological treatment 

was applied mimicking the peak in the ultradian secretion pattern of corticosterone.

From a methodological point of view, the gene expression profiling studies performed 

in chapters 2 and 4 proved to be very successful in detecting subtle transcriptional 

changes. This was achieved by using a paired experimental design which greatly enhanced 

statistical power. Implementation of such a design in future studies therefore would be 

clearly beneficial in improving the detection of subtle transcriptional changes.
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2. MODEL SYSTEMS

Ex vivo hippocampal slices

Several hippocampal properties such as neuroexcitability, synaptic transmission (long-

term potentiation; LTP) and energy metabolism are affected by glucocorticoids in a 

delayed, genomic fashion (31,32,33,34). Therefore, in chapter 2, the ex vivo hippocampal 

slice preparation was used to assess potentially underlying GR-mediated transcriptional 

changes throughout a defined time window. This ex vivo preparation is a well established 

model to study the effects of glucocorticoids on hippocampal neuronal function (35,36) 

and therefore changes in gene transcription can directly be correlated to changes in 

neuronal function. 

However, since in the hippocampal slice preparation input from extra-hippocampal 

regions (which could also be steroid-responsive) as well as the peripheral effects of in-

creasing concentrations of corticosterone is lost, the data set may not reflect the full 

extent of GR-mediated effects on hippocampal gene expression. Therefore, in chapter 

3 a small selection of potentially interesting candidate genes involved in hippocampal 

neurotransmission were tested in an in vivo setting. Strikingly, the transcriptional re-

sponses for 4 out of 5 selected genes were confirmed in vivo 1 hour after GR-activation 

by a corticosterone injection. Thus, the hippocampal slice preparation constitutes a valid 

model to assess glucocorticoid effects on hippocampal gene expression since the influ-

ence of projections from extra-hippocampal brain structures does not seem to affect the 

GR-mediated transcriptional response to a large extent after a glucocorticoid injection in 

vivo, at least if tested with the 5 selected genes.

The currently obtained transcriptional profile in hippocampal slices contained a num-

ber of positive controls that were already known to be regulated by glucocorticoids, 

such as for instance metallothionein and glutathione peroxidase as well as several genes 

found in the hippocampal SAGE experiment (19). Furthermore, a number of interesting 

new candidate genes was obtained that could possibly be involved in the effects gluco-

corticoids exert on hippocampal metabolism and neurotransmission. Several of these 

candidate genes will be discussed further on. 

Neuronal PC12 cells

Long-term exposure of PC12 cells to nerve growth factor (NGF) results in a profound 

change in phenotype of the cells in which proliferation is stopped, long neurites are 

generated and electrical excitability is gained (37). Furthermore, these cells synthesize 

and store large quantities of the neurotransmitters noradrenalin and dopamine, thereby 

displaying a catecholaminergic, sympathetic-neuron like phenotype. However, in con-

trast to sympathetic neurons, differentiated PC12 cells contain more dopamine than 

noradrenalin (38). 
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In chapter 4, differentiated PC12 cells were used to assess the transcriptional responses 

mediated by acutely activated GRs in order to elucidate general characteristics of the 

neuronal genomic response. This resulted in the identification of 160 GR-responsive 

genes distributed over 2 time points. Since this is the first study to assess glucocorticoid-

responsive genes in neuronal PC12 cells in a large-scale manner, the obtained genes 

constitute potentially very interesting targets which can be used to gain more insight 

into the effects of acutely activated GRs on sympathetic, dopaminergic and / or norad-

renergic neuronal function. 

The interaction between glucocorticoids and the sympathetic nervous system has 

been well studied (39,40,41). However, in these studies, glucocorticoids have been ad-

ministered in a chronic fashion which is in sharp contrast to the acute administration 

of a corticosterone pulse as performed in chapter 4. This pulse mimics the peak in the 

ultradian secretion pattern of corticosterone and therefore the currently obtained PC12 

data set provides more interesting candidate genes with regard to the acute effects of 

glucocorticoids on dopaminergic and noradrenergic neuronal systems. Several of these 

candidate genes will be discussed further on.

3. FUNCTIONAL GENE CLASSES

In order to study the molecular mechanisms underlying the effects of activated GRs on 

neural function, in the current thesis large-scale gene expression profiling studies were 

performed to assess GR-responsive genes. Strikingly, more than 200 GR-responsive genes 

were found which could be grouped into many different functional classes, ranging from 

energy metabolism to vesicle dynamics (Figure 2). This finding is in concordance with 

previous reports on GR-responsive genes (2,19,42), demonstrating pleiotropic effects of 

glucocorticoids on several different transcriptomes. 

Interestingly, in both hippocampal slices and neuronal PC12 cells similar functional 

gene categories were affected by glucocorticoids throughout different time intervals 

after GR-activation. Figure 3 displays the distribution of these functional gene categories 

throughout time in hippocampal slices and neuronal PC12 cells. Comparison of hippo-

campal slices and neuronal PC12 cells shows that activated GRs display a large effect on 

genes involved in signal transduction and gene transcription whereas in neuronal PC12 

cells activated GRs affect genes involved in protein synthesis, energy metabolism and 

the cytoskeleton. In contrast, the other functional categories show a more or less similar 

distribution pattern between slices and PC12 cells. This is a very interesting observation 

since it shows that differences in cellular context determine the distribution of several 

functional gene categories that are transcriptionally affected by activated GRs. Therefore, 

from these results the view emerges that in the hippocampus signal transduction and 



185

Chapter 7

C
h

ap
te

r 
7

gene transcription are among the main targets of activated GRs whereas in neuronal 

(catecholaminergic) PC12 cells protein synthesis, energy metabolism and the cytoskel-

eton are more prominently affected. 

Additionally, in each neural substrate, the distribution of functional categories differs 

to some extent at different time points as well. Figure 3 shows that in hippocampal slices 

the signal transduction group increases at the 3 hours time point whereas the oxidative 

stress metabolism and ubiquitine pathway categories decrease. In neuronal PC12 cells 

on the other hand, protein synthesis and energy metabolism increase at the 3 hours time 

point whereas oxidative stress involved genes and cytoskeleton-related genes disappear 

at this time point. Thus, also a time-dependent effect on the proportion of a number of 

functional categories that are affected by activated GRs is present in both neural sub-

strates. 

However, some caution is required with the interpretation of these functional distribu-

tions since the genes were placed into the functional categories based on their first Gene 

Ontology component. Therefore, many genes can be placed into multiple functional 

categories which overlap with each other, hampering complete discrimination between 

different categories.

