
Testing object Interactions
Grüner, A.

Citation
Grüner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243

Appendices

175

Appendix A

Subject reduction

This chapter deals with the with well-typedness of configuration. We want to prove
that the rules of the operational semantics preserve well-typedness of the configu-
ration. This feature, called subject reduction, was formalized in Lemma 2.4.7 and
what follows is the proof for this lemma. Definition 2.4.4 introduces three require-
ments for well-typed configurations and the idea of the proof is to make a case
analysis on the transition for each requirement.

Proof. By case analysis of the transition step. As a precondition for all cases,
we assume that ∆ ` c : Θ holds. Let h and h′ be the heap functions as well
as v and v′ the global variable functions for the configuration c and c′, respec-
tively. Before we start with the case analysis, let us make three general observa-
tions. First, no transition rule changes the domain of the global variable function,
i.e. dom(v) = dom(v′). Second, regarding external steps the new assumption-
commitment context always represents an extension of the previous context. In
particular, all class names in ∆ and in Θ have the same type in ∆′ and in Θ′, re-
spectively. Furthermore, all transition steps change the local variables and code of
the top-most activation records only, if at all. Thus, within the following proof we
can ignore the tail of the call stack and focus on the top-most activation records.

Now let us prove the first requirement of Definition 2.4.4, i.e., we want to
show that all objects on the heap of configuration c′ belong to a program class
mentioned in Θ′.
Case Let us assume that c p c

′.
Regarding the Rules Ass, Call, BlkBeg, BlkEnd, Whilei, Condi, and Ret
there is no change of the heap involved. As Θ′ is an extension of Θ compliance
with the first requirement results from the precondition.

Subcase Rule FUpd
Lets assume that c c′ due to a field update. In particular, the third premise of
Rule FUpd implements the actual update. It also shows, however, that the class
name of the involved object is not changed. Thus, a field update does not break
the requirement.

177

178 APPENDIX A. SUBJECT REDUCTION

Subcase Rule New
Assume that c evolves to c′ due to application of Rule New. Then the heap is
extended by a new object o of class C. Likewise, the stack is extended by the
method body of C. Since the auxiliary function cbody is only defined for program
classes and as the program p is well-typed, we can deduce that Θ′ ` C : [(. . .)].

Case Let us now assume that ∆ ` c : Θ a−→p ∆′ ` c′ : Θ′.
Only one rule of the external semantics changes the heap, namely Rule NewI.
Since Θ′ is an extension of Θ the requirement follows from the precondition for
all the other external rules. Regarding NewI, as in Rule New, we can basically
deduce from the definedness of cbody for class name C that the first requirement of
a well-typed configuration also holds for the new configuration with the extended
heap. Now let us prove the second requirement of Definition 2.4.4. That is, we
have to show that every free variable of each activation record of c′ is a global
variable or in the domain of the record’s local variable list.

Case Again consider c p c
′

We show the most interesting cases.

Subcase Rule Ass
Execution of the assignment statement x = e does not extend the set of free
variables of the corresponding activation record but instead possibly reduces it
by x and fvars(e). Moreover, the domain of the record’s local variable list is not
changed which yields the proof for the requirement.

Subcase Rule Call and Rule New
Transitions that represent an internal method call or object instantiation create
a new top most activation record, while the method or constructor call in the
previously top most record is replaced by a receive statement. Thus, regarding
the previously top most record, all free variables of the record’s code are part
of the record’s local variable list. As for the new activation record, the code is
instantiated by the method or constructor body of the corresponding program
class. We know that the program is well-typed, therefore the code might only
make references to global variables, to this, or to local variables of the method
itself. Since the new record is equipped with a local variable function that consists
of a mapping for the aforementioned variables, the requirement is fulfilled.

Subcase Rule Ret
An application of Rule Ret causes the removal of the top most activation record.
Apart from this, only the receive statement on top of the calling activation record
is removed. Thus, again all free variables of the new top most activation record
are in the record’s local variable list.

Case Assume ∆ ` c : Θ a−→p ∆′ ` c′ : Θ′

Subcase RulesCallO and NewO
In both cases the outgoing method or constructor call is replaced by an annotated
receive statement. No introduction of new variables and no modification of the

179

record’s local variable functions is involved in this step. Thus the requirement
follows from the precondition.

Subcase Rule RetO
Only the top most activation record is removed. The requirement follows from
the precondition.

Subcase Rules CallI and NewI
Both rules extend the call stack by a new activation record leaving the rest of the
call stack unchanged. Like in the case for internal method calls we can deduce
from the well-typedness of the program that the new activation record conforms
to the second requirement of the well-typedness definition for configurations.

Subcase Rule RetI
An incoming return leads to the removal of the receive statement on top of the
top most activation record. Again, no new free variables are introduced and the
domain of the local variable function list is not changed. Finally, we have to prove
that also the third requirement for well-typed configurations is fulfilled by the new
configuration c′. More specifically, we have to show that each of the call stack’s
activation records that represents a method or constructor execution provides a
valid value for the special name this. Obviously, the only interesting cases are
the transitions that deal with internal or incoming method and constructor calls.
All other transitions do not modify the value of this within the local variable
lists.
Case Internal step

Subcase Rule Call
The local variable function for the new activation record maps this to o. More-
over, the second premise of the rule verifies that o indeed is on the heap.

Subcase Rule New
In Rule New also this is mapped to o. In the object creation case, however, the
object o is created and the new heap is extended by the new object.

Case External step

Subcase Rule CallI
The argumentation for the incoming method call is almost identical to the proof
for internal method calls. The first premise of the label check T-CallI verifies that
the callee object name o represents an object that is committed by the program.
Furthermore, the local variable function of the new activation record maps this
to o.
Subcase Rule NewI

Similar to the internal object creation, we can see in Rule NewI that the heap is
extended with a new object referenced by o which in turn serves as the value for
this in the local variable function.

Appendix B

Compositionality

The goal of this section is to prove the compositionality-Lemma 2.5.5 of Sec-
tion 2.5. This is structured as follows. We start with the discussion of some gen-
eral features of the language’s transition semantics. Afterwards we will provide
a merge definition that meets the requirements of the merge function definition
given in Lemma 2.5.5. This is followed by a few small proofs of some simple
yet useful features of the merge function in general. The compositionality-Lemma
states that the order regarding the application of the merge function on configura-
tions, on the one hand, and application of the transition rules, on the other hand,
does not play a role. Thus, the lemma consists of two directions: one direction
states that regarding the transition semantics the composition of two components
evolves to the same result as the two original components. The other direction
says that two constituents of one (closed) program evolve to the same result as
the original program. Correspondingly, the proof of Lemma 2.5.5 actually consists
of two parts. First, we will show certain features about the composition of two
components. Then, we show the features about the constituents of a closed pro-
gram. Both cases, however, consist of several smaller sub-proofs, but the schema
for both parts is the same. That is, regarding the composition we first prove the
features for single internal and single external steps. Then the compositionality
part follows from this by induction on the length of the trace. Similarly, regarding
the decomposition we show that a single internal step of a closed program corre-
sponds to internal or external single steps with regards to its constituents. Again,
the decompositionality direction follows by induction on the length of the trace.

We begin with three small lemmas about the independence of internal de-
ductions from certain changes regarding the stack, heap, global variables, or the
component code. More specifically, the first lemma states that a single internal
deduction step does only depend on the topmost but not on the trailing activation
records of the call stack.
Lemma B.0.1 (Stack tail does not influence internal steps): Assume two configurations

(h, v,CS ◦CSb1), (h, v,CS ◦CSb2) ∈ Conf .

181

182 APPENDIX B. COMPOSITIONALITY

If (h, v,CS ◦CSb1) (h′, v′, ĆS ◦CSb1) then also (h, v,CS ◦CSb2) (h′, v′, ĆS ◦CSb2).

Proof. By case analysis on the computation step. As for simple computation steps,
i.e., computation steps which do only modify the top most activation record, the
lemma follows immediately from the corresponding rules of the internal opera-
tional semantics, which are Ass, FUpd, BlkBeg, BlkEnd, Whli, and Condi.
The remaining internal rules, Call, New, and Ret, deserve a closer look, as they
also change the number of activation records within the call stack.

Case Rule Call
In case of an internal method call we can assume that

CS = (µ, x = e.m(e); mc)

and correspondingly that

ĆS = (vl,mbody(C,m)) ◦(µ, rcvx; mc) .

Now it is easy to see that the application of Rule Call is independent of the call
stack tail CSb1 and CSb2, respectively.

Case Rule New
Similar to internal method calls, regarding internal constructor calls we can as-
sume that

CS = (µ, x = new C(e); mc)

and correspondingly that

ĆS = (vl, cbody(C)) ◦(µ, rcvx; mc) .

Again, Rule New is formulated independently of the call stack tail CSb1 and CSb2,
respectively.

Case Rule Ret
As for an internal method or constructor return, we can define

CS = (µ1, return e) ◦(µ2, rcv x; mc)

and
ĆS = (µ′2,mc) .

Yet again, this definition makes the independence of Rule Ret regarding the call
stack tail apparent.

Similarly, extensions of the heap or of the global variable function do not
influence the outcome of internal computation steps. This is formalized in the
next lemma. For two functions f1 and f2 with dom(f1) ⊥ dom(f2) we use the
notion f1

af2 for the function that represents the disjunct union of f1 and f2.

183

Lemma B.0.2 (Heap and variable extension do not affect internal steps): If (h1, v1,CS)
(h′1, v

′
1,CS′) such that dom(h′1) ⊥ dom(h2) then also

(h1
ah2, v1

av2,CS) (h′1
ah2, v

′
1
av2,CS′) .

Proof. Applicability of the internal transition (h, v,CS) (h′, v′,CS′) ensures
that the deduction step does not realize a call to an external class or object and
that only evaluation of local variables defined in CS, of global variables of v, or
object names of h might be involved. Disjunction of h′1 and h2 is required in order
to prevent name clashes due to internal object creation. This, however, does not
represent a real restriction, since we consider the semantics modulo renaming
anyway, as we have remarked in 2.4.6 already.

Also extending the program by another component does not affect the outcome
of an internal step.
Lemma B.0.3 (Additional classes do not affect internal steps): Assume two compo-
nents p and p′ such that p E p′ is defined. If (h, v,CS) p (h′, v′,CS′) then also
(h, v,CS) pEp′ (h′, v′,CS′).

Proof. Trivial, as the reduction step does only refer to method code of p, if at all.
And the component merge does not modify method code of p.

Now its time to give a concrete definition of a merge function. This merge
function will form the basis of the compositionality proof.
Definition B.0.4 (Merge of configurations): Given two configurations

(h1, v1,CS1), (h2, v2,CS2) ∈ Conf

with ∆ ` (h1, v1,CS1) : Θ and Θ ` (h2, v2,CS2) : ∆. We assume that dom(h1) ⊥
dom(h2) as well as dom(v1) ⊥ dom(v2) – otherwise we assume a proper renaming of
objects or, respectively, variables. The result of the merge

(h, v,CS) = (h1, v1,CS1) E (h2, v2,CS2)

is defined by:

• h def= h1
ah2,

• v def= v1
av2 , and

• CS
def= CS1 ! CS2 , where ! denotes a commutative operation representing

the merge of the two call stacks which is inductively defined by the following
equations:

(ARi ◦ARib ◦CSb1) ! CSeb2
def= ARi ◦(ARib ◦CSb1) ! CSeb2 (B.1)

(ARi ◦CSeb1) ! (AReb2 ◦CSb2) def= ARi ◦CSeb1 ! (ARib2 ◦CSb2) (B.2)

ARi ! (AReb2 ◦CSb2) def= ARi ◦(ARib2 ◦CSb2) (B.3)

ARi ◦CSb1 ! ε
def= ARi ◦CSb1 (B.4)

184 APPENDIX B. COMPOSITIONALITY

Note that in ARib2 denotes the activation record that results from AReb2 by forgetting the
return type of the topmost rcv statement.

