
Testing object Interactions
Grüner, A.

Citation
Grüner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243

Chapter 7

Test specification
language and code
generation

As in the sequential setting, the underlying idea of our testing approach also
in the multi-threaded setting is to provide a test specification language which
allows to specify the interface interactions that may occur between the component
under test and its environment. Regarding the sequential setting, the specification
language’s look-and-feel resembles that of the programming language Japl but also
the specification language’s semantics was geared towards Japl’s trace semantics.
Describing a desired interaction trace, i.e., a sequence of communication labels,
a Japl test specification, in particular, specifies the exact order of the entailed
interface interactions. The consequence is that, in Japl we only need a single,
sequentially composed, (main) specification statement which likewise stipulates
an exact order due to its sequential construction.

In the multi-threaded setting, a trace of the semantics also represents a se-
quence of interactions. Due to the non-deterministic scheduling policy of the lan-
guage, however, we cannot assure a certain sequence in general: if a program
realizes a certain trace, then it also realizes different possible interleavings of the
original trace. On account of this, we want to allow for specifying tests that are
relaxed regarding the order of interactions carried out by different threads. Inter-
actions that belong to the same thread, however, must again comply with a certain
order. Therefore the idea is that the concurrent specification language shall allow
to provide a specification statement for each thread that becomes active in the
specification. To achieve this, we first have to identify the different situations in
which a thread (identifier) may show up in a CoJapl program for the first time.
There exist four different ways which are:

• internal thread creations due to instantiation of a thread class of the program

151

152CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

itself; for instance:

x = spawn MyThread(e, . . . , e),

• outgoing spawn labels, that is, the program instantiates an external thread
class; for instance:

a = ν(∆′,Θ′).〈spawn n of C(v)〉!,

• incoming spawn labels, that is, the program’s environment instantiates a
thread class of the program, resulting in a communication label, like:

a = ν(∆′,Θ′).〈spawn n of C(v)〉?,

• and incoming method or constructor call labels where the call is carried out
by a new thread; for instance:

a = ν(∆′).n〈call o.m(v)〉?, such that n ∈ ∆′.

For each of the above listed situations, a specification must provide a correspond-
ing specification statement that determines the desired sequence of interface inter-
action carried out by the new thread. As in the single threaded case, we want to
accomplish this by extending the programming language CoJapl with dedicated
specification constructs.

Let us start with a spawn statement that results in an outgoing spawn label.
That is, the specification instantiates a thread class C of the component under
test. Following the style of the outgoing call statement of the sequential specifica-
tion language, the spawn statement of the multi-threaded specification language
resembles the original spawn statement but is equipped with an exclamation mark
to indicate the cross-border communication.

x = spawn!C(e, . . . , e).

A crucial difference between a method call specification statement (as well as a
constructor call specification statement) on one hand and the spawn specification
statement on the other hand is that the spawn statement is not split into two
parts at the equal sign. For, the thread that carries out the spawn statement
does not get blocked but always immediately returns such that the thread cannot
realize any other actions in between the spawn and the corresponding return of the
thread identifier. Since the spawn statement causes the creation of a new thread,
the specification shall entail a description of the desired interface interactions
realized by the new thread. To this end, we introduce the following test thread
construct for specifying the interface behavior of a thread class C pertaining to
the component under test:

test thread C(T x){ stmt }.

153

According to our example, the above mentioned outgoing spawn statement results
in a new thread of thread class C of the component under test and this new thread
shall expose a behavior that conforms to the specification statement stmt . Note
that stmt is parameterized regarding the spawn’s parameters. Also note that the
statement will be typed in a passive control context, as C is defined within the
external component, hence, the thread becomes active in the external component,
as well.

It has been mentioned, however, that a thread of an external thread class can
also be created by the external component itself such that the specification does
not know anything about the thread until it passes the interface for the very first
time due to an incoming method or constructor call. In these cases the speci-
fication has to provide a desired behavior for the new thread, as well. Though,
the corresponding specification statement cannot be parameterized regarding the
spawn parameters, as it was not the specification that causes the thread spawn-
ing but the external component, hence, the corresponding actual parameters are
not known to the specification. Therefore, we introduce a second test thread con-
struct for specifying the behavior of thread classes of the component under test.
In particular, it is almost identical to the aforementioned parameterized thread
specification construct except that it does not provide any parameters. Therefore,
the specification construct

test thread C{ stmt }

means that, if a thread of class C enters the specification via a method or con-
structor call for the first time, then the interface behavior realized by this thread
has to comply with the specification statement stmt .