Since so many different functional gene groups are affected by activated GRs, provid-

ing an answer to the question what the consequences are for neuronal function there-

Figure 2 

signal transduction 

protein synthesis gene transcription 

synaptic transmission 
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Figure 2. Pleiotropic effects of activated GR on gene expression in hippocampal slices and neuronal PC12 cells. Glucocorticoids affect 

transcription of diverse functional processes in a coordinate manner.
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fore remains difficult. However, when considering the sequence of events that occur 

throughout the general stress-response some speculation is possible. In response to a 

stressor, limbic brain areas such as the hippocampus are rapidly activated to mediate 

the cognitive and emotional processing of the stressor. Subsequently, glucocorticoids 

are secreted in a delayed manner and are responsible for modulating and fine tuning of 

the initial stress-response, thereby facilitating learning and memory formation (43,44). In 

addition, the different gene groups that are affected by glucocorticoids can be consid-

ered to be functionally interconnected with each other. For instance, signal transduction 

Figure 3 
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Figure 3. Functional gene categories regulated by activated GRs throughout time in hippocampal slices (upper panel) and neuronal PC12 cells 

(lower panel). Per time point the percentages indicate the proportion of responsive genes in the particular functional gene category obtained 

from the total number of genes that could be annotated with functional gene groups.
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between neurons logically depends on cell adhesion and synaptic strength whereas 

neurotransmissive capacity of neurons is dependent on the amount of energy and pro-

tein that is available. Hence, the transcriptional regulation of many different, although 

interconnected functional gene groups may constitute a highly balanced and effective 

way by which the initial neuronal stress-response in the brain is coordinated, adjusted 

and fine tuned by activated GRs.

4. CANDIDATE GENES & HYPOTHESIS GENERATION 

Large-scale gene expression studies can be regarded as hypothesis generating studies 

since they allow new hypotheses to be generated as to how transcriptional regulation 

of the glucocorticoid-responsive genes may underlie the glucocorticoid-mediated ef-

fects on neural function. At this point, the obtained data sets concerning GR-responsive 

genes in the hippocampus and neuronal PC12 cells provide many potentially interesting 

candidate genes that may be used to formulate new hypotheses on how glucocorticoids 

affect neural function.

Glucocorticoid effects on energy metabolism

Energy metabolism is one of the functional gene categories that are very often pres-

ent among the glucocorticoid-dependent gene expression profiles. Currently, a large 

number of genes involved in energy metabolism were among the GR-responsive genes 

in both the hippocampal and PC12 data sets. In the hippocampus, lactate dehydroge-

nase B, which plays a role in glycolysis, and leptin, which is involved in energy reserve 

metabolism were part of this functional gene group. Strikingly, 1 and 3 hours after GR-

activation all the genes involved in energy metabolism, except leptin, were transcrip-

tionally downregulated. This is a very interesting finding since the inhibitory effects that 

glucocorticoids exert on neuronal glucose utilization (45,46,47) could very well occur 

due to GR-mediated transcriptional downregulation of these genes. On the other hand, 

glucocorticoid-mediated upregulation of leptin could be part of a mechanism to restore 

energy balance in hippocampal cells after a stress response has been elicited. 

In neuronal PC12 cells, the situation seems to be more complex. Here, all the energy 

metabolism related genes are downregulated 1 hour and upregulated 3 hours after GR-

activation. Lactate dehydrogenase A (involved in glycolysis) is among the downregulated 

genes and the transcriptional effect on this gene could possibly lead to a decreased glu-

cose utilization 1 hour after glucocorticoid administration. However, the situation seems 

to be reversed 3 hours after GR-activation since at this time point aldolase A and phos-

phoglycerate kinase 1, both of which are also involved in glycolysis, are upregulated. 
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Thus, a clear difference in the effects of glucocorticoids on energy metabolism is seen 

between hippocampal cells and neuronal PC12 cells on the transcriptional level through-

out time.

Rapid glucocorticoid effects on hippocampal neurotransmission in vivo

The currently generated expression profiles of GR-responsive genes in the hippocampus 

contain a large set of genes that can affect neurotransmission at multiple cellular levels. 

Interestingly, several of these genes were found to be responsive 1 hour after GR-activa-

tion, thereby possibly exerting a rapid genomic effect on hippocampal neurotransmis-

sion. In order to validate a small selection of these genes in vivo, their expression levels 

were measured 1 hour after a glucocorticoid injection into intact animals in chapter 3, 

resulting in the confirmation of transcriptional downregulation of MAO-A, casein kinase 

2, MR and potassium channel Kv3.2 at this time point. 

First, the GR-mediated transcriptional response of MAO-A is a very interesting ob-

servation since it indicates that activated GRs can manipulate the availability of the 

neurotransmitters serotonin, dopamine and noradrenalin in the hippocampal synaptic 

clefts by reducing the catabolism of these neurotransmitters. Second, the transcriptional 

response of casein kinase 2 may be involved in the glucocorticoid-mediated effects on 

hippocampal LTP, which will be discussed in the following section. Third, downregulation 

of the MR could impair neurotransmission since this receptor is known for its ability to fa-

cilitate neuroexcitability. Finally, the transcriptional response of voltage-gated potassium 

channel Kv3.2 could affect action potential propagation along the axons of hippocampal 

neurons, influencing hippocampal output. Since the changes in transcription were small 

it is likely that the membrane potential is less hyperpolarized, facilitating activation of 

sodium channels and allowing the neuron to fire more easily. 

Thus, transcriptional downregulation of most of these genes, though not all, would fa-

vor a suppression of local neurotransmission 1 hour after GR-activation in vivo. However, 

some caution with the functional interpretation is required since these genes were select-

ed from an expression profile containing over 200 genes. Therefore, the overall picture on 

how activated GRs affect hippocampal neurotransmission in vivo still remains complex. 

Glucocorticoids and long-term potentiation (LTP)

As mentioned previously, long-term potentiation (LTP) is one of the main hippocampal 

properties that are affected by glucocorticoids. In the CA1 subregion, activated GRs 

inhibit LTP in a delayed manner (34), thereby reducing synaptic transmission and thus 

neurotransmission. In the current thesis several interesting candidate genes were found 

in chapter 2 that could possibly be involved in mediating these effects. 

One of these genes, i.e. casein kinase 2, may directly be involved in the glucocorticoid-

mediated effects on hippocampal LTP. This gene was found to be downregulated by 
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activated GRs in chapter 2 and was validated in vivo in chapter 3. Casein kinase 2 has 

been shown to enhance NMDA-receptor function in hippocampal neurons, being part of 

the downstream signaling cascade (48). Furthermore, enhanced activity of casein kinase 

2 was found to be correlated with the induction of NMDA-receptor mediated LTP (49). 

Since 1) activated GRs inhibit NMDA-receptor mediated LTP and 2) there is no evidence 

for transcriptional regulation of NMDA-receptor mRNA (chapter 2) (50), downregulation 

of casein kinase 2 one hour after GR-activation could in part underlie this effect at an 

early time point. 

Additionally, there have been strong indications that AMPA receptor subunit trafficking 

is affected by activated GRs and this may occur for NMDA receptors as well (O. Wiegert, 

unpublished observation). Interestingly, the current data set contains one gene involved 

in intracellular protein transport, beta-chain clathrin-associated protein complex AP-2, 

that could possibly be mediating AMPA or NMDA-subunit trafficking. However, an exact 

hypothesis on how GR-mediated regulation of this gene may underlie receptor-traffick-

ing is difficult to formulate and therefore remains open for speculation.