Remark B.0.5: The equations in Definition B.0.4 show that a merge of two call stacks is
only defined if exactly one call stack has an active or internally blocked activation record
on top and the other call stack is externally blocked.

The next lemma makes a statement about the merge of call stacks.

Lemma B.0.6 (Topmost activation record remains topmost): There exists a function f
such that for all defined merges of call stacks the following holds:

1. (ARi ◦CSb1) ! CSb2 = ARi ◦ f(CSb1,CSb2).

2. In particular, the activation record that is on top of the active call stack before the
merge also remains the topmost record of the resulting call stack after the merge.
Moreover, the form of the rest of the resulting call stack does not depend on the
topmost record but is determined only by the rest of the first stack frame and the
second stack frame.

Proof. Let the function f be defined by

f(CS1,CS2) def=


(AReb1 ◦CSb1) ! (ARib2 ◦CSb2) if CS1 = AReb1 ◦CSb1 and

CS2 = AReb2 ◦CSb2
CS1 ! CS2 else

where ARib2 represents the activation record which results from AReb2 by forgetting
the type annotation of the receive statement. Then f has the property stated in
the first statement. The second statement follows immediately from the definition
of the merge of two stack frames.

Now we want to apply the new lemmas in order to show that a simple internal
computation step of one configuration will not be influenced if we merge it with
another configuration. This is formalized in the following lemma.

Lemma B.0.7 (Merge does not influence simple deduction): Assume a configuration
(h1, v1,ARa ◦CSb) such that

(h1, v1,ARa ◦CSb) (h′1, v
′
1,

´ARa ◦CSb)

represents a simple deduction. Then, if for some other configuration (h2, v2,CSb2) the
merge (h1, v1,ARa ◦CSb) E (h2, v2,CSb2) is defined, we get

(h1, v1,ARa ◦CSb) E (h2, v2,CSb2) (h′1, v
′
1,

´ARa ◦CSb) E (h2, v2,CSb2).

Proof. Let us assume that

(h1, v1,ARa ◦CSb) (h′1, v
′
1,

´ARa ◦CSb).

185

We know from Lemma B.0.6 that ARa ◦CSb ! CSb2 = ARa ◦ f(CSb,CSb2). From
Lemma B.0.1 and Lemma B.0.2 we can deduce

(h1
ah2, v1

av2,ARa ◦ f(CSb,CSb2))

(h′1
ah2, v

′
1
av2, ´ARa ◦ f(CSb,CSb2)) = (h′1, v

′
1,

´ARa ◦CSb) E (h2, v2,CSb2).

Note that we didn’t index the transition arrow in the previous lemma, as the
lemma is independent of a certain program code. However, we certainly assume
that all transitions in the lemma are understood in the context of the same pro-
gram.

The next two lemmas will show one of the compositionality properties for single
steps of the operational semantics. More specifically, Lemma B.0.8 states that for
internal computation steps the order regarding merge operation application and
transition rule application does not matter. Afterwards Lemma B.0.9 will show
the same property for external computation steps.

Lemma B.0.8 (E and): For two configurations c1, c2 ∈ Conf and two component p1

and p2 such that c1 E c2 and p1 E p2 is defined, the following holds: If c1 p1 c
′
1 then

c1 E c2 p1Ep2 c
′
1 E c2.

Proof. For simple computation steps the property has been proven by Lemma B.0.7
already. It remains to show the property also for the other internal transition rules
given in Table 2.7. Let c1 = (h1, v1, (ARa ◦CSb1)) and c2 = (h2, v2,CSb2).

Case Rule Ret
Applicability of Rule Ret for c1 implies

c1 = (h1, v1, (µ, return e) ◦(µ′, rcv x; mc) ◦CSb) (h1, v
′
1, (µ

′′,mc) ◦CSb).

Moreover, applying Equation B.1 twice as well as rule Ret, Lemma B.0.2, and
Lemma B.0.1 yields

c1 E c2 = (h1
ah2, v1

av2, (µ, return e) ◦(µ′, rcv x; mc) ◦(CSb ! CSb2))
(h1

ah2, v
′
1
av2, (µ′′,mc) ◦(CSb ! CSb2)).

On the other hand Equation B.1 yields

(h1, v
′
1, (µ

′′,mc) ◦CSb) E c2 = (h1
ah2, v

′
1
av2, (µ′′,mc) ◦(CSb ! CSb2)).

Case Rule Call
Applicability of Rule Ret for c1 implies

c1 = (h1, v1, (µ, x = e.m(e); mc) ◦CSb1) (h1, v1,ARam ◦(µ, rcv x; mc) ◦CSb1),

186 APPENDIX B. COMPOSITIONALITY

where ARam represents the activation record that comprises the method body of
the called method m. Again, by applying Equation B.1, rule Call, Lemma B.0.2,
and Lemma B.0.1 we get

c1 E c2 = (h1
ah2, v1

av2, (µ, x = e.m(e); mc) ◦(CSb1 ! CSb2)
(h1

ah2, v1
av2,ARam ◦(µ, rcv x; mc) ◦(CSb1 ! CSb2).

On the other hand, applying Equation B.1 twice yields

(h1, v1,ARam ◦(µ, rcv x; mc) ◦CSb1) E c2 =
(h1

ah2, v1
av2,ARam ◦(µ, rcv x; mc) ◦(CSb1 ! CSb2).

Case Rule New
The proof is almost identical to the proof for method calls.

Lemma B.0.9 (E and a−→): Assume two components p1 and p2 as well as configurations
c1, c2 ∈ Conf such that p1 E p2 and c = c1 E c2 are defined. Further, assume ∆ ` c1 :
Θ a−→p1 ∆′ ` c′1 : Θ′ as well as Θ ` c2 : ∆ ā−→p2 Θ′ ` c′2 : ∆′. Then c1 E c2 p1Ep2
c′1 E c′2 as well as c1 E c2 p2Ep1 c

′
1 E c′2.

Proof. Case a = ν(Θ′).〈call o.m(v)〉!
In this case we know from rule CallO that

c1 = (h1, v1, (µ, x = e.m(e); mc) ◦CSb)

such that [[e]]v1,µh1
= o and [[e]]v1,µh1

= v. Moreover the rule yields

c′1 = (h1, v1, (µ, rcv x:T ; mc) ◦CSb)

On the other hand, from rule CallI and from the complementary label ā we can
deduce for c2 that

c2 = (h2, v2,CSeb2) and c′2 = (h2, v2,ARam ◦CSeb2).

It is [[e]]v1
av2,µ

h1ah2
= [[e]]v1,µh1

as well as [[e]]v1
av2,µ

h1ah2
= [[e]]v1,µh1

. Thus, Lemma B.0.6 and
Rule Call yield

c1 E c2 = (h1
ah2, v1

av2, (µ, x = e.m(e); mc) ◦ f(CSb,CSeb2)) p1Ep2
(h1

ah2, v1
av2,ARam ◦(µ, rcv x; mc) ◦ f(CSb,CSeb2)).

Finally, due to Equation B.0.4 and Lemma B.0.6 we get

c′1 E c′2 = (h1, v1, (µ, rcv x:T ; mc) ◦CSb) E (h2, v2,ARam ◦CSeb2)
= (h1

ah2, v1
av2,ARam ◦ f(CSeb2 , (µ, rcv x:T ; mc) ◦CSb))

= (h1
ah2, v1

av2,ARam ◦(µ, rcv x; mc) ◦ f(CSb,CSeb2)).

187

Case a = ν(Θ′).〈return(v)〉!
According to rule RetO it is

c1 = (h1, v1, (µ1, return e) ◦CSeb1) such that [[e]]v1,µ1
h1

= v

and c′1 = (h1, v1,CSeb1). Likewise we know from rule RetI that

c2 = (h2, v2, (µ2, rcv x:T ; mc) ◦CSb2) and c′2 = (h2, v
′
2, (µ

′
2,mc) ◦CSb2).

Now, due to Equation B.1, Equation B.0.4, Lemma B.0.6, and Lemma B.0.2 we
get

c1 E c2 = (h1
ah2, v1

av2, (µ1, return e) ◦(CSeb1 ! (µ2, rcv x:T ; mc) ◦CSb2)
= (h1

ah2, v1
av2, (µ1, return e) ◦(µ2, rcv x; mc) ◦ f(CSb2,CSeb1)

(h1
ah2, v1

av′2, (µ
′
2,mc) ◦ f(CSb2,CSeb1)

On the other hand, Lemma B.0.6 yields

c′1 E c′2 = (h1
ah2, v1

av′2,CSeb1 ! (µ′2,mc) ◦CSb2)
= (h1

ah2, v1
av′2, (µ

′
2,mc) ◦ f(CSb2,CSeb1)).

All other cases are similar or dual.

In the following we want to prove the other implication of the compositionality
lemma. That is, we want to show that a component’s sub-constituents come to the
same result as the original component. However, again we first start by introduc-
ing some auxiliary lemmas. In particular the next lemma states that regarding
an internal computation step one can prune the heap and the global variable
function of a configuration to a minimum without influencing the outcome of the
computation. More specifically, in most cases the heap can be even reduced to the
object that is referenced by the variable this of the topmost activation record, as
only field updates or field lookups of the corresponding object might be involved
in the computation step. An exception is a method invocation where we also have
to include the callee object into the minimal heap.
Lemma B.0.10 (Reduction of heap and variables): Consider an internal computation
step

(h, v, (µ,mc) ◦CSb) (h′, v′, ´CSb).

Let vs be the restriction of v on exactly the variables which occur in the expressions e that
have been evaluated or updated due to the above mentioned computation step. Further,
let hs = h ↓{µ(this),[[ec]]

v,µ
h } if the computation step is a method call and ec is the callee

expression, or hs = h ↓{µ(this)} otherwise. Then also

(hs, vs, (µ,mc) ◦CSb) (h′s, v
′
s,

´CSb),

such that h′s = h′ ↓dom(h′s)
and v′s = v′ ↓dom(vs).

188 APPENDIX B. COMPOSITIONALITY

Proof. Straightforward. The selection process regarding the necessary objects in
the heap ensures that for all possible internal transitions all objects names which
might be dereferenced, leading to a lookup in the heap, are included in the min-
imized heap. This ensures that the minimized configuration is enabled and since
the internal computations are deterministic (modulo new object names), the state-
ment then also follows from Lemma B.0.2. Note that the final heaps h′ and h′s
are equal on the complete domain of h′s which might include a new object name
due to a constructor call.

Lemma B.0.11 (Decomposition, single step): Let c, c′ ∈ Conf such that c p c
′ for

some component p. Moreover, assume name contexts ∆,Θ and components p1 and p2

with p1 E p2 = p, ∆ ` p1 : Θ, and Θ ` p2 : ∆ as well as configurations c1 and c2 with
c1 E c2 = c, ∆ ` c1 : Θ, and Θ ` c2 : ∆. Then one of the following properties hold:

1. There exists a communication label a such that ∆ ` c1 : Θ a−→p1 ∆′ ` c′1 : Θ′ and
Θ ` c2 : ∆ ā−→p2 Θ′ ` c′2 : ∆′ with c′1 E c′2 = c′ or

2. c1 p1 c
′
1 such that c′1 E c2 = c′ or c2 p2 c

′
2 such that c1 E c′2 = c′.

Proof. By case analysis of the transition from c to c′. We show the most interesting
cases.
Case simple transition

That is, let c = (h, v,ARa ◦CSb) (h′, v′, ´ARa ◦CSb). Then ARa is either part
of the call stack of c1 or of c2. Let us assume without the loss of generality
that c1 = (h1, v1,ARa ◦CSb1). It is v1 ⊂ v and since ∆ ` c1 : Θ we also know
that the topmost statement of ARa does not involve the evaluation of variables of
dom(v)\dom(v1). This fact, together with Lemma B.0.1 and Lemma B.0.10 yields
c1 (h′1, v

′
1,

´ARa ◦CSb1) such that dom(h′1) = dom(h′) ↓dom(h1) and dom(v′1) =
dom(v′) ↓dom(h1). This leads to (h′1, v

′
1,

´ARa ◦CSb1) E c2 = c′.