Similar to the CoJapl programming language, a specification may not only
spawn threads of externally defined thread classes but it also may create threads
by means of internal thread creations, that is, the specification also supports the
following spawn statement:

x = spawn(e, . . . , e).

Note, however, in contrast to a CoJapl program, a specification may only use
this statement in order to realize internal thread creations, since external thread
creations are implemented by the above mentioned outgoing spawn statement.

A thread that comes to existence due to an internal thread creation also has
to stick to a specified interface interaction sequence. Therefore, the specification
language also provides a mock thread construct that stipulates a certain interface
interaction due to a thread of a specification thread class C:

mock thread C(T x){ stmt }.

Since a thread of a specification thread class C always starts in the specification,
it consequently may pass the interface for the first time due to an outgoing com-
munication, only. Hence, the specification statement stmt is typed in an active
control context.

154CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

A thread of a specification thread class can come into existence either due to
an internal spawn statement or due to an incoming spawn label. In both cases,
the corresponding thread creation parameters are observable to the specification.
Therefore, regarding specification thread classes, we do not need an additional
mock thread construct that lacks the parameters.

Note, furthermore, that we need not to provide a specification statement for
the expectation of incoming spawns. To understand the reason, consider the case
that we do provide such a specification statement. More specifically, assume a
specification of a thread n which entails the following fictitious incoming spawn
statement:

x = spawn?C(T x).where(e).

The statement specifies that we expect the component under test to provoke an
incoming spawn label via thread n resulting in a new thread. Let us assume, the
name of the new thread is n′. Within the thread n itself, however, we cannot
check if a spawn was executed. Also the new thread n′ cannot verify that it was
created by the specified spawn, as the originator of a spawn is unknown to the
new thread, in general. Finally, due to the scheduling policy, the execution of a
spawn statement and the resulting execution of the corresponding thread body
are decoupled such that the start of the new thread does not allow to infer the
point of time, when the spawn statement has been executed. For instance, even
if the component under test executes, as specified by the above spawn expecta-
tion statement, the right spawn statement at the desired point of time, then the
new thread n′ may be scheduled much later. The conclusion is, neither can the
specification observe the originator nor the point of time regarding an incoming
spawn rendering it useless to introduce a corresponding specification statement.

Summarizing, the above mentioned mock thread construct is used for, both,
internally spawned and externally spawned threads of specification thread classes.
Now that we have discussed the new specification construct, the following section
provides the syntax of the concurrent specification language, at large.

7.1 Syntax

The syntax of the test specification language for testing CoJapl components is
given in terms of a grammar definition in Table 7.1. The language is basically an
extension of the specification language, given in Table 3.1, by the interactions spec-
ification of thread classes. To this end, the language provides the new constructs
that we have introduced in the previous section. In particular, the test thread
constructs extend the declaration of the test unit classes while the mock thread
construct completes the mock class declarations. We assume that the thread class
names of all kinds of thread specification constructs are different. Note that, due
to simplicity, this also means that the behavior of a thread class of the component
under test may only be specified either by means of a parameterized test thread
specification construct or by the non-parameterized test thread construct. Con-
sequently, we assume that all instances of an external thread class may show up

7.1. SYNTAX 155

s ::= cutdecl ; mokdecl ; T x; { stmt } specification

cutdecl ::= test class C test unit classes

| test thread C(T x){ stmt }
| test thread C{ stmt }

mokdecl ::= mock class C{C(T, . . . , T); T m(T, . . . , T)} mock classes

| mock thread C(T x){ stmt }
stmt ::=x = e | x = new C | ε | stmt ; stmt | {T x; stmt} statements

| while (e) {stmt} | if (e) {stmt} else {stmt}
| x = spawn C(e, . . . , e)
| stmt in | stmtout | case { stmt in ; stmt }

stmt in ::= (C x)?m(T x).where(e) {T x; stmt ; !return e} incoming stmt

| new(C x)?C(T x).where(e){T x; stmt ; !return}
stmtout ::= e!m(e, . . . , e) {T x; stmt ; ?return(x).where(e) } outgoing stmt

| new!C(e, . . . , e){T x; stmt ; ?return(x).where(e)}
| x = spawn!C(e, . . . , e)

e ::=x | null | op(e, . . . , e) | tid | tclass expressions

Table 7.1: Specification language for CoJapl: syntax

for the first time either due to an outgoing spawn or due to an incoming call.
Finally, the set of statements is extended by the internal and the outgoing

spawn specification. Regarding the expressions, like in CoJapl we introduce the
new expressions tid and tclass which allow a thread to determine its identifier
and its class, respectively.