Glucocorticoids and the actin cytoskeleton

Interestingly, glucocorticoids affect the transcription of several genes involved in the 

configuration of the actin cytoskeleton in both hippocampal cells and neuronal PC12 

cells. Transcriptional modulation of LIMK1, calcineurin, profilin, beta actin and LIM/SH3 

protein by activated GRs may thus affect cellular properties associated with the actin 

cytoskeleton such as dendritic spine morphology. 

Concerning the hippocampus, LIMK1, calcineurin and profilin were found to be GR-

responsive 3 hours after GR-activation. These genes are known to play a role in the 

morphology of hippocampal dendritic spines. The morphology of hippocampal spines 

is connected to hippocampal LTP and can change very rapidly in response to different 

stimuli (51,52). 

Using LIMK1 knock-out mice it was shown that LIMK1 is necessary for proper accumu-

lation and distribution of F-actin in hippocampal dendritic spines and for normal hip-

pocampal dendritic spine morphology (51). Furthermore, calcineurin has been shown to 

inhibit LIMK1 protein expression (53) and to be involved in destabilization of F-actin and 

hippocampal dendritic spines (54). Profilin is known to inhibit the polymerization of actin 

filaments at the growing ends (55,56) and seems to be involved in (activity-dependent) 

remodeling of hippocampal synaptic structure (57). Interestingly, profilin was also found 

to be differentially expressed in the hippocampus when comparing two genetically se-

lected mouse strains (i.e. short attack latency and long attack latency mice) that differ in 

aggressive behaviour, HPA-axis reactivity and morphology of mossy fiber terminal fields 

(58,59). Hence, transcriptional regulation of LIMK1 (upregulation), calcineurin (downreg-

ulation) and profilin (downregulation) 3 hours after GR-activation could possibly cause a 
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shift in F-actin dynamics and the subsequent alterations in dendritic spine morphology 

could alter hippocampal LTP (Figure 4). 

In LIMK1 knock-out mice, the aberrant spine morphology was associated with altera-

tions in hippocampal LTP, showing a reduction in 5 or 10 Hz induced LTP and an induc-

tion of 50 or 100 Hz induced LTP (51). From this observation one could deduce that a 

GR-induced increase in LIMK1 would enhance 5 or 10 Hz induced LTP which would be 

in contrast to the observed inhibiting effect of activated GRs on 10 Hz induced LTP (50). 

However, complete and constant absence of LIMK1 in knock-out mice most likely does 

not equal the exact opposite situation of moderately and transiently increased LIMK1 

expression levels in normal animals. Additionally, spine morphology is also dependent 

on activity of calcineurin and profilin, both of which are regulated by activated GRs as 

well as was shown in the current studies. 

Unfortunately, the functional study performed in chapter 6 did not result in an in vitro 

model to test the hypothesis that activated GRs via transcriptional regulation of LIMK1 

can modulate the actin cytoskeleton. However, as discussed in chapter 6, other model 

systems remain open for exploration such as for instance the use of ex vivo organotypic 

slices or in vivo models. 

Figure 4 
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Figure 4. Regulators of hippocampal dendritic spine morphology which are transcriptionally affected by activated GRs. LIMK1 enhances the 

formation of filamentous (F-) actin from actin monomers (G-actin) whereas calcineurin and profilin destabilize F-actin. ↑; upregulated by 

activated GRs. ↓; downregulated by activated GRs. LTP; long-term potentiation.
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Interestingly, also in neuronal (catecholaminergic) PC12 cells, the actin cytoskeleton 

seems to be a target for glucocorticoids. Activated GRs transcriptionally downregulate 

beta actin, which is part of the actin structural component, and LIM&SH3 protein, which 

plays a role in actin cytoskeletal organization. Thus similar to hippocampal cells, also in 

catecholaminergic cells glucocorticoids may affect synaptic plasticity by affecting the 

actin cytoskeleton.

Glucocorticoids and vesicle dynamics

In brain, glucocorticoids have been shown to affect catecholaminergic neuronal function. 

As discussed in chapter 4, acute exposure to corticosterone or dexamethasone increases 

dopamine release in the nucleus accumbens and enhances noradrenalin signaling in 

brain (60,61,62). 

The currently obtained expression profile in neuronal catecholaminergic PC12 cells 

contains several interesting target genes that may be involved in glucocorticoid effects 

on catecholaminergic signaling. These genes affect attachment of (neurotransmitter 

containing) vesicles to the synaptic membrane as well as recycling of these vesicles. In-

teresting candidate genes that may be involved include synaptosomal associated protein 

25 (SNAP-25), which is involved in exocytosis (63) and several proteins involved in Rab-

mediated endocytosis (Rab 1 acceptor, Rab 15 and Rab 7). Enhancement of neurotrans-

mitter secretion in general requires both exocytosis and endocytosis-mediated recycling 

of the cell membrane and hence GR-mediated transcriptional regulation of these genes 

may contribute to the secretion process of neurotransmitters in these cells. Hence, this 

may be a good example which illustrates the previously mentioned balanced and effec-

tive way by which activated GRs affect cellular function.

Glucocorticoid effects on protein synthesis in neuronal PC12 cells

One of the most striking observations in neuronal PC12 cells that were made in the cur-

rent thesis is the large effect activated GRs exert on the transcription of genes involved 

in protein synthesis. One hour after GR-activation 22% of the downregulated genes 

(Figure 3) is comprised of genes involved in protein synthesis whereas 3 hours after GR-

activation this percentage increases to 32%. At this time point all the genes involved in 

protein synthesis are upregulated. Hence, a massive shift from downregulation of protein 

synthesis towards upregulation takes place throughout time in these cells, with several 

genes overlapping between the two time points. When considering the effects glucocor-

ticoids exert on catecholaminergic neurotransmitter release, the regulation of protein 

synthesis could constitute a mechanism by which first synthesis of proteins unrelated to 

neurotransmitter synthesis and release is downregulated. This is then followed in time by 

a re-allocation of the requisites for protein synthesis towards the production of enzymes 

necessary for neurotransmitter production. This way, neurotransmitter production is en-



Chapter 7

192

hanced and in combination with the glucocorticoid-mediated transcriptional effects on 

exocytosis and endocytosis described previously, neurotransmitter release from these 

cells may be sustained over a longer period of time.

Candidate genes: current status

In summary, the currently obtained hippocampal and neuronal PC12 expression profiles 

of GR-responsive genes contains a large number of very interesting candidate genes with 

regard to energy metabolism, neurotransmission, hippocampal LTP, the actin cytoskel-

eton, vesicle-mediated neurotransmitter release and protein synthesis. The present task 

therefore is to design and perform functional follow-up studies with these genes in suit-

able model systems. Several options that are available for performing these functional 

studies will be discussed in the next section. However, it should also be taken into con-

sideration that the expression profiles are not complete yet due to the fact that the cur-

rent expression profiling techniques are unable to detect transcription of low abundant 

genes (such as for instance the 5HT1A-receptor). Therefore, although at present many 

glucocorticoid-responsive genes have been profiled the generation of new hypotheses 

may be hampered by the absence of these low abundant genes.