Case internal method call: ARa = (µ, e.m(e); mc)
That is,

c = (h, v, (µ, e.m(e); mc) ◦CSb) p (h, v,ARam ◦(µ, rcv x; mc) ◦CSb) = c′,

where ARam consists of the method body code of the method m. Let us assume that
the calling activation record is part of c1, i.e., c1 = (h1, v1, (µ, e.m(e); mc) ◦CSb1).
Since c1 is a well-typed configuration, it is [[e]]v1,µh1

= [[e]]v,µh and we assume that
the expression is evaluated to some object name o.

Subcase o ∈ dom(h1)
The precondition of the lemma regarding c1 and p1 as well as Lemma B.0.10 and
Lemma B.0.1 yield that also

c1 = (h1, v1, (µ, e.m(e); mc) ◦CSb1) p1 (h1, v1,ARam ◦(µ, rcv x; mc) ◦CSb1)
= c′1,

189

Assume c2 = (h2, v2,CSb2). Then from c1 E c2 = c and Lemma B.0.1 it follows
that CSb = f(CSb1,CSb2). And we get

c′1 E c2 = (h1, v1,ARam ◦(µ, rcv x; mc) ◦CSb1) E (h1, v2,CSb2)
= (h1

ah2, v1
av2,ARam ◦(µ, rcv x; mc) ◦ f(CSb1,CSb2)

= c1

Subcase o ∈ dom(h2)

∆ ` c1 : Θ = ∆ ` (h1, v1, (µ, e.m(e); mc) ◦CSb1) : Θ a−→p1

∆ ` (h1, v1, (µ, rcv x:T ; mc) ◦CSb1) : Θ,Θ′ = ∆ ` c′1 : Θ,Θ′,

where a = ν(Θ′).〈call o.m(v)〉!. On the other hand, the stack of c2 is externally
blocked. Moreover, p and p2 share the same class definition of the class of o such
that

Θ ` c2 : ∆ = Θ ` (h2, v2,CSeb2) : ∆ ā−→p2

Θ,Θ′ ` (h2, v2,ARam ◦CSeb2) : ∆ = Θ,Θ′ ` c′2 : ∆.

According to the definition of the stack merge it is

((µ, rcv x:T ; mc) ◦CSb1) ! (ARam ◦CSeb2) = ARam ◦(µ, rcv x; mc) ◦(CSb1 ! CSeb2)

which proves the statement.

Case internal return: ARa = (µ, return e;)
That is,

c = (h, v, (µ, return e) ◦(µ′, rcv x; mc) ◦CSb) p (h, v′, (µ′′,mc) ◦CSb) = c′,

Let us again assume that ARa is part of the call stack of c1. As for the second
activation record there exist two possibilities; either it is also part of c1 or in the
call stack of c2.
Subcase receiving activation record is in c2

Since c1 has an active activation record on top and since c1 E c2 is defined, the
topmost activation record of c2 must be externally blocked. Moreover, the merge
of to call stacks does not change the order of the activation records. Thus, the
second activation record of c is the topmost activation record of c2 but annotated
with the return type. As a consequence for both components we get the following
transitions:

∆ ` c1 : Θ = ∆ ` (h1, v1, (µ, return e) ◦CSeb1) : Θ a−→p1

∆ ` (h1, v1,CSeb1) : Θ,Θ′ = ∆ ` c′1 : Θ,Θ′

as well as

Θ ` c2 : ∆ = Θ ` (h2, v2, (µ′, rcv x:T ; mc) ◦CSb2) : ∆ ā−→p2

Θ,Θ′ ` (h2, v
′
2, (µ

′′,mc) ◦CSb2) : ∆ = Θ,Θ′ ` c′2 : ∆,

190 APPENDIX B. COMPOSITIONALITY

where a = ν(Θ′).〈return(v)〉!. From c1 E c2 = c we can deduce that CSb =
f(CSb2,CSeb1). Thus,

CSeb1 ! (µ′′,mc) ◦CSb2 = (µ′′,mc) ◦ f(CSeb2 ,CSb2) = (µ′′,mc) ◦CSb,

which leads to c′1 E c′2 = c′. Other cases are similar or dual.

Finally, we can prove Compositionality-Lemma 2.5.5:

Proof. The proof follows directly by induction on the length of the transition se-
quence by applying Lemma B.0.8 and Lemma B.0.9, respectively, for the composi-
tion direction of the proof and Lemma B.0.11 for the decomposition direction.

Appendix C

Code generation

C.1 Preprocessing

In this section, we want to show that preprocessing a specification results in a
new specification such that the two specifications are behavioral equivalent re-
garding the interface communication. For this, as described in Section 4.4, we will
provide a binary relation for which we will show that it represents a weak bisim-
ulation. Furthermore, we will show that the pair of initial configurations of both
specifications is included in the bisimulation relation. Recall, the preprocessing
is basically done by means of two functions, prepin and prepout (cf. Table 4.2
and 4.1 in Section 4.1), which implement the preprocessing of passive and active
statements, respectively. Hence the preprocessing functions are defined for static
code, only. In order to define the bisimulation relation, we need to lift the prepro-
cessing definition to dynamic code, namely to the code of activation records mc
(cf. Section 3.4).
Definition C.1.1 (Preprocessed activation record code): We extend range and domain of
the preprocessing functions prepin and prepout , originally defined in Section 4.1, to

prepout : mc → mc and prepin : mc × snxt → snxt ×mc.

We additionally define

prepout(s
act ; !ret ; mcpsv1) def= prepout(s

act); !ret ; prepin(mcpsv2)
with (,mcpsv2) = prepin(mcpsv1 , success)

as well as

prepin(spsv1 ; x=?ret ; mcact, snxt)
def= (s′nxt , s

psv
2 ; [i]x=?ret ; check(i, e′);

prepout(mcact))

with (s′nxt , s
psv
2) = prepin(spsv1 ,next = i),

where !ret and ?ret abbreviate !return(e) and ?return(T x′).where(e), respectively.

191

192 APPENDIX C. CODE GENERATION

Based on the definition above, we can define the bisimulation relation Rb.
The idea is to relate each configuration of the original specification with the
corresponding specification of the preprocessed specification. Thus, as for the
heap and the global variables, we relate configurations which are almost identical
but where the configurations of the preprocessed specification only provides the
additional global variable next which stores an arbitrary expectation identifier i.
Regarding the activation record code of configuration pairs of Rb, we basically
relate code to its preprocessed variant according to the preprocessing functions
of Definition C.1.1. An exception is code mcact whose preprocessed variant starts
with an next update statement snxt . For instance, the preprocessing of an outgoing
call statement results in a corresponing call statement but which is preceded by
an update statement. In these case we have to relate the original mcact code not
only to the preprocessing result but additionally to all the code that result from
reducing snxt in terms of internal steps.

Definition C.1.2 (Bisimulation relation Rb): We define a binary relation Rb ⊂ Conf ×
Conf over configurations of the specification language, such that for all heap functions
h, global variable functions v, local variable function lists µ, and activation record code
mcact1 or, respectively, mcpsv1 exactly the following pairs are included:

1.
((h, v, (µ,mcpsv1)), (h, v+[next], (µ,mcpsv2)))) ∈ Rb,

if (,mcpsv2) = prepin(mcpsv1 , success).

2.
((h, v, (µ,mcact1)), (h, v+[next], (µ,mcact2)))) ∈ Rb,

if mcact2 =


s′nxt ; mcact if prepout(mcact1) = snxt ; mcact with

(h, v+[next], (µ, snxt)) ∗ (h, v+[next], (µ, s′nxt))
prepout(mcact1) else

.

where v+[next] represents the variable function that extends v with next such that next
stores an arbitrary expectation identifier. In particular, v must not include a variable with
this name, already. And correspondingly, mcact1 and mcpsv1 must not include references
to a variable next .

Note, according to the definition, Rb does not define a function. Instead, for
each configuration c1 with (c1, c2) ∈ Rb for some configuration c2, there exist
several other configurations c3 6= c2 such that also (c1, c3) ∈ Rb. For, on the one
hand, the right hand side configuration may vary in the value of the global variable
next . On the other hand, as mentioned above already, if c1’s activation record
code is preprocessed resulting into code that starts with an update statement
snxt , then c1 is not only related to configurations that provide the corresponding
preprocessed code but also to its successors where snxt has been reduced already.

Finally, we have to prove that the relation Rb is indeed a weak bisimulation
relation. This is stated in the following lemma.

C.1. PREPROCESSING 193

Lemma C.1.3: The binary relation Rb given in Definition C.1.2 represents a weak
bisimulation in the sense of Definition 4.4.4.

Proof. Assume two configurations c1, c2 ∈ Conf with (c1, c2) ∈ Rb. The definition
of Rb implies that there exist a heap function h, a global variable function v, a
local variable function list µ, and activation record code mc such that c1 is of the
form

c1 = (h, v, (µ,mc))

and c2 is of the form
c2 = (h, v+[next], (µ,mc′)),

where mc′ corresponds to mcpsv2 or mcact2 of Definition C.1.2. We prove the lemma
by means of a case analysis regarding the construction of mc of the configuration
c1. In particular, for each case we will show both simulation directions at the same
time. That is, in each case, we will prove that

• on the one hand, for each possible transition steps of c1 to c′1

c1 c′1 implies c2
∗ c′2

and
∆ ` c1 : Θ a−→ ∆′ ` c′1 : Θ′ implies ∆ ` c2 : Θ a=⇒ ∆′ ` c′2 : Θ′

• and, on the other hand, for each possible transition steps of c2 to c′2

c2 c′2 implies c1
∗ c′1

and
∆ ` c2 : Θ a−→ ∆′ ` c′2 : Θ′ implies ∆ ` c1 : Θ a=⇒ ∆′ ` c′1 : Θ′,

such that in all cases (c′1, c
′
2) ∈ Rb. Within the proof we will refer to the firstly

mentioned direction (i.e., c2 simulates c1) by using the right arrow ⇒ and corre-
spondingly to the lastly mentioned direction (i.e., c1 simulates c2) by using the left
arrow ⇐. We show some exemplary cases only as the remaining cases are similar.
Note that according to the operational semantics each starting configuration only
allows for either an internal or an external transition step.

Case mc = if(e) {sact1 } else {sact2 }; sact
In this case we have

mc′ = if(e) {prepout(s
act
1)} else {prepout(s

act
2)}; prepout(s

act)

according to Definition C.1.1 and to the sequential and the conditional case of
Table 4.1.
Direction ⇒

We have to show that c1 c′1 implies c2 ∗ c′2, as c1 can only be reduced
by an internal transition. Specifically, the rules Cond1 and, respectively, Cond2

194 APPENDIX C. CODE GENERATION

regarding the internal steps of the specification language’s operational semantics
yield

c1 c′1 with

c′1 = (h, v, (µ, sact1 ; sact)) or c′1 = (h, v, (µ, sact2 ; sact)),

respectively, depending on the evaluation of [[e]]µ,vh . Correspondingly, we get

c2 c′2 with

c′2 = (h, v+[next], (µ, prepout(s
act
1); prepout(s

act))) or

c′2 = (h, v+[next], (µ, prepout(s
act
2); prepout(s

act))).

According to the definition of prepout for the sequential composition, it is

(c′1, c
′
2) ∈ Rb.

Direction ⇐
Also c2 can only be reduced by means of an internal transition, so we have to
show that c2 c′2 implies c1 ∗ c′1. Again, we can only apply rule Cond1 or
Cond2, if [[e]]µ,v+[next]

h evaluates to true or to false, respectively. Since e must not
contain any references to next , it is

[[e]]µ,v+[next]

h = [[e]]µ,vh .