We conclude this section with two small examples which illustrate the usage
of the specification language. The examples are given in Table 7.2. The first ex-
ample on the left hand side of the table demonstrates the behavior specification
of externally defined thread class, i.e., thread classes provided by the component
under test. We assume that the component under test implements a thread that
communicates with a (simplified) network service via its socket API (cf. [72],
for instance). The used socket API, however, is wrapped in a ServerSocket class
which is mocked by the specification. The thread under test is spawned by the
main statement of the specification in Line 33. The thread specification is given in
Lines 7 to 31. Specifically, the component (more precisely: its thread) is expected
to create a ServerSocket object. Afterwards the component shall request the socket
to listen to the network by means of an invocation of method listen. When the
socket gets a connection request from the network it returns from the listen call.
In this example, the method immediately return simulating a connection request.
The component, in turn, accepts the connection by calling accept which is then
followed by an undetermined number of send requests and by a final call of the
close method.

The second example in Table 7.2 illustrates the specification of a mock thread
class StackTest (Lines 2 to 26). It assumes an externally defined Stack class. More

156CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

specifically, the thread class tests if the Stack implementation is thread-save. That
is, instances of the Stack class used via different threads must not interfere with
each other resulting in an invalid stack structure. The thread class is parametrized
in terms of three integer values which are pushed to and afterwards popped from
a Stack object. Finally, the main specification statement spawns three threads of
StackTest which, therefore, are executed concurrently.

Server socket example:

1 mock class ServerSocket{
2 ServerSocket ServerSocket();
3 bool listen();
4 ...
5 }
6

7 test thread ServSockThread() {
8 ServerSocket s;
9

10 new?(ServerSocket x)ServerSocket() {
11 s = x;
12 !return(s)
13 };
14 s?listen() {
15 !return(true)
16 };
17 s?accept() {
18 !return(true);
19 };
20 bool rcv = true;
21 while (rcv) {
22 case

23 s?send(Data d) {
24 !return(true)
25 }
26 s?close() {
27 rcv = false;
28 !return(true)
29 }
30 }
31 }
32 { thread x;
33 x = spawn!servSockThread()
34 }

Stack example:

1 test class Stack;
2 mock thread StackTest(int x1, x2, x3) {
3 Stack s;
4

5 new!Stack() {
6 ?return(s)
7 };
8 s!push(x1) {
9 ?return(1)

10 };
11 s!push(x2) {
12 ?return(2)
13 };
14 s!push(x3) {
15 ?return(3)
16 };
17 s!pop(){
18 ?return(x3)
19 }
20 s!pop(){
21 ?return(x2)
22 }
23 s!pop(){
24 ?return(x1)
25 }
26 }
27 { thread x;
28 x = spawn StackTest(1, 2, 3);
29 x = spawn StackTest(4, 5, 6);
30 x = spawn StackTest(7, 8, 9);
31 }

Table 7.2: CoJapl example specifications

7.2. STATIC SEMANTICS 157

7.2 Static semantics

The type system for the concurrent test specification language is given in Ta-
ble 7.3. It extends the type system for the sequential language, given in Table 3.2,
by new rules regarding the newly introduced constructs. Moreover, Rule T-Spec
requires a simple adaption, as the mock thread declarations have to be type-
checked, while the mock class declarations of the sequential settings were only
used to extract the type information.

Rule T-TestTSpwn deals with the test thread specification of threads spawned
by means of an outgoing spawn label. Thus, the corresponding thread class C has
to be included in the assumption context. Moreover, its type must comply with
the thread specification. Finally, the body statement stmt of the thread speci-
fication has to be well-typed regarding a type context that is enriched by the
thread creation parameters. Specifically, the statement has to be a passive state-
ment, since the thread starts within the component under test. Similarly, the
Rule T-TestTCall deals with the specification construct of an external thread
that shows up in the specification due to an incoming call. Therefore, the speci-
fication construct is not parameterized by the thread creation parameters, so we
can omit the type check of the previous rule. Yet, also here, the name C must be
typed as an externally defined thread class. Likewise, the specification statement
must be passive.