5. FUTURE PROSPECTS

In the current thesis several remarkable features of the genomic response to glucocorti-

coids in neuronal tissue have been observed regarding time-dependency and context-

specificity. Elaborating on these features may deepen our current understanding on 

how glucocorticoids interact with the neuronal transcriptome at the level of molecular 

mechanism. 

In order to obtain a more conclusive view on the molecular mechanisms that underlie 

the transcriptional responses after GR-activation throughout time, assessing transcrip-

tion factor binding sites upstream of the GR-responsive genes would be of major interest. 

This way, primary target genes and transrepression partners that interact with activated 

GRs can be identified, thereby providing a more in depth view of the (potentially) dif-

ferent modes of action of activated GRs at the different time points. Furthermore, novel 

GREs and interacting pathways (other than AP1, NFκB and CREB) may be discovered. An 

interesting example of recently identified GR-interacting cofactors is the class of FOXO 

transcription factors. These FOXO cofactors seem to cooperate with activated GRs to 

induce the expression of the pyruvate dehydrogenase kinase-4 gene by binding to insu-

lin response sequences that are in close proximity to the GRE-site that is present in the 

promoter region of this gene (64). 
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Therefore, a large-scale bioinformatics approach would be of use in which the promot-

er regions of all the GR-responsive genes are screened for commonly shared sequences, 

either known transcription factor binding sites or, using an open search approach, new 

sequences. Subsequently, binding of activated GRs and transrepression partners to 

these elements should be assessed. For this purpose, chromatin immunoprecipitation 

(ChIP) can be used. Briefly, in ChIP, occupation of DNA sequences by certain proteins is 

quantified by first cross-linking proteins to the DNA and DNA sonication into small frag-

ments. This is followed by immunoprecipitation with the antibody against the protein 

of interest (GR or transrepression partner) and quantitative PCR with primers against 

the DNA sequence of interest (GREs). Moreover, a variant on ChIP, called re-ChIP (11) is 

available which can be used to assess the binding of cofactors and / or transrepression 

partners to the activated GRs on the DNA. Using re-ChIP, two immunoprecipitation steps 

are performed with different antibodies prior to the PCR step. In this way, binding of two 

proteins (in a protein complex) to the DNA can be measured.

An interesting alternative approach to identify the DNA elements to which activated 

GRs bind throughout time could be the use of genome wide ChIP-procedures such as 

ChIP-on-chip (65) and Serial Analysis of Chromatin Occupancy (SACO) (66). First, in ChIP-

on-chip, the PCR step is omitted from the ChIP-procedure and instead the isolated DNA 

fragments are hybridized to a microarray which contains sequences for known transcrip-

tion binding sites. Second, in SACO, a combination between ChIP and SAGE is performed, 

starting with precipitation of the transcription factor of interest that is attached to the 

DNA. Subsequently, binding site-specific tags are generated which are derived from the 

immunoprecipitated DNA. These tags are then sequenced, resulting in the identification 

of the DNA binding sites. Thus, in contrast to ChIP-on-chip, SACO allows the identification 

of new transcription factor binding sites, thereby constituting an open approach. 

Furthermore, in order to elaborate on the context-specificity of the genomic response, 

using these ChIP and / or SACO procedures would be of major help as well. Application 

of these techniques could result in the identification of different transrepression partners 

and coregulators for activated GRs in 1) different neuronal cell types and 2) cells with 

different activation statuses. 

In order to assess whether 1 hour after GR-activation the genes are transcriptionally 

downregulated via transrepression, the currently performed large-scale gene expres-

sion profiling experiment in hippocampal slices could be repeated with slices obtained 

from transgenic GR-dimerization defective mice (67). When performed in the presence 

of cycloheximide, primary genes which are transcriptionally mediated by GRs without 

the need for direct binding of GR-dimers to the DNA, as occurs in transrepression, can 

be identified.

With respect to the effects of glucocorticoids on cellular functioning, in the current 

thesis many different glucocorticoid-responsive genes have been profiled in both hip-
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pocampal and neuronal PC12 cells. Several new hypotheses have been generated with 

respect to the control glucocorticoids exert on energy metabolism, neurotransmission, 

hippocampal LTP, the actin cytoskeleton, vesicle-mediated neurotransmitter release and 

protein synthesis. Hence, as mentioned previously, the challenge now is to test these hy-

potheses and to find causal connections between glucocorticoid-mediated changes in 

the expression of candidate genes and the neural phenotype. In order to perform these 

follow-up studies, several suitable model systems and techniques for gene expression 

manipulation can be considered.

Regarding the GR-responsive genes found in hippocampus, organotypic hippocampal 

slices constitute a very interesting substrate to perform functional studies with. As dis-

cussed in chapter 6, these slices can be cultured for several weeks and measurement of 

mRNA levels, protein levels and even phenotypic analysis such as electrophysiology and 

morphology are relatively easily performed. Although organotypic slices do show some 

re-wiring of the neuronal network after they are generated, they still have the advantage 

of containing such a neuronal network which to a certain extent is similar to that of the 

normal hippocampus. Several techniques are available to manipulate gene expression 

levels in these slices, such as siRNA and viral transfection tools. Using siRNA, transcription 

of the gene of interest is decreased by a specific siRNA molecule, leading to loss of func-

tion. Furthermore, the use of viruses allows transfection of differentiated (non-dividing) 

neuronal cells and hence siRNA molecules and / or overexpressing gene plasmids can be 

efficiently transfected into these cells. Since organotypic slices can directly be treated, 

they provide a very convenient model system for functional follow-up studies.

The latter also holds true for neuronal PC12 cells. As discussed previously, these cells 

mimic catecholaminergic neurons and can therefore be used as a model system to study 

the interactions between glucocorticoids and catecholaminergic function. Manipulation 

of these cells is relatively easily performed and therefore they are very suited for con-

ducting functional experiments with candidate genes. However, logically more caution 

is needed to make appropriate extrapolations of this in vitro model system to the in vivo 

situation of catecholaminergic neurons in the brain. 

As mentioned before, glucocorticoids play a modulatory role in the organism’s stress 

response and thus operate in a certain stress-induced ‘activation status’. The activation 

status determines the availability of different transcription cofactors and transrepression 

partners that can interact with activated GRs. Therefore, when assessing the role of brain 

regions in the stress response and elucidating the stress-induced pathways with which 

activated GRs interact, the experimental design should combine the manipulation of 

glucocorticoid concentrations with the exposure to acute stressors, affecting neuronal 

activation status. This could be achieved for example by applying certain (stressful) learn-

ing tasks which activate the hippocampus in combination with adrenalectomy and / or 

glucocorticoid injections or antagonist administration. 
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Finally, the currently available gene expression profiling techniques are not suited for 

detecting low abundant transcripts and therefore the transcriptional responses of these 

genes to glucocorticoids still remain largely unknown. Thus, the overall view on which 

genes are responsive to glucocorticoids is not complete yet. Therefore, enhancing the 

detection capacity of the profiling techniques as described in chapter 5 is one of the 

future challenges in order to be able to improve the selection of candidate genes for 

functional follow-up studies.