Hence, c1 c′1 where c′1 and c′2 are of the same form as in the above proof
regarding the other direction. Therefore, again, it is (c′1, c

′
2) ∈ Rb.

Case mc = x=e; sact

As for c2, it is mc′ = x= e; prepout(sact). Thus, the first statement of c1’s code
and of c2’s code is the same assignment and so it is easy to see that

c1 c′1 implies that c2 c′2,

but also conversely,
c2 c′2 implies that c1 c′1,

such that, regarding both proof directions

(c′1, c
′
2) ∈ Rb.

Case mc = e!m(e) { T x; spsv1 ; x =?return(T x′).where(e′) }; sact
Then regarding the activation record code of c2, the definition of Rb allows for
the following possibilities. Either it is

mc′ = s′nxt ; e!m(e) { T x; spsv2 ; [i]x =?return(T x′).where(e′) };
check(i, e′); prepout(s

act),

C.1. PREPROCESSING 195

or, similarly, but without the preceding update statement, it is

mc′ = e!m(e) { T x; spsv2 ; [i]x =?return(T x′).where(e′) };
check(i, e′); prepout(s

act),

with (∗) (snxt , s
psv
2) = prepin(spsv1 ,next = i) and

(h, v+[next], (µ, snxt)) ∗ (h, v+[next], (µ, s′nxt)).

Direction ⇒
The configuration c1 can only be reduced by an outgoing method call. Therefore,
for appropriate name contexts ∆,∆′,Θ and an outgoing method call label a it is

∆ ` c1 : Θ a−→ ∆′ ` c′1 : Θ,

where the configuration c′1 is of the form

c′1 = (h, v, (µ′, spsv1 ; x =?return(T x′).where(e′) }; sact))

according to the rule CallO of the external semantics. As for c2, if need be, we
first process the update statement s′nxt by internal transitions, so we get

c2
∗ c′2 = (h, v+[next], e!m(e) { T x; spsv2 ; [i]x =?return(T x′).where(e′) };

check(i, e′); prepout(s
act)),

where the global variable function of c′2 has only changed the value of next . Fur-
thermore, the external semantics yields

∆ ` c′2 : Θ a−→ ∆′ ` c′′2 : Θ,

such that

c′′2 = (h, v′+[next], s
psv
2 ; [i]x=?return(T x′).where(e′); check(i, e′); prepout(s

act)).

Due to the equation (∗) and according to Definition C.1.1 it is

(c′1, c
′′
2) ∈ Rb.

Direction ⇐
If mc′ starts with an update statement s′nxt then

c2 c′2

such that (c1, c′2) ∈ Rb. Alternatively, as shown above, the first statement of mc′

can be an outgoing call statement. In this case, c2 equals the configuration c′2 of
the other proof direction that we have discussed above already. Due to the fact,
that expressions in mc′ must not include references to the extra variable next , all
outgoing call labels a, involved in a transition from c′2 to c′′2 , can also be applied
to c1 such that, again, ∆ ` c1 : Θ a−→ ∆′ ` c′1 : Θ such that(c′1, c

′′
2) ∈ Rb.

196 APPENDIX C. CODE GENERATION

Case mc = if(e) {spsv1 } else {spsv2 }; spsv
According to the definition of prepin in Table 4.2, it is

mc′ = if(e) {s̃p1} else {s̃p2}; s̃p ,

where (snxt , s̃
p) = prepin(spsv , success) and, for each i ∈ {1, 2},

(, s̃pi) = prepin(spsvi , snxt).

Direction ⇒
According to the operational semantics, only the internal rules Cond1 or Cond2

can be applied, in order to reduce the configuration c1: if [[e]]µ,vh evaluates to true
or to false, then c1 c′1 such that

c′1 = (h, v, (µ, spsv1 ; spsv)) or, resp., c′1 = (h, v, (µ, spsv2 ; spsv)).

Correspondingly, we get c2 c′2 with

c′2 = (h, v+[next], (µ, s̃
p
1 ; s̃p)) or, resp., c′2 = (h, v+[next], (µ, s̃

p
2 ; s̃p)).

The definition of prepin regarding sequential compositions yields in both cases

(c′1, c
′
2) ∈ Rb.

Direction ⇐
Both configurations, c1 and c2, can only be reduced by one of the internal rules
Cond1 or Cond2. Moreover, recall again that e must not depend on the value of
next . Therefore, the proof that we have given for the other direction also represents
a proof for this direction.

Case mc = (C x)?(T x).where(e){Tl xl; sact ; !return(e′)}; spsv
Again, according to the definition of prepin , the activation record code of c2 is

mc′ = [i] (Cx)?(Tx).where(e){Tlxl; check(i, e); prepout(s
act); snxt ; !return(e′)}; s̃p ,

with (snxt , s̃
p) = prepin(spsv , success).

Direction ⇒
The configuration c1 allows for external transition steps only. In particular, it only
allows transitions which are labeled with an incoming call label a such that

∆ ` c1 : Θ a−→ ∆′ ` c′1 : Θ,

with
c′1 = (h, v, (µ′, sact ; !return(e′); spsv))

The configuration c2 allows for the same transition step. Specifically, it is

∆ ` c2 : Θ a−→ ∆′ ` c′2 : Θ,

C.1. PREPROCESSING 197

where

c′2 = (h, v+[next], (µ′, check(i, e); prepout(s
act); snxt ; !return(e′)}; s̃p))

and, since we assume check(i, e) to equal ε, additionally

c′2
∗ c′′2 = (h, v+[next], (µ′, prepout(s

act); snxt ; !return(e′)}; s̃p)).

According to the definition of prepin and the definition of s̃p , we get

(c1, c′′2) ∈ Rb.

Direction ⇐
Also for c2 the operational semantics permits only incoming method call steps a
such that

∆ ` c2 : Θ a−→ ∆′ ` c′2 : Θ,

where

c′2 = (h, v+[next], (µ′, check(i, e); prepout(s
act); snxt ; !return(e′)}; s̃p)).

Again, equating check(i, e) with ε we can further say

c′2 = (h, v+[next], (µ′, prepout(s
act); snxt ; !return(e′)}; s̃p)).

Finally, regarding the same name contexts and the same communication label, we
get

∆ ` c1 : Θ a−→ ∆′ ` c′1 : Θ,

with
c′1 = (h, v, (µ′, sact ; !return(e′); spsv)).

And again according to the definition of prepin and the definition of s̃p , we can
conclude

(c1, c′′2) ∈ Rb.

Lemma C.1.4: Assume a specification s with ∆ ` s : Θ. Additionally, consider a spec-
ification s′ that results from s by adding the global next variable and by preprocessing
its main statement. Then

(cinit(s), cinit(s′)) ∈ Rb.

Proof. Consider

s = cutdecl T x; mokdecl {stmt ; return},

to be a valid specification. Further, assume a specification s′ such that

s′ = cutdecl T x; T next ; mokdecl {stmt ′; return},

where stmt ′ results from either applying prepin or prepout to stmt , depending on
the control context of the statement. Then the claim immediately follows from
the Definition C.1.2 of Rb.

198 APPENDIX C. CODE GENERATION

C.2 Anticipation

In order to prove that the first preprocessing step indeed represents an anticipa-
tion mechanism of the expected interface communication, we first introduce some
auxiliary definitions.
Definition C.2.1 (Anticipation-valid code): The code mc of an activation record is said
to be anticipation-valid if there exist update-statements `snxt and ´snxt such that the judg-
ment `snxt `as mc : ´snxt is deducible according to the inference rules given in Table C.1.

Lemma C.2.2: Static anticipation-validity implies proper anticipation:

1. Assume `snxt `as mcpsv : ´snxt . Then for all heaps h, all global variable functions
v, and all local variable function lists µ the following holds. If

(h, v, (µ, `snxt)) ∗ (h, v, (µ,next = i))

and
(h, v, (µ,mcpsv)) ∗ (h, v, (µ, [j] mcpsv ′).

then i = j.

2. Assume `snxt `as mcact : ´snxt . Then for all heaps h, all global variable functions
v, and all local variable function lists µ the following holds. If

(h, v, (µ, `snxt)) ∗ (h, v, (µ,next = i))

and
(h, v, (µ,mcact))

γ!−→ (h, v, (µ, [j] mcpsv ′).

then i = j.

Proof. Both, the passive and the active case will be proven by induction on the
construction of the code. Let us first assume that

`snxt `as mcpsv : ´snxt and (h, v, (µ, `snxt)) ∗ (h, v, (µ,next = i))

for some heap h, global variable function v, and local variable function list µ. We
do a case analysis regarding the code:

Case mcpsv = [i] (C x)?m(T x).where(e′){Tl xl; sact ; snxt ; !return(e)}
According to Rule AS-CallIn it is `snxt = next == i. Thus trivially the propo-
sition holds.
Case mcpsv = ε

Nothing to show, as ε does not evolve to an incoming call or incoming return
statement.
Case mcpsv = spsv1 ; spsv2

The proof for this case follows from the induction hypothesis and the premises
`snxt `as s

psv
1 : snxt and snxt `as s

psv
2 : ´snxt of Rule AS-Seqp. However, we have to

distinguish two sub-cases.

C.2. ANTICIPATION 199

[AS-CallIn]
`as s

act : snxt = ´snxt

next = i `as [i] (C x)?m(T x).where(e′){Tl xl; sact ; snxt ; !return(e)} : ´snxt

[AS-Seqp]
`snxt `as s

psv
1 : snxt snxt `as s

psv
2 : ´snxt

`snxt `as s
psv
1 ; spsv2 : ´snxt

[AS-Whilep]
snxt `as s

psv : `snxt `snxt = if(e) {snxt} else { ´snxt}
`snxt `as while(e) {spsv} : ´snxt

[AS-Ifp]
snxt1 `as s

psv
1 : ´snxt snxt2 `as s

psv
2 : ´snxt `snxt = if(e) {snxt1} else {snxt2}

`snxt `as if(e) {spsv 1} else {spsv 2} : ´snxt

[AS-Case]
next = i `as [i] stmt in ; spsv : ´snxt

next = i `as case [i] stmt in ; spsv : ´snxt

[AS-Skip]
`snxt = ´snxt

`snxt `as ε : ´snxt

[AS-spsv -RetIn]
`snxt `as s

psv : next = i `as mcact : ´snxt

`snxt `as s
psv ; [i]x =?return(T x′).where(e); mcact : ´snxt

[AS-CallOut]
snxt `as s

psv : next = i

`snxt `as snxt ; e!m(e){Tl xl; spsv ; [i]x =?return(T x′).where(e)} : next = i

[AS-Seqa]
`snxt `as s

act
1 : snxt snxt `as s

act
2 : ´snxt

`snxt `as s
act
1 ; sact2 : ´snxt

[AS-Whilea]
`snxt `as s

act : ´snxt

`snxt `as while(e) {sact} : ´snxt

[AS-Ifa]
`snxt `as s

act
1 : ´snxt `snxt `as s

act
2 : ´snxt

`snxt `as if(e) {sact1 } else {sact2 } : ´snxt

[AS-sact -RetOut]
`snxt `as s

act : snxt `as mcpsv : ´snxt

`snxt `as s
act ; snxt ; !return(e); mcpsv : ´snxt

[AS-VUpd] `snxt `as x = e : ´snxt

Table C.1: Anticipation-valid code (static)

200 APPENDIX C. CODE GENERATION

Subcase spsv1 = ε
Then `snxt = snxt and (h, v, (µ, spsv1 ; spsv2)) (h, v, (µ, spsv2)), so the proposition
follows from the hypothesis regarding spsv2 .

Subcase spsv1 6= ε
In this case the proposition immediately follows from the induction hypothesis
regarding spsv1 .

Case mcpsv = while(e) {spsv}
According to Rule AS-Whilep it is `snxt = if(e) {snxt} else { ´snxt} with snxt

such that snxt `as s
psv : `snxt . Assume that (h, v, (µ, snxt)) ∗ (h, v, (µ,next == i).

