
Testing object Interactions
Grüner, A.

Citation
Grüner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243


Chapter 8

Concluding remarks

In this thesis, we presented a novel unit testing approach for object-oriented multi-
purpose programming languages in the style of Java and C]. Analyzing existing
unit testing approaches we identified three goals to be melted into our testing
framework:

• Due to the tendency that software developers do not only write the unit code
but likewise are responsible for specifying and executing the corresponding
unit test cases, the test specification language should be easily accessible
by software developers. In particular, referring to the increasing popular-
ity of agile software development methodologies, a specification language
that is completely different to the programming language may hamper the
propagated short test-and-develop cycles that many developers embark on.

• Object-orientation entails heavy collaboration among objects. As a conse-
quence, within an object-oriented context, unit testing coincide with inte-
gration testing. Hence, an object-oriented unit test does not merely consist
of relating input with output data but instead the proper interaction of
objects itself is to be verified.

• Finally, not only due to the interdependency among objects, specifying
interaction-based test cases can easily become quite complex. Therefore,
it is useful if a test specification language allows to formalize test case spec-
ifications on a high level.

Our idea for combining these, partly contradicting, features was to define a test
specification language by extending the programming language with dedicated
specification statements. Aiming at interaction-based testing, the specification
statements basically express expectations regarding the observable behavior of
the unit under test.

Based on this, the main part of the thesis dealt with a unit testing framework
for sequential object-oriented programs. The framework was introduced in four
steps. Firstly, we presented a formally defined component-based object-oriented

163



164 CHAPTER 8. CONCLUDING REMARKS

programming language Japl that captured the basic features of Java, C], and sim-
ilar languages. Second, we introduced the test specification language as an exten-
sion of Japl. As a third step, we developed a test code generation algorithm which
allows to automatically generate a Japl test program from a test specification. A
central contribution is the correctness proof of the code generation algorithm. We
concluded the main part with a discussion about possible extensions of both, the
programming language and the test specification language.

Even though the programming language Japl, as mentioned, captures only a
small fraction of the features of today’s commonly used object-oriented languages,
its formal representation is already quite complex. In particular, the discussion
about the language extension with subtyping and inheritance in Section 5.3 gives
a foretaste of the complexity one would be confronted with, if aiming at a for-
mal representation for the whole Java or C] language. One may conclude that
implementations of these object-oriented languages are likewise so complex that
compilers, virtual machines, and the like themselves should be thoroughly tested.
But due to the lack of complete formal specifications regarding these languages,
which would be essential to derive useful test cases, it is doubtful that these tests
exist either.

Similarly, the development of the code generation algorithm and its correctness
proof demonstrated the amount of considerations necessary for writing proper test
code in general. Against this background, one specifically can get an impression
on the effort that has to be made for writing interaction-based test code without
the support of a tool that abstracts away some of the entailed intricacies.

The second part of the thesis introduced concurrency into the programming
language by means of thread classes. Afterwards, we discussed a corresponding
extension of the test specification language which also included a sketch regarding
the necessary modifications of the code generation algorithm. Clearly, the above
remarks about the difficulties of writing proper test code is even more true if
concurrency comes into play [60].

As a conclusion, the testing framework proposed in this thesis, indeed, may fa-
cilitate writing interaction-based unit tests. Thus, regarding our testing approach,
it suggests itself that implementing the framework in Java or C] is one of the next
steps in the near future. The fact that parts of code generation algorithm is given
in terms of simple functional programming language code may expedite the im-
plementation. Moreover, as the specification language is defined as an extension
of the programming language, it could be implemented with the help of an ex-
tensible compiler framework like Polyglot [51] or The Dryad Compiler [43], for
instance. As indicated already, however, probably more effort will be necessary
for embedding further features of real word programming languages into the for-
mal framework. Besides subtyping and inheritance, synchronization mechanisms
like synchronized methods and monitors represent interesting candidates for the



165

multi-threaded setting. Although it takes quite an effort to define a formal frame-
work for interaction-based testing, it clearly has the benefit that it could form
a basis for further testing-related research, in general. For instance, it could be
useful in the field of compositional testing as it investigates how we can reuse test
results about smaller components for the integration test of their composition [14].