6. CONCLUSIONS

From the studies performed in the current thesis, the following conclusions can be 

drawn:

1) Acute activation of GRs results in a very characteristic time-dependent genomic re-

sponse in ex vivo hippocampal slices and neuronal PC12 cells. This time-dependent 

profile suggests that transrepression is the prevailing pathway 1 hour and transacti-

vation is the prevailing pathway 3 hours after GR-activation.

2) The cellular context in which glucocorticoids operate conveys an enormous diversity 

in GR-mediated transcriptional effects to be detected by large-scale gene expression 

profiling.

3) Glucocorticoids exert pleiotropic effects on gene expression, thereby affecting di-

verse functional processes in a coordinate manner. These processes include signal 

transduction, gene transcription, protein synthesis, energy metabolism, cytoskele-

tal-controlled cellular properties, ubiquitine pathway, cellular adhesion and synaptic 

transmission. 

4) In both ex vivo hippocampal slices and neuronal PC12 cells, many new candidate 

genes were found that could potentially underlie (part of ) the effects glucocorticoids 

mediate on hippocampal and catecholaminergic neuronal function. These include 

genes involved in energy metabolism (lactase A and B, leptin, aldolase A and phospho-

glycerate kinase 1), neurotransmission (MAO-A, potassium channel Kv3.2 and the MR), 

hippocampal LTP (casein kinase 2 and beta-chain clathrin-associated protein complex 

AP-2), the configuration of the actin cytoskeleton (beta actin, LIMK1, LIM/SH3 protein, 

calcineurin and profilin), vesicle-mediated neurotransmitter release (SNAP25 and sev-

eral Rab proteins) and protein synthesis (a large number of ribosomal proteins). 
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Summary

One of the physiological systems that play a major role in mediating the organism’s stress 

response is the hypothalamic-pituitary-adrenal (HPA) axis. Upon exposure to a stressor 

the HPA-axis triggers the adrenals to release glucocorticoids into the bloodstream.

Many different organs and tissues are affected by glucocorticoids, among which sev-

eral brain areas. Especially the hippocampus, a brain structure involved in learning and 

memory formation, is affected by glucocorticoids. Here, two receptors are involved in 

transduction of the glucocorticoid signal; the mineralocorticoid receptor (MR) and the 

glucocorticoid receptor (GR). In comparison to the GR, the MR has a 10-fold higher affinity 

for glucocorticoids, resulting in predominant MR-occupation under basal glucocorticoid 

concentrations and GR-occupation under rising glucocorticoid concentrations during 

the circadian rhythm and / or exposure to stress. 

Both receptors are ligand-inducible transcription factors and therefore many of the 

effects glucocorticoids exert are the result of changes in gene expression. After ligand-

binding, MR and GR translocate to the cell nucleus and via two mechanisms, i.e. transac-

tivation and transrepression, regulate gene expression. In transactivation, ligand bound 

receptors form homodimers that bind to glucocorticoid-responsive elements (GREs) on 

the DNA. Subsequently, cofactors can be recruited to the receptors and via interactions 

with the general transcription machinery gene transcription can be enhanced (positive 

GREs) or repressed (negative GREs). In transrepression, monomeric receptors inhibit gene 

expression by binding to other transcription factors like NFκB, AP1 and CREB, thereby 

inhibiting their transcriptional effects. 

Acutely activated GRs affect several hippocampal properties within several hours 

including inhibition of long-term potentiation (LTP), enhancement of calcium influx, 

inhibition of glucose uptake and an increase in the neuron’s response to serotonin. Since 

these changes develop in a delayed genomic fashion, applying a genomics approach is 

of major interest in order to determine the underlying molecular mechanisms. Using this 

approach, expression levels of thousands of genes are measured in a single experiment, 

thereby aiming to elucidate which genes are regulated by activated GRs and to generate 

new hypotheses as to how transcriptional regulation of selected candidate genes may 

underlie the effects of activated GRs on hippocampal neuronal function. 
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Hence, the central theme of the current thesis was to gain more insight into the tran-

scriptional changes that underlie the effects of acutely activated GRs on hippocampal 

neuronal function. Furthermore, issues concerning context-specificity and dynamics of 

the genomic response to acutely activated GRs were addressed as well. 

Previously, Serial Analysis of Gene Expression (SAGE) was used to assess GR-induced 

transcriptional changes in the hippocampus in vivo against an occupied MR-background 

and over 100 genes were found to be responsive 3 hours after GR-activation. However, 

since changes in mRNA levels do not necessarily have to coincide with the effects on 

neuronal function, a large-scale profile of GR-responsive genes was generated in an ex-

panded time window of 1 to 5 hours after GR-activation.. 

In chapter 2, for this purpose experiments are described with ex vivo hippocampal 

slices obtained from animals in which the MRs were occupied and an acute, 20 minute 

100 nM corticosterone pulse was applied to activate the GRs. Strikingly, a highly charac-

teristic pattern of transcriptional changes was observed throughout time, shifting from 

exclusively downregulated genes 1 hour after GR-activation to both up and downregu-

lated genes 3 hours afterwards. Five hours after GR-activation the response was almost 

back to baseline. This time-dependent pattern suggested that the fast genomic effects 

of glucocorticoids may be realized via transrepression, preceding a later wave of trans-

activation. A similar pattern of transcriptional regulation by activated GRs has previously 

been found in liver, showing the majority of genes to be downregulated at early time 

points.

In order to assess the reliability of the ex vivo hippocampal slice model, five function-

ally interesting genes that were found to be responsive 1 hour after GR-activation were 

validated in vivo in chapter 3. For this purpose, rats were injected with a high concentra-

tion of corticosterone and 1 hour afterwards gene expression was measured using in situ 

hybridizations. Four out of five genes showed similar GR-induced transcriptional changes 

as observed in the slices. This is a very interesting observation since it demonstrates the 

reliability of the hippocampal slice data set and it shows that apparently projections to 

the hippocampus, which could also be GR-responsive, do not exert a large effect on the 

GR-mediated transcriptional response under the current conditions. Furthermore, every 

hippocampal subregion measured showed downregulation or a trend towards down-

regulation after GR-activation. 

In chapter 4 the aim was to elucidate how general the obtained time-dependent 

GR-induced transcriptional response in hippocampal slices was for neuronal tissue, the 

effects of acutely activated GRs on transcription were studied in a completely different 

neuronal substrate, i.e. neuronal catecholaminergic PC12 cells. Endogenous GRs were ac-

tivated by exposure to a 20 minute 100 nM corticosterone pulse on top of a tonic 10 nM 

corticosterone background which resulted in a strikingly similar time-dependent pattern 

of transcriptional changes as observed in hippocampal slices, shifting from exclusively 
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downregulated genes 1 hour after GR-activation to both up and downregulated genes 

3 hours afterwards. Furthermore, by repeating the experiment in the presence of the 

protein synthesis blocker cycloheximide and by assessing putative upstream promoter 

regions for transcription factor binding sites, more indications were found that trans-

repression may be the prevailing pathway at early time points. In this respect, using a 

combination of bioinformatics and large-scale chromatin immunoprecipitation (ChIP) / 

Serial Analysis of Chromatin Occupancy (SACO) procedures would be of major interest to 

test this hypothesis in a follow-up study.