The hypothesis yields (h, v, (µ, spsv)) ∗ (h, v, (µ, [i] mcpsv ′)). Assume h, v, and
µ such that [[e]]v,µh = true. Then

(h, v, (µ, `snxt)) (h, v, (µ, snxt)) ∗ (h, v, (µ,next == i)).

as well as

(h, v, (µ, while(e) {spsv})) (h, v, (µ, spsv ; while(e){spsv})) ∗ (h, v, (µ, [i] mcpsv ′′)).

On the other hand, now consider the case that [[e]]v,µh = false. Then we get

(h, v, (µ, `snxt)) (h, v, (µ, snxt)) ∗ (h, v, (µ,next == i)).

The remaining cases are similar.
Now let us assume that

`snxt `as mcact : ´snxt and (h, v, (µ, `snxt)) ∗ (h, v, (µ,next = i))

for some heap h, global variable function v, and local variable function list µ. We
do a case analysis regarding the code:

Case mcact = snxt ; e!m(e){Tl xl; spsv ; [i]x =?return(T x′).where(e)}
Due to the premise of Rule AS-CallOut the proposition follows from the passive
case of this lemma.
Case mcact = sact1 ; sact2

Like in the passive case we have to distinguish two sub-cases: if sact1 is the empty
statement or a variable update then the proposition follows from the hypothesis
of the second statement. Otherwise it follows from the hypothesis of the first
statement.

Again the remaining cases are straightforward.

While the previous deduction system checks that some code anticipates the
incoming communication expectations in the context of any configuration state,
the next definition in contrast captures the anticipation feature within the context
of a given state.

C.2. ANTICIPATION 201

[AD-spsv -RetI]
h, v, µ `ad s

psv : next = i `as mcact : snxt

h, v, µ `ad s
psv ; [i]x =?return(T x′).where(e); mcact : snxt

[AD-RetI]
[[next]]v,µh = i `as mcact : snxt

h, v, µ `ad [i]x =?return(T x′).where(e); mcact : snxt

[AD-spsv]
`as s

psv : snxt [[next]]v,µh = i (h, v, (µ, spsv)) ∗ [i] stmt in

h, v, µ `ad s
psv : snxt

[AD-sact -RetOut]
h, v, µ `ad s

act : snxt `as mcpsv : s′nxt

h, v, µ `ad s
act ; snxt ; !return(e); mcpsv : s′nxt

[AD-RetOut]
h, v, µ `ad mcpsv : snxt

h, v, µ `ad !return(e); mcpsv : snxt

[AD-stmtout]
h, v, µ `ad s

psv : next = i `as s
act : snxt

h, v, µ `ad e!m(e){Tl xl; spsv ; [i]x =?return(T x′).where(e)}; sact : snxt

[AD-snxt]
(h, v, (µ, s′nxt))

∗ (h, v′, (µ, ε)) h, v′, µ `ad s
act : snxt

h, v, µ `ad s
′
nxt ; s

act : snxt

[AD-sact]
sact 6= stmtout ; s

act
2 `as s

act : snxt

h, v, µ `ad s
act : snxt

Table C.2: Anticipation-valid configurations (dynamic)

Definition C.2.3 (Anticipation-valid configuration): Assume a configuration

(h, v, (µ,mc)) ∈ Conf

of the specification language. Then we say that the configuration is anticipation-valid,
written

h, v, µ `ad mc : anticip,

if the judgment h, v, µ `ad mc : snxt can be derived for some update statement snxt by
means of the deduction rules given in Table C.2 and Table C.1.

Lemma C.2.4 (Anticipation preprocessing establishes anticipation-validity): Assume a
statement stmt such that ∆ ` stmt : Θ. Furthermore, for a given update statement ´snxt

let stmt ′ = prep(stmt , ´snxt). Then for some appropriate update statement `snxt also
`snxt `as stmt ′ : ´snxt holds.

Proof. More specifically, we will prove in the following that, if stmt is an in-
stance of spsv then it is `snxt `as stmt ′ : ´snxt with `snxt defined by (`snxt , stmt ′) =
prepin(stmt , ´snxt). Moreover, if stmt is an instance of sact we will show that

202 APPENDIX C. CODE GENERATION

`as stmt ′ : holds. By structural induction. We will show the interesting sub-
cases for both cases, i.e., passive and active statement.

Case stmt = spsv

In this case let us define (`snxt , s
psv ′) = prepin(spsv , ´snxt).

Subcase stmt = (C x)?m(T x).where(e){Tl xl; sact ; !return(e)}
According to the definition of prepin it is

`snxt = next = i and
stmt ′ = [i] (C x)?m(T x.where(e)){Tl xl; sact ′; ´snxt ; !return(e)} with
sact ′ = prepout(s

act).

The induction hypothesis implies `as s
act ′ : . Thus, both premises of Rule AS-CallIn

are satisfied which proves the proposition.

Subcase stmt = if(e) {spsv1 } else {spsv2 }
According to the definition of prepin it is

`snxt = if(e) {snxt1} else {snxt2} with
(snxt1, s

psv
1
′) = prepin(spsv1 , ´snxt) and

(snxt2, s
psv
2
′) = prepin(spsv2 , ´snxt).

The induction hypothesis is

snxt1 `as s
psv
1
′ : ´snxt and snxt2 `as s

psv
2
′ : ´snxt .

Therefore, all three premises of Rule AS-Ifp are satisfied.

Subcase stmt = while(e) {spsvb }
According to the definition of prepin it is

`snxt = if(e) {snxt1} else { ´snxt} and
stmt ′ = while(e) {spsv2 } with

(snxt1, s
psv
1) = prepin(spsvb , ´snxt) and

(snxt2, s
psv
2) = prepin(spsv1 , if(e) {snxt1} else { ´snxt}).

The induction hypothesis is

snxt2 `as s
psv
2 : if(e) {snxt1} else { ´snxt}.

Rule AS-Whilep proves the claim.

Case stmt = sact

Subcase stmt = e!m(e){Tl xl; spsv ; x =?return(T x′).where(e)}
According to the definition of prepout it is

stmt ′ = snxt ; e!m(e){Tl xl; spsv ′; [i]x =?return(T x′).where(e) with
(snxt , s

psv ′) = prepin(spsv ,next = i).

C.2. ANTICIPATION 203

Due to the induction hypothesis we know that snxt `as s
psv ′ : next = i. This

makes Rule AS-CallOut applicable which yields the proposition.

Subcase stmt = while(e) {sact}
According to the definition of prepout it is

stmt ′ = while(e) {prepin(sact)},

so that the induction hypothesis directly implies the proposition.

The next lemma justifies the term anticipation-valid configuration.
Lemma C.2.5 (Dynamic anticipation-validity implies proper anticipation): Assume a
configuration (h, v, (µ,mc)) ∈ Conf , such that h, v, µ `ad mc : snxt . Then the follow-
ing holds:

• If ∆ ` (h, v, (µ,mcact) ◦CS) : Θ
γ!−→ ∆ ` (h, v, (µ, [i] mcpsv) ◦CS) : Θ′ then

[[next]]v,µh = i.

• If (h, v, (µ,mcpsv) ◦CS) ∗ (h, v, (µ, [i] mcpsv ′) ◦CS) then [[next]]v,µh = i.

Proof. Let us first assume that h, v, µ `ad mcpsv : snxt and

(h, v, (µ,mcpsv) ◦CS) ∗ (h, v, (µ, [i] mcpsv ′) ◦CS).

If mcpsv starts with an instance of spsv then the proposition immediately follows
from the premises of Rule AD-spsv . If mcpsv starts with an incoming return term
then it follows immediately from the premise of Rule AD-RetI.

Now let us assume that

∆ ` (h, v, (µ,mcact) ◦CS) : Θ
γ!−→ ∆ ` (h, v, (µ, [i] mcpsv) ◦CS) : Θ′.

If mcact starts with an outgoing call or an outgoing return term, then the propo-
sition follows from the passive case of this lemma. In all other cases it follows
from the induction hypothesis.

The last property that we have to show for proving Lemma 4.1.3 is that the dy-
namic anticipation-validity is an invariant regarding transitions of the operational
semantics.
Lemma C.2.6 (Invariance of anticipation-validity): Assume two specification language
configurations, c and c′, with

c = (h, v, (µ,mc)) such that h, v, µ `ad mc : snxt

and furthermore

c′ = (h′, v′, (µ′,mc′)) with c c′ or ∆ ` c : Θ a−→ ∆′ ` c′ : Θ′.

The it is also true that
h′, v′, µ′ `ad mc′ : snxt .

204 APPENDIX C. CODE GENERATION

Proof. Case analysis regarding the construction of mc of configuration c.

Case mc = spsv ; [i]?return(T x).where(e); mcact

We present three exemplary subcases, as the remaining cases are similar.

Subcase spsv = if(e) {spsv1 } else {spsv2 }; s
psv
3

The assumed anticipation-validity regarding c is due to Rule AD-spsv -RetI,
which in particular implies

h, v, µ `ad if(e) {spsv1 } else {spsv2 }; s
psv
3 : next = i. (C.1)

According to the operational semantics, regarding c′ we can conclude that h′ = h,
v′ = v, and µ′ = µ. Moreover, depending on the evaluation of e, the conditional
statement reduces either to spsv1 or spsv2 . Without the loss of generality, let us
assume that e evaluates to true. Thus,

c′ = (h, v, (µ, spsv1 ; spsv3 ; [i]?return(T x).where(e); mcact)).

In order to prove h, v, µ `ad mc′ : snxt , we have to show that

h, v, µ `ad s
psv
1 ; spsv3 : next = i.

Referring to Rule AD-spsv , we can see from Equation C.1 that

`as if(e) {spsv1 } else {spsv2 }; s
psv
3 : next = i

which in turn implies that also

`as s
psv
1 ; spsv3 : next = i

due to the Rules AS-Ifp and AS-Seqp. Furthermore the premise

(h, v, (µ, if(e) {spsv1 } else {spsv2 }; s
psv
3)) ∗ (h, v, (µ, [i] stmt in ; spsv4))

of Rule AD-spsv implies that also

(h, v, (µ, spsv1 ; spsv3)) ∗ (h, v, (µ, [i] stmt in ; spsv4))

is true. Therefore, we get

h, v, µ `ad s
psv
1 ; spsv3 : next = i

.
Subcase spsv = [j] (C x)?m(T x).where(e){ Tl xl; sact ; !return(e′) }; spsv3

Similar to the previous subcase, the premise of Rule AD-spsv -RetI yields

h, v, µ `ad [j] (C x)?m(T x).where(e){ Tl xl; sact ; !return(e′) }; spsv3 : next = i,

which, according to the Rules AD-spsv , AS-Seqp, and AS-CallIn, implies that

[[next]]v,µh = j and sact = sact1 ; s′nxt with s′nxt `as s
psv
3 : next = i.

C.2. ANTICIPATION 205

The configuration c may only evolve to c′ in terms of an incoming method call
which leads to

c′ = (h, v, (vl·µ, sact1 ; s′nxt ; !return(e′); spsv3 ; [i]?return(T x).where(e); mcact)).

Thus, it remains to show that

h, v, vl·µ `ad s
act
1 ; s′nxt ; !return(e′); spsv3 : next = i.

This, however, is true according to Rule AD-sact -RetOut.

Subcase spsv = ε
In this subcase, the code mc of c starts with the outgoing call term !return(e), so
the assumption about the anticipation-validity regarding c is due to Rule Ad-RetI.
Since its premise `as mcact : snxt also implies anticipation-validity of mcact re-
garding any heap and variable functions and since mc reduces to mcact through
an incoming return label, we can immediately see that

h, v, µ `ad mcact : snxt .

Case mc = spsv

As for configurations c whose code consist of a passive statement only, the corre-
sponding proofs can be easily derived from the previous case. Basically, we only
have to omit the trailing code [i]x =?return(T x).where(e); mcact.