[T-Spec]

Θ = cltype(mokdecl) Γ; ∆; Θ ` cutdecl : ok Γ; ∆; Θ ` mokdecl : ok
Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okγ ;

Γ; ∆ ` cutdecl ; mokdecl ; T x; { stmt } : Θγ

[T-TestTSpwn]
∆ ` C : T Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okpsv

Γ; ∆; Θ ` test thread C(T x){ stmt } : ok

[T-TestTCall]
∆ ` C : T Γ′; ∆; Θ ` stmt : okpsv

Γ; ∆; Θ ` test thread C{ stmt } : ok

[T-MockT]
Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okact

Γ; ∆; Θ ` mock thread C(T x){ stmt } : ok

[T-Spawni]
Γ; ∆,Θ ` x:thread Θ ` C:T Γ; ∆,Θ ` e:T

Γ; ∆; Θ ` x = spawn C(e) : okact

[T-Spawnout]
Γ; ∆,Θ ` x:thread ∆ ` C:T Γ; ∆,Θ ` e:T

Γ; ∆; Θ ` x = spawn!C(e) : okact

Table 7.3: Specification language for CoJapl: type system (stmts)

158CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

The mock thread specification represents the dual of the test thread specifica-
tion. Thus, its typing rule T-MockT is almost identical to Rule T-TestTspwn

but only its statement is type-checked in an active control context.
Finally, the two new spawn statements are type-checked by Rule Spawni and

Rule Spawnout , respectively. In both cases, the variable x has to be a thread
variable and the class name C must be appropriately typed as a thread class.
Regarding the internal spawn statement, however, the thread class must be pro-
vided by the commitment context Θ while the outgoing spawn statement is only
well-typed if the thread class can be found in the assumption context ∆. Note
that both statements are only well-typed in an active control context.

7.3 Operational semantics

Again, the internal steps of the operational semantics are identical to the rules
of the concurrent programming language CoJapl, hence, we do not repeat them
again. Regarding the external steps, we adapt the rules of the sequential specifi-
cation language by extending it with threads. This is done, as explained above,
by exchanging the call stack of the configurations with a thread configuration
mapping. Therefore, we also omit most of the rules inherited from the sequential
setting. We add new rules for the new thread-related specification constructs. As
with CoJapl, we have to differentiate incoming calls via new threads from rules
regarding re-entrant threads. The new rules are shown in Table 7.4.

An incoming spawn causes the extension of the thread configuration mapping
tc, where the new call stack is initialized with the specification statement of
the corresponding mock thread specification. To this end, we redefine the code
extracting function cbody such that it extracts the body statement from mock
and test thread specifications. We omit the straightforward redefinition of cbody .

Similarly, an outgoing spawn causes the extension of tc, where the call stack
is initialized with the specification statement of the corresponding test thread
specification. Additionally, the call stack that implements the outgoing spawn
statement is reduced and the global and local variables are updated with the new
thread identifier.

Regarding incoming method and constructor calls, we have to provide two rules
each, as explained above. Rule CallI deals with incoming method calls realized by
a thread n that is known to the specification, already. In particular, there exist a
thread configuration for n in tc already, whose call stack specifies the expectation
of this incoming call. Furthermore, the where-clause e′ of the expectation evaluates
to true, so the call stack is reduced and the thread configuration mapping is
correspondingly updated.

Rule CallInt , in contrast, deals with incoming calls that are realized by means
of a new thread. Thus, the thread configuration mapping does not provide a cor-
responding mapping. However, the rules requires that a test thread specification
regarding this thread is provided, such that the thread specification’s first ex-
pectation statement matches with the incoming call. In this case, the thread
configuration mapping is extended by a new thread configuration for the new

7.4. TEST CODE GENERATION 159

[SpawnI]

a = ν(∆′,Θ′).〈spawn n of C(v)〉? ∆ ` a : Θ
tc′ = tc[n 7→ (C, (vl, tbody(C))]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ,Θ′

where T x = tparams(C)
and
vl = {tid 7→ n, tclass 7→ C,

x 7→ v}

[SpawnO]

a = ν(Θ′,∆′).〈spawn n of C(v)〉!
tc(n′).cs = (µ, x=spawn!C(e); mc) ◦CS

tc′ = tc[n′ 7→ (µ′,mc) ◦CS][n 7→ (C, (vl, tbody(C)))]