With regard to the context-specificity of glucocorticoid-mediated effects it has previ-

ously been shown that the same receptor can exert completely opposite effects in differ-

ent types of neurons. In order to assess the extent to which GR acts context- specific on 

the transcriptome, the data sets obtained from the previously performed hippocampal 

SAGE, hippocampal slice and neuronal PC12 experiments were compared with each 

other, showing very little overlap between the hippocampal and PC12 data sets. Hence, 

acutely activated GRs elicit a highly context-specific genomic response in different neu-

ronal substrates. 

In chapter 5 systematic overview concerning the currently obtained results using 

large-scale expression profiling of GR-responsive genes in relation to what is known 

about the mechanisms by which glucocorticoid receptors affect gene transcription 

was provided. The functional implications of GR-mediated transcriptional regulation of 

several candidate genes for neural function were discussed as well. Additionally, some 

methodological shortcomings and possibilities for technical refinement of the genomics 

procedure were addressed. 

Large-scale gene expression profiling can be regarded as a hypothesis generating 

approach in an attempt to explain how transcriptional regulation of the glucocorticoid-

responsive genes may underlie the glucocorticoid-mediated effects on neural function. 

Strikingly, in the current thesis more than 200 GR-responsive genes were described in 

chapters 2 and 4 which could be grouped into many different functional classes, demon-

strating the pleiotropic effects glucocorticoids exert on gene transcription. Interestingly, 

in both hippocampal slices and neuronal PC12 cells similar functional gene categories 

were affected by glucocorticoids throughout different time intervals after GR-activation. 

However, the distribution of genes over these functional gene classes differed between 

hippocampal and neuronal PC12 cells as well as between the different time points, show-

ing both time and cellular context dependency. 

Besides several genes that were already known to be glucocorticoid-responsive, many 

new interesting candidate genes were found in these expression profiles that may be used 

to formulate new hypotheses on how glucocorticoids affect neural function. The func-

tional implications of transcriptional regulation of these genes are discussed throughout 

the different chapters. From the current thesis it becomes clear that glucocorticoids af-
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fects the transcription of genes involved in energy metabolism (lactate dehydrogenase 

A and B, leptin, aldolase A and phosphoglycerate kinase 1), neurotransmission (MAO-A, 

potassium channel Kv3.2 and the MR), hippocampal LTP (casein kinase 2 and beta-chain 

clathrin-associated protein complex AP-2), actin cytoskeleton-controlled cellular proper-

ties (beta actin, LIMK1, LIM/SH3 protein, calcineurin and profilin) and vesicle-mediated 

neurotransmitter release (SNAP25 and several Rab proteins). Several hypotheses were 

postulated in this thesis and at present the challenge is to test these newly generated 

hypotheses, thereby elucidating causal connections between glucocorticoid-mediated 

changes in the expression of these candidate genes and the neural phenotype. 

In order to perform these follow-up studies, several suitable model systems and tech-

niques for gene expression manipulation can be considered. In chapter 6, the hypoth-

esis was tested that GR-mediated transcriptional regulation of LIMK1 could be involved 

in rearrangements of the actin cytoskeleton. Changes in actin cytoskeletal conformation 

have been related in vivo to changes in dendritic spine morphology and hippocampal 

LTP. Hence, in this chapter an attempt was made to demonstrate that activated GRs via 

transcriptional regulation of LIMK1 can modify actin cytoskeletal dynamics. Neuronal 

NG108-15 cells were chosen as a model system since these neuronal cells express LIMK1 

(as well as another GR-responsive actin-modifying protein, i.e. calcineurin) and they 

seem to respond to the specific GR-agonist dexamethasone by extending their neurites. 

Unfortunately, no clear relation between GR-activation, actin dynamics and LIMK1 mRNA 

expression was obtained, indicating that the NG108-15 cells did not constitute a proper 

model for studying the functional consequence of transcriptional regulation of this gene. 

However, as discussed in this chapter, hippocampal organotypic slices could constitute a 

highly interesting alternative model system to further investigate this hypothesis. 

Finally, in chapter 7 all the findings in the current thesis are discussed. The major con-

clusions are that 

1) acute activation of GRs results in a very characteristic time-dependent genomic 

response in ex vivo hippocampal slices and neuronal PC12 cells which suggests that tran-

srepression is the prevailing pathway 1 hour after GR-activation followed by a wave of 

predominant transactivation, resulting in both up and downregulated genes, at 3 hours.

2) the cellular context in which glucocorticoids operate conveys an enormous diversity 

in GR-mediated transcriptional effects to be detected by large-scale gene expression 

profiling.

3) glucocorticoids exert pleiotropic effects on gene expression, thereby affecting di-

verse functional processes in a coordinate manner. 

4) in both ex vivo hippocampal slices and neuronal PC12 cells, many new candidate 

genes were found that could potentially underlie (part of ) the effects glucocorticoids 

mediate on hippocampal and catecholaminergic neuronal function. 
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Eén van de fysiologische systemen die een hoofdrol spelen tijdens de stress-respons is de 

hypothalamus-hypofyse-bijnier (HHB) as (Engels: hypothalamic-pituitary-adrenal (HPA) 

axis). Deze HHB-as wordt geactiveerd wanneer een organisme wordt blootgesteld aan 

een stressor met als gevolg dat de bijnieren glucocorticoïden afgeven aan de bloed-

baan.

Verschillende organen en weefsels worden beïnvloed door glucocorticoïden, waaron-

der een aantal hersengebieden zoals de hippocampus. De hippocampus is onder andere 

betrokken bij leren en geheugenvorming en brengt twee receptoren voor glucocorticoï-

den tot expressie: de mineralocorticoïd receptor (MR) en de glucocorticoïd receptor (GR). 

In vergelijking met de GR heeft de MR een tienvoudig hogere affiniteit voor de natuurlijk 

voorkomende glucocorticoïden: cortisol (mens) en corticosteron (rat). Door dit verschil 

in affiniteit is bij basale concentraties van cortisol en corticosteron de MR voornamelijk 

bezet, terwijl bij hogere concentraties, tijdens het circadiane ritme of gedurende een 

periode van stress, de GR additioneel wordt bezet. 