Case mc = sact ; !return(e); mcpsv

Also regarding active code, we will show the most interesting subcases.

Subcase sact = x=e; sact1

Therefore, c internally reduces to

c′ = (h, v′, (µ′, sact1 ; !return(e); mcpsv)).

According to Rule AD-sact -RetOut it is sact1 = sact2 ; s′nxt such that

sact = x=e; sact2 ; s′nxt with s′nxt `as mcpsv : snxt .

We now have to distinguish the case, where x is the next variable, from the case
where x represents a different variable.

Subsubcase x 6= next
As the first statement of sact is not an outgoing call, but also not an instance of
snxt , we know from Rule AD-sact that

`as x=e; sact2 ; s′nxt : s′nxt .

Consequently, it is also true that

`as s
act
2 ; s′nxt : s′nxt .

206 APPENDIX C. CODE GENERATION

This, in turn, leads to the fact that, according to Rule AD-snxt -RetOut, also

h, v′, µ′ `ad s
act
2 ; s′nxt ; !return(e); mcpsv

is true.
Subsubcase x = next

In this case the local variable list is not changed by the internal transition, i.e.,
µ′ = µ. Moreover, we have to consult Rule AD-snxt instead of Rule AD-sact . And
this rule’s two premises, applied to our assignment, leads to

(h, v, (µ, x = e)) (h, v′, (µ, ε)),

such that h, v′, µ `ad s
act
2 ; s′nxt : s′nxt . Therefore, in particular the first but also

the second premise of Rule AD-sact -RetOut are true regarding the configuration
c′.
Subcase sact = e!m(e) {T x; spsv ; [i]x =?return(T x).where(e′) }; sact1

Rule AD-stmtout yields

h, v, µ `ad s
psv : next = i and `as s

act
1 : snxt .

Thus, the transition from c to c′ in terms of an outgoing method call label leads
to

c′ = (h, v, (µ, spsv ; [i]x =?return(T x).where(e′); sact1 ; !return(e); mcpsv)).

According to Rule Ad-spsv -RetI, it remains to show that

`as s
act
1 ; !return(e); mcpsv : snxt .

Since we assume that c is anticipation-valid and due to Rule AD-sact -RetOut
it is sact1 = sact2 ; s′nxt such that

s′nxt `as mcpsv : snxt .

Therefore, according to Rule AS-sact -RetOut, it is indeed

`as s
act
2 ; s′nxt ; !return(e); mcpsv : snxt .

Subcase sact = ε
Therefore, it is

h, v, µ `ad!return(e); mcpsv : snxt

and additionally
h, v, µ `ad mcpsv : snxt .

Since c evolves to
c′ = (h, v, (µ,mcpsv)),

this implies h, v, µ `ad mcpsv : snxt .

Case mc = sact

Much as the proof for passive statement represents a simplified case of passive call
stack code, also the proof for active statements are very similar to the previous
proof case.

C.3. CORRECTNESS OF THE GENERATED CODE 207

C.3 Correctness of the generated code

In this section we want to prove that a preprocessed specification and the cor-
respondingly generated Japl code are testing bisimilar. This will also represent
a proof for Lemma 3.6.2 as it stated for each specification the general existence
of a program of the programming language which is “trace-equal” modulo input-
enabledness. To prove testing bisimilarity, we will first define a binary relation
Rt over specification language and programming language configurations. After-
wards we will prove that Rt is a testing bisimulation. Note in this section we have
to deal with constructs of the specification language and, at the same time, with
constructs of the programming language sharing the same name due to our lan-
guage extension approach. Therefore, in the following, we will annotate constructs
of the specification language with sp (e.g. stmtsl) and those of the programming
language with pl (e.g. stmtpl). Yet we may omit the annotation in cases where
the affiliation of a construct is clear.

The relation Rt is defined over configurations. However, the definition will
be based on similar relations over statements and, respectively, over call stacks.
Thus, before we will give the actual definition for Rt we need to define the relations
regarding statements and call stacks.
Definition C.3.1: The relation∼st⊆ stmtsl×stmtpl is recursively defined by the equa-
tions shown in Table C.3.

spsv ∼st ε
if(e) {sact1 } else {sact2 } ∼st if(e) {stmt1} else {stmt2}

with sact1 ∼st stmt1 and sact2 ∼st stmt2

while(e) {sact} ∼st while(e) {stmt} with sact ∼st stmt
sact1 ; sact2 ∼st stmt1; stmt2 with sact1 ∼st stmt1 and sact2 ∼st stmt2

x = e ∼st x = e
e!m(e) { spsv ; [i]x =?return(T x).where(e) } ∼st x = e.m(e); check(i, e)
new!C(e){ spsv ; [i]x =?return(C x).where(e) } ∼st x = new C(e); check(i, e)

Table C.3: Simulation relation for statements

Note, the relation ∼st relates all passive (specification language) statements
to the empty (programming language) statement. Similarly, active method and
constructor call statements of the specification language are related to the cor-
responding method or constructor call of the programming language, ignoring
the passive statement spsv that forms the body of the original call expectation
statement.

Additionally, note that regarding the relation ∼st , the expectation bodies of
method and constructor calls must not provide variable declarations. Likewise, the
block statement is not part of the relation. Therefore, a specification statement
(as well as the corresponding program statement) of this relation never contains
local variable declarations apart from the formal parameters of incoming calls.

208 APPENDIX C. CODE GENERATION

Lemma C.3.2: Assume a preprocessed specification statement stmtsl and, correspond-
ingly, a programming language statement stmtpl that results from generating code from
stmtsl by means of codein or, respectively, codeout . Then it is stmtsl ∼st stmtpl .

Proof. By structural induction. Straightforward. For instance, all passive state-
ments are completely transcribed to method body code by codein such that no
main body statement is generated at all. Similarly, all other cases immediately
follow from the definition of codeout , given in Tale 4.5, and the definition of ∼st ,
given in Table C.3.

The next definition specifies a relation over activation records of the specifica-
tion language and the corresponding call stack of the programming language. The
definition is based on the previously defined relation over statements. However,
it additionally has to consider the languages’ different handling concerning the
local variables. For, regarding the specification language, an incoming call results
in an extension of the local variable list of the call stack’s topmost (and only)
activation record by a local variable functions vl capturing the parameters of an
incoming call. Within the programming language, in contrast, an incoming call
causes the creation of a new activation record with its own variable function list.
Moreover, while we assume that the specification does not introduce any local
variables (apart from the parameter of a incoming method or constructor call),
meaning that the local variable functions only consists of the formal parameters,
the corresponding variable function of the programming language, in contrast,
additionally provides a variable retVal .
Definition C.3.3: The relation ∼CS⊆ ARsl × CSpl consists of pairs of specification
activation records and programming language calls stacks. It is (µsl ,mcsl) ∼CS CSpl in
exactly the following cases

1. (v⊥, sact) ∼CS (v⊥, stmt ; return) if sact ∼st stmt ,

2. (v·µ, sact ; !return(e); mcpsv) ∼CS (v̌, stmt ; retVal = e; return(retVal)) ◦CSeb

if sact ∼st stmt and (µ,mcpsv) ∼CS CSeb,

3. (v⊥, spsv) ∼CS (v⊥, ε), and

4. (v⊥·v·µ, spsv ; [i]x =?return(T x).where(e); mcact) ∼CS

(v̌, rcv T :x; check(i, e); mc) ◦CS′
if

(v·µ,mcact) ∼CS (v̌,mc) ◦CS′.

With v̌ we denote the variable function that results from extending v with an additional
variable retVal.

Before we can define the actual testing bisimulation relation Rt we have to
deal with another crucial difference between a specification and a program. That
is, a program provides method code which is to be copied into the program config-
uration at runtime, whenever a corresponding method invocation occurs. Hence,
relating configurations of the specification language with configurations of the

C.3. CORRECTNESS OF THE GENERATED CODE 209

programming language is not sufficient but the static code, given in terms of
method body code, has to meet certain requirements, as well. One solution would
be to extend the codomain of the relation Rt such that it does not only com-
prise the configurations Conf pl of the programming language but additionally its
programs p. Thus, the relation Rt would be a subset of Conf sl × (p × Conf pl).
However, static code, as the name implies, does not change during the program
execution. To express this, we choose a slightly different approach, that is, we
annotate Rpt with a specific program p, and for each p the relation Rpt is a subset
of Conf sl ×Conf pl . Based on this notation, we will now discuss the requirements
of Rpt that are related to the static code provided by p. This has the following
three aspects.

• The program p on its own has to provide certain features which are indepen-
dent of any configurations. In particular, if p does not have these features
then the corresponding relation Rpt is the empty set.

• It has been said, that static code may be copied into the program configura-
tion in order to execute it. Executability entails the requirement that certain
expressions within the code must be evaluable. This, in turn, imposes cor-
responding requirements on the configurations of Rpt regarding the variable
assignments given in terms of the configuration’s variable functions . Thus,
on the one hand, the variable functions of a configuration of Rpt have to
provide values of a proper type such that the expressions can be evaluated.
On the other hand, the code of a configuration of Rpt must not implement
assignments to variables which result in a wrongly typed variable.

• Finally, the method code within p must be able to simulate all the incoming
call expectations that are implemented in specification configuration of Rpt .

In the following, we will discuss these three aspects in more detail and provide
corresponding definitions. Afterwards, we will use these definitions to formulate
the definition of the relation Rpt .

First, let us deal with the general requirements regarding the static code itself.
For instance, a straightforward requirement is that all methods must provide well-
formed code, only. More specifically, as we have discussed in Chapter 4, the body
of a method must provide a structure that allows the simulation of, not only one
but potentially several, incoming call statements. To this end, we assume that the
code structure follows our anticipation strategy, meaning that each method defi-
nition of p implements a case switch regarding the communication identifier and
the corresponding where-clause. This requirement is formulated by the following
definition.

Definition C.3.4 (Anticipation-based code structure): Assume a well-typed program p.
We say that p has an anticipation-based code structure, if for each method m of each

210 APPENDIX C. CODE GENERATION

class C of p the definition is of the following form

T m(T x){ T retVal ;
n∏
k=1

(if((next == ik) && (ek)) { stmtk; retVal = e′k } else) {fail ; }

return(retVal) }

and, correspondingly, for each class C the definition of its constructor is of the following
form

C C(T x){ if(internal) {ε} else
n∏
k=1

(if((next == ik) && (ek)) { stmtk } else) {fail ; }

return }.

We use the
∏

symbol to denote an iteration of nested conditional statements.
Each condition expression tests for the next expected communication identifier
and the corresponding where-clause. If the method invocation does not match any
implemented call expectations regarding this method, then fail is called.

As for the relation Rpt we will presume that p has an anticipation-based code
structure. Otherwise, the relation is considered to be the empty set. Note that
this requirement can be checked independently of any configurations. If p has the
desired structure, however, it imposes additional requirements on the configura-
tions of Rpt . On the one hand, it is necessary that for each method the expressions
e1 to en of Definition C.3.4 can be evaluated. Since we assume that the program
does not use local variables or fields (cf. code generation algorithm), this repre-
sents a requirement on the global variable function v of the configurations. In
particular, v must provide defined values for all global variables that occur in e1

to en. Specifically, the types of the provided values must be as assumed by the
expressions, as otherwise their evaluation is not defined and the program can get
stuck. Moreover, the code of a specification configuration of Rpt must not change
the type of global variables by performing a wrongly typed assignment.
Definition C.3.5 (Well-typed variable function and specification configuration): Let ∆
be a global and Γ a local type mapping. Further, assume a variable function list µ = v·µ′.
We say, µ is well-typed regarding Γ and ∆, written

Γ; ∆ `var v·µ′ : ok,

if, and only if,

Γ = Γ1,Γ2 such that dom(Γ1) = dom(v),
for all x ∈ dom(v). ∆(v(x)) = Γ1(x), and
Γ2; ∆ `var µ

′ : ok.