∆,∆′ ` (h, v, tc) : Θ
a−→ ∆ ` (h, v′, tc′) : Θ,Θ′

where v = [[e]]v,µh ,
n ∈ N \ dom(tc),
(v′, µ′) = vupd(v, µ, x 7→ n),
∆′ = (n:C),
Θ′ = new(h, v,Θ), and
vl = {tid 7→ n, tclass 7→ C,

x 7→ v}

[CallI]

a = ν(∆′).n〈call o.m(v)〉? ∆ ` a : Θ

spsv =(C x)?m(T x).where(e′) {Tl xl; sact ; !return e}
[[e′]]

v,vl·µ
h tc(n).cs = (µ, spsv ; mcpsv) ◦CS

tc′ = tc[n 7→ (vl·µ, sact ; !return(e); mc) ◦CSeb]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ

where C = Θ(o),
∆,Θ ` n : CT , and
vl = {tid 7→ n,

tclass 7→ CT ,
this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

[CallInt]

a = ν(∆′).n〈call o.m(v)〉? ∆′ ` n : CT
∆ ` a : Θ tbody(CT) = spsv ; spsv1

spsv =(C x)?m(T x).where(e′){Tl xl; sact ; !return e}
[[e′]]

v,vl
h tc′ = tc[n 7→ (vl, s

act ; !return e; spsv1)]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ

where C = Θ(o), and
vl = {tid 7→ n,

tclass 7→ CT ,
this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

Table 7.4: Specification language for CoJapl: operational semantics (external)

thread where the call stack consists of the thread’s specification statement. We
skip the rules for incoming constructor call, as they are very similar to the rules
for incoming method calls.

7.4 Test code generation

In this section we want to sketch a possible extension of the sequential code
generation algorithm achieving a code generation algorithm for the multi-threaded
setting.

Recall, that a central idea of the sequential test code generation was the antic-
ipation of the next incoming communication. Specifically, in the sequential setting
we annotated each incoming communication term of the specification with an ex-
pectation identifier. On the other hand, we added a global variable next which
provided the label of the next upcoming incoming communication term. This way,
we could distribute the (translated) code of the specification over several method
definitions without loosing track of the stipulated sequential order of the specified
interface interactions.

160CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

As for the multi-threaded setting, we will embark exactly on the same strategy,
though the sequential order and the corresponding anticipation mechanism will be
carried out for each thread, only. In particular, all specification statements of each
mock thread and test thread specification are equipped with a unique expectation
identifier annotation as well as with corresponding next update statements, so
that, for instance, as a first approach, a mock thread specification

mock thread C(T x){ sact }

is preprocessed according to the preprocessing step as described in Section 4.1
resulting in a thread specification

mock thread C(T x){ prepout(s
psv) },

where spsvpp results from applying prepout on spsv . It is crucial, that each thread
uses its own next variable since the specification stipulates the sequential order
of interactions only per thread. In this context, a little complication arise from
the fact that threads can be spawned dynamically. For, it is not sufficient to
declare a static number of global next variables but instead we have to implement
the next variables by means of a globally accessible dynamic list which maps
thread identifiers to the corresponding next expectation identifier. We abstract
the details regarding the list implementation away such that in the following we
refer to the globally accessible list in terms of an array. That is, we assume that
the preprocessed specification provides a dynamic list next where the expression
next [n] yields the next expectation identifier for the thread with thread identifier
n (if the list defines a value for n, at all).

As for the method code generation, the transition from the sequential to the
multi-threaded setting is rather straightforward. Concerning the methods’ case
switches (cf. Section 4.2), we merely have to replace the next expression by a
next [tid] expression. Thus, compared to Table 4.7 the case switch consists of
conditional statements of the following form:

1 if((next[tid] == id) && check-where-clause) {
2 body

3 retVal = ret-val ;

4 } else { expectationk };

However, additionally we have to consider the case that a thread enters the test
program for the first time via an incoming method or constructor call. In this
case, next [tid] is not defined. Hence, we first have to check if the thread is new
and, if so, we have to determine the matching thread specification for this thread.
Note that only threads of externally defined thread classes may show up at the
interface for the first time in terms of an incoming method or constructor call.
Therefore, we can assume that the new thread is instantiated from an externally
defined thread class and, correspondingly, only test thread specifications come
into question for this matching procedure.