Beide receptoren behoren tot de groep van de ligand-geactiveerde transcriptiefactoren 

en veel van de effecten die door glucocorticoïden worden bewerkstelligd zijn het gevolg 

van veranderingen in genexpressie. Nadat de receptoren zijn gebonden door het ligand 

vindt er translocatie plaats naar de nucleus alwaar genexpressie via 2 mechanismen kan 

worden beïnvloed, te weten transactivatie door beide receptoren en transrepressie dat 

exclusief door GR geregeld wordt. Tijdens transactivatie vormen de ligand-gebonden re-

ceptoren homodimeren die kunnen binden aan zogenaamde glucocorticoïd-responsieve 

elementen (GREs) die zich bevinden in het promotergebied van sommige responsieve 

genen. Vervolgens worden co-factoren gebonden door de receptoren en via interacties 

met de algemene transcriptie machinerie kan transcriptie van de betreffende GRE-bevat-

tende genen worden gestimuleerd (positieve GREs) of geremd (negatieve GREs). Tijdens 

transrepressie binden enkelvoudige receptoren aan andere transcriptiefactoren zoals 

NFκB, AP1 en CREB, wat resulteert in remming van door deze factoren aangestuurde 

gentranscriptie. 

Acute activatie van GR kan binnen enkele uren verschillende hippocampale functies 

beïnvloeden. Zo onderdrukken ze bijvoorbeeld long-term potentiation (LTP), versterken 

ze de influx van calcium, remmen ze het glucose verbruik en versterken ze de respons van 
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neuronen op serotonine. Aangezien deze veranderingen plaatsvinden in een tijdsbestek 

van enkele uren, kan worden verondersteld dat ze afhankelijk zijn van veranderingen 

in genexpressie. Met het gebruik van een zogenaamde genomics aanpak kan derhalve 

veel inzicht worden verkregen in de onderliggende moleculaire mechanismen. Met deze 

aanpak worden de expressie-niveaus van duizenden genen in een enkel experiment 

gemeten (m.b.v. large-scale gene expression profiling technieken) met als doel vast te 

stellen welke genen transcriptioneel worden gereguleerd door de ligand-geactiveerde 

GR. Doorgaans leidt dit tot interessante nieuwe hypothesen betreffende de rol van het 

nieuw geïdentificeerde gen in de regulatie van hippocampus functie. 

Het centrale thema van dit proefschrift was derhalve om meer inzicht te verkrijgen in 

de transcriptionele veranderingen die mogelijkerwijs de effecten van GR op de hippo-

campus kunnen verklaren. Daarnaast werden zaken als context-specificiteit en dynamiek 

van de genomische respons op acuut geactiveerde GR bekeken. 

In een eerdere studie is de Serial Analysis of Gene Expression (SAGE) techniek gebruikt 

om GR-responsieve genen te vinden in vivo in de hippocampus in ratten waarin de MR 

van tevoren reeds bezet was met ligand. In deze studie werden 3 uur na GR-activatie 

meer dan 100 GR-responsieve genen gevonden. Echter, aangezien veranderingen in 

mRNA niveaus niet noodzakelijkerwijs gelijk hoeven te lopen met de effecten van GR op 

neuronale functie wordt in hoofdstuk 2 een grootschalig expressie profiel van GR-res-

ponsieve genen gegenereerd in een tijdsbestek van 1 tot 5 uur na GR-activatie. Hiervoor 

werden ex vivo hippocampale plakken gebruikt die waren verkregen uit dieren waarin 

de MR vooraf reeds bezet was. Vervolgens werden de GR geactiveerd door deze plakken 

bloot te stellen aan een 20 minuten durende 100 nM corticosteron puls. Dit resulteerde 

in een opmerkelijk karakteristiek patroon van transcriptionele veranderingen waarbij 1 

uur na GR-activatie de transcriptie van alle responsieve genen geremd werd, terwijl er 

3 uur na GR-activatie sprake was van zowel stimulatie als remming van transcriptie van 

responsieve genen.

Vijf uur na GR-activatie was de genomische respons zo goed als voorbij. Dit tijdsaf-

hankelijke patroon van transcriptionele regulatie suggereerde dat de snelle genomische 

effecten van glucocorticoïden tot stand komen via transrepressie en dat pas later in de 

tijd transactivatie plaatsvindt. Een vergelijkbaar tijdsafhankelijk genomisch patroon 

werd al eerder gevonden in de lever, met voornamelijk remming van gentranscriptie in 

de vroege tijdspunten. 

Om de betrouwbaarheid van het ex vivo hippocampale plak model te bepalen werden 

er 5 mogelijk interessante responsieve genen uit het 1-uurs tijdspunt geselecteerd en 

vervolgens gevalideerd in vivo in hoofdstuk 3. Hiervoor werden ratten geïnjecteerd met 

een hoge dosis corticosteron waarbij 1 uur later de genexpressie van de geselecteerde 

genen werd gemeten met behulp van in situ hybridizaties. Vier van de vijf genen lieten 

in vivo een zelfde transcriptionele verandering zien als in de hippocampale plakken. Dit 
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validatie-experiment benadrukte derhalve de betrouwbaarheid van het ex vivo hippo-

campale plak model en liet tevens zien dat in ieder geval voor de 4 gemeten genen de 

respons niet afhankelijk is van (mogelijkerwijs ook GR-responsieve) neuronale projecties 

naar de hippocampus. Een andere interessante observatie was dat in iedere hippocam-

pale subregio die gemeten werd, transcriptionele remming of een trend richting trans-

criptionele remming werd gevonden en dat deze veranderingen werden geblokkeerd 

door de GR-antagonist RU486. 

Om te bepalen hoe algemeen het gevonden tijdsafhankelijke patroon van GR-ge-

medieerde transcriptie in hippocampale plakken is voor neuronaal weefsel wordt in 

hoofdstuk 4 een nieuw experiment uitgevoerd waarin neuronale catecholaminerge 

PC12 cellen werden gebruikt om de effecten van acuut geactiveerde GR op genexpres-

sie te bepalen. De GR in deze cellen werd geactiveerd met behulp van een 20 minuten 

durende 100 nM corticosteron puls bovenop een 10 nM corticosteron achtergrond. Dit 

resulteerde in een zelfde tijdsafhankelijk patroon van transcriptionele veranderingen 

zoals eerder was gevonden in hippocampale plakken, met 1 uur na GR-activatie alleen 

remming van transcriptie en zowel remming als stimulatie van transcriptie 3 uur na GR-

activatie. Door het experiment te herhalen in de aanwezigheid van eiwitsyntheseremmer 

(cycloheximide) en door te kijken naar potentiële transcriptiefactor bindingsplaatsen in 

de promoter-regio’s van enkele genen, werd de hypothese, dat transrepressie het voor-

naamste mechanisme is waarmee transcriptie wordt beïnvloed in de vroege tijdspunten, 

verder ondersteund. In deze context zou het dan ook zeer interessant zijn middels een 

combinatie van bioinformatica en technieken als chromatine immunoprecipitatie (ChIP) 

en Serial Analysis of Chromatin Occupancy (SACO) deze hypothese verder te testen in 

een vervolgstudie. 

Met betrekking tot de context-specificiteit van glucocorticoïd effecten is bekend dat 

dezelfde receptor een compleet tegenovergesteld effect kan bewerkstelligen in ver-

schillende typen neuronen. Om nu een inschatting te maken van de mate waarin de GR 

context-specifiek werkt, werden de genexpressie profielen van de hippocampale SAGE, 

hippocampale plak en PC12 cel studies systematisch met elkaar vergeleken. De mate van 

overlap tussen de hippocampale en de PC12 data sets was zeer gering, hetgeen betekent 

dat het effect van acuut geactiveerde GR op genexpressie in neuronaal weefsel in hoge 

mate afhankelijk is van de cellulaire context. 