C.3. CORRECTNESS OF THE GENERATED CODE 211

[T-sact -RetO]
Γ; ∆ ` stmt : okact Γ; ∆ ` mcpsv : okpsv

Γ; ∆ ` stmt ; !return(e); mcpsv : okpsv

[T-spsv -RetI]
Γ; ∆ ` stmt : okpsv Γ; ∆ ` mcact : okact

Γ; ∆ ` stmt ; ?return(T).where(e); mcact : okpsv

Table C.4: Well-typedness of dynamic specification code mcsl

Moreover, for a configuration csl = (h, v, (µ,mc)) of the specification language, we say
that csl is well-typed regarding Γ and ∆, written

Γ; ∆ `var csl : ok,

if
Γ; ∆ `var v·µ : ok and if the judgment Γ; ∆ ` mc : okγ

is derivable regarding the inference rules given in Table 3.2 and Table C.4.
While we have just seen that a configuration has to provide certain features,

such that the method bodies of p can be executed properly, we still have to formu-
late the requirement that, contrary, p indeed provides method code that matches
the expectations specified within the configuration specification. In particular, the
code provided by p has to match the expectations in such a way that for each
incoming call statement regarding method m within the configuration specifica-
tion, we can find corresponding code in the method definition of m within p. This
requirement is defined as follows.
Definition C.3.6 (Expectation supporting code): Let mcsl be activation record code re-
garding the specification language which is annotated with expectation ids. A program p
with anticipation-based code structure supports all expectations of mcsl , written

pBmcsl ,

if

• for each (
[i] (C x)?m(T x).where(e) {stmtsl ; return(er) }

)
∈ mcsl ,

there exist a corresponding conditional branch in the method definition of m in p
such that(

if((next == i) && (e)) { stmtpl ; retVal = er } else stmt ′pl
)
∈ p.C.m

with stmtsl ∼st stmtpl .

• for each (
[i] new(C x)?C(T x).where(e) {stmtsl ; return}

)
∈ mcsl ,

212 APPENDIX C. CODE GENERATION

there exist a corresponding conditional branch in the constructor definition of C in
p such that(

if((next == i) && (e)) { stmtpl} else stmt ′pl
)
∈ p.C.m

with stmtsl ∼st stmtpl .

Moreover, each expectation identifier that occurs within a conditional branch of a method
or a constructor definition is unique.

Finally, we can define the relation Rpt .

Definition C.3.7 (Testing bisimulation relationRpt): Assume a program pwith an anticipation-
based code structure. Further, assume a type mapping ∆ such that for all methodsm of all
classes C in p and for all Boolean expression e1 to en of m according to Definition C.3.4
it is

Γg,ΓC.m; ∆ ` ek : Bool,

where ΓC.m represents the local type mapping due to the formal parameters and local
variables of C.m according to Rule T-MDEF in Table 2.2 and Γg is the local type map-
ping that results from p’s global variables according to Rule T-PROG’.

We define a relation Rbt ⊆ Conf sl ×Conf pl over configurations of the specification
language and of the programming language as follows. For all heap functions h and all
global variable functions v the relation Rpt exactly consists of the following pairs: It is

((h, v,CSsl), (h, v,CSpl)) ∈ Rt

if, and only if,

1. regarding the call stacks it is

CSsl = (µ,mcsl) and (µ,mcsl) ∼CS CSpl ,

2. the program p supports all expectations of mcsl , i.e.,

pBmcsl ,

3. the specification configuration is well-typed regarding the local type mapping Γg
and the global type mapping ∆ of p, i.e.,

Γg; ∆ `var (h, v, (µ,mcsl) : ok.

and

4. the specification configuration is anticipation-valid, i.e.,

h, v, µ `ad mcsl : anticip

C.3. CORRECTNESS OF THE GENERATED CODE 213

Note, the heap and the global variables of related configurations are identical.
Moreover, the call stack of the specification’s configuration consists of a single
activation record, only, and it must be related to the call stack of the program’s
configuration in terms of the relation ∼CS .

Note further that, according to the operational semantics of the specification
language, the call stack of a specification’s configuration always consists of only
one activation record. Hence, the corresponding equation, CSsl = ARsl in Defini-
tion C.3.7 does not represent a real restriction.

Now, the following lemma will show that the relation Rpt is a testing bisimula-
tion as defined in 4.4.6. To understand the structure of the lemma’s proof, recall
that the code mc of a configuration’s activation record is always either active,
mcact, or passive, mcpsv, code. In particular, it is always of the following form:

mcact ::= sact | sact ; !return(e); mcpsv

mcpsv ::= spsv | spsv ; x =?return(T x).where(e); mcact

That is, the code of an activation record either consists of single statement (sact

or spsv , respectively) or it consists of a statement followed by a return term and
some more activation record code mcpsv or mcact.

The proof of the lemma consists of a case analysis regarding the construction
of the specification configurations of the relation Rpt .

Lemma C.3.8: The binary relation Rpt , defined in C.3.7, indeed represents a testing
bisimulation as defined in 4.4.6.

Proof. Assume a program p with anticipation-based code structure. Further, as-
sume a specification language configuration csl and a programming language spec-
ification cpl , such that

(csl , cpl) ∈ Rpt . (Ass)

The definition of Rpt implies that there exist a heap function h, a global variable
function v, as well as an activation record of the specification language ARsl =
(µ,mcsl) and a call stack of the programming language CSpl such that

csl = (h, v,ARsl) and cpl = (h, v,CSpl) with ARsl ∼CS CSpl .

Similar to the proof of Lemma C.1.3, we make a case analysis regarding the con-
struction of the code mcsl of ARsl . For each case we will prove that cpl simulates
csl (⇒) and additionally that csl simulates cpl up to test faults (⇐). Specifically,
we have to show for each case that the two configurations allow for similar com-
putations steps where the resulting configurations, c′sl and c′pl , again meet the four
requirements of Definition C.3.7. Two of the four requirements, however, can be
shown generally without analyzing distinct cases. For, we have already shown in
Lemma C.2.6 that anticipation validity is invariant concerning computation steps

214 APPENDIX C. CODE GENERATION

of the operational semantics. Moreover, it is obvious that, if p supports all expec-
tations that are specified in csl then no computation step adds new expectations,
so that p also supports all expectations specified in the new configuration c′sl .

As for the following case analysis, we first consider the cases, where ARsl

contains active code mcact. Afterwards, we consider all cases, where the code of
ARsl is passive, hence, an instance of mcpsv.

Case ARsl = (vl·µ′, sact ; !return(e); mcpsv) with sact 6= ε
Thus, the configurations csl is of the following form

csl = (h, v, (vl·µ′, sact ; !return(e); mcpsv)).

In particular, it is µ = vl·µ′. So, according to Definition C.3.7 as well as Defini-
tion C.3.3, we know from (Ass) that

cpl = (h, v, (v̌l, stmt ; retVal = e; return(retVal)) ◦CSeb),

such that
sact ∼st stmt and (µ′,mcpsv) ∼CS CSeb.

We make a subcase analysis regarding the first active statement of sact .

Subcase sact = x=e; sact1

Then sact ∼st stmt implies that

stmt = x=e; stmt1 with (∗) sact1 ∼st stmt1.

Direction ⇒
According to the operational semantics of the specification language, csl may
reduce to c′sl only in terms of an internal computation step such that

csl c′sl = (h, v′, (vl·µ′, sact1 ; !return(e); mcpsv))

Note that the local variables did not change as (Ass) implies that x is not a local
variable or parameter. Thus, similarly, we have

cpl c′pl = (h, v′, (v̌l, stmt1; retVal = e; return(retVal)) ◦CSeb).

So due to (Ass) and (∗) it is

(vl·µ′, sact1 ; !return(e); mcpsv) ∼CS (v̌l, stmt1; retVal = e; return(retVal)) ◦CSeb).

Again, the assumption (Ass) and Rule T-Seq of Table 2.2 imply that

Γg; ∆ `var (h, v′, (vl·µ′, sact1 ; !return(e); mcpsv)) : ok.

Thus, according to Definition C.3.7 we get

(c′sl , c
′
pl) ∈ Rt.

C.3. CORRECTNESS OF THE GENERATED CODE 215

Direction ⇐
The variable x must not be the extra variable retVal . Furthermore, cpl can only
deterministically reduce to the above mentioned c′pl . Hence, this proof direction
results in the same configuration pair

(c′sl , c
′
pl) ∈ Rt.

Subcase sact = ec!m(e){spsv ; [i]x =?return(T x′).where(e′)}; sact1

In particular due to Definition C.3.1, the assumption (Ass) implies

cpl = (h, v, (v̌l, ec.m(e); stmt1; retVal = e; return(retVal)) ◦CSeb).

Direction ⇒
Configuration csl reduces to c′sl due to an outgoing method call. Hence,

∆ ` csl : Θ a−→ ∆ ` c′sl : Θ′,

with

a = ν(Θ′).〈call o.m(v)〉! such that o = [[ec]]
v,µ
h and v = [[e]]v,µh .

and

c′sl = (h, v, (v⊥·µ, spsv ; [i]x =?return(Tx′).where(e′); sact1 ; !return(e); mcpsv)).

In the following, let us refer to the code of c′sl by mc′sl . Note that the new local
variable function is the completely undefined variable function v⊥, since the code
of csl is free of local variable declarations.

As for the programming language configuration cpl , the topmost statement of
the topmost activation record is the outgoing call ec.m(e) which likewise leads to
a transition labeled with the same communication label a, such that

∆ ` cpl : Θ a−→ ∆ ` c′pl : Θ′,

with

c′pl = (h, v, (v̌l, rcv x:T ; stmt1; retVal = e; return(retVal)) ◦CSeb).

In the following, let us refer to the code of c′pl by mc′pl . According to (Ass) and
Definition C.3.1, it is

(v⊥·µ, mc′sl) ∼st ((v̌l, rcv x:T ; stmt1; retVal = e; return(retVal)) ◦CSeb).

Furthermore, Rule T-CallOut of Table 3.2 and Rule T-spsv -RetI of Table C.4
imply that

Γg; ∆ `var (h, v, (v⊥·µ, mc′sl)) : ok.

Hence, it is
(c′sl , c

′
pl) ∈ Rt.

216 APPENDIX C. CODE GENERATION

Direction ⇐
Similar to the previous subcase, the configuration cpl allows at most the same
labeled transition to the configuration c′pl that was introduced in the above proof
regarding the other implication direction. This results in the same configuration
pair such that, again,

(c′sl , c
′
pl) ∈ Rt.

The other subcases are similar.
Case ARsl = (vl·µ′, !return(e); mcpsv)

Referring to Definition C.3.3, we can derive from (Ass), that

csl = (h, v, (vl·µ′, !return(e); mcpsv))

and, on the other hand, that

cpl = (h, v, (v̌l, retVal = e; return(retVal)) ◦CSeb)

or
cpl = (h, v, (v̌l, return(retVal)) ◦CSeb),

where we additionally know in the latter case that v̌l(retVal) = [[e]]v,µh . Moreover,
we know that

(µ′,mcpsv) ∼CS CSeb.

Direction ⇒
The only transition that may originate from csl is the one that is labeled with an
outgoing return label a such that

a = ν(Θ′).〈return(v)〉! with v = [[e]]v,µh .

More specifically, due to Rule RetO of Table 3.3 we get

∆ ` csl : Θ a−→ ∆ ` c′sl : Θ′ with c′sl = (h, v, (µ′,mcpsv)).

It is easy to see that processing the programming language configuration cpl
leads to the same outgoing communication step – with an intermediate inter-
nal computation step, if the case may be. In particular, in both cases, it is
v̌l(retVal) = [[e]]v,vl·µ

′

h right before the outgoing return is processed. Therefore,
it is

∆ ` cpl : Θ a=⇒ ∆ ` c′pl : Θ′ with c′pl = (h, v,CSeb).

The assumption (Ass) immediately yields that

(µ′,mcpsv) ∼CS CSeb.