7.4. TEST CODE GENERATION 161

If a matching thread specification is found, then the next list is extended by
tid such that next [tid] is initialized with the first expectation identifier of the
matching thread specification. For a better understanding, consider an example
specification which includes a test thread specification regarding thread class CT
that starts with an incoming method call expectation of method m of class C,
i.e.,

test thread CT { [i](C x)?m(T y).where(e) {

Moreover, assume that indeed an incoming call of method m of an instance of
C via thread n has occurred, where n is new to the specification. In particular,
next [n] is not defined. Then method m has to set next [n] to the expectation
identifier i. Specifically, the above mentioned case switch in the body of method
m has to be proceeded by the following code:

if (tid 6∈ next) {
if (tclass == CT) {

next[tid] = i
} else {

fail
}
}

Thus, when tid is not in the next list, hence, when tid shows up for the first
time, then method m checks the class type of the new thread by means of tclass.
If the calling class is CT then the next list is extended by tid that is mapped
to the expectation identifier i. As we put this conditional statement at the very
beginning of the method body, the above mentioned case switch can be executed
subsequently.

So far, we have ignored two further problems that arise from the dynamic
thread creation. First, we cannot resolve the local variable declaration problem
with variable globalization, anymore (cf. Section 4.1.2). To understand this, con-
sider the following test thread specification:

test thread CT {
[i](C x)?m1(T y).where(e) {

o!m2() {
(C x)?m1(T z).where(y = z) {

. . . },

The above specification consists of two nested incoming calls ofm1 where the inner
call’s where-clause uses the parameter y of the outer call. As several instances of
thread CT may be created during the execution it is not sufficient to provide a
(single) global pendant for y as we have done it in the sequential setting. Instead,
for each thread we have to provide a corresponding set of global variables. Thus,
similar to the solution for the global next variable, for each local variable we have
to implement a dynamic list of globally accessible variables. Then, regarding the
nested calls example given above, the second incoming call specification of m1
may access y by y[tid].

162CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

enter:

1 access = false;
2 while (!access) {
3 while(accID != 0) { };
4 accID = accID + tid;
5 if (addID == tid)
6 { access = true }
7 else

8 { accID = accID − tid }
9 }

exit:

1 access = false;
2 accID = accID − tid;

Table 7.5: CoJapl code generation: mutual exclusion

The second problem is due to the fact that a globally accessible list imple-
mentation must only allow a mutually exclusive writing access to the list, in order
to avoid inconsistency. Therefore, in the following we provide a simple mutual
exclusion algorithm for CoJapl. In particular, we assume that writing accesses to
global lists are only realized within critical sections. Table 7.5 sketches entry and
exit code to be executed by a thread whenever it wants to enter and, respectively,
exit a critical section. The only assumption for this algorithm concerning the Co-
Japl language is that we consider thread identifiers to be represented by integers
which can be added and subtracted. Each thread has a local variable access and
additionally all threads share a global variable accID. The local variable access is
used by a thread to indicate that is has access to the critical section. The global
variable addID stores thread identifiers of competing threads. Let us have a closer
look at the entry code. After initializing access to false, we enter the while-loop
at Line 2. After that, we have to busy-wait for accID to become 0. A value of 0
indicates that no thread is in the critical section and that currently no thread has
requested entrance to the critical section. A thread requests for entrance to the
critical section by incrementing accID with its own thread it. If then afterwards
accID indeed stores the thread identifier of the thread, then the thread is allowed
to enter the section. Since other threads may have incremented the variable con-
currently as well, however, accID may be unequal to the thread identifier. In this
case, all competing threads have to decrement accID by their thread identifier
again. Due to the fact that an assignment represents an atomic computation step
in our language, there exist at most one thread which may find accID to store
exactly its own thread identifier. Therefore, mutual exclusion is granted. When
leaving the critical section, the thread again subtracts its identifier from accID.

	II Testing Multi-threaded Components
	7 Specification language and code generation
	7.1 Syntax
	7.2 Static semantics
	7.3 Operational semantics
	7.4 Test code generation