In hoofdstuk 5 worden de via de genomics aanpak verkregen resultaten m.b.t. GR-res-

ponsieve genen besproken en gerelateerd aan wat er uit de literatuur bekend is betref-

fende de mechanismen waarmee glucocorticoïd receptoren genexpressie beïnvloeden. 

Verder wordt de functionele betekenis van GR-gemedieerde transcriptie in neuraal 

weefsel van enkele kandidaatgenen nagegaan. Daarnaast worden de methodologische 

tekortkomingen van de huidige gebruikte genomics technieken evenals enkele opties 

voor technische verbetering geanalyseerd. 
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Het gebruik van ‘large-scale gene expression profiling’ technieken kan worden be-

schouwd als een hypothese-genererende aanpak waarin wordt getracht een verband te 

leggen tussen transcriptionele regulatie van glucocorticoïd-responsieve genen enerzijds 

en de glucocorticoïd effecten op neurale functie anderzijds. In dit proefschrift staan in 

hoofdstukken 2 en 4 de meer dan 200 gevonden GR-responsieve genen beschreven. 

Deze genen konden worden verdeeld over een groot aantal verschillende functionele 

categorieën. Dit wijst erop dat niet alleen wat werking betreft, maar ook op het niveau 

van het transcriptoom glucocorticoïden pleiotrope effecten bewerkstelligen. In zowel 

de hippocampale plakken als de neuronale PC12 cellen werden in de verschillende 

tijdspunten gelijksoortige functionele gencategorieën gevonden. Hierbij dient te wor-

den opgemerkt dat de verdeling van genen over deze categorieën wel verschillend was 

tussen de tijdspunten alsmede tussen de hippocampale plakken en PC12 cellen. Dit 

betekent dus dat de effecten van glucocorticoïden op genexpressie afhankelijk zijn van 

zowel tijd als celtype.

De in dit proefschrift gevonden sets van genen bevatten ondermeer een aantal genen 

waarvan uit de literatuur al eerder bekend was dat ze glucocorticoïd-responsief zijn. 

Daarnaast is er een groot aantal interessante nieuwe kandidaatgenen gevonden waar-

mee nieuwe hypothesen kunnen worden geformuleerd omtrent de moleculaire mecha-

nismen die ten grondslag liggen aan de effecten van glucocorticoïden op de functie van 

neurale cellen. De functionele consequentie van transcriptionele regulatie door gluco-

corticoïden van een aantal van deze genen wordt besproken in de verschillende hoofd-

stukken van dit proefschrift. Een aantal opvallende functionele categorieën die gevon-

den zijn in dit proefschrift zijn onder meer energie metabolisme (lactaat dehydrogenase 

A en B, leptine, aldolase A en fosfoglyceraat kinase 1), hippocampale LTP (caseïne kinase 2 

en beta-chain clathrin-associated protein complex AP-2), actine-cytoskelet geassocieerde 

cellulaire eigenschappen (beta-actine, LIMK1, LIM/SH3-eiwit, calcineurine en profiline) en 

door synapsblaasjes gemedieerde neurotransmitter secretie (SNAP25 en een aantal Rab-

eiwitten). In dit proefschrift worden met behulp van een aantal van deze kandidaatgenen 

enkele potentieel interessante hypothesen gepostuleerd. Deze hypothesen maken de 

weg vrij voor verder functioneel onderzoek in de richting van het vaststellen van causale 

verbanden tussen de glucocorticoïd-geïnduceerde transcriptionele veranderingen ener-

zijds en de effecten van glucocorticoïden op het neurale fenotype anderzijds. 

Voor het uitvoeren van deze functionele vervolgonderzoeken is een aantal interessante 

modelsystemen beschikbaar. Zo werd in hoofdstuk 6 de hypothese getest dat GR-afhan-

kelijke transcriptionele regulatie van LIMK1 betrokken zou zijn bij de structurele veran-

deringen van het actine cytoskelet. Het is bekend uit de literatuur dat veranderingen 

in de conformatie van het actine cytoskelet zijn geassocieerd met veranderingen in de 

morfologie van hippocampale dendritische ‘spines’ en LTP. In dit hoofdstuk wordt derhal-

ve geprobeerd een verband te leggen tussen transcriptionele regulatie van LIMK1 door 



209

Samenvatting

geactiveerd GR en veranderingen in het actine cytoskelet. Om deze studie uit te voeren 

werd gekozen voor neuronale NG108-15 cellen als biologisch substraat vanwege het feit 

dat 1) deze cellen LIMK1 tot expressie brengen (alsmede een ander GR-responsief eiwit 

dat betrokken is bij de conformatie van het actine cytoskelet, nl. calcineurine) en 2) deze 

cellen lijken te reageren op GR-agonist met het uitgroeien van de neurieten. Helaas werd 

in deze studie geen duidelijke associatie gevonden tussen activatie van de GR, transcrip-

tionele regulatie van LIMK1 mRNA en de conformatie van het actine cytoskelet, hetgeen 

suggereert dat mogelijkerwijs de NG108-15 cellen geen goed substraat zijn voor het 

testen van bovengenoemde hypothese. Echter, zoals ook wordt betoogd in hoofdstuk 

6, is een aantal interessante alternatieven voorhanden om deze specifieke hypothese te 

testen, waaronder het gebruik van hippocampale organotypische plakken.

Tot slot worden in hoofdstuk 7 alle bevindingen besproken die in dit proefschrift zijn 

gedaan. De belangrijkste conclusies die kunnen worden getrokken zijn dat: 

1) acute activatie van GR leidt tot een uitermate kenmerkende tijdsafhankelijke ge-

nomische respons in zowel ex vivo hippocampale plakken als neuronale PC12 cellen, 

hetgeen suggereert dat transrepressie de voornaamste route is via welke genexpressie 

wordt beïnvloed 1 uur na GR-activatie. Deze transrepressie wordt gevolgd door voorna-

melijk transactivatie 3 uur na GR-activatie, resulterend in zowel stimulatie als remming 

van gentranscriptie.

2) de cellulaire context waarin glucocorticoïden werken een enorme diversiteit in de 

transcriptionele respons bewerkstelligt die vastgesteld kan worden met ‘large-scale gene 

expression profiling’ technieken.

3) glucocorticoïden pleiotrope effecten op genexpressie tot stand brengen met als 

gevolg dat verschillende functionele processen op een gecoördineerde manier worden 

beïnvloed.

4) in zowel ex vivo hippocampale plakken als neuronale PC12 cellen een groot aantal 

kandidaatgenen is gevonden die ten grondslag liggen aan het moleculaire werkingsme-

chanisme van glucocorticoïden in de hippocampus en in catecholaminerge neuronale 

cellen.
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