Well-typedness of c′sl results from Rule T-sact -RetOut such that

Γg; ∆ `var c
′
sl : ok.

C.3. CORRECTNESS OF THE GENERATED CODE 217

So, all in all we can infer that

(c′sl , c
′
pl) ∈ Rt.

Direction ⇐
Again, cpl deterministically evolves to the configuration c′pl of the previous proof
direction.

Case ARsl = (vl, sact)
The proof of this case is almost identical to the previous two proof cases. Specif-
ically, we only have to skip the proof obligation that the trailing call stack CSeb

relates to the corresponding specification code, as no trailing call stack exists in
this case.

Case ARsl = (µ, spsv ; [i]x =?return(T x′).where(e′); mcact)
Due to Definition C.3.3, it is µ = v⊥·vl·µ′ so that

csl = (h, v, (v⊥·vl·µ′, spsv ; [i]x =?return(T x′).where(e′); mcact).

Moreover the same definition leads to

cpl = (h, v, (v̌l, rcv x:T ; check(i, e′); mc) ◦CSeb) with

(vl,mcact) ∼CS (v̌l, mc) ◦CSeb.

We consider some subcases regarding the structure of spsv . However, this time
we will not consider both implication directions for each subcase but only the
simulation direction (⇒). We will prove the simulation-up-to-faults direction (⇐)
for all subcases at the end.

Subcase spsv = if (e) {spsv1 } else {spsv2 }; s
psv
3

Without loss of generality we can assume that [[e]]v,µh = true and thus

csl c′sl with c′sl = (h, v, (µ, spsv1 ; spsv3 ; [i]x =?return(Tx′).where(e′); mcact)).

However, again due to Definition C.3.3 it is

(µ, spsv1 ; spsv3 ; [i]x =?return(T x′).where(e′); mcact) ∼CS CSpl .

Due to Rule T-sact -RetOut of Table C.4 and due to Rule T-Cond and Rule T-
Seq of Table 3.2 we know that

Γg; ∆ `var (µ, spsv1 ; spsv3 ; [i]x =?return(T x′).where(e′); mcact) : ok.

Thus, we get
(c′sl , cpl) ∈ Rt.

218 APPENDIX C. CODE GENERATION

Subcase spsv = [j] (C x)?m(T x).where(e′){ sact ; return(er) }; spsv3

In this case csl may only evolve due to an appropriate incoming method call label.
That is,

∆ ` csl : Θ a−→ ∆′ ` c′sl : Θ,

with

c′sl = (h, v, (v′l·µ, sact ; !return(er) ; spsv3 ; [i]x =?return(Tx′).where(e′); mcact))

as well as

a = ν(Θ′).〈call o.m(v)〉? such that ∆,∆′,Θ ` o, v : C, T and [[e′]]v,v
′
l·µ

h .

Let us refer to the code of c′sl as mc′sl . The assumption h, v, µ `ad mcsl : anticip
implies that

(∗) [[next]]v,µh = j

due to Lemma C.2.6. As for the configuration cpl , the facts that p provides an
anticipation-based code structure and, in particular, that p B mcsl , and finally
that the program is generally input enabled, lead to

∆ ` cpl : Θ a−→p ∆′ ` c′pl : Θ,

with

c′pl = (h, v, (v̌′l, stmt ; return(retVal)) ◦(v̌l, rcv x:T ; mc) ◦CSeb).

such that, due to (∗), it is c′pl
∗ c′′pl with

c′′pl = (h, v, (v̌′l, stmt1; retVal = er; return(retVal)) ◦(v̌l, rcv x:T ; mc) ◦CSeb)

and with
sact ∼st stmt1.

Let us refer to the code of the topmost activation record of c′′pl as mc′′pl . Then it
is

(v′l·µ,mc′sl) ∼st (v̌′l,mc′′pl) ◦CSeb.

Due to Rule T-spsv -RetI and Rule T-CallIn it is

Γg; ∆ `var c
′
sl : ok

and finally we get
(c′sl , c

′′
pl) ∈ Rt.

C.3. CORRECTNESS OF THE GENERATED CODE 219

Direction ⇐
As mentioned above, the call stack CSpl of the program configuration cpl is ex-
ternally blocked. Thus, it may only evolve due to an incoming call or due to an
incoming return. That is, we can assume that

∆ ` cpl : Θ a−→p ∆′ ` c′pl : Θ.

And regarding the communication label a we have to differentiate two subcases.

Subcase a = ν(∆n).〈call o.m(v)〉?
Due to the anticipation-based code structure of p, the configuration c′pl is of the
following form:

c′pl = (h, v, (v̌l, stmt ; return(retVal)) ◦CSpl),

where stmt implements a case switch regarding expectation ids in form of a nesting
of conditional statements as described in Definition C.3.4. Assume that

(∗) v(next) = j.

Subsubcase if ((next == j)&&(ej)) {stmtj ; retVal = e′j} else {stmt ′} ∈ stmt
Due to fact that p supports all expectations of the code of csl , i.e.,

pB spsv ; [i]x =?return(T x′).where(e′); mcact,

we can infer that j 6= i. Moreover, (Ass) implies that

h, v, µ `ad mcsl : anticip

so Lemma C.2.6 and (∗) yield that

csl
∗ c′sl with

c′sl = (h, v, (µ, [j] stmt in ; spsv1 ;

[i]x =?return(T x′).where(e′); mcact)).

Again, since p supports all expectations of csl , it is indeed

stmt in = (C x)?m(T x).where(ej){ sact ; !return(e′j) } .

If [[ej]]
v,µl·µ
h = false then ∆ ` c′sl : ∆ 6 a−→. But in this case also the corresponding

conditional branch of m within p is evaluated to false such that the method reports
a failure.

So let us assume that [[ej]]
v,µl·µ
h = true. Then we get

∆ ` c′sl : ∆ a−→ ∆′ ` c′′sl : Θ

with

c′′sl = (h, v, (vl·µ, sact ; !return(ej); s
psv
1 ; ?return(T x′).where(e′); mcact)).

220 APPENDIX C. CODE GENERATION

Let us refer to the activation record of c′′sl as AR′′sl . On the other hand, the program
configuration c′pl reduces to

c′pl
∗ c′′pl = (h, v, (v̌l, stmtj ; retVal = e′j ; return(retVal)) ◦CSpl),

where, yet again due to the expectation support, it is

(∗∗) sact ∼st stmtj .

Let us refer to the call stack of c′′pl as CS′′pl , then we get from (Ass) and from (∗∗)
that

AR′′sl ∼CS CS′′pl .

Subsubcase if ((next == j)&&(ej)) {stmtj ; retVal = e′j} else {stmt ′} 6∈ stmt
That is, the method m does not provide a conditional branch regarding the com-
munication identifier j. According to the structure of the method, this results in a
failure report. Thus, we have to show that the specification configuration cannot
realize an incoming call regarding a. Indeed, since h, v, µ `ad mcsl : anticip, we
know from Lemma C.2.6 and from (∗) that

∆ ` csl : Θ 6 a−→ .

Subcase a = ν(∆n).〈return(v)〉?
According to the operational semantics and due to the form of cpl it is

∆,∆n ` v:T

so that
∆ ` cpl : Θ a−→ ∆,∆n ` c′pl : Θ

with c′pl = (h, v′, (v̌l, check(i, e′); mc) ◦CSeb). Since we assume that check(i, e′)
tests whether next = i and e′ evaluates to true, we can differentiate two subsub-
cases.

Subsubcase [[next == i]]v,v̌lh ∧ [[e′]]v,v̌lh = true
In this case we can assume that

c′pl
∗ c′′pl = (h, v′, (v̌l, mc) ◦CSeb),

but also we know from h, v, µ `ad mcsl : anticip that spsv = ε and thus

∆ ` csl : Θ a−→ ∆,∆′ ` c′sl : Θ

with
c′sl = (h, v′, (vl·µ′,mcact)).

C.3. CORRECTNESS OF THE GENERATED CODE 221

Finally, both,
(vl·µ′,mcact) ∼CS (v̌l, mc) ◦CSeb

as well as
h, v′, vl·µ′ `var mcact : ok

immediately follow from (Ass).

Subsubcase [[next == i]]v,v̌lh ∧ [[e′]]v,v̌lh = false
In this case, we assume that check(i, e′) reports a failure. The specification con-
figuration, however, does not accept such an incoming return label a, hence,

∆ ` csl : Θ 6 a−→ .

Case ARsl = (vl, spsv)
Similar to the sact case, this spsv case, again, represents a simplified version of
the previous case, as we can replay its proofs while omitting the proof obligations
regarding the trailing call stack CSeb and, respectively, mcact.

In order to finally prove the correctness of the code generation algorithm, we
have to show that the initial configurations of a specification s and the initial
configuration of the correspondingly generated test program p represent a pair of
the testing bisimulation relation Rpt .
Lemma C.3.9 (Correctness of the test code generation): Assume a well-typed specifi-
cation s. Moreover, let s′ = prep(s) be the specification that results from preprocessing
s as defined in Definition 4.1.4 and let p be the correspondingly generated program ac-
cording to the algorithm described in Section 4.3. If the main statement of s′ is an active
statement then

(cinit(s′), cinit(p)) ∈ Rpt .

Otherwise it is
(cinit(s′), cinit(p)) ∈ Rpt .

In particular, it is Rpt 6= ∅.

Proof. Assume a well-typed configuration

s = cutdecl T x; mokdecl {stmt}.

Let s′ = prep(s). Then, according to Definition 4.1.4 we have

s = cutdecl T x; T ′ x′; T next ; mokdecl {stmt ′},

where stmt ′ results

1. from enriching stmt with anticipation code by means of the code processing
functions prepin and prepout and

222 APPENDIX C. CODE GENERATION

2. from “globalizing” all local variables within stmt , meaning that each variable
declaration and formal parameter within stmt has a global counterpart in
x′ such that stmt ′ is free of local variable declarations (apart from formal
parameters). Moreover, all occurrences of local variables and parameters
within stmt are replaced by the corresponding global counterpart.

It is easy to see that well-typedness of s implies well-typedness of s′, hence, let us
assume that ∆ ` s′ : Θ. Further let us assume that p with

p = impdecl ; T x; T ′ x′; T next ; cldef ; {stmtpl ; return}

is the test program generated from s′ as described in Section 4.3. According to the
code generation algorithm, the class definitions impldecl are generated by means
of the code generation functions codein and codeout . From, the definitions of these
functions, given in Table 4.5 and Table 4.6 as well as the auxiliary notation in
Table 4.4 it immediately follows that p provides an anticipation-based structure.
Moreover, the recursively descending application of codein and codeout ensures
that p supports all expectations of stmt ′. It is

cinit(s′) = (h⊥, v, (v⊥, stmt ′)),

where v maps each global variable of s′ to its initial value. Well-typedness of s′

implies that
Γg; ∆ `var (h⊥, v, (v⊥, stmt ′)),

where Γg represents the local type mapping regarding the global variables (cf.
Rule T-Spec in Table 3.2). According to Definition C.3.7, it remains to show
that the call stacks of the initial configurations of s and p are in relation regarding
∼CS .

Case stmt′ is an active statement
In this case, consider

cinit(p) = (h⊥, v, (v⊥, stmtpl ; return));

Since stmtpl results from applying codeout to stmt ′ we know from Lemma C.3.2
that

stmt ′ ∼st stmtpl hence (v⊥, stmt ′) ∼CS (v⊥, stmtpl).

Case stmt′ is a passive statement
In this case, consider

cinit(p) = (h⊥, v, (v⊥, ε));

Since stmt ′ is an instance of spsv , Definition C.3.3 yields

(v⊥, stmt ′) ∼CS (v⊥, ε).

	III Proofs
	Appendices
	A Subject reduction
	B Compositionality
	C Code generation
	C.1 Preprocessing
	C.2 Anticipation
	C.3 Correctness of the generated code